
Polyspace® Bug Finder™
Reference

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Reference
© COPYRIGHT 2013–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2013 Online Only New for Version 1.0 (Release 2013b)
March 2014 Online Only Revised for Version 1.1 (Release 2014a)
October 2014 Online Only Revised for Version 1.2 (Release 2014b)
March 2015 Online Only Revised for Version 1.3 (Release 2015a)
September 2015 Online Only Revised for Version 2.0 (Release 2015b)
October 2015 Online Only Rereleased for Version 1.3.1 (Release

2015aSP1)
March 2016 Online Only Revised for Version 2.1 (Release 2016a)
September 2016 Online Only Revised for Version 2.2 (Release 2016b)
March 2017 Online Only Revised for Version 2.3 (Release 2017a)
September 2017 Online Only Revised for Version 2.4 (Release 2017b)
March 2018 Online Only Revised for Version 2.5 (Release 2018a)
September 2018 Online Only Revised for Version 2.6 (Release 2018b)
March 2019 Online Only Revised for Version 3.0 (Release 2019a)
September 2019 Online Only Revised for Version 3.1 (Release 2019b)

v

Contents

Option Descriptions
1

Polyspace Command-Line Options
2

Defects
3

Functions, Properties, Classes, and Apps
4

MISRA C 2012
5

MISRA C++: 2008
6

CERT C Rules and Recommendations
7

Acknowledgement . 7-2

vi Contents

CERT C++ Rules
8

Acknowledgement . 8-2

AUTOSAR C++14 Rules
9

ISO/IEC TS 17961
10

Acknowledgment . 10-2

Custom Coding Rules
11

Group 1: Files . 11-2

Group 2: Preprocessing . 11-3

Group 3: Type definitions . 11-4

Group 4: Structures . 11-5

Group 5: Classes (C++) . 11-6

Group 6: Enumerations . 11-7

Group 7: Functions . 11-8

Group 8: Constants . 11-9

Group 9: Variables . 11-10

vii

Group 10: Name spaces (C++) . 11-11

Group 11: Class templates (C++) . 11-12

Group 12: Function templates (C++) 11-13

Group 20: Style . 11-14

Code Metrics
12

Polyspace Report Components — Alphabetical List
13

Configuration Parameters
14

Settings from (C) . 14-2
Settings . 14-2
Dependency . 14-3
Command-Line Information . 14-3

Settings from (C++) . 14-4
Settings . 14-4
Dependency . 14-4
Command-Line Information . 14-5

Use custom project file . 14-6
Settings . 14-6
Dependency . 14-6
Command-Line Information . 14-6

Project configuration . 14-8
Settings . 14-8

viii Contents

Dependency . 14-8
Command-Line Information . 14-8

Enable additional file list . 14-9
Settings . 14-9
Command-Line Information . 14-9

Stub lookup tables . 14-11
Settings . 14-11
Tips . 14-12
Command-Line Information . 14-12

Input . 14-13
Settings . 14-13
Command-Line Information . 14-13

Tunable parameters . 14-14
Settings . 14-14
Command-Line Information . 14-14

Output . 14-15
Settings . 14-15
Command-Line Information . 14-15

Model reference verification depth . 14-16
Settings . 14-16
Command-Line Information . 14-16

Model by model verification . 14-18
Settings . 14-18
Command-Line Information . 14-18

Output folder . 14-19
Settings . 14-19
Command-Line Information . 14-19

Make output folder name unique by adding a suffix 14-20
Settings . 14-20
Command-Line Information . 14-20

Add results to current Simulink project 14-21
Settings . 14-21
Dependencies . 14-21

ix

Command-Line Information . 14-21

Open results automatically after verification 14-22
Settings . 14-22
Command-Line Information . 14-22

Check configuration before verification 14-23
Settings . 14-23
Command-Line Information . 14-23

Verify all S-function occurrences . 14-24
Settings . 14-24
Command-Line Information . 14-24

Approximations Used During Bug Finder Analysis
15

Inputs in Polyspace Bug Finder . 15-2

Global Variables in Polyspace Bug Finder 15-3

x Contents

Option Descriptions

1

Source code language (-lang)
Specify language of source files

Description
Specify the language of your source files. Before specifying other configuration options,
choose this option because other options change depending on your language selection.

If you add files during project setup, the language selection can change from the default.

Files Added Source Code Language
Only files with extension .c C
Only files with extension .cpp or .cc CPP
Files with extension .c, .cpp, and .cc C-CPP

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node. See “Dependencies” on page 1-3 for ways in which the
source code language can be automatically determined.

Command line: Use the option -lang. See “Command-Line Information” on page 1-3.

Settings
Default: Based on file extensions.

C
If your project contains only C files, choose this setting. This value restricts the
verification to C language conventions. All files are interpreted as C files, regardless
of their file extension.

1 Option Descriptions

1-2

CPP
If your project contains only C++ files, choose this setting. This value restricts the
verification to C++ language conventions. All files are interpreted as C++ files,
regardless of their file extension.

C-CPP
If your project contains C and C++ source files, choose this setting. This value allows
for C and C++ language conventions. .c files are interpreted as C files. Other file
extensions are interpreted as C++ files.

Dependencies
• The language option allows and disallows many options and option values. Some

options change depending on your language selection. For more information, see the
individual analysis option pages.

• If you create a Polyspace project or options file from your build system using the
polyspace-configure command or polyspaceConfigure function, the value of
this option is determined by the file extensions.

For a project with both .c and .cpp files, the language option C-CPP is used. In the
subsequent analysis, each file is compiled based on the language standard determined
by the file extensions.

Command-Line Information
Parameter: -lang
Value: c | cpp| c-cpp
Default: Based on file extensions
Example (Bug Finder): polyspace-bug-finder -lang c-cpp -sources
"file1.c,file2.cpp"
Example (Code Prover): polyspace-code-prover -lang cpp -sources
"file1.cpp,file2.cpp"
Example (Bug Finder): polyspace-bug-finder -lang c -sources
"file1.c,file2.c"
Example (Code Prover): polyspace-code-prover -lang c -sources
"file1.c,file2.c"
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources "file1.c,file2.c"

 Source code language (-lang)

1-3

Example (Code Prover Server): polyspace-code-prover-server -lang c -
sources "file1.c,file2.c"

See Also
C standard version (-c-version) | C++ standard version (-cpp-version)

1 Option Descriptions

1-4

C standard version (-c-version)
Specify C language standard followed in source code

Description
Specify the C language standard that you follow in your source code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node. See “Dependencies” on page 1-6 for other options that
you must enable.

Command line: Use the option -c-version. See “Command-Line Information” on page
1-6.

Why Use This Option
Use this option so that Polyspace can allow features specific to a C standard version
during compilation. For instance, if you compile with GCC using the flag -ansi or -
std=c90, specify c90 for this option. If you are not sure of the language standard, specify
defined-by-compiler.

For instance, suppose you use the boolean data type _Bool in your code. This type is
defined in the C99 standard but unknown in prior standards such as C90. If the Polyspace
compilation follows the C90 standard, you can see compilation errors.

Some MISRA C® rules are different based on whether you use the C90 or C99 standard.
For instance, MISRA C C:2012 Rule 5.2 requires that identifiers in the same scope and
name space shall be distinct. If you use the C90 standard, different identifiers that have
the same first 31 characters violate this rule. If you use the C99 standard, the number of
characters increase to 63.

 C standard version (-c-version)

1-5

Settings
Default: defined-by-compiler

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-
compiler).

See “C/C++ Language Standard Used in Polyspace Analysis”.

c90
The analysis uses the C90 Standard (ISO®/IEC 9899:1990).

c99
The analysis uses the C99 Standard (ISO/IEC 9899:1999).

c11
The analysis uses the C11 Standard (ISO/IEC 9899:2011).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.
• If you create a project or options file from your build system using the polyspace-

configure command or polyspaceConfigure function, the value of this option is
automatically determined from your build system.

If the build system uses different standards for different files, the subsequent
Polyspace analysis can emulate your build system and use different standards for
compiling those files. If you open such a project in the Polyspace user interface, the
option value is shown as defined-by-compiler. However, instead of one standard,
Polyspace uses the hidden option -options-for-sources to associate different
standards with different files.

Command-Line Information
Parameter: -c-version

1 Option Descriptions

1-6

Value: defined-by-compiler | c90 | c99 | c11
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -lang c -sources
"file1.c,file2.c" -c-version c90
Example (Code Prover): polyspace-code-prover -lang c -sources
"file1.c,file2.c" -c-version c90
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources "file1.c,file2.c" -c-version c90
Example (Code Prover Server): polyspace-code-prover-server -lang c -
sources "file1.c,file2.c" -c-version c90

See Also
C++ standard version (-cpp-version) | Source code language (-lang)

Topics
“Specify Polyspace Analysis Options”
“C/C++ Language Standard Used in Polyspace Analysis”
“C11 Language Elements Supported in Polyspace”

 C standard version (-c-version)

1-7

C++ standard version (-cpp-version)
Specify C++ language standard followed in source code

Description
Specify the C++ language standard that you follow in your source code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node. See “Dependencies” on page 1-9 for other options that
you must enable.

Command line: Use the option -cpp-version. See “Command-Line Information” on
page 1-10.

Why Use This Option
Use this option so that Polyspace can allow features from a specific version of the C++
language standard during compilation. For instance, if you compile with GCC using the
flag -std=c++11 or -std=gnu++11, specify cpp11 for this option. If you are not sure of
the language standard, specify defined-by-compiler.

For instance, suppose you use range-based for loops. This type of for loop is defined in
the C++11 standard but unrecognized in prior standards such as C++03. If the Polyspace
compilation uses the C++03 standard, you can see compilation errors.

To check if your compiler allows features specific to a standard, compile code with macros
specific to the standard using compiler settings that you typically use. For instance, to
check for C++11-specific features, compile this code. The code contains a C++11-specific
keyword nullptr. If the macro __cplusplus is not 201103L (indicating C++11), this
keyword is used and causes a compilation error.

#if defined(__cplusplus) && __cplusplus >= 201103L
 /* C++11 compiler */
#else

1 Option Descriptions

1-8

 void* ptr = nullptr;
#endif

If the code compiles, use cpp11 for this option.

Settings
Default: defined-by-compiler

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-
compiler).

See “C/C++ Language Standard Used in Polyspace Analysis”.

cpp03
The analysis uses the C++03 Standard (ISO/IEC 14882:2003).

cpp11
The analysis uses the C++11 Standard (ISO/IEC 14882:2011).

cpp14
The analysis uses the C++14 Standard (ISO/IEC 14882:2014).

Dependencies
• This option is available only if you set Source code language (-lang) to CPP or

C-CPP.
• If you create a project or options file from your build system using the polyspace-

configure command or polyspaceConfigure function, the value of this option is
automatically determined from your build system.

If the build system uses different standards for different files, the subsequent
Polyspace analysis can emulate your build system and use different standards for
compiling those files. If you open such a project in the Polyspace user interface, the
option value is shown as defined-by-compiler. However, instead of one standard,
Polyspace uses multiple standards for compiling the files. The analysis uses the hidden
option -options-for-sources to associate different standards with different files.

 C++ standard version (-cpp-version)

1-9

Command-Line Information
Parameter: -cpp-version
Value: defined-by-compiler | cpp03 | cpp11 | cpp14
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -lang c -sources
"file1.c,file2.c" -cpp-version cpp11
Example (Code Prover): polyspace-code-prover -lang c -sources
"file1.c,file2.c" -cpp-version cpp11
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources "file1.c,file2.c" -cpp-version cpp11
Example (Code Prover Server): polyspace-code-prover-server -lang c -
sources "file1.c,file2.c" -cpp-version cpp11

See Also
C standard version (-c-version) | Source code language (-lang)

Topics
“Specify Polyspace Analysis Options”
“C/C++ Language Standard Used in Polyspace Analysis”
“C++11 Language Elements Supported in Polyspace”
“C++14 Language Elements Supported in Polyspace”

1 Option Descriptions

1-10

Compiler (-compiler)
Specify the compiler that you use to build your source code

Description
Specify the compiler that you use to build your source code.

Polyspace fully supports the most common compilers used to develop embedded
applications. See the list below. For these compilers, you can run analysis simply by
specifying your compiler and target processor. For other compilers, specify generic as
compiler name. If you face compilation errors, explicitly define compiler-specific
extensions to work around the errors.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -compiler. See “Command-Line Information” on page
1-19.

Why Use This Option
Polyspace uses this information to interpret syntax that is not part of the C/C++
Standard, but comes from language extensions.

For example, the option allows additional language keywords, such as sfr, sbit, and
bit. If you do not specify your compiler, these additional keywords can cause compilation
errors during Polyspace analysis.

Polyspace does not actually invoke your compiler for compilation. In particular:

• You cannot specify compiler flags directly in the Polyspace analysis. To emulate your
compiler flags, trace your build command or manually specify equivalent Polyspace
analysis options. See “Specify Target Environment and Compiler Behavior”.

 Compiler (-compiler)

1-11

• Code Prover has a linking policy that is stricter than regular compilers. For instance, if
your compiler allows declaration mismatches with specific compiler options, you
cannot emulate this linking policy in Code Prover. See “Troubleshoot Compilation and
Linking Errors” (Polyspace Code Prover).

Settings
Default: generic

generic
Analysis allows only standard syntax.

The language standard is determined by your choice for the following options:

• C standard version (-c-version)
• C++ standard version (-cpp-version)

If you do not specify a standard explicitly, the standard depends on your choice of
compiler.

gnu3.4
Analysis allows GCC 3.4 syntax.

gnu4.6
Analysis allows GCC 4.6 syntax.

gnu4.7
Analysis allows GCC 4.7 syntax.

For unsupported GCC extensions, see “Limitations” on page 1-17.
gnu4.8

Analysis allows GCC 4.8 syntax.

For unsupported GCC extensions, see “Limitations” on page 1-17.
gnu4.9

Analysis allows GCC 4.9 syntax.

For unsupported GCC extensions, see “Limitations” on page 1-17.

1 Option Descriptions

1-12

gnu5.x
Analysis allows GCC 5.1, 5.2, 5.3, and 5.4 syntax.

If you select gnu5.x, the option Target processor type (-target) shows only
a subset of targets that are allowed for a GCC based compiler. For other targets, use
the option Generic target options.

For unsupported GCC extensions, see “Limitations” on page 1-17.
gnu6.x

Analysis allows GCC 6.1, 6.2, and 6.3 syntax.

If you select gnu6.x, the option Target processor type (-target) shows only
a subset of targets that are allowed for a GCC based compiler. For other targets, use
the option Generic target options.

For unsupported GCC extensions, see “Limitations” on page 1-17.
gnu7.x

Analysis allows GCC 7.1, 7.2, and 7.3 syntax.

If you select gnu7.x, the option Target processor type (-target) shows only
a subset of targets that are allowed for a GCC based compiler. For other targets, use
the option Generic target options.

For unsupported GCC extensions, see “Limitations” on page 1-17.
clang3.x

Analysis allows Clang 3.5, 3.6, 3.7, 3.8, and 3.9 syntax.
clang4.x

Analysis allows Clang 4.0.0, and 4.0.1 syntax.
clang5.x

Analysis allows Clang 5.0.0, and 5.0.1 syntax.
visual9.0

Analysis allows Microsoft® Visual C++® 2008 syntax.
visual10.0

Analysis allows Microsoft Visual C++ 2010 syntax.

This option implicitly enables the option -no-stl-stubs.

 Compiler (-compiler)

1-13

visual11.0
Analysis allows Microsoft Visual C++ 2012 syntax.

This option implicitly enables the option -no-stl-stubs.
visual12.0

Analysis allows Microsoft Visual C++ 2013 syntax.

This option implicitly enables the option -no-stl-stubs.
visual14.0

Analysis allows Microsoft Visual C++ 2015 syntax (supports Microsoft Visual
Studio®update 2).

This option implicitly enables the option -no-stl-stubs.
visual15.x

Analysis allows Microsoft Visual C++ 2017 syntax (supports Microsoft Visual Studio
versions 15.0 up to 15.7).

This option implicitly enables the option -no-stl-stubs.
keil

Analysis allows non-ANSI® C syntax and semantics associated with the Keil products
from ARM (www.keil.com).

iar
Analysis allows non-ANSI C syntax and semantics associated with the compilers from
IAR Systems (www.iar.com).

armcc
Analysis allows non-ANSI C syntax and semantics associated with the ARM® v5
compiler.

If you select armcc, in the user interface of the Polyspace desktop products, the
option Target processor type (-target) shows only the targets that are
allowed for the ARM v5 compiler. See ARM v5 Compiler (-compiler armcc).

armclang
Analysis allows non-ANSI C syntax and semantics associated with the ARM v6
compiler.

1 Option Descriptions

1-14

https://www.keil.com/
https://www.iar.com/

If you select armclang, in the user interface of the Polyspace desktop products, the
option Target processor type (-target) shows only the targets that are
allowed for the ARM v6 compiler. See ARM v6 Compiler (-compiler armclang).

codewarrior
Analysis allows non-ANSI C syntax and semantics associated with the NXP
CodeWarrior® compiler.

If you select codewarrior, in the user interface of the Polyspace desktop products,
the option Target processor type (-target) shows only the targets that are
allowed for the NXP CodeWarrior compiler. See NXP CodeWarrior Compiler (-
compiler codewarrior).

cosmic
Analysis allows non-ANSI C syntax and semantics associated with the Cosmic
compiler.

If you select cosmic, in the user interface of the Polyspace desktop products, the
option Target processor type (-target) shows only the targets that are
allowed for the Comic compiler. See Cosmic Compiler (-compiler cosmic).

diab
Analysis allows non-ANSI C syntax and semantics associated with the Wind River®

Diab compiler.

If you select diab, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for
the NXP CodeWarrior compiler. See Diab Compiler (-compiler diab).

greenhills
Analysis allows non-ANSI C syntax and semantics associated with a Green Hills®

compiler.

If you select greenhills, in the user interface of the Polyspace desktop products,
the option Target processor type (-target) shows only the targets that are
allowed for a Green Hills compiler. See Green Hills Compiler (-compiler
greenhills).

iar-ew
Analysis allows non-ANSI C syntax and semantics associated with the IAR Embedded
Workbench compiler.

If you select iar-ew, in the user interface of the Polyspace desktop products, the
option Target processor type (-target) shows only the targets that are

 Compiler (-compiler)

1-15

allowed for the IAR Embedded Workbench compiler. See IAR Embedded Workbench
Compiler (-compiler iar-ew).

renesas
Analysis allows non-ANSI C syntax and semantics associated with the Renesas®

compiler.

If you select renesas, in the user interface of the Polyspace desktop products, the
option Target processor type (-target) shows only the targets that are
allowed for the Renesas compiler. See Renesas Compiler (-compiler
renesas).

tasking
Analysis allows non-ANSI C syntax and semantics associated with the TASKING
compiler.

If you select tasking,in the user interface of the Polyspace desktop products, the
option Target processor type (-target) shows only the targets that are
allowed for the TASKING compiler. See TASKING Compiler (-compiler
tasking).

ti
Analysis allows non-ANSI C syntax and semantics associated with the Texas
Instruments™compiler.

If you select ti, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for
the Texas Instruments compiler. See Texas Instruments Compiler (-compiler
ti).

cosmic
Analysis allows non-ANSI C syntax and semantics associated with the compiler used
in the Cosmic software development tools.

If you select cosmic, in the user interface of the Polyspace desktop products, the
option Target processor type (-target) shows only the targets that are
allowed for the Cosmic compiler.

1 Option Descriptions

1-16

Tips
• If you use a Visual Studio compiler, you must use a Target processor type (-

target) option that sets long long to 64 bits. Compatible targets include: i386,
sparc, m68k, powerpc, tms320c3x, sharc21x61, mpc5xx, x86_64, or mcpu with
long long set to 64 (-long-long-is-64bits at the command line).

• If you use the option Check JSF AV C++ rules (-jsf-coding-rules), select
the compiler generic. If you use another compiler, Polyspace cannot check the JSF®

coding rules that require conforming to the ISO standard. For example, AV Rule 8: “All
code shall conform to ISO/IEC 14882:2002(E) standard C++.”

Limitations
Polyspace does not support certain features of these compilers:

• GNU® compilers (version 4.7 or later):

• Nested functions.

For instance, the function bar is nested in function foo:

int foo (int a, int b)
{
 int bar (int c) { return c * c; }

 return bar (a) + bar (b);
}

• Binary operations with vector types where one operand uses the shorthand
notation for uniform vectors.

For instance, in the addition operation, 2+a, 2 is used as a shorthand notation for
{2,2,2,2}.

typedef int v4si __attribute__ ((vector_size (16)));
v4si res, a = {1,2,3,4};

res = 2 + a; /* means {2,2,2,2} + a */
• Forward declaration of function parameters.

For instance, the parameter len is forward declared:

 Compiler (-compiler)

1-17

void func (int len; char data[len][len], int len)
{
 /* … */
}

• Complex integer data types.

However, complex floating point data types are supported.
• Initialization of structures with flexible array members using an initialization list.

For instance, the structure S has a flexible array member tab. A variable of type S
is directly initialized with an initialization list.

struct S {
 int x;
 int tab[]; /* flexible array member - not supported */
};
struct S s = { 0, 1, 2} ;

You see a warning during analysis and a red check in the results when you
dereference, for instance, s.tab[1].

• 128-bit variables.

Polyspace cannot analyze this data type semantically. Bug Finder allows use of 128-
bit data types, but Code Prover shows a compilation error if you use such a data
type, for instance, the GCC extension __float128.

• GNU compilers version 7.x:

• Type names _FloatN and _FloatNx are not semantically supported. The analysis
treats them as type float, double, or long double.

• Constants of type _FloatN or _FloatNx with suffixes fN, FN, or fNx, such as
1.2f123 or 2.3F64x are not supported.

• Visual Studio compilers:

• C++ Accelerated Massive Parallelism (AMP).

C++ AMP is a Visual Studio feature that accelerates your C++ code execution for
certain types of data-parallel hardware on specific targets. You typically use the
restrict keyword to enable this feature.

void Buffer() restrict(amp)
{

1 Option Descriptions

1-18

 ...
}

• __assume statements.

You typically use __assume with a condition that is false. The statement indicates
that the optimizer must assume the condition to be henceforth true. Code Prover
cannot reconcile this contradiction. You get the error:

Asked for compulsory presence of absent entity : assert

• Managed Extensions for C++ (required for the .NET Framework), or its successor,
C++/CLI (C++ modified for Common Language Infrastructure)

• __declspec keyword with attributes other than noreturn, nothrow, selectany
or thread.

Command-Line Information
Parameter: -compiler
Value: generic | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | gnu5.x |
gnu6.x | gnu7.x | clang3.x | clang4.x | clang5.x | visual9.0 |
visual10.0 | visual11.0 | visual12.0 | visual14.0 | visual15.x |
keil | iar | armcc | armclang | codewarrior | cosmic | diab |
greenhills | iar-ew | renesas | tasking | ti
Default: generic
Example 1 (Bug Finder): polyspace-bug-finder -lang c -sources
"file1.c,file2.c" -compiler gnu4.6
Example 2 (Bug Finder): polyspace-bug-finder -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Code Prover): polyspace-code-prover -lang c -sources
"file1.c,file2.c" -lang c -compiler gnu4.6
Example 2 (Code Prover): polyspace-code-prover -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources "file1.c,file2.c" -compiler gnu4.6
Example 2 (Bug Finder Server): polyspace-bug-finder-server -lang cpp -
sources "file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Code Prover Server): polyspace-code-prover-server -lang c -
sources "file1.c,file2.c" -lang c -compiler gnu4.6
Example 2 (Code Prover Server): polyspace-code-prover-server -lang cpp -
sources "file1.cpp,file2.cpp" -compiler visual9.0

 Compiler (-compiler)

1-19

See Also
C standard version (-c-version) | C++ standard version (-cpp-version) |
Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Troubleshoot Compilation Errors”
“Specify Target Environment and Compiler Behavior”
“Supported Keil or IAR Language Extensions”

1 Option Descriptions

1-20

Target processor type (-target)
Specify size of data types and endianness by selecting a predefined target processor

Description
Specify the processor on which you deploy your code.

The target processor determines the sizes of fundamental data types and the endianness
of the target machine. You can analyze code intended for an unlisted processor type by
using one of the other processor types, if they share common data properties.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node. To see the sizes of types, click the Edit button to the right
of the Target processor type drop-down list.

For some compilers, in the user interface, you see only the processors allowed for that
compiler. For these compilers, you also cannot see the data type sizes in the user
interface. See the links in the table below for the data type sizes.

Command line: Use the option -target. See “Command-Line Information” on page 1-
25.

Why Use This Option
You specify a target processor so that some of the Polyspace run-time checks are tailored
to the data type sizes and other properties of that processor.

For instance, a variable can overflow for smaller values on a 32-bit processor such as i386
compared to a 64-bit processor such as x86_64. If you select x86_64 for your Polyspace
analysis, but deploy your code to the i386 processor, your Polyspace results are not
always applicable.

Once you select a target processor, you can specify if the default sign of char is signed or
unsigned. To determine which signedness to specify, compile this code using the compiler
settings that you typically use:

 Target processor type (-target)

1-21

#include <limits.h>
int array[(char)UCHAR_MAX]; /* If char is signed, the array size is -1

If the code compiles, the default sign of char is unsigned. For instance, on a GCC
compiler, the code compiles with the -fsigned-char flag and fails to compile with the -
funsigned-char flag.

Settings
Default: i386

This table shows the size of each fundamental data type that Polyspace considers. For
some targets, you can modify the default size by clicking the Edit button to the right of
the Target processor type drop-down list. The optional values for those targets are
shown in [brackets] in the table.

Target cha
r

short int lon
g

long
long

flo
at

doubl
e

long
doublea

ptr Default
sign of
char

endian Align
ment

i386 8 16 32 32 64 32 64 96 32 signed Little 32
sparc 8 16 32 32 64 32 64 128 32 signed Big 64
m68kb 8 16 32 32 64 32 64 96 32 signed Big 64
powerpc 8 16 32 32 64 32 64 128 32 unsigne

d
Big 64

c-167 8 16 16 32 32 32 64 64 16 signed Little 64
tms320c3x 32 32 32 32 64 32 32 64 32 signed Little 32
sharc21x61 32 32 32 32 64 32 32

[64]
32 [64] 32 signed Little 32

necv850 8 16 32 32 32 32 32 64 32 signed Little 32
[16,
8]

hc08c 8 16 16
[32]

32 32 32 32
[64]

32 [64] 16d unsigne
d

Big 32
[16]

hc12 8 16 16
[32]

32 32 32 32
[64]

32 [64] 326 signed Big 32
[16]

1 Option Descriptions

1-22

Target cha
r

short int lon
g

long
long

flo
at

doubl
e

long
doublea

ptr Default
sign of
char

endian Align
ment

mpc5xx 8 16 32 32 64 32 32
[64]

32 [64] 32 signed Big 32
[16]

c18 8 16 16 32
[24]
e

32 32 32 32 16
[24]

signed Little 8

x86_64 8 16 32 64
[32]
f

64 32 64 128 64 signed Little 64
[32]

mcpu...
(Advanced)g

8
[16]

8 [16] 16
[32]

32 32
[64]

32 32
[64]

32 [64] 16
[32]

signed Little 32
[16,
8]

Targets for
ARM v5
compiler

See ARM v5 Compiler (-compiler armcc).

Targets for
ARM v6
compiler

See ARM v6 Compiler (-compiler armclang).

Targets for
NPX
CodeWarrior
compiler

See NXP CodeWarrior Compiler (-compiler codewarrior).

Targets for
Cosmic
compiler

See Cosmic Compiler (-compiler cosmic).

Targets for
Diab compiler

See Diab Compiler (-compiler diab).

Targets for
Green Hills
compiler

See Green Hills Compiler (-compiler greenhills).

 Target processor type (-target)

1-23

Target cha
r

short int lon
g

long
long

flo
at

doubl
e

long
doublea

ptr Default
sign of
char

endian Align
ment

Targets for
IAR
Embedded
Workbench
compiler

See IAR Embedded Workbench Compiler (-compiler iar-ew).

Targets for
Renesas
compiler

See Renesas Compiler (-compiler renesas).

Targets for
TASKING
compiler

See TASKING Compiler (-compiler tasking).

Targets for
Texas
Instruments
compiler

See Texas Instruments Compiler (-compiler ti).

a. For targets where the size of long double is greater than 64 bits, the size used for computations is not always the
same as the size listed in this table. The exceptions are:

• For targets i386, x86_64 and m68k, 80 bits are used for computations, following the practice in common
compilers.

• For the target tms320c3x, 40 bits are used for computation, following the TMS320C3x specifications.
• If you use a Visual compiler, the size of long double used for computations is the same as size of double,

following the specification of Visual C++ compilers.
b. The M68k family (68000, 68020, and so on) includes the “ColdFire” processor
c. Non-ANSI C specified keywords and compiler implementation-dependent pragmas and interrupt facilities are not taken

into account by this support
d. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.
e. The c18 target supports the type short long as 24 bits in size.
f. Use option -long-is-32bits to support Microsoft C/C++ Win64 target.
g. mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more

generic targets. For more information, see Generic target options.

Tips
If your processor is not listed, use a similar processor that shares the same
characteristics, or create an mcpu generic target processor. See Generic target
options.

1 Option Descriptions

1-24

You can also create a custom target by explicitly stating sizes of fundamental types and so
on with the option -custom-target.

Command-Line Information
Parameter: -target
Value: i386 | sparc | m68k | powerpc | c-167 | tms320c3x | sharc21x61
| necv850 | hc08 | hc12 | mpc5xx | c18 | x86_64 | mcpu
Default: i386
Example (Bug Finder): polyspace-bug-finder -target m68k
Example (Code Prover): polyspace-code-prover -target m68k
Example (Bug Finder Server): polyspace-bug-finder-server -target m68k
Example (Code Prover Server): polyspace-code-prover-server -target m68k

You can override the default values for some targets by using specific command-line
options. See the section Command-Line Options in Generic target options.

See Also
Polyspace Analysis Options
-custom-target

Polyspace Results
Higher Estimate of Local Variable Size | Lower Estimate of Local
Variable Size

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Target processor type (-target)

1-25

ARM v5 Compiler (-compiler armcc)
Specify ARM v5 compiler

Description
Specify armcc for the Compiler (-compiler) option if you compile your code with a
ARM v5 compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select armcc for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a
ARM v5 compiler. Your choice of target processor determines the size of fundamental data
types, the endianness of the target machine, and certain keyword definitions.

If you specify the armcc compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
online documentation.

Command-Line Information
Parameter: -compiler armcc -target
Value: arm
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler armcc -target arm
Example (Code Prover): polyspace-code-prover -compiler armcc -target
arm
Example (Bug Finder Server): polyspace-bug-finder-server -compiler armcc
-target arm
Example (Code Prover Server): polyspace-code-prover-server -compiler
armcc -target arm

1 Option Descriptions

1-26

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2019a

 ARM v5 Compiler (-compiler armcc)

1-27

ARM v6 Compiler (-compiler armclang)
Specify ARM v6 compiler

Description
Specify armclang for the Compiler (-compiler) option if you compile your code with
a ARM v6 compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select armclang for Compiler, in the
user interface of the Polyspace desktop products, you see only the processors allowed for
a ARM v6 compiler. Your choice of target processor determines the size of fundamental
data types, the endianness of the target machine, and certain keyword definitions.

If you specify the armclang compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
online documentation.

Command-Line Information
Parameter: -compiler armclang -target
Value: arm | arm64
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler armclang -target
arm64
Example (Code Prover): polyspace-code-prover -compiler armclang -target
arm64
Example (Bug Finder Server): polyspace-bug-finder-server -compiler
armclang -target arm64

1 Option Descriptions

1-28

Example (Code Prover Server): polyspace-code-prover-server -compiler
armclang -target arm64

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2019a

 ARM v6 Compiler (-compiler armclang)

1-29

NXP CodeWarrior Compiler (-compiler
codewarrior)
Specify NXP CodeWarrior compiler

Description
Specify codewarrior for Compiler (-compiler) if you compile your code using a
NXP CodeWarrior compiler. By specifying your compiler, you can avoid compilation errors
from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select codewarrior for Compiler, in the
user interface of the Polyspace desktop products, you see only the processors allowed for
a NXP CodeWarrior compiler. Your choice of target processor determines the size of
fundamental data types, the endianness of the target machine and certain keyword
definitions.

If you specify the codewarrior compiler, you must specify the path to your compiler
header files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
online documentation.

Command-Line Information
Parameter: -compiler codewarrior -target
Value: s12z | powerpc
Default: s12z
Example (Bug Finder): polyspace-bug-finder -compiler codewarrior -
target powerpc
Example (Code Prover): polyspace-code-prover -compiler codewarrior -
target powerpc

1 Option Descriptions

1-30

Example (Bug Finder Server): polyspace-bug-finder-server -compiler
codewarrior -target powerpc
Example (Code Prover Server): polyspace-code-prover-server -compiler
codewarrior -target powerpc

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

 NXP CodeWarrior Compiler (-compiler codewarrior)

1-31

Cosmic Compiler (-compiler cosmic)
Specify Cosmic compiler

Description
Specify cosmic for the Compiler (-compiler) option if you compile your code with a
Cosmic compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select cosmic for Compiler, in the user
interface, you see only the processors allowed for a Cosmic compiler. Your choice of
target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the cosmic compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
online documentation.

Command-Line Information
Parameter: -compiler cosmic -target
Value: s12z
Default: s12z
Example (Bug Finder): polyspace-bug-finder -compiler cosmic -target
s12z
Example (Code Prover): polyspace-code-prover -compiler cosmic -target
s12z
Example (Bug Finder Server): polyspace-bug-finder-server -compiler
cosmic -target s12z

1 Option Descriptions

1-32

Example (Code Prover Server): polyspace-code-prover-server -compiler
cosmic -target s12z

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2019b

 Cosmic Compiler (-compiler cosmic)

1-33

Diab Compiler (-compiler diab)
Specify the Wind River Diab compiler

Description
Specify diab for Compiler (-compiler) if you compile your code using the Wind River
Diab compiler. By specifying your compiler, you can avoid compilation errors from syntax
that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select diab for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for the
Diab compiler. Your choice of target processor determines the size of fundamental data
types, the endianness of the target machine and certain keyword definitions.

If you specify the diab compiler, you must specify the path to your compiler header files.
See “Provide Standard Library Headers for Polyspace Analysis”.

The software supports version 5.9.6 and older versions of the Diab compiler.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
online documentation.

Tips
If you encounter errors during Polyspace analysis, see “Errors Related to Diab Compiler”.

Command-Line Information
Parameter: -compiler diab -target
Value: i386 | powerpc | arm | coldfire | mips | mcore | rh850 | superh
| tricore

1 Option Descriptions

1-34

Default: powerpc
Example (Bug Finder): polyspace-bug-finder -compiler diab -target
tricore
Example (Code Prover): polyspace-code-prover -compiler diab -target
tricore
Example (Bug Finder Server): polyspace-bug-finder-server -compiler diab
-target tricore
Example (Code Prover Server): polyspace-code-prover-server -compiler
diab -target tricore

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2016b

 Diab Compiler (-compiler diab)

1-35

Green Hills Compiler (-compiler
greenhills)
Specify Green Hills compiler

Description
Specify greenhills for Compiler (-compiler) if you compile your code using a
Green Hills compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select greenhills for Compiler, in the
user interface of the Polyspace desktop products, you see only the processors allowed for
a Green Hills compiler. Your choice of target processor determines the size of
fundamental data types, the endianness of the target machine and certain keyword
definitions.

If you specify the greenhills compiler, you must specify the path to your compiler
header files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
online documentation.

Tips
• If you encounter errors during a Polyspace analysis, see “Errors Related to Green Hills

Compiler”
• Polyspace supports the embedded configuration for the i386 target. If your x86 Green

Hills compiler is configured for native Windows® development, you can see
compilation errors or incorrect analysis results with Code Prover. Contact Technical
Support.

1 Option Descriptions

1-36

For instance, Green Hills compilers consider a size of 12 bytes for long double for
embedded targets, but 8 bytes for native Windows. Polyspace considers 12 bytes by
default.

• If you create a Polyspace project from a build command that uses a Green Hills
compiler, the compiler options -filetype and -os_dir are not implemented in the
project. To emulate the -os_dir option, you can explicitly add the path argument of
the option as an include folder to your Polyspace project.

Command-Line Information
Parameter: -compiler greenhills -target
Value: powerpc | powerpc64 | arm | arm64 | tricore | rh850 | arm |
i386 | x86_64
Default: powerpc
Example (Bug Finder): polyspace-bug-finder -compiler greenhills -target
arm
Example (Code Prover): polyspace-code-prover -compiler greenhills -
target arm
Example (Bug Finder Server): polyspace-bug-finder-server -compiler
greenhills -target arm
Example (Code Prover Server): polyspace-code-prover-server -compiler
greenhills -target arm

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2017b

 Green Hills Compiler (-compiler greenhills)

1-37

IAR Embedded Workbench Compiler (-
compiler iar-ew)
Specify IAR Embedded Workbench compiler

Description
Specify iar-ew for Compiler (-compiler) if you compile your code using a IAR
Embedded Workbench compiler. By specifying your compiler, you can avoid compilation
errors from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select iar-ew for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a
IAR Embedded Workbench compiler. Your choice of target processor determines the size
of fundamental data types, the endianness of the target machine and certain keyword
definitions.

If you specify the iar-ew compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
online documentation.

Tips
Polyspace does not support some constructs specific to the IAR compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in
polyspaceroot\polyspace\verifier\code_prover_desktop. Here,
polyspaceroot is the MATLAB® installation folder, for instance, C:\Program Files
\Polyspace\R2019a.

1 Option Descriptions

1-38

Command-Line Information
Parameter: -compiler iar-ew -target
Value: arm | avr | msp430 | rh850 | rl78
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler iar-ew -target
rl78
Example (Code Prover): polyspace-code-prover -compiler iar-ew -target
rl78
Example (Bug Finder Server): polyspace-bug-finder-server -compiler iar-
ew -target rl78
Example (Code Prover Server): polyspace-code-prover-server -compiler
iar-ew -target rl78

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

 IAR Embedded Workbench Compiler (-compiler iar-ew)

1-39

Renesas Compiler (-compiler renesas)
Specify Renesas compiler

Description
Specify renesas for the Compiler (-compiler) option if you compile your code with a
Renesas compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select renesas for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a
Renesas compiler. Your choice of target processor determines the size of fundamental
data types, the endianness of the target machine, and certain keyword definitions.

If you specify the renesas compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
online documentation.

Command-Line Information
Parameter: -compiler renesas -target
Value: rl78 | rh850 | rx
Default: rl78
Example (Bug Finder): polyspace-bug-finder -compiler renesas -target rx
Example (Code Prover): polyspace-code-prover -compiler renesas -target
rx
Example (Bug Finder Server): polyspace-bug-finder-server -compiler
renesas -target rx
Example (Code Prover Server): polyspace-code-prover-server -compiler
renesas -target rx

1 Option Descriptions

1-40

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018b

 Renesas Compiler (-compiler renesas)

1-41

TASKING Compiler (-compiler tasking)
Specify the Altium TASKING compiler

Description
Specify tasking for Compiler (-compiler) if you compile your code using the
Altium® TASKING compiler. By specifying your compiler, you can avoid compilation errors
from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select tasking for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for the
TASKING compiler. Your choice of target processor determines the size of fundamental
data types, the endianness of the target machine and certain keyword definitions.

If you specify the tasking compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

The software supports different versions of the TASKING compiler, depending on the
target:

• TriCore: 6.0 and older versions
• C166: 4.0 and older versions
• ARM: 5.2 and older versions
• RH850: 2.2 and older versions

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
online documentation.

Tips
• Polyspace does not support some constructs specific to the TASKING compiler.

1 Option Descriptions

1-42

For the list of unsupported constructs, see codeprover_limitations.pdf in
polyspaceroot\polyspace\verifier\code_prover_desktop. Here,
polyspaceroot is the Polyspace installation folder, for instance, C:\Program Files
\Polyspace\R2019a.

• The CPU used is TC1793. If you use a different CPU, set the following analysis options
in your project:

• Disabled preprocessor definitions (-U): Undefine the macro
__CPU_TC1793B__.

• Preprocessor definitions (-D): Define the macro __CPU__. Enter
__CPU__=xxx, where xxx is the name of your CPU.

Additionally, define the equivalent of the macro __CPU_TC1793B__ for your CPU.
For instance, enter __CPU_TC1793A__.

Instead of manually specifying your compiler, if you trace your build command
(makefile), Polyspace can detect your CPU and add the required definitions in your
project.

• For some errors related to TASKING compiler-specific constructs, see solutions in
“Errors Related to TASKING Compiler”.

Command-Line Information
Parameter: -compiler tasking -target
Value: tricore | c166 | rh850 | arm
Default: tricore
Example (Bug Finder): polyspace-bug-finder -compiler tasking -target
tricore
Example (Code Prover): polyspace-code-prover -compiler tasking -target
tricore
Example (Bug Finder Server): polyspace-bug-finder-server -compiler
tasking -target tricore
Example (Code Prover Server): polyspace-code-prover-server -compiler
tasking -target tricore

See Also
Compiler (-compiler) | Target processor type (-target)

 TASKING Compiler (-compiler tasking)

1-43

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2017a

1 Option Descriptions

1-44

Texas Instruments Compiler (-compiler ti)
Specify Texas Instruments compiler

Description
Specify ti for Compiler (-compiler) if you compile your code using a Texas
Instruments compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select ti for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a
Texas Instruments compiler. Your choice of target processor determines the size of
fundamental data types, the endianness of the target machine and certain keyword
definitions.

If you specify the ti compiler, you must specify the path to your compiler header files.
See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
online documentation.

Tips
Polyspace does not support some constructs specific to the Texas Instruments compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in
polyspaceroot\polyspace\verifier\code_prover_desktop. Here,
polyspaceroot is the Polyspace installation folder, for instance, C:\Program Files
\Polyspace\R2019a.

 Texas Instruments Compiler (-compiler ti)

1-45

Command-Line Information
Parameter: -compiler ti -target
Value: c28x | c6000 | arm | msp430
Default: c28x
Example (Bug Finder): polyspace-bug-finder -compiler ti -target msp430
Example (Code Prover): polyspace-code-prover -compiler ti -target
msp430
Example (Bug Finder Server): polyspace-bug-finder-server -compiler ti -
target msp430
Example (Code Prover Server): polyspace-code-prover-server -compiler ti
-target msp430

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

1 Option Descriptions

1-46

Generic target options
Specify size of data types and endianness by creating your own target processor

Description
If a target processor is not directly supported by Polyspace, you can create your own
target. You specify the target mcpu representing a generic "Micro Controller/Processor
Unit" and then explicitly specify sizes of fundamental data types, endianness and other
characteristics.

Settings
In the user interface of the Polyspace desktop products, the Generic target options
dialog box opens when you set the Target processor type to mcpu. The Target
processor type option is available on the Target & Compiler node in the Configuration
pane.

 Generic target options

1-47

Use the dialog box to specify the name of a new mcpu target, for example My_target.
That new target is added to the Target processor type option list.

Default characteristics of a new target: listed as type [size]

• char [8]
• short [16]
• int [16]
• long [32]
• long long [32]
• float [32]
• double [32]
• long double [32]

1 Option Descriptions

1-48

• pointer [16]
• alignment [32]
• char is signed
• endianness is little-endian

Dependency
A custom target can only be created when Target processor type (-target) is set
to mcpu.

A custom target is not available when Compiler (-compiler) is set to one of the
visual* options.

Command-Line Options
When using the command line, use -target mcpu along with these target specification
options.

Option Description Available
With

Example

-little-endian Little-endian
architectures are
Less Significant byte
First (LSF). For
example: i386.

Specifies that the
less significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0xFF) and the
most significant byte
(0x00) at the second
byte.

mcpu polyspace-bug-finder -
target mcpu -little-endian

 Generic target options

1-49

Option Description Available
With

Example

-big-endian Big-endian
architectures are
Most Significant
byte First (MSF). For
example: SPARC,
m68k.

Specifies that the
most significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0x00) and the
less significant byte
(0xFF) at the second
byte.

mcpu polyspace-bug-finder -
target mcpu -big-endian

-default-sign-of-char
[signed | unsigned]

Specify default sign
of char.

signed: Specifies
that char is signed,
overriding target’s
default.

unsigned: Specifies
that char is
unsigned, overriding
target’s default.

All targets polyspace-bug-finder -
default-sign-of-char
unsigned -target mcpu

-char-is-16bits char defined as 16
bits and all objects
have a minimum
alignment of 16 bits

Incompatible with -
short-is-8bits
and -align 8

mcpu polyspace-bug-finder -
target mcpu -char-
is-16bits

1 Option Descriptions

1-50

Option Description Available
With

Example

-short-is-8bits Define short as 8
bits, regardless of
sign

mcpu polyspace-bug-finder -
target mcpu -short-
is-8bits

-int-is-32bits Define int as 32
bits, regardless of
sign. Alignment is
also set to 32 bits.

mcpu, hc08,
hc12,
mpc5xx

polyspace-bug-finder -
target mcpu -int-is-32bits

-long-is-32bits Define long as 32
bits, regardless of
sign. Alignment is
also set to 32 bits.

If your project sets
int to 64 bits, you
cannot use this
option.

All targets polyspace-bug-finder -
target mcpu -long-
is-32bits

-long-long-is-64bits Define long long
as 64 bits,
regardless of sign.
Alignment is also set
to 64 bits.

mcpu polyspace-bug-finder -
target mcpu -long-long-
is-64bits

-double-is-64bits Define double and
long double as 64
bits, regardless of
sign.

mcpu,
sharc21x6
1, hc08,
hc12,
mpc5xx

polyspace-bug-finder -
target mcpu -double-
is-64bits

-pointer-is-24bits Define pointer as 24
bits, regardless of
sign.

c18 polyspace-bug-finder -
target c18 -pointer-
is-24bits

-pointer-is-32bits Define pointer as 32
bits, regardless of
sign.

mcpu polyspace-bug-finder -
target mcpu -pointer-
is-32bits

 Generic target options

1-51

Option Description Available
With

Example

-align [32|16|8] Specifies the largest
alignment of struct
or array objects to
the 32, 16 or 8 bit
boundaries.

Consequently, the
array or struct
storage is strictly
determined by the
size of the individual
data objects without
member and end
padding.

mcpu, hc08,
hc12,
mpc5xx.

Other than
mcpu, all
targets
support only
16 or 32
bits.

polyspace-bug-finder -
target mcpu -align 16

See also:

• Management of wchar_t (-wchar-t-type-is)
• Management of size_t (-size-t-type-is)
• Enum type definition (-enum-type-definition)

You can also use the option -custom-target to specify sizes in bytes of fundamental
data types, signedness of plain char, alignment of structures and underlying types of
standard typedef-s such as size_t, wchar_t and ptrdiff_t.

Examples

Targets for GCC Based Compilers
If you select one of the gnu#.x compilers for Compiler (-compiler), you can specify
one of the supported target processor types. See Target processor type (-
target). If a target processor type is not directly listed as supported, you can create the
target by using this option.

For instance, you can create these targets:

1 Option Descriptions

1-52

• Tricore: Use these options:

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-enum-type-definition auto-signed-first
-wchar-t-type-is signed-int

• PowerPC: Use these options:

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-wchar-t-type-is signed-int

• ARM: Use these options:

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-enum-type-definition auto-signed-first
-wchar-t-type-is unsigned-int

• MSP430: Use these options:

-target mcpu
-long-long-is-64bits
-double-is-64bits
-wchar-t-type-is signed-long
-align 16

See Also
Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Generic target options

1-53

Sfr type support (-sfr-types)
Specify sizes of sfr types for code developed with Keil or IAR compilers

Description
Specify sizes of sfr types (types that define special function registers).

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node. See “Dependency” on page 1-54 for other options you
must also enable.

Command line: Use the option -sfr-types. See “Command-Line Information” on page
1-55.

Why Use This Option
Use this option if you have statements such as sfr addr = 0x80; in your code. sfr
types are not standard C types. Therefore, you must specify their sizes explicitly for the
Polyspace analysis.

Settings
No Default

List each sfr name and its size in bits.

Dependency
This option is available only when Compiler (-compiler) is set to keil or iar.

1 Option Descriptions

1-54

Command-Line Information
Syntax: -sfr-types sfr_name=size_in_bits,...
No Default
Name Value: an sfr name such as sfr16.
Size Value: 8 | 16 | 32
Example (Bug Finder): polyspace-bug-finder -lang c -compiler iar -sfr-
types sfr=8,sfr16=16 ...
Example (Code Prover): polyspace-code-prover -lang c -compiler iar -
sfr-types sfr=8,sfr16=16 ...
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
compiler iar -sfr-types sfr=8,sfr16=16 ...
Example (Code Prover Server): polyspace-code-prover-server -lang c -
compiler iar -sfr-types sfr=8,sfr16=16 ...

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”
“Supported Keil or IAR Language Extensions”

 Sfr type support (-sfr-types)

1-55

Division round down (-div-round-down)
Round down quotients from division or modulus of negative numbers instead of rounding
up

Description
Specify whether quotients from division and modulus of negative numbers are rounded up
or down.

Note a = (a / b) * b + a % b is always true.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -div-round-down. See “Command-Line Information” on
page 1-57.

Why Use This Option
Use this option to emulate your compiler.

The option is relevant only for compilers following C90 standard (ISO/IEC 9899:1990).
The standard stipulates that "if either operand of / or % is negative, whether the result of
the / operator, is the largest integer less or equal than the algebraic quotient or the
smallest integer greater or equal than the quotient, is implementation defined, same for
the sign of the % operator". The standard allows compilers to choose their own
implementation.

For compilers following the C99 standard ((ISO/IEC 9899:1999), this option is not
required. The standard enforces division with rounding towards zero (section 6.5.5).

1 Option Descriptions

1-56

Settings
 On

If either operand / or % is negative, the result of the / operator is the largest integer
less than or equal to the algebraic quotient. The result of the % operator is deduced
from a % b = a - (a / b) * b.

Example: assert(-5/3 == -2 && -5%3 == 1); is true.
 Off (default)

If either operand of / or % is negative, the result of the / operator is the smallest
integer greater than or equal to the algebraic quotient. The result of the % operator is
deduced from a % b = a - (a / b) * b.

This behavior is also known as rounding towards zero.

Example: assert(-5/3 == -1 && -5%3 == -2); is true.

Command-Line Information
Parameter: -div-round-down
Default: Off
Example (Bug Finder): polyspace-bug-finder -div-round-down
Example (Code Prover): polyspace-code-prover -div-round-down
Example (Bug Finder Server): polyspace-bug-finder-server -div-round-down
Example (Code Prover Server): polyspace-code-prover-server -div-round-
down

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Division round down (-div-round-down)

1-57

Enum type definition (-enum-type-
definition)
Specify how to represent an enum with a base type

Description
Allow the analysis to use different base types to represent an enumerated type, depending
on the enumerator values and the selected definition. When using this option, each enum
type is represented by the smallest integral type that can hold its enumeration values.

This option is available on the Target & Compiler node in the Configuration pane.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -enum-type-definition. See “Command-Line
Information” on page 1-60.

Why Use This Option
Your compiler represents enum variables as constants of a base integer type. Use this
option so that you can emulate your compiler.

To check your compiler settings:

1 Compile this code using the compiler settings that you typically use:

enum { MAXSIGNEDBYTE=127 } mysmallenum_t;

int dummy[(int)sizeof(mysmallenum_t) - (int)sizeof(int)];

If compilation fails, you have to use one of auto-signed-first or auto-
unsigned-first.

1 Option Descriptions

1-58

2 Compile this code using the compiler settings that you typically use:

#include <limits.h>

enum { MYINTMAX = INT_MAX } myintenum_t;

int dummy[(MYINTMAX + 1) < 0 ? -1:1];

If compilation fails, use auto-signed-first for this option, otherwise use auto-
unsigned-first.

Settings
Default: defined-by-compiler

defined-by-compiler
Uses the signed integer type for all compilers except gnu, clang and tasking.

For the gnu and clang compilers, it uses the first type that can hold all of the
enumerator values from this list: unsigned int, signed int, unsigned long,
signed long, unsigned long long and signed long long.

For the tasking compiler, it uses the first type that can hold all of the enumerator
values from this list: char, unsigned char, short, unsigned short, int, and
unsigned int.

auto-signed-first
Uses the first type that can hold all of the enumerator values from this list: signed
char, unsigned char, signed short, unsigned short, signed int, unsigned
int, signed long, unsigned long, signed long long, and unsigned long
long.

auto-unsigned-first
Uses the first type that can hold all of the enumerator values from these lists:

• If enumerator values are positive: unsigned char, unsigned short, unsigned
int, unsigned long, and unsigned long long.

• If one or more enumerator values are negative: signed char, signed short,
signed int, signed long, and signed long long.

 Enum type definition (-enum-type-definition)

1-59

Command-Line Information
Parameter: -enum-type-definition
Value: defined-by-compiler | auto-signed-first | auto-unsigned-first
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -enum-type-definition auto-
signed-first
Example (Code Prover): polyspace-code-prover -enum-type-definition
auto-signed-first
Example (Bug Finder Server): polyspace-bug-finder-server -enum-type-
definition auto-signed-first
Example (Code Prover Server): polyspace-code-prover-server -enum-type-
definition auto-signed-first

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1 Option Descriptions

1-60

Signed right shift (-logical-signed-right-
shift)
Specify how to treat the sign bit for logical right shifts on signed variables

Description
Choose between arithmetic and logical shift for right shift operations on negative values.

This option does not modify compile-time expressions. For more details, see “Limitation”
on page 1-62.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -logical-signed-right-shift. See “Command-Line
Information” on page 1-62.

Why Use This Option
The C99 Standard (sec 6.5.7) states that for a right-shift operation x1>>x2, if x1 is signed
and has negative values, the behavior is implementation-defined. Different compilers
choose between arithmetic and logical shift. Use this option to emulate your compiler.

Settings
Default: Arithmetical

Arithmetical
The sign bit remains:

(-4) >> 1 = -2
(-7) >> 1 = -4
 7 >> 1 = 3

 Signed right shift (-logical-signed-right-shift)

1-61

Logical
0 replaces the sign bit:

(-4) >> 1 = (-4U) >> 1 = 2147483646
(-7) >> 1 = (-7U) >> 1 = 2147483644
 7 >> 1 = 3

Limitation
In compile-time expressions, this Polyspace option does not change the standard behavior
for right shifts.

For example, consider this right shift expression:

int arr[((-4) >> 20)];

The compiler computes array sizes, so the expression (-4) >> 20 is evaluated at
compilation time. Logically, this expression is equivalent to 4095. However, arithmetically,
the result is -1. This statement causes a compilation error (arrays cannot have negative
size) because the standard right-shift behavior for signed integers is arithmetic.

Command-Line Information
When using the command line, arithmetic is the default computation mode. When this
option is set, logical computation is performed.
Parameter: -logical-signed-right-shift
Default: Arithmetic signed right shifts
Example (Bug Finder): polyspace-bug-finder -logical-signed-right-shift
Example (Code Prover): polyspace-code-prover -logical-signed-right-
shift
Example (Bug Finder Server): polyspace-bug-finder-server -logical-
signed-right-shift
Example (Code Prover Server): polyspace-code-prover-server -logical-
signed-right-shift

1 Option Descriptions

1-62

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Signed right shift (-logical-signed-right-shift)

1-63

Block char16/32_t types (-no-uliterals)
Disable Polyspace definitions for char16_t or char32_t

Description
Specify that the analysis must not define char16_t or char32_t types.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node. See “Dependencies” on page 1-65 for other options you
must also enable.

Command line: Use the option -no-uliterals. See “Command-Line Information” on
page 1-65.

Why Use This Option
If your compiler defines char16_t and/or char32_t through a typedef statement or by
using includes, use this option to turn off the standard Polyspace definition of char16_t
and char32_t.

To check if your compiler defines these types, compile this code using the compiler
settings that you typically use:

typedef unsigned short char16_t;
typedef unsigned long char32_t;

If the file compiles, it means that your compiler has already defined char16_t and
char32_t. Enable this Polyspace option.

Settings
 On

The analysis does not allow char16_t and char32_t types.

1 Option Descriptions

1-64

 Off (default)
The analysis allows char16_t and char32_t types.

Dependencies
You can select this option only when these conditions are true:

• Source code language (-lang) is set to CPP or C-CPP.
• Compiler (-compiler) is set to generic or a gnu version.

Command-Line Information
Parameter: -no-uliterals
Default: off
Example (Bug Finder): polyspace-bug-finder -lang cpp -compiler gnu4.7 -
cpp-version cpp11 -no-uliterals
Example (Code Prover): polyspace-code-prover -compiler gnu4.7 -lang cpp
-cpp-version cpp11 -no-uliterals
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -
compiler gnu4.7 -cpp-version cpp11 -no-uliterals
Example (Code Prover Server): polyspace-code-prover-server -compiler
gnu4.7 -lang cpp -cpp-version cpp11 -no-uliterals

See Also
Compiler (-compiler)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Block char16/32_t types (-no-uliterals)

1-65

Pack alignment value (-pack-alignment-
value)
Specify default structure packing alignment for code developed in Visual C++

Description
Specify the default packing alignment (in bytes) for structures, unions, and class
members.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -pack-alignment-value. See “Command-Line
Information” on page 1-67.

Why Use This Option
If you use compiler options to specify how members of a structure are packed into
memory, use this option to emulate your compiler.

For instance, if you use the Visual Studio option /Zp to specify an alignment, use this
option for your Polyspace analysis.

If you use #pragma pack directives in your code to specify alignment, and also specify
this option for analysis, the #pragma pack directives take precedence.

Settings
Default: 8

You can enter one of these values:

1 Option Descriptions

1-66

https://msdn.microsoft.com/en-us/library/xh3e3fd0.aspx

• 1
• 2
• 4
• 8
• 16

Command-Line Information
Parameter: -pack-alignment-value
Value: 1 | 2 | 4 | 8 | 16
Default: 8
Example (Bug Finder): polyspace-bug-finder -compiler visual10 -pack-
alignment-value 4
Example (Code Prover): polyspace-code-prover -compiler visual10 -pack-
alignment-value 4
Example (Bug Finder Server): polyspace-bug-finder-server -compiler
visual10 -pack-alignment-value 4
Example (Code Prover Server): polyspace-code-prover-server -compiler
visual10 -pack-alignment-value 4

See Also

 Pack alignment value (-pack-alignment-value)

1-67

Ignore pragma pack directives (-ignore-
pragma-pack)
Ignore #pragma pack directives

Description
Specify that the analysis must ignore #pragma pack directives in the code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -ignore-pragma-pack. See “Command-Line
Information” on page 1-69.

Why Use This Option
Use this option if #pragma pack directives in your code cause linking errors.

For instance, you have two structures with the same name in your code, but one
declaration follows a #pragma pack(2) statement. Because the default alignment is 8
bytes, the different packing for the two structures causes a linking error. Use this option
to avoid such errors.

Settings
 On

The analysis ignores the #pragma directives.

 Off (default)
The analysis takes into account specifications in the #pragma directives.

1 Option Descriptions

1-68

Command-Line Information
Parameter: -ignore-pragma-pack
Default: Off
Example (Bug Finder): polyspace-bug-finder -ignore-pragma-pack
Example (Code Prover): polyspace-code-prover -ignore-pragma-pack
Example (Bug Finder Server): polyspace-bug-finder-server -ignore-pragma-
pack
Example (Code Prover Server): polyspace-code-prover-server -ignore-
pragma-pack

See Also

 Ignore pragma pack directives (-ignore-pragma-pack)

1-69

Management of size_t (-size-t-type-is)
Specify the underlying data type of size_t

Description
Specify the underlying data type of size_t explicitly: unsigned int, unsigned long
or unsigned long long. If you do not specify this option, your choice of compiler
determines the underlying type.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -size-t-type-is. See “Command-Line Information” on
page 1-71.

Why Use This Option
The analysis associates a data type with size_t when you specify your compiler. If you
use a compiler option that changes this default type, emulate your compiler option by
using this analysis option.

If you run into compilation errors during Polyspace analysis and trace the error to the
definition of size_t, it is possible that you use a compiler option and change your
compiler default. To probe further, compile this code with your compiler using the options
that you typically use:

/* Header defines malloc as void* malloc (size_t size)
#include <stdio.h>

void* malloc (unsigned int size);

If the file does not compile, your compiler options cause size_t to be defined as
unsigned long or unsigned long long. Replace unsigned int with unsigned
long and try again.

1 Option Descriptions

1-70

Settings
Default: defined-by-compiler

defined-by-compiler
Your specification for Compiler (-compiler) determines the underlying type of
size_t.

unsigned-int
The analysis considers unsigned int as the underlying type of size_t.

unsigned-long
The analysis considers unsigned long as the underlying type of size_t.

unsigned-long-long
The analysis considers unsigned long long as the underlying type of size_t.

Command-Line Information
Parameter: -size-t-type-is
Value: defined-by-compiler | unsigned-int | unsigned-long | unsigned-long-
long
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -size-t-type-is unsigned-
long
Example (Code Prover): polyspace-code-prover -size-t-type-is unsigned-
long
Example (Bug Finder Server): polyspace-bug-finder-server -size-t-type-is
unsigned-long
Example (Code Prover Server): polyspace-code-prover-server -size-t-type-
is unsigned-long

See Also
-custom-target

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Management of size_t (-size-t-type-is)

1-71

Management of wchar_t (-wchar-t-type-is)
Specify the underlying data type of wchar_t

Description
Specify the underlying data type of wchar_t explicitly. If you do not specify this option,
your choice of compiler determines the underlying type.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Target & Compiler node.

Command line: Use the option -wchar-t-type-is. See “Command-Line Information”
on page 1-73.

Why Use This Option
The analysis associates a data type with wchar_t when you specify your compiler. If you
use a compiler option that changes this default type, emulate your compiler option by
using this analysis option.

Settings
Default: defined-by-compiler

defined-by-compiler
Your specification for Compiler (-compiler) determines the underlying type of
wchar_t.

signed-short
The analysis considers signed short as the underlying type of wchar_t.

unsigned-short
The analysis considers unsigned short as the underlying type of wchar_t.

1 Option Descriptions

1-72

signed-int
The analysis considers signed int as the underlying type of wchar_t.

unsigned-int
The analysis considers unsigned int as the underlying type of wchar_t.

signed-long
The analysis considers signed long as the underlying type of wchar_t.

unsigned-long
The analysis considers unsigned long as the underlying type of wchar_t.

Command-Line Information
Parameter: -wchar-t-type-is
Value: defined-by-compiler | signed-short | unsigned-short | signed-
int | unsigned-int | signed-long | unsigned-long
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -wchar-t-type-is signed-int
Example (Code Prover): polyspace-code-prover -wchar-t-type-is signed-
int
Example (Bug Finder Server): polyspace-bug-finder-server -wchar-t-type-
is signed-int
Example (Code Prover Server): polyspace-code-prover-server -wchar-t-
type-is signed-int

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Management of wchar_t (-wchar-t-type-is)

1-73

Ignore link errors (-no-extern-c)
Ignore certain linking errors

Description
Specify that the analysis must ignore certain linking errors.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Environment Settings node. See “Dependency” on page 1-75 for other options that
you must also enable.

Command line: Use the option -no-extern-C. See “Command-Line Information” on
page 1-75.

Why Use This Option
Some functions may be declared inside an extern "C" { } block in some files and not
in others. Then, their linkage is not the same and it causes a link error according to the
ANSI standard.

Applying this option will cause Polyspace to ignore this error. This permissive option may
not resolve all the extern C linkage errors.

Settings
 On

Ignore linking errors if possible.

 Off (default)
Stop analysis for linkage errors.

1 Option Descriptions

1-74

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

Command-Line Information
Parameter: -no-extern-C
Default: off
Example (Bug Finder): polyspace-bug-finder -lang cpp -no-extern-C
Example (Code Prover): polyspace-code-prover -lang cpp -no-extern-C
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -no-
extern-C
Example (Code Prover Server): polyspace-code-prover-server -lang cpp -
no-extern-C

See Also

Topics
“Specify Polyspace Analysis Options”

 Ignore link errors (-no-extern-c)

1-75

Preprocessor definitions (-D)
Replace macros in preprocessed code

Description
Replace macros with their definitions in preprocessed code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Macros node.

Command line: Use the option -D. See “Command-Line Information” on page 1-78.

Why Use This Option
Use this option to emulate your compiler behavior. For instance, if your compiler
considers a macro _WIN32 as defined when you build your code, it executes code in a
#ifdef _WIN32 statement. If Polyspace does not consider that macro as defined, you
must use this option to replace the macro with 1.

Depending on your settings for Compiler (-compiler), some macros are defined by
default. Use this option to define macros that are not implicitly defined.

Typically, you recognize from compilation errors that a certain macro is not defined. For
instance, the following code does not compile if the macro _WIN32 is not defined.

#ifdef _WIN32
 int env_var;
#endif

void set() {
 env_var=1;
}

The error message states that env_var is undefined. However, the definition of env_var
is in the #ifdef _WIN32 statement. The underlying cause for the error is that the macro
_WIN32 is not defined. You must define _WIN32.

1 Option Descriptions

1-76

Settings
No Default

Using the button, add a row for the macro you want to define. The definition must be
in the format Macro=Value. If you want Polyspace to ignore the macro, leave the Value
blank.

For example:

• name1=name2 replaces all instances of name1 by name2.
• name= instructs the software to ignore name.
• name with no equals sign or value replaces all instances of name by 1. To define a

macro to execute code in a #ifdef macro_name statement, use this syntax.

Tips
• If Polyspace does not support a non-ANSI keyword and shows a compilation error, use

this option to replace all occurrences of the keyword with a blank string in
preprocessed code. The replacement occurs only for the purposes of the analysis. Your
original source code remains intact.

For instance, if your compiler supports the __far keyword, to avoid compilation
errors:

• In the user interface (desktop products only), enter __far=.
• On the command line, use the flag -D __far=.

The software replaces the __far keyword with a blank string during preprocessing.
For example:

int __far* pValue;

is converted to:

int * pValue;
• Polyspace recognizes keywords such as restrict and does not allow their use as
identifiers. If you use those keywords as identifiers (because your compiler does not
recognize them as keywords), replace the disallowed name with another name using

 Preprocessor definitions (-D)

1-77

this option. The replacement occurs only for the purposes of the analysis. Your original
source code remains intact.

For instance, to allow use of restrict as identifier:

• In the user interface, enter restrict=my_restrict.
• On the command line, use the flag -D restrict=my_restrict.

Command-Line Information
You can specify only one flag with each -D option. However, you can specify the option
multiple times.
Parameter: -D
No Default
Value: flag=value
Example (Bug Finder): polyspace-bug-finder -D HAVE_MYLIB -D int32_t=int
Example (Code Prover): polyspace-code-prover -D HAVE_MYLIB -D
int32_t=int
Example (Bug Finder Server): polyspace-bug-finder-server -D HAVE_MYLIB -
D int32_t=int
Example (Code Prover Server): polyspace-code-prover-server -D HAVE_MYLIB
-D int32_t=int

See Also
Disabled preprocessor definitions (-U)

Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-78

Disabled preprocessor definitions (-U)
Undefine macros in preprocessed code

Description
Undefine macros in preprocessed code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Macros node.

Command line: Use the option -U. See “Command-Line Information” on page 1-80.

Why Use This Option
Use this option to emulate your compiler behavior. For instance, if your compiler
considers a macro _WIN32 as undefined when you build your code, it executes code in a
#ifndef _WIN32 statement. If Polyspace considers that macro as defined, you must
explicitly undefine the macro.

Some settings for Compiler (-compiler) enable certain macros by default. This option
allows you undefine the macros.

Typically, you recognize from compilation errors that a certain macro must be undefined.
For instance, the following code does not compile if the macro _WIN32 is defined.

#ifndef _WIN32
 int env_var;
#endif

void set() {
 env_var=1;
}

The error message states that env_var is undefined. However, the definition of env_var
is in the #ifndef _WIN32 statement. The underlying cause for the error is that the
macro _WIN32 is defined. You must undefine _WIN32.

 Disabled preprocessor definitions (-U)

1-79

Settings
No Default

Using the button, add a new row for each macro being undefined.

Command-Line Information
You can specify only one flag with each -U option. However, you can specify the option
multiple times.
Parameter: -U
No Default
Value: macro
Example (Bug Finder): polyspace-bug-finder -U HAVE_MYLIB -U USE_COM1
Example (Code Prover): polyspace-code-prover -U HAVE_MYLIB -U USE_COM1
Example (Bug Finder Server): polyspace-bug-finder-server -U HAVE_MYLIB -
U USE_COM1
Example (Code Prover Server): polyspace-code-prover-server -U HAVE_MYLIB
-U USE_COM1

See Also
Preprocessor definitions (-D)

Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-80

Code from DOS or Windows file system (-
dos)
Consider that file paths are in MS-DOS style

Description
Specify that DOS or Windows files are provided for analysis.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Environment Settings node.

Command line: Use the option -dos. See “Command-Line Information” on page 1-82.

Why Use This Option
Use this option if the contents of the Include or Source folder come from a DOS or
Windows file system. The option helps you resolve case sensitivity and control character
issues.

Settings
 On (default)

Analysis understands file names and include paths for Windows/DOS files

For example, with this option,

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

resolves to:

 Code from DOS or Windows file system (-dos)

1-81

#include "../my_test.h"

#include "../my_other_file.h"

In this mode, you see an error if your include folder has header files whose names
differ only in case.

 Off
Characters are not controlled for files names or paths.

Command-Line Information
Parameter: -dos
Default: Off
Example (Bug Finder): polyspace-bug-finder -dos -I ./
my_copied_include_dir -D test=1
Example (Code Prover): polyspace-code-prover -dos -I ./
my_copied_include_dir -D test=1
Example (Bug Finder Server): polyspace-bug-finder-server -dos -I ./
my_copied_include_dir -D test=1
Example (Code Prover Server): polyspace-code-prover-server -dos -I ./
my_copied_include_dir -D test=1

See Also

Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-82

Stop analysis if a file does not compile (-
stop-if-compile-error)
Specify that a compilation error must stop the analysis

Description
Specify that even a single compilation error must stop the analysis.

Set Option
User interface (desktop products only): In the Configuration pane, the option is on the
Environment Settings node.

Command line: Use the option -stop-if-compile-error. See “Command-Line
Information” on page 1-85.

Why Use This Option
Use this option to first resolve all compilation errors and then perform the Polyspace
analysis. This sequence ensures that all files are analyzed.

Otherwise, only files without compilation errors are fully analyzed. The analysis might
return some results for files that do not compile. If a file with compilation errors contains
a function definition, the analysis considers the function undefined. This assumption can
sometimes make the analysis less precise.

The option is more useful for a Code Prover analysis because the Code Prover run-time
checks rely more heavily on range propagation across functions.

Settings
 On

The analysis stops even if a single compilation error occurs.

 Stop analysis if a file does not compile (-stop-if-compile-error)

1-83

In the user interface of the Polyspace desktop products, you see the compilation
errors on the Output Summary pane.

For information on how to resolve the errors, see “Troubleshoot Compilation Errors”.

You can also see the errors in the analysis log, a text file generated during the
analysis. The log is named Polyspace_R20##n_ProjectName_date-time.log and
contains lines starting with Error: indicating compilation errors. To view the log
from the analysis results:

• In the user interface of the Polyspace desktop products, select Window > Show/
Hide View > Run Log.

• In the Polyspace Access web interface, open the Review tab. Select Layout >
Show/Hide View > Run Log.

Despite compilation errors, you can see some analysis results, for instance, coding
rule violations.

 Off (default)
The analysis does not stop because of compilation errors, but only files without
compilation errors are analyzed. The analysis does not consider files that do not
compile. If a file with compilation errors contains a function definition, the analysis
considers the function undefined. If the analysis needs the definition of such a
function, it makes broad assumptions about the function.

• The function return value can take any value in the range allowed by its data type.
• The function can modify arguments passed by reference so that they can take any

value in the range allowed by their data types.

If the assumptions are too broad, the analysis can be less precise. For instance, a run-
time check can flag an operation in orange even though it does not fail in practice.

1 Option Descriptions

1-84

If compilation errors occur, in the user interface of the Polyspace desktop products,
the Dashboard pane has a link, which shows that some files failed to compile. You
can click the link and see the compilation errors on the Output Summary pane.

You can also see the errors in the analysis log, a text file generated during the
analysis. The log is named Polyspace_R20##n_ProjectName_date-time.log and
contains lines starting with Error: indicating compilation errors. To view the log
from the analysis results:

• In the user interface of the Polyspace desktop products, select Window > Show/
Hide View > Run Log.

• In the Polyspace Access web interface, open the Review tab. Select Layout >
Show/Hide View > Run Log.

Command-Line Information
Parameter:-stop-if-compile-error
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources filename -stop-if-
compile-error
Example (Code Prover): polyspace-code-prover -sources filename -stop-
if-compile-error
Example (Bug Finder Server): polyspace-bug-finder-server -sources
filename -stop-if-compile-error
Example (Code Prover Server): polyspace-code-prover-server -sources
filename -stop-if-compile-error

See Also

Topics
“Specify Polyspace Analysis Options”

Introduced in R2017a

 Stop analysis if a file does not compile (-stop-if-compile-error)

1-85

Command/script to apply to preprocessed
files (-post-preprocessing-command)
Specify command or script to run on source files after preprocessing phase of analysis

Description
Specify a command or script to run on each source file after preprocessing.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Environment Settings node.

Command line: Use the option -post-preprocessing-command. See “Command-Line
Information” on page 1-88.

Why Use This Option
You can run scripts on preprocessed files to work around compilation errors or
imprecisions of the analysis while keeping your original source files untouched. For
instance, suppose Polyspace does not recognize a compiler-specific keyword. If you are
certain that the keyword is not relevant for the analysis, you can run a Perl script to
remove all instances of the keyword. When you use this option, the software removes the
keyword from your preprocessed code but keeps your original code untouched.

Use a script only if the existing analysis options do not meet your requirements. For
instance:

• For direct replacement of one keyword with another, use the option Preprocessor
definitions (-D).

However, the option does not allow search and replacement involving regular
expressions. For regular expressions, use a script.

• For mapping your library function to a standard library function, use the option -
function-behavior-specifications.

1 Option Descriptions

1-86

However, the option supports mapping to only a subset of standard library functions.
To map to an unsupported function, use a script.

If you are unsure about removing or replacing an unsupported construct, do not use this
option. Contact MathWorks® Support for guidance.

Settings
No Default

Enter full path to the command or script or click to navigate to the location of the
command or script. This script is executed before verification.

Tips
• Your script must be designed to process the standard output from preprocessing and

produce its results in accordance with that standard output.
• Your script must preserve the number of lines in the preprocessed file. In other words,

it must not add or remove entire lines to or from the file.

Adding a line or removing one can potentially result in some unpredictable behavior
on the location of checks and macros in the Polyspace user interface.

• For a Perl script, in Windows, specify the full path to the Perl executable followed by
the full path to the script.

For example:

• To specify a Perl command that replaces all instances of the far keyword, enter
polyspaceroot\sys\perl\win32\bin\perl.exe -p -e "s/far//g".

• To specify a Perl script replace_keyword.pl that replaces all instances of a
keyword, enter polyspaceroot\sys\perl\win32\bin\perl.exe
absolute_path\replace_keyword.pl.

Here, polyspaceroot is the location of the current Polyspace installation such as
C:\Program Files\Polyspace\R2019a\ and absolute_path is the location of
the Perl script. If the paths contain spaces, use quotes to enclose the full path names.

 Command/script to apply to preprocessed files (-post-preprocessing-command)

1-87

• Use this Perl script as template. The script removes all instances of the far keyword.

#!/usr/bin/perl

binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{

 # Remove far keyword
 $line =~ s/far//g;

 # Print the current processed line to STDOUT
 print $line;
}

You can use Perl regular expressions to perform substitutions. For instance, you can
use the following expressions.

Expression Meaning
. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in the set

0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For complete list of regular expressions, see Perl documentation.
• When you specify this option, the Compilation Assistant is automatically disabled.

Command-Line Information
Parameter: -post-preprocessing-command
Value: Path to executable file or command in quotes

1 Option Descriptions

1-88

https://perldoc.perl.org/perlre.html#Regular-Expressions

No Default
Example in Linux® (Bug Finder): polyspace-bug-finder -sources file_name
-post-preprocessing-command `pwd`/replace_keyword.pl
Example in Linux (Code Prover): polyspace-code-prover -sources file_name
-post-preprocessing-command `pwd`/replace_keyword.pl
Example in Linux (Bug Finder Server): polyspace-bug-finder-server -
sources file_name -post-preprocessing-command `pwd`/
replace_keyword.pl
Example in Linux (Code Prover Server): polyspace-code-prover-server -
sources file_name -post-preprocessing-command `pwd`/
replace_keyword.pl
Example in Windows: polyspace-bug-finder -sources file_name -post-
preprocessing-command "C:\Program Files\MATLAB\R2015b\sys\perl
\win32\bin\perl.exe" "C:\My_Scripts\replace_keyword.pl"

Note that in Windows, you use the full path to the Perl executable.

See Also
-regex-replace-rgx -regex-replace-fmt | Command/script to apply after
the end of the code verification (-post-analysis-command)

Topics
“Specify Polyspace Analysis Options”
“Remove or Replace Keywords Before Compilation”

 Command/script to apply to preprocessed files (-post-preprocessing-command)

1-89

Include (-include)
Specify files to be #include-ed by each C file in analysis

Description
Specify files to be #include-ed by each C file involved in the analysis. The software
enters the #include statements in the preprocessed code used for analysis, but does not
modify the original source code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Environment Settings node.

Command line: Use the option -include. See “Command-Line Information” on page 1-
91.

Why Use This Option
There can be many reasons why you want to #include a file in all your source files.

For instance, you can collect in one header file all workarounds for compilation errors.
Use this option to provide the header file for analysis. Suppose you have compilation
issues because Polyspace does not recognize certain compiler-specific keywords. To work
around the issues, #define the keywords in a header file and provide the header file with
this option.

Settings
No Default

Specify the file name to be included in every file involved in the analysis.

Polyspace still acts on other directives such as #include <include_file.h>.

1 Option Descriptions

1-90

Command-Line Information
Parameter: -include
Default: None
Value: file (Use -include multiple times for multiple files)
Example (Bug Finder): polyspace-bug-finder -include `pwd`/sources/
a_file.h -include /inc/inc_file.h
Example (Code Prover): polyspace-code-prover -include `pwd`/sources/
a_file.h -include /inc/inc_file.h
Example (Bug Finder Server): polyspace-bug-finder-server -include `pwd`/
sources/a_file.h -include /inc/inc_file.h
Example (Code Prover Server): polyspace-code-prover-server -include
`pwd`/sources/a_file.h -include /inc/inc_file.h

See Also

Topics
“Specify Polyspace Analysis Options”
“Gather Compilation Options Efficiently”

 Include (-include)

1-91

Include folders (-I)
View include folders used for analysis

Description
This option is relevant only for the user interface of the Polyspace desktop products.

View the include folders used for analysis.

Set Option
This is not an option that you set in your project configuration. You can only view the
include folders in the configuration associated with a result. For instance, in the user
interface:

• To add include folders, on the Project Browser, right-click your project. Select Add
Source.

• To view the include folders that you used, with your results open, select Window >
Show/Hide View > Configuration. Under the node Environment Settings, you see
the folders listed under Include folders.

Settings
This is a read-only option available only when viewing results in the user interface of the
Polyspace desktop products. Unlike other options, you do not specify include folders on
the Configuration pane. Instead, you add your include folders on the Project Browser
pane.

See Also
-I | Include (-include)

1 Option Descriptions

1-92

Constraint setup (-data-range-
specifications)
Constrain global variables, function inputs and return values of stubbed functions

Description
This option applies primarily to a Code Prover analysis. In Bug Finder, you can only
specify external constraints on global variables.

Specify constraints (also known as data range specifications or DRS) for global variables,
function inputs and return values of stubbed functions using a Constraint Specification
template file. The template file is an XML file that you can generate in the Polyspace user
interface.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Inputs & Stubbing node.

Command line: Use the option -data-range-specifications. See “Command-Line
Information” on page 1-94.

Why Use This Option
Use this option for specifying constraints outside your code.

Polyspace uses the code that you provide to make assumptions about items such as
variable ranges and allowed buffer size for pointers. Sometimes the assumptions are
broader than what you expect because:

• You have not provided the complete code. For example, you did not provide some of
the function definitions.

• Some of the information about variables is available only at run time. For example,
some variables in your code obtain values from the user at run time.

Because of these broad assumptions:

 Constraint setup (-data-range-specifications)

1-93

• Code Prover can consider more execution paths than those paths that occur at run
time. If an operation fails along one of the execution paths, Polyspace places an orange
check on the operation. If that execution path does not occur at run time, the orange
check indicates a false positive.

• Bug Finder can sometimes produce false positives.

To reduce the number of such false positives, you can specify additional constraints on
global variables, function inputs, and return values of stubbed functions.

After you specify your constraints, you can save them as an XML file to use them for
subsequent analyses. If your source code changes, you can update the previous
constraints. You do not have to create a new constraint template.

Settings
No Default

Enter full path to the template file. Alternately, click to open a Constraint
Specification wizard. This wizard allows you to generate a template file or navigate to an
existing template file.

For more information, see “Specify External Constraints”.

Command-Line Information
Parameter: -data-range-specifications
Value: file
No Default
Example (Bug Finder): polyspace-bug-finder -sources file_name -data-
range-specifications "C:\DRS\range.xml"
Example (Code Prover): polyspace-code-prover -sources file_name -data-
range-specifications "C:\DRS\range.xml"
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -data-range-specifications "C:\DRS\range.xml"
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -data-range-specifications "C:\DRS\range.xml"

1 Option Descriptions

1-94

See Also
Functions to stub (-functions-to-stub) | Ignore default initialization
of global variables (-no-def-init-glob)

Topics
“Specify Polyspace Analysis Options”
“Specify External Constraints”

 Constraint setup (-data-range-specifications)

1-95

Ignore default initialization of global
variables (-no-def-init-glob)
Consider global variables as uninitialized unless explicitly initialized in code

Description
This option applies to Code Prover only. It does not affect a Bug Finder analysis.

Specify that Polyspace must not consider global and static variables as initialized unless
they are explicitly initialized in the code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Inputs & Stubbing node.

Command line: Use the option -no-def-init-glob. See “Command-Line Information”
on page 1-97.

Why Use This Option
The C99 Standard specifies that global variables are implicitly initialized. The default
analysis follows the Standard and considers this implicit initialization.

If you want to initialize specific global variables explicitly, use this option to find the
instances where global variables are not explicitly initialized.

Settings
 On

Polyspace ignores implicit initialization of global and static variables. The verification
generates a red Non-initialized variable error if your code reads a global or static
variable before writing to it.

1 Option Descriptions

1-96

 Off (default)
Polyspace considers global variables and static variables to be initialized according to
C99 or ISO C++ standards. For instance, the default values are:

• 0 for int
• 0 for char
• 0.0 for float

Tips
• If you enable this option, global variables are considered uninitialized unless you

explicitly initialize them in the code.

This option overrides the option Variables to initialize (-main-generator-
writes-variables). Even if you initialize variables with the generated main, this
option forces the analysis to ignore the initialization.

• Static local variables have the same lifetime as global variables even though their
visibility is limited to the function where they are defined. Therefore, the option
applies to static local variables.

Command-Line Information
Parameter: -no-def-init-glob
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -no-
def-init-glob
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -no-def-init-glob

See Also
Non-initialized variable

Topics
“Specify Polyspace Analysis Options”

 Ignore default initialization of global variables (-no-def-init-glob)

1-97

No STL stubs (-no-stl-stubs)
Do not use Polyspace implementations of functions in the Standard Template Library

Description
Specify that the verification must not use Polyspace implementations of the Standard
Template Library.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Inputs & Stubbing node. See “Dependency” on page 1-99 for other options that
you must also enable.

Command line: Use the option -no-stl-stubs. See “Command-Line Information” on
page 1-99.

Why Use This Option
The analysis uses an efficient implementation of all class templates from the Standard
Template Library (STL). If your compiler redefines the templates, in some cases, your
compiler implementation can conflict with the Polyspace implementation.

Use this option to prevent Polyspace from using its implementations of STL templates.
You must also explicitly provide the path to your compiler includes. See “C++ Standard
Template Library Stubbing Errors” (Polyspace Code Prover).

Settings
 On

The verification does not use Polyspace implementations of the Standard Template
Library.

1 Option Descriptions

1-98

 Off (default)
The verification uses efficient Polyspace implementations of the Standard Template
Library.

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

Command-Line Information
Parameter: -no-stl-stubs
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -no-
stl-stubs
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -no-stl-stubs

See Also

Topics
“Specify Polyspace Analysis Options”

 No STL stubs (-no-stl-stubs)

1-99

Functions to stub (-functions-to-stub)
Specify functions to stub during analysis

Description
Specify functions to stub during analysis.

For specified functions, Polyspace :

• Ignores the function definition even if it exists.
• Assumes that the function inputs and outputs have full range of values allowed by

their type.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Inputs & Stubbing node.

Command line: Use the option -functions-to-stub. See “Command-Line
Information” on page 1-102.

Why Use This Option
If you want the analysis to ignore the code in a function body, you can stub the function.

For instance:

• Suppose you have not completed writing the function and do not want the analysis to
consider the function body. You can use this option to stub the function and then
specify constraints on its return value and modifiable arguments.

• Suppose the analysis of a function body is imprecise. The analysis assumes that the
function returns all possible values that the function return type allows. You can use
this option to stub the function and then specify constraints on its return value.

1 Option Descriptions

1-100

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

When entering function names, use either the basic syntax or, to differentiate overloaded
functions, the argument syntax. For the argument syntax, separate function arguments
with semicolons. See the following code and table for examples.

//simple function

void test(int a, int b);

//C++ template function

Template <class myType>
myType test(myType a, myType b);

//C++ class method

class A {
 public:
 int test(int var1, int var2);
};

//C++ template class method

template <class myType> class A
{
 public:
 myType test(myType var1, myType var2);
};

Function Type Basic Syntax Argument Syntax
Simple function test test(int; int)

 Functions to stub (-functions-to-stub)

1-101

Function Type Basic Syntax Argument Syntax
C++ template function test test(myType; myType)
C++ class method A::test A::test(int;int)
C++ template class
method

A<myType>::test A<myType>::test(myType;my
Type)

Tips
• Code Prover makes assumptions about the arguments and return values of stubbed

functions. For example, Polyspace assumes that the return values of stubbed functions
are full range. These assumptions can affect checks in other sections of the code. See
“Stubbed Functions” (Polyspace Code Prover).

• If you stub a function, you can constrain the range of function arguments and return
value. To specify constraints, use the analysis option Constraint setup (-data-
range-specifications).

• For C functions, these special characters are allowed:() < > ; _

For C++ functions, these special characters are allowed : () < > ; _ * & []

Space characters are allowed for C++, but are not allowed for C functions.

Command-Line Information
Parameter: -functions-to-stub
No Default
Value: function1[,function2[,...]]
Example (Code Prover): polyspace-code-prover -sources file_name -
functions-to-stub function_1,function_2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -functions-to-stub function_1,function_2

See Also
Constraint setup (-data-range-specifications)

1 Option Descriptions

1-102

Topics
“Specify Polyspace Analysis Options”

 Functions to stub (-functions-to-stub)

1-103

Generate stubs for Embedded Coder lookup
tables (-stub-embedded-coder-lookup-
table-functions)
Stub autogenerated functions that use lookup tables and model them more precisely

Description
This option is available only for model-generated code. The option is relevant only if you
generate code from a Simulink® model that uses Lookup Table blocks using MathWorks
code generation products.

Specify that the verification must stub autogenerated functions that use certain kinds of
lookup tables in their body. The lookup tables in these functions use linear interpolation
and do not allow extrapolation. That is, the result of using the lookup table always lies
between the lower and upper bounds of the table.

Set Option
If you are running verification from Simulink, use the option “Stub lookup tables”
(Polyspace Code Prover) in Simulink Configuration Parameters, which performs the same
task.

User interface (desktop products only): In your Polyspace project configuration, the
option is on the Inputs & Stubbing node.

Command line: Use the option -stub-embedded-coder-lookup-table-functions.
See “Command-Line Information” on page 1-106.

Why Use This Option
If you use this option, the verification is more precise and has fewer orange checks. The
verification of lookup table functions is usually imprecise. The software has to make
certain assumptions about these functions. To avoid missing a run-time error, the
verification assumes that the result of using the lookup table is within the full range

1 Option Descriptions

1-104

allowed by the result data type. This assumption can cause many unproven results
(orange checks) when a lookup table function is called. By using this option, you narrow
down the assumption. For functions that use lookup tables with linear interpolation and
no extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model has Lookup Table blocks. In the generated code,
the functions corresponding to Lookup Table blocks also use lookup tables. The function
names follow specific conventions. The verification uses the naming conventions to
identify if the lookup tables in the functions use linear interpolation and no extrapolation.
The verification then replaces such functions with stubs for more precise verification.

Settings
 On (default)

For autogenerated functions that use lookup tables with linear interpolation and no
extrapolation, the verification:

• Does not check for run-time errors in the function body.
• Calls a function stub instead of the actual function at the function call sites. The

stub ensures that the result of using the lookup table is within the bounds of the
table.

To identify if the lookup table in the function uses linear interpolation and no
extrapolation, the verification uses the function name. In your analysis results, you
see that the function is not analyzed. If you place your cursor on the function name,
you see the following message:

 Function has been recognized as an Embedded Coder Lookup-Table function.
 It was stubbed by Polyspace to increase precision.
 Unset the -stub-embedded-coder-lookup-table-functions option to analyze
 the code below.

 Off
The verification does not stub autogenerated functions that use lookup tables.

 Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)

1-105

Tips
• The option applies to only autogenerated functions. If you integrate your own C/C++

S-Function using lookup tables with the model, these functions do not follow the
naming conventions for autogenerated functions. The option does not cause them to
be stubbed. If you want the same behavior for your handwritten lookup table functions
as the autogenerated functions, use the option -function-behavior-
specifications and map your function to the __ps_lookup_table_clip function.

• If you run verification from Simulink, the option is on by default. For certification
purposes, if you want your verification tool to be independent of the code generation
tool, turn off the option.

Command-Line Information
Parameter: -stub-embedded-coder-lookup-table-functions
Default: On
Example (Code Prover): polyspace-code-prover -sources file_name -stub-
embedded-coder-lookup-table-functions
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -stub-embedded-coder-lookup-table-functions

See Also

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016b

1 Option Descriptions

1-106

Generate results for sources and (-
generate-results-for)
Specify files on which you want analysis results

Description
Specify files on which you want analysis results.

The option applies only to coding rule violations and code metrics. You cannot suppress
Code Prover run-time checks from select source and header files.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Inputs & Stubbing node.

Command line: Use the option -generate-results-for. See “Command-Line
Information” on page 1-109.

Why Use This Option
Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same
folder as the source files. Often, other header files belong to a third-party library. Though
these header files are required for a precise analysis, you are not interested in reviewing
findings in those headers. Therefore, by default, results are not generated for those
headers. If you are interested in certain headers from third-party libraries, change the
default value of this option.

Settings
Default: source-headers

 Generate results for sources and (-generate-results-for)

1-107

source-headers
Results appear on source files and header files in the same folder as the source files
or in subfolders of source file folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

all-headers
Results appear on source files and all header files. The header files can be in the same
folder as source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

custom
Results appear on source files and the files that you specify. If you enter a folder
name, results appear on header files in that folder.

Click to add a field. Enter a file or folder name.

Tips
1 Use this option in combination with appropriate values for the option Do not

generate results for (-do-not-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific
value determines the display of results. For instance, in the following examples, the
value for the option Generate results for sources and is more specific.

1 Option Descriptions

1-108

Generate results for
sources and

Do not generate
results for

Final Result

custom:

C:\Includes
\Custom_Library\

custom:

C:\Includes

Results are displayed on
header files in
C:\Includes
\Custom_Library\ but
not generated for other
header files in
C:\Includes and its
subfolders.

custom:

C:\Includes
\my_header.h

custom:

C:\Includes\

Results are displayed on
the header file
my_header.h in
C:\Includes\ but not
generated for other
header files in
C:\Includes\ and its
subfolders.

Using these two options together, you can suppress results from all files in a certain
folder but unsuppress select files in those folders.

2 If you choose all-headers for this option, results are displayed on all header files
irrespective of what you specify for the option Do not generate results for.

Command-Line Information
Parameter: -generate-results-for
Value: all-headers | custom=file1[,file2[,...]] | folder1[,folder2[,...]]
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -
misra2 required-rules -generate-results-for "C:\usr\include"
Example (Code Prover): polyspace-code-prover -lang c -sources file_name
-misra2 required-rules -generate-results-for "C:\usr\include"
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources file_name -misra2 required-rules -generate-results-for
"C:\usr\include"
Example (Code Prover Server): polyspace-code-prover-server -lang c -
sources file_name -misra2 required-rules -generate-results-for
"C:\usr\include"

 Generate results for sources and (-generate-results-for)

1-109

See Also

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016a

1 Option Descriptions

1-110

Do not generate results for (-do-not-
generate-results-for)
Specify files on which you do not want analysis results

Description
Specify files on which you do not want analysis results.

The option applies only to coding rule violations, code metrics and unused global
variables. You cannot suppress Code Prover run-time checks from source and header files.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Inputs & Stubbing node.

Command line: Use the option -do-not-generate-results-for. See “Command-
Line Information” on page 1-115.

Why Use This Option
Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same
folder as the source files. If you are not interested in reviewing the findings in those
headers, change the default value of this option.

Settings
Default: include-folders

include-folders
Results are not generated for header files in include folders.

 Do not generate results for (-do-not-generate-results-for)

1-111

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

If an include folder is a subfolder of a source folder, results are generated for files in
that include folder even if you specify the option value include-folders. In this
situation, use the option value custom and explicitly specify the include folders to
ignore.

all-headers
Results are not generated for all header files. The header files can be in the same
folder as source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

custom
Results are not generated for the files that you specify. If you enter a folder name,
results are suppressed from files in that folder.

Click to add a field. Enter a file or folder name.

Tips
1 Use this option appropriately in combination with appropriate values for the option

Generate results for sources and (-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific
value determines the display of results. For instance, in the following examples, the
value for the option Generate results for sources and is more specific.

1 Option Descriptions

1-112

Generate results for
sources and

Do not generate
results for

Final Result

custom:

C:\Includes
\Custom_Library\

custom:

C:\Includes

Results are displayed on
header files in
C:\Includes
\Custom_Library\ but
not generated for other
header files in
C:\Includes and its
subfolders.

custom:

C:\Includes
\my_header.h

custom:

C:\Includes\

Results are displayed on
the header file
my_header.h in
C:\Includes\ but not
generated for other
header files in
C:\Includes\ and its
subfolders.

Using these two options together, you can suppress results from all files in a certain
folder but unsuppress select files in those folders.

2 If you choose all-headers for this option, results are suppressed from all header
files irrespective of what you specify for the option Generate results for sources
and.

3 If a defect or coding rule violation involves two files and you do not generate results
for one of the files, the defect or rule violation still appears. For instance, if you
define two variables with similar-looking names in files myFile.cpp and myFile.h,
you get a violation of the MISRA® C++ rule 2-10-1, even if you do not generate
results for myFile.h. MISRA C++ rule 2-10-1 states that different identifiers must
be typographically unambiguous.

The following results can involve more than one file:

MISRA C: 2004 Rules

• MISRA C: 2004 Rule 5.1 — Identifiers (internal and external) shall not rely on the
significance of more than 31 characters.

• MISRA C: 2004 Rule 5.2 — Identifiers in an inner scope shall not use the same
name as an identifier in an outer scope, and therefore hide that identifier.

 Do not generate results for (-do-not-generate-results-for)

1-113

• MISRA C: 2004 Rule 8.8 — An external object or function shall be declared in one
file and only one file.

• MISRA C: 2004 Rule 8.9 — An identifier with external linkage shall have exactly
one external definition.

MISRA C: 2012 Directives and Rules

• MISRA C: 2012 Directive 4.5 — Identifiers in the same name space with
overlapping visibility should be typographically unambiguous.

• MISRA C: 2012 Rule 5.2 — Identifiers declared in the same scope and name space
shall be distinct.

• MISRA C: 2012 Rule 5.3 — An identifier declared in an inner scope shall not hide
an identifier declared in an outer scope.

• MISRA C: 2012 Rule 5.4 — Macro identifiers shall be distinct.
• MISRA C: 2012 Rule 5.5 — Identifiers shall be distinct from macro names.
• MISRA C: 2012 Rule 8.5 — An external object or function shall be declared once

in one and only one file.
• MISRA C: 2012 Rule 8.6 — An identifier with external linkage shall have exactly

one external definition.

MISRA C++ Rules

• MISRA C++ Rule 2-10-1 — Different identifiers shall be typographically
unambiguous.

• MISRA C++ Rule 2-10-2 — Identifiers declared in an inner scope shall not hide an
identifier declared in an outer scope.

• MISRA C++ Rule 3-2-2 — The One Definition Rule shall not be violated.
• MISRA C++ Rule 3-2-3 — A type, object or function that is used in multiple

translation units shall be declared in one and only one file.
• MISRA C++ Rule 3-2-4 — An identifier with external linkage shall have exactly

one definition.
• MISRA C++ Rule 7-5-4 — Functions should not call themselves, either directly or

indirectly.
• MISRA C++ Rule 15-4-1 — If a function is declared with an exception-
specification, then all declarations of the same function (in other translation units)
shall be declared with the same set of type-ids.

1 Option Descriptions

1-114

JSF C++ Rules

• JSF C++ Rule 46 — User-specified identifiers (internal and external) will not rely
on significance of more than 64 characters.

• JSF C++ Rule 48 — Identifiers will not differ by only a mixture of case, the
presence/absence of the underscore character, the interchange of the letter O with
the number 0 or the letter D, the interchange of the letter I with the number 1 or
the letter l, the interchange of the letter S with the number 5, the interchange of
the letter Z with the number 2 and the interchange of the letter n with the letter
h.

• JSF C++ Rule 137 — All declarations at file scope should be static where possible.
• JSF C++ Rule 139 — External objects will not be declared in more than one file.

Polyspace Bug Finder Defects

• Variable shadowing — Variable hides another variable of same name with
nested scope.

• Declaration mismatch — Mismatch occurs between function or variable
declarations.

4 If a global variable is never used after declaration, it appears in Code Prover results
as an unused global variable. However, if it is declared in a file for which you do not
want results, you do not see the unused variable in your verification results.

5 If a result (coding rule violation or Bug Finder defect) is inside a macro, Polyspace
typically shows the result on the macro definition instead of the macro occurrences
so that you review the result only once. Even if the macro is used in a suppressed file,
the result is still shown on the macro definition, if the definition occurs in an
unsuppressed file.

Command-Line Information
Parameter: -do-not-generate-results-for
Value: all-headers | include-folders | custom=file1[,file2[,...]] |
folder1[,folder2[,...]]
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -
misra2 required-rules -do-not-generate-results-for "C:\usr\include"
Example (Code Prover): polyspace-code-prover -lang c -sources file_name
-misra2 required-rules -do-not-generate-results-for "C:\usr\include"

 Do not generate results for (-do-not-generate-results-for)

1-115

Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources file_name -misra2 required-rules -do-not-generate-results-
for "C:\usr\include"
Example (Code Prover Server): polyspace-code-prover-server -lang c -
sources file_name -misra2 required-rules -do-not-generate-results-
for "C:\usr\include"

See Also
Generate results for sources and (-generate-results-for)

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016a

1 Option Descriptions

1-116

External multitasking configuration
Enable setup of multitasking configuration from external file definitions

Description
Specify whether you want to use definitions from external files to set up the multitasking
configuration of your Polyspace project. The supported external file formats are:

• ARXML files for AUTOSAR projects
• OIL files for OSEK projects

Set Option
User interface: In the Configuration pane, the option is available on the Multitasking
node.

Command line: See “Command-Line Information” on page 1-118.

Why Use This Option
If your AUTOSAR project includes ARXML files with ECU configuration parameters, or if
your OSEK project includes OIL files, Polyspace can parse these files. The software sets
up tasks, interrupts, cyclical tasks, and critical sections. You do not have to set them up
manually.

Settings
 On

Polyspace parses the external files that you provide in the format that you specify to
set up the multitasking configuration of your project.

osek
Look for and parse OIL files to extract multitasking description.

 External multitasking configuration

1-117

autosar
Look for and parse AUTOSAR XML files to extract multitasking description.

 Off (default)
Polyspace does not set up the multitasking configuration of your project.

Command-Line Information
There is no single command-line option to turn on external multitasking configuration. By
using the -osek-multitasking option or the -autosar-multitasking option, you
enable external multitasking configuration.

See Also
ARXML files selection (-autosar-multitasking) | OIL files selection (-
osek-multitasking)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2018a

1 Option Descriptions

1-118

OIL files selection (-osek-multitasking)
Set up multitasking configuration from OIL file definition

Description
Specify the OIL files that Polyspace parses to set up the multitasking configuration of
your OSEK project.

Set Option
User interface: In the Configuration pane, the option is available on the Multitasking
node. See Dependencies on page 1-123 for other options you must also enable.

Command line: Use the option -osek-multitasking. See “Command-Line
Information” on page 1-123.

Why Use This Option
If your project includes OIL files, Polyspace can parse these files to set up tasks,
interrupts, cyclical tasks, and critical sections. You do not have to set them up manually.

Settings
 On

Polyspace looks for and parses OIL files to set up your multitasking configuration.
auto

Look for OIL files in your project source and include folders, but not in their
subfolders.

custom
Look for OIL files on the specified path and the path subfolders. You can specify a
path to the OIL files or to the folder containing the files.

 OIL files selection (-osek-multitasking)

1-119

When you select this option, in your source code, Polyspace supports these OSEK
multitasking keywords:

• TASK
• DeclareTask
• ActivateTask
• DeclareResource
• GetResource
• ReleaseResource
• ISR
• DeclareEvent
• DeclareAlarm

Polyspace parses the OIL files that you provide for TASK, ISR, RESOURCE, and ALARM
definitions. The analysis uses these definitions and the supported multitasking keywords
to configure tasks, interrupts, cyclical tasks, and critical sections.

Example: Analyze Your OSEK Multitasking Project

This example shows how to set up the multitasking configuration of an OSEK project and
run an analysis on this project. To try the steps in this example, use the demo files in the
folder polyspaceroot/help/toolbox/bugfinder/examples/
External_multitasking/OSEK or polyspaceroot/help/toolbox/codeprover/
examples/External_multitasking/OSEK. polyspaceroot is the Polyspace
installation folder. The analysis results apply to this example code.

1 Option Descriptions

1-120

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

DeclareAlarm(Cyclic_task_activate);
DeclareResource(res1);
DeclareTask(init);
TASK(afterinit1);

TASK(init) // task
{

 var2++;
 ActivateTask(afterinit1);
 var3++;
 GetResource(res1); // critical section begins
 var1++;
 ReleaseResource(res1); // critical section ends
}

TASK(afterinit1) // task
{
 var3++;
 var2++;
 GetResource(res1); // critical section begins
 var1++;
 ReleaseResource(res1); // critical section ends

}

void main()
{}

To set up your multitasking configuration and analyze the code:

1 Copy the contents of polyspaceroot/help/toolbox/bugfinder/examples/
External_multitasking/OSEK or polyspaceroot/help/toolbox/
codeprover/examples/External_multitasking/OSEK to your machine, for
instance in C:\Polyspace_worskpace\OSEK.

 OIL files selection (-osek-multitasking)

1-121

2 Run an analysis on your OSEK project by using the command:

• Bug Finder:

polyspace-bug-finder -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Code Prover:

polyspace-code-prover -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Bug Finder Server:

polyspace-bug-finder-server -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Code Prover Server:

polyspace-code-prover-server -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

Bug Finder detects a data race on variable var3 because of multiple read and write
operation from tasks init and afterinit1. See Data race.

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

There is no defect on var2 since afterinit1 goes to an active state (ActivateTask())
after init increments var2. Similarly, there is no defect on var1 because it is protected
by the GetResource() and ReleaseResource() calls.

Code Prover detects that var3 is a potentially unprotected global variable because it is
used in tasks init and afterinit1 with no protection from interruption during the read
and write operations. The analysis also shows that the cyclic task operation on var4 can
potentially cause an overflow. See Potentially unprotected variable and
Overflow.

1 Option Descriptions

1-122

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

...
void func()
{
 var4++;
}

Variable var2 is not shared because afterinit1 goes to an active state
(ActivateTask()) after init increments var2. Variable var1 is a protected variable
through the critical sections from the GetResource() and ReleaseResource() calls.

To see how Polyspace models the TASK, ISR, and RESOURCE definitions from your OIL
files, open the Concurrency window from the Dashboard pane.

 Off (default)
Polyspace does not set up a multitasking configuration for your OSEK project.

Additional Considerations
• The analysis ignores TerminateTask() declarations in your source code and

considers that subsequent code is executed.
• Polyspace ignores syntax elements of your OIL files that do not follow the syntax
defined here.

Dependencies
To enable this option in the user interface of the desktop products, first select the option
External multitasking configuration.

Command-Line Information
Parameter: -osek-multitasking

 OIL files selection (-osek-multitasking)

1-123

https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/oil25.pdf

Value: auto | custom='file1 [,file2, dir1,...]'
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources source_path -I
include_path -osek-multitasking custom='path\to\file1.oil, path\to
\dir'
Example (Code Prover): polyspace-code-prover -sources source_path -I
include_path -osek-multitasking custom='path\to\file1.oil, path\to
\dir'
Example (Bug Finder Server): polyspace-bug-finder-server -sources
source_path -I include_path -osek-multitasking custom='path\to
\file1.oil, path\to\dir'
Example (Code Prover Server): polyspace-code-prover-server -sources
source_path -I include_path -osek-multitasking custom='path\to
\file1.oil, path\to\dir'

See Also

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2017b

1 Option Descriptions

1-124

ARXML files selection (-autosar-
multitasking)
Set up multitasking configuration from ARXML file definitions

Description
To detect data races in large AUTOSAR applications, use this option with Polyspace Bug
Finder.

Specify the ARXML files that Polyspace parses to set up the multitasking configuration of
your AUTOSAR project.

Set Option
User interface: In the Configuration pane, the option is available on the Multitasking
node. See Dependencies on page 1-126 for other options you must also enable.

Command line: Use the option -autosar-multitasking. See “Command-Line
Information” on page 1-123.

Why Use This Option
If your project includes ARXML files with <ECUC-CONTAINER-VALUE> elements,
Polyspace can parse these files to set up tasks, interrupts, cyclical tasks, and critical
sections. You do not have to set them up manually.

Settings
 On

Polyspace looks for and parses ARXML files to set up your multitasking configuration.

When you select this option, the software assumes that you use the OSEK multitasking
API in your source code to declare and define tasks and interrupts. Polyspace supports
these OSEK multitasking keywords:

 ARXML files selection (-autosar-multitasking)

1-125

• TASK
• DeclareTask
• ActivateTask
• DeclareResource
• GetResource
• ReleaseResource
• ISR
• DeclareEvent
• DeclareAlarm

Polyspace parses the ARXML files that you provide for OsTask, OsIsr, OsResource,
OsAlarm, and OsEvent definitions. The analysis uses these definitions and the supported
multitasking keywords to configure tasks, interrupts, cyclical tasks, and critical sections.

To see how Polyspace models the OsTask, OsIsr, and OsResource definitions from your
ARXML files, open the Concurrency window from the Dashboard pane. In that window,
under the Entry points column, the names of the elements are extracted from their
<SHORT-NAME> values in the ARXML files.

 Off (default)
Polyspace does not set up a multitasking configuration for your AUTOSAR project.

Additional Considerations
• The analysis ignores TerminateTask() declarations in your source code and

considers that subsequent code is executed.
• Polyspace supports multitasking configuration only from ARXML files for AUTOSAR
specification version 4.0 and later.

Dependencies
To enable this option in the user interface of the desktop products, first select the option
External multitasking configuration.

1 Option Descriptions

1-126

Command-Line Information
Parameter: -autosar-multitasking
Value: file1 [,file2, dir1,...]
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources source_path -I
include_path -autosar-multitasking C:\Polyspace_Workspace\AUTOSAR
\myFile.arxml
Example (Bug Finder Server): polyspace-bug-finder-server -sources
source_path -I include_path -autosar-multitasking
C:\Polyspace_Workspace\AUTOSAR\myFile.arxml

See Also
Enable automatic concurrency detection for Code Prover (-enable-
concurrency-detection) | External multitasking configuration | OIL
files selection (-osek-multitasking)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2018a

 ARXML files selection (-autosar-multitasking)

1-127

Configure multitasking manually
Consider that code is intended for multitasking

Description
Specify whether your code is a multitasking application. This option allows you to
manually configure the multitasking structure for Polyspace.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node.

Command line: See “Command-Line Information” on page 1-129.

Why Use This Option
By default, Bug Finder determines your multitasking model from your use of
multithreading functions. In Code Prover, you have to enable automatic concurrency
detection with the option Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection). However, in some cases, using
automatic concurrency detection can slow down the Code Prover analysis.

In cases where automatic concurrency detection is not supported, you can explicitly
specify your multitasking model by using this option. Once you select this option, you can
explicitly specify your entry point functions, cyclic tasks, interrupts and protection
mechanisms for shared variables, such as critical section details.

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables” (Polyspace Code Prover).
• Whether a run-time error can occur.

1 Option Descriptions

1-128

For instance, if the operation var++ occurs in the body of a cyclic task and you do not
impose a limit on var, the operation can overflow. The analysis detects the possible
overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For more
information, see “Concurrency Defects”.

Settings
 On

The code is intended for a multitasking application.

You have to explicitly specify your multitasking configuration using other Polyspace
options. See “Configuring Polyspace Multitasking Analysis Manually”.

 Off (default)
The code is not intended for a multitasking application.

Disabling the option has this additional effect in Code Prover:

• If a main exists, Code Prover verifies only those functions that are called by the
main.

• If a main does not exist, Polyspace verifies the functions that you specify. To verify
the functions, Polyspace generates a main function and calls functions from the
generated main in a sequence that you specify. For more information, see Verify
module or library (-main-generator).

Tips
If you run a file by file verification in Code Prover, your multitasking options are ignored.
See Verify files independently (-unit-by-unit).

Command-Line Information
There is no single command-line option to turn on multitasking analysis. By using any of
the options Tasks (-entry-points), Cyclic tasks (-cyclic-tasks) or
Interrupts (-interrupts), you turn on multitasking analysis.

 Configure multitasking manually

1-129

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section
details (-critical-section-begin -critical-section-end) | Cyclic tasks
(-cyclic-tasks) | Tasks (-entry-points) | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

1 Option Descriptions

1-130

Enable automatic concurrency detection for
Code Prover (-enable-concurrency-
detection)
Automatically detect certain families of multithreading functions

Description
This option affects a Code Prover analysis only.

Specify whether the analysis must automatically detect POSIX®, VxWorks®, Windows,
μC/OS II and other multithreading functions.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node. See “Dependencies” (Polyspace Code Prover) for
other options that you must enable or disable.

Command line: Use the option -enable-concurrency-detection. See “Command-
Line Information” on page 1-132.

Why Use This Option
If you use this option, Polyspace determines your multitasking model from your use of
multithreading functions. In Bug Finder, automatic concurrency detection is enabled by
default. In Code Prover, you have to explicitly enable automatic concurrency detection.

In some cases, using automatic concurrency detection can slow down the Code Prover
analysis. In those cases, you can choose to not enable this option and explicitly specify
your multitasking model. See “Configuring Polyspace Multitasking Analysis Manually”.

 Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)

1-131

Settings
 On

If you use one of the supported functions for multitasking, the analysis automatically
detects your multitasking model from your code.

For a list of supported multitasking functions and limitations in auto-detection of
threads, see “Auto-Detection of Thread Creation and Critical Section in Polyspace”.

 Off (default)
The analysis does not attempt to detect the multitasking model from your code.

If you want to manually configure your multitasking model, see “Configuring
Polyspace Multitasking Analysis Manually”.

Dependencies
If you enable this option, your code must contain a main function. You cannot use the
Code Prover options to generate a main.

Command-Line Information
Parameter: -enable-concurrency-detection
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
enable-concurrency-detection
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -enable-concurrency-detection

See Also

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Auto-Detection of Thread Creation and Critical Section in Polyspace”

1 Option Descriptions

1-132

Tasks (-entry-points)
Specify functions that serve as tasks to your multitasking application

Description
Specify functions that serve as tasks to your code. If the function does not exist, the
verification warns you and continues the verification.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node. See “Dependencies” on page 1-134 for other options
you must also enable.

Command line: Use the option -entry-points. See “Command-Line Information” on
page 1-135.

Why Use This Option
Use this option when your code is intended for multitasking.

To specify cyclic tasks and interrupts, use the options Cyclic tasks (-cyclic-
tasks) and Interrupts (-interrupts). Use this option to specify other tasks.

A Code Prover analysis uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables” (Polyspace Code Prover).
• Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not
impose a limit on var, the operation can overflow. The analysis detects the possible
overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For more
information, see “Concurrency Defects”.

 Tasks (-entry-points)

1-133

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option
Configure multitasking manually.

Tips
• In Code Prover, the functions representing entry points must have the form

void functionName (void)

• If a function func takes arguments, you cannot use it directly as task. To use func as
task:

1 Create a new function newFunc. The declaration must be of the form void
newFunc (void).

2 Declare arguments to func as volatile variables local to newFunc. Call func
inside newFunc.

3 Specify newFunc as a task.
• If you specify a function as a task, you must provide its definition. Otherwise, a Code

Prover verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as an entry point.
• If you run a file by file verification in Code Prover, your multitasking options are

ignored. See Verify files independently (-unit-by-unit).

1 Option Descriptions

1-134

Command-Line Information
Parameter: -entry-points
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -entry-
points func_1,func_2
Example (Code Prover): polyspace-code-prover -sources file_name -entry-
points func_1,func_2
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -entry-points func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -entry-points func_1,func_2

See Also
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-
cyclic-tasks) | Interrupts (-interrupts)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

 Tasks (-entry-points)

1-135

Cyclic tasks (-cyclic-tasks)
Specify functions that represent cyclic tasks

Description
Specify functions that represent cyclic tasks. The analysis assumes that operations in the
function body:

• Can execute any number of times.
• Can be interrupted by noncyclic tasks, other cyclic tasks and interrupts. Noncyclic

tasks are specified with the option Tasks (-entry-points) and interrupts are
specified with the option Interrupts (-interrupts).

To model a cyclic task that cannot be interrupted by other cyclic tasks, specify the task
as nonpreemptable. See -non-preemptable-tasks. For examples, see “Define
Preemptable Interrupts and Nonpreemptable Tasks”.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node. See “Dependencies” on page 1-138 for other options
you must also enable.

Command line: Use the option -cyclic-tasks. See “Command-Line Information” on
page 1-138.

Why Use This Option
Use this option to specify cyclic tasks in your multitasking code. The functions that you
specify must have the prototype:

void function_name(void);

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

1 Option Descriptions

1-136

See “Global Variables” (Polyspace Code Prover).
• Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not
impose a limit on var, the operation can overflow. The analysis detects the possible
overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For the
Data race defect, the software establishes the following relations between preemptable
tasks and other tasks.

• Data race between two preemptable tasks:

Unless protected, two operations in different preemptable tasks can interfere with
each other. If the operations use the same shared variable without protection, a data
race can occur.

If both operations are atomic, to see the defect, you have to enable the checker Data
race including atomic operations.

• Data race between a preemptable task and a nonpreemptable task or interrupt:

• An atomic operation in a preemptable task cannot interfere with an operation in a
nonpreemptable task or an interrupt. Even if the operations use the same shared
variable without protection, a data race cannot occur.

• A nonatomic operation in a preemptable task also cannot interfere with an
operation in a nonpreemptable task or an interrupt. However, the latter operation
can interrupt the former. Therefore, if the operations use the same shared variable
without protection, a data race can occur.

For more information, see “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

 Cyclic tasks (-cyclic-tasks)

1-137

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option
Configure multitasking manually.

Tips
• In Code Prover, the functions representing cyclic tasks must have the form

void functionName (void)
• If a function func takes arguments, you cannot use it directly as a cyclic task. To use

func as cyclic task:

1 Create a new function newFunc. The declaration must be of the form void
newFunc (void).

2 Declare arguments to func as volatile variables local to newFunc. Call func
inside newFunc.

3 Specify newFunc as cyclic task.
• If you specify a function as a cyclic task, you must provide its definition. Otherwise, a

Code Prover verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as a cyclic task.
• If you run a file by file verification in Code Prover, your multitasking options are

ignored. See Verify files independently (-unit-by-unit).

Command-Line Information
Parameter: -cyclic-tasks
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -cyclic-
tasks func_1,func_2

1 Option Descriptions

1-138

Example (Code Prover): polyspace-code-prover -sources file_name -
cyclic-tasks func_1,func_2
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -cyclic-tasks func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -cyclic-tasks func_1,func_2

See Also
-non-preemptable-tasks | -preemptable-interrupts | Interrupts (-
interrupts) | Tasks (-entry-points)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”

Introduced in R2016b

 Cyclic tasks (-cyclic-tasks)

1-139

Interrupts (-interrupts)
Specify functions that represent nonpreemptable interrupts

Description
Specify functions that represent nonpreemptable interrupts. The analysis assumes that
operations in the function body:

• Can execute any number of times.
• Cannot be interrupted by noncyclic tasks, cyclic tasks or other interrupts. Noncyclic

tasks are specified with the option Tasks (-entry-points) and cyclic tasks are
specified with the option Cyclic tasks (-cyclic-tasks).

To model an interrupt that can be interrupted by other interrupts, specify the interrupt
as preemptable. See -preemptable-interrupts. For examples, see “Define
Preemptable Interrupts and Nonpreemptable Tasks”.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node. See “Dependencies” on page 1-142 for other options
you must also enable.

Command line: Use the option -interrupts. See “Command-Line Information” on
page 1-142.

Why Use This Option
Use this option to specify interrupts in your multitasking code. The functions that you
specify must have the prototype:

void function_name(void);

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

1 Option Descriptions

1-140

See “Global Variables” (Polyspace Code Prover).
• Whether a run-time error can occur.

For instance, if the operation var=INT_MAX; occurs in an interrupt and var++ occurs
in the body of a task, an overflow can occur if the interrupt excepts before the
operation in the task. The analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For the
Data race defect, the analysis establishes the following relations between interrupts
and other tasks:

• Data race between two interrupts:

Two operations in different interrupts cannot interfere with each other (unless one of
the interrupts is preemptable). Even if the operations use the same shared variable
without protection, a data race cannot occur.

• Data race between an interrupt and another task:

• An operation in an interrupt cannot interfere with an atomic operation in any other
task. Even if the operations use the same shared variable without protection, a data
race cannot occur.

• An operation in an interrupt can interfere with a nonatomic operation in any other
task unless the other task is also a nonpreemptable interrupt. Therefore, if the
operations use the same shared variable without protection, a data race can occur.

See “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

 Interrupts (-interrupts)

1-141

Dependencies
To enable this option in the user interface of the desktop products, first select the option
Configure multitasking manually.

Tips
• In Code Prover, the functions representing interrupts must have the form

void functionName (void)

• If a function func takes arguments, you cannot use it directly as an interrupt. To use
func as interrupt:

1 Create a new function newFunc. The declaration must be of the form void
newFunc (void).

2 Declare arguments to func as volatile variables local to newFunc. Call func
inside newFunc.

3 Specify newFunc as interrupt.
• If you specify a function as an interrupt, you must provide its definition. Otherwise, a

Code Prover verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as an interrupt.
• If you run a file by file verification in Code Prover, your multitasking options are

ignored. See Verify files independently (-unit-by-unit).

Command-Line Information
Parameter: -interrupts
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -
interrupts func_1,func_2
Example (Code Prover): polyspace-code-prover -sources file_name -
interrupts func_1,func_2

1 Option Descriptions

1-142

Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -interrupts func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -interrupts func_1,func_2

See Also
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-
cyclic-tasks) | Tasks (-entry-points)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”

Introduced in R2016b

 Interrupts (-interrupts)

1-143

Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts)
Specify routines that disable and reenable interrupts.

Description
This option affects a Bug Finder analysis only.

Specify a routine that disables all interrupts and a routine that reenables all interrupts.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node. See “Dependencies” on page 1-145 for other options
you must also enable.

Command line: Use the option -routine-disable-interrupts and -routine-
enable-interrupts. See “Command-Line Information” on page 1-147.

Why Use This Option
The analysis uses the information to look for data race defects. For instance, in the
following code, the function disable_all_interrupts disables all interrupts until the
function enable_all_interrupts is called. Even if task, isr1 and isr2 run
concurrently, the operations x=0 or x=1 cannot interrupt the operation x++. There are no
data race defects.

int x;

void isr1() {
 x = 0;
}

void isr2() {
 x = 1;
}

1 Option Descriptions

1-144

void task() {
 disable_all_interrupts();
 x++;
 enable_all_interrupts();
}

Settings
No Default

• In Disabling routine, enter the routine that disables all interrupts.
• In Enabling routine, enter the routine that reenables all interrupts.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option
Configure multitasking manually.

Tips
• The routine that you specify for the option disables preemption by all:

• Non-cyclic tasks.

See Tasks (-entry-points).
• Cyclic tasks.

See Cyclic tasks (-cyclic-tasks).
• Interrupts.

 Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)

1-145

See Interrupts (-interrupts).

In other words, the analysis considers that the body of operations between the
disabling routine and the enabling routine is atomic and not interruptible at all.

• Protection via disabling interrupts is conceptually different from protection via critical
sections.

In the Polyspace multitasking model, to protect two sections of code from each other
via critical sections, you have to embed them in the same critical section. In other
words, you have to place the two sections between calls to the same lock and unlock
function.

For instance, suppose you use critical sections as follows:

void isr1() {
 begin_critical_section();
 x = 0;
 end_critical_section();
}

void isr2() {
 x = 1;
}

void task() {
 begin_critical_section();
 x++;
 end_critical_section();
}

Here, the operation x++ is protected from the operation x=0 in isr1, but not from the
operation x=1 in isr2. If the function begin_critical_section disabled all
interrupts, calling it before x++ would have been sufficient to protect it.

Typically, you use one pair of routines in your code to disable and reenable interrupts,
but you can have many pairs of lock and unlock functions that implement critical
sections.

• The routines that disable and enable interrupts must be functions. For instance, if you
define a function-like macro:

#define disable_interrupt() interrupt_flag=0

You cannot use the macro disable_interrupt() as routine disabling interrupts.

1 Option Descriptions

1-146

Command-Line Information
Parameter: -routine-disable-interrupts | -routine-enable-interrupts
No Default
Value: function_name
Example (Bug Finder): polyspace-bug-finder -sources file_name -routine-
disable-interrupts atomic_section_begins -routine-enable-interrupts
atomic_section_ends
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -routine-disable-interrupts atomic_section_begins -
routine-enable-interrupts atomic_section_ends

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section
details (-critical-section-begin -critical-section-end) | Cyclic tasks
(-cyclic-tasks) | Interrupts (-interrupts) | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Concurrency Defects”

Introduced in R2017a

 Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)

1-147

Critical section details (-critical-section-
begin -critical-section-end)
Specify functions that begin and end critical sections

Description
When verifying multitasking code, Polyspace considers that a critical section lies between
calls to a lock function and an unlock function.

lock();
/* Critical section code */
unlock();

Specify the lock and unlock function names for your critical sections (for instance,
lock() and unlock() in above example).

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node. See “Dependencies” on page 1-149 for other options
you must also enable.

Command line: Use the option -critical-section-begin and -critical-
section-end. See “Command-Line Information” on page 1-151.

Why Use This Option
When a task my_task calls a lock function my_lock, other tasks calling my_lock must
wait till my_task calls the corresponding unlock function. Therefore, critical section
operations in the other tasks cannot interrupt critical section operations in my_task.

For instance, the operation var++ in my_task1 and my_task2 cannot interrupt each
other.

int var;

1 Option Descriptions

1-148

void my_task1() {
 my_lock();
 var++;
 my_unlock();
}

void my_task2() {
 my_lock();
 var++;
 my_unlock();
}

Using your specifications, a Code Prover verification checks if your placement of lock and
unlock functions protects all shared variables from concurrent access. When determining
values of those variables, the verification accounts for the fact that critical sections in
different tasks do not interrupt each other.

A Bug Finder analysis uses the critical section information to look for concurrency defects
such as data race and deadlock.

Settings
No Default

Click to add a field.

• In Starting routine, enter name of lock function.
• In Ending routine, enter name of unlock function.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option
Configure multitasking manually.

 Critical section details (-critical-section-begin -critical-section-end)

1-149

Tips
• You can also use primitives such as the POSIX functions pthread_mutex_lock and

pthread_mutex_unlock to begin and end critical sections. For a list of primitives
that Polyspace can detect automatically, see “Auto-Detection of Thread Creation and
Critical Section in Polyspace”.

• For function calls that begin and end critical sections, Polyspace ignores the function
arguments.

For instance, Polyspace treats the two code sections below as the same critical
section.

Starting routine: my_lock
Ending routine: my_unlock
void my_task1() {
 my_lock(1);
 /* Critical section code */
 my_unlock(1);
}

void my_task2() {
 my_lock(2);
 /* Critical section code */
 my_unlock(2);
}

To work around the limitation, see “Define Critical Sections with Functions That Take
Arguments”.

• The functions that begin and end critical sections must be functions. For instance, if
you define a function-like macro:

#define init() num_locks++

You cannot use the macro init() to begin or end a critical section.
• When you use multiple critical sections, you can run into issues such as:

• Deadlock: A sequence of calls to lock functions causes two tasks to block each
other.

• Double lock: A lock function is called twice in a task without an intermediate call to
an unlock function.

Use Polyspace Bug Finder to detect such issues. See “Concurrency Defects”.

Then, use Polyspace Code Prover™ to detect if your placement of lock and unlock
functions actually protects all shared variables from concurrent access. See “Global
Variables” (Polyspace Code Prover).

1 Option Descriptions

1-150

• When considering possible values of shared variables, a Code Prover verification takes
into account your specifications for critical sections.

However, if the shared variable is a pointer or array, the software uses the
specifications only to determine if the variable is a shared protected global variable.
For run-time error checking, the software does not take your specifications into
account and considers that the variable can be concurrently accessed.

Command-Line Information
Parameter: -critical-section-begin | -critical-section-end
No Default
Value: function1:cs1[,function2:cs2[,...]]
Example (Bug Finder): polyspace-bug_finder -sources file_name -
critical-section-begin func_begin:cs1 -critical-section-end
func_end:cs1
Example (Code Prover): polyspace-code-prover -sources file_name -
critical-section-begin func_begin:cs1 -critical-section-end
func_end:cs1
Example (Bug Finder Server): polyspace-bug_finder-server -sources
file_name -critical-section-begin func_begin:cs1 -critical-section-
end func_end:cs1
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -critical-section-begin func_begin:cs1 -critical-section-
end func_end:cs1

See Also
-non-preemptable-tasks | -preemptable-interrupts | Cyclic tasks (-
cyclic-tasks) | Interrupts (-interrupts) | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Define Critical Sections with Functions That Take Arguments”

 Critical section details (-critical-section-begin -critical-section-end)

1-151

“Concurrency Defects”
“Global Variables” (Polyspace Code Prover)

1 Option Descriptions

1-152

Temporally exclusive tasks (-temporal-
exclusions-file)
Specify entry point functions that cannot execute concurrently

Description
Specify entry point functions that cannot execute concurrently. The execution of the
functions cannot overlap with each other.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Multitasking node. See “Dependencies” on page 1-154 for other options
you must also enable.

Command line: Use the option -temporal-exclusions-file. See “Command-Line
Information” on page 1-154.

Why Use This Option
Use this option to implement temporal exclusion in multitasking code.

A Code Prover verification checks if specifying certain tasks as temporally exclusive
protects all shared variables from concurrent access. When determining possible values
of those shared variables, the verification accounts for the fact that temporally exclusive
tasks do not interrupt each other. See “Global Variables” (Polyspace Code Prover).

A Bug Finder analysis uses the temporal exclusion information to look for concurrency
defects such as data race. See “Concurrency Defects”.

Settings
No Default

 Temporally exclusive tasks (-temporal-exclusions-file)

1-153

Click to add a field. In each field, enter a space-separated list of functions. Polyspace
considers that the functions in the list cannot execute concurrently.

Enter the function names manually or choose from a list.

•
Click to add a field and enter the function names.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option
Configure multitasking manually.

Tips
When considering possible values of shared variables, a Code Prover verification takes
into account your specifications for temporally exclusive tasks.

However, if the shared variable is a pointer or array, the software uses the specifications
only to determine if the variable is a shared protected global variable. For run-time error
checking in Code Prover, the software does not take your specifications into account and
considers that the variable can be concurrently accessed.

Command-Line Information
For the command-line option, create a temporal exclusions file in the following format:

• On each line, enter one group of temporally excluded tasks.
• Within a line, the tasks are separated by spaces.

To enter comments, begin with #. For an example, see the file polyspaceroot
\polyspace\examples\cxx\Code_Prover_Example\sources
\temporal_exclusions.txt. Here, polyspaceroot is the Polyspace installation
folder, for example C:\Program Files\Polyspace\R2019a.

1 Option Descriptions

1-154

Parameter: -temporal-exclusions-file
No Default
Value: Name of temporal exclusions file
Example (Bug Finder): polyspace-bug-finder -sources file_name -
temporal-exclusions-file "C:\exclusions_file.txt"
Example (Code Prover): polyspace-code-prover -sources file_name -
temporal-exclusions-file "C:\exclusions_file.txt"
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -temporal-exclusions-file "C:\exclusions_file.txt"
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -temporal-exclusions-file "C:\exclusions_file.txt"

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section
details (-critical-section-begin -critical-section-end) | Cyclic tasks
(-cyclic-tasks) | Interrupts (-interrupts) | Tasks (-entry-points)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Concurrency Defects”
“Global Variables” (Polyspace Code Prover)

 Temporally exclusive tasks (-temporal-exclusions-file)

1-155

Set checkers by file (-checkers-selection-
file)
Define a custom set of coding standards checks for your analysis

Description
Specify the full path of a configuration XML file where you define custom selections of
coding standards checkers. You can, in the same file, define a custom selection of
checkers for each of these coding standards:

• MISRA C: 2004
• MISRA C: 2012
• MISRA C++
• JSF AV C++
• AUTOSAR C++14 (Bug Finder only)
• CERT® C (Bug Finder only)
• CERT C++ (Bug Finder only)
• ISO/IEC TS 17961 (Bug Finder only)

You can also define custom rules to match identifiers in your code against text patterns
you specify.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node.

Command line: Use the option -checkers-selection-file. See “Command-Line
Information” on page 1-160.

When you enable this option, set the coding standards you select to from-file to use
the specified configuration file.

1 Option Descriptions

1-156

Why Use This Option
Use this option to define a selection of coding standard checkers specific to your
organization. The configuration of different coding standards is consolidated in a single
XML file which you can reuse across projects to enforce common coding standards.

Settings
 On

Polyspace checks your code against the selection of coding standard checkers, or the
custom rules, defined in the configuration file you specify.

To create a configuration file, open the Findings selection window by clicking .
In the left pane, choose the coding standard you want to configure, then select the
rules you want to check for this coding standard in the right pane.

To use or update an existing file, enter the full path to the file in the field provided or
click Browse in the Findings selection window.

 Set checkers by file (-checkers-selection-file)

1-157

 Off (default)
Polyspace does not check your code against the selection of coding standard
checkers, or the custom rules, defined in the configuration file you specify.

1 Option Descriptions

1-158

Tips
• If you use the Polyspace desktop products, specify the coding standard configuration

in the user interface of the desktop products. When you save the configuration, an
XML file is automatically created for use in the current and other projects.

• If you use the Polyspace server products, you have to create the XML file for checker
configuration. Use the file StandardsConfiguration.xml in
polyspaceserverroot\polyspace\examples\cxx\Bug_Finder_Example
\sources as a template and turn on rules using entries in the XML file. Here,
polyspaceserverroot is the root installation folder for the Polyspace Server
products, for instance, C:\Program Files\Polyspace Server\R2019a.

For instance, to turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”
• “CERT C++ Rules”
• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”

Note The XML format of the checker configuration file can change in future releases.

 Set checkers by file (-checkers-selection-file)

1-159

Command-Line Information
Parameter: -checkers-selection-file
Value: Full path of XML configuration file
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -
checkers-selection-file "C:\Standards\custom_config.xml" -misra3
from-file
Example (Code Prover): polyspace-code-prover -sources file_name -
checkers-selection-file "C:\Standards\custom_config.xml" -misra3
from-file
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -checkers-selection-file "C:\Standards\custom_config.xml"
-misra3 from-file
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -checkers-selection-file "C:\Standards\custom_config.xml"
-misra3 from-file

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”

1 Option Descriptions

1-160

Check MISRA C:2004 (-misra2)
Check for violation of MISRA C:2004 rules

Note Polyspace will no longer support custom configuration files in text format in a
future release. See “Compatibility Considerations”.

Description
Specify whether to check for violation of MISRA C:2004 rules. Each value of the option
corresponds to a subset of rules to check.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 1-163 for
other options that you must also enable.

Command line: Use the option -misra2. See “Command-Line Information” on page 1-
163.

Why Use This Option
Use this option to specify the subset of MISRA C:2004 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

 Check MISRA C:2004 (-misra2)

1-161

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration level
because the rules involve more than one translation unit. These rules are checked in
the compilation and linking phases of the analysis.

all-rules
Check required and advisory coding rules.

SQO-subset1
Check only a subset of MISRA C rules. In Polyspace Code Prover, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C:2004)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets
(C:2004)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
and recommendations you want to check for this coding standard from the right pane
of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

1 Option Descriptions

1-162

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

For projects with mixed C and C++ code, the MISRA C:2004 checker analyzes only .c
files.

• If you set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information
Parameter: -misra2
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | single-unit-
rules | system-decidable-rules | from-file
Default: required-rules
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra2
all-rules
Example (Code Prover): polyspace-code-prover -sources file_name -misra2
all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -misra2 all-rules

 Check MISRA C:2004 (-misra2)

1-163

Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -misra2 all-rules

Compatibility Considerations

Polyspace will no longer support text format for coding rules
file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard
checkers uses the XML format. You can save custom selections for all the coding
standards that Polyspace supports in the same file.

In previous releases, you saved your custom selection for each coding standard in
separate text files. Polyspace will stop supporting custom coding standard files in text
format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format,
Polyspace automatically updates and consolidates those files into a single XML file. If your
project has conflicting configurations that refer to the same custom selection file, the
software saves the consolidated coding standard selection for each configuration to
separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code

Metrics node of the Configuration pane, click . In the Findings selection window,
select the files then click Save Changes. Polyspace consolidates the files into a single
XML files, and saves this file as filename.xml, where filename is the name of the first
selected file alphabetically. For instance, if you select foo.conf and bar.conf, they are
saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file
StandardsConfiguration.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in
polyspaceserverroot\polyspace\examples\cxx\Bug_Finder_Example

1 Option Descriptions

1-164

\sources or polyspaceserverroot\polyspace\examples\cxx
\Code_Prover_Example\sources. Here, polyspaceserverroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra2 "custom_standard.conf" -checkers-selection-file

"custom_standard.conf.xml" -
misra2 from-file

.

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”
• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”

 Check MISRA C:2004 (-misra2)

1-165

• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2004 Rules”

1 Option Descriptions

1-166

Check MISRA AC AGC (-misra-ac-agc)
Check for violation of MISRA AC AGC rules

Note Polyspace will no longer support custom configuration files in text format in a
future release. See “Compatibility Considerations”.

Description
Specify whether to check for violation of rules specified by MISRA AC AGC Guidelines for
the Application of MISRA-C:2004 in the Context of Automatic Code Generation. Each
value of the option corresponds to a subset of rules to check.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 1-169 for
other options that you must also enable.

Command line: Use the option -misra-ac-agc. See “Command-Line Information” on
page 1-169.

Why Use This Option
Use this option to specify the subset of MISRA C:2004 AC AGC rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: OBL-rules

 Check MISRA AC AGC (-misra-ac-agc)

1-167

OBL-rules
Check required coding rules.

OBL-REC-rules
Check required and recommended rules.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration level
because the rules involve more than one translation unit. These rules are checked in
the compilation and linking phases of the analysis.

all-rules
Check required, recommended and readability-related rules.

SQO-subset1
Check a subset of rules. In Polyspace Code Prover, observing these rules can reduce
the number of unproven results. For more information, see “Software Quality
Objective Subsets (AC AGC)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (AC
AGC)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
and recommendations you want to check for this coding standard from the right pane
of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

1 Option Descriptions

1-168

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

For projects with mixed C and C++ code, the MISRA AC AGC checker analyzes
only .c files.

• If you set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information
Parameter: -misra-ac-agc
Value: OBL-rules | OBL-REC-rules | single-unit-rules | system-decidable-
rules | all-rules | SQO-subset1 | SQO-subset2 | from-file
Default: OBL-rules
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra-
ac-agc all-rules
Example (Code Prover): polyspace-code-prover -sources file_name -misra-
ac-agc all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -misra-ac-agc all-rules

 Check MISRA AC AGC (-misra-ac-agc)

1-169

Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -misra-ac-agc all-rules

Compatibility Considerations

Polyspace will no longer support text format for coding rules
file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard
checkers uses the XML format. You can save custom selections for all the coding
standards that Polyspace supports in the same file.

In previous releases, you saved your custom selection for each coding standard in
separate text files. Polyspace will stop supporting custom coding standard files in text
format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format,
Polyspace automatically updates and consolidates those files into a single XML file. If your
project has conflicting configurations that refer to the same custom selection file, the
software saves the consolidated coding standard selection for each configuration to
separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code

Metrics node of the Configuration pane, click . In the Findings selection window,
select the files then click Save Changes. Polyspace consolidates the files into a single
XML files, and saves this file as filename.xml, where filename is the name of the first
selected file alphabetically. For instance, if you select foo.conf and bar.conf, they are
saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file
StandardsConfiguration.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in
polyspaceserverroot\polyspace\examples\cxx\Bug_Finder_Example

1 Option Descriptions

1-170

\sources or polyspaceserverroot\polyspace\examples\cxx
\Code_Prover_Example\sources. Here, polyspaceserverroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra-ac-agc
"custom_standard.conf"

-checkers-selection-file
"custom_standard.conf.xml" -
misra-ac-agc from-file

.

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”
• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”

 Check MISRA AC AGC (-misra-ac-agc)

1-171

• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2004 Rules”

1 Option Descriptions

1-172

Check MISRA C:2012 (-misra3)
Check for violations of MISRA C:2012 rules and directives

Note Polyspace will no longer support custom configuration files in text format in a
future release. See “Compatibility Considerations”.

Description
Specify whether to check for violations of MISRA C:2012 guidelines. Each value of the
option corresponds to a subset of guidelines to check.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 1-175 for
other options that you must also enable.

Command line: Use the option -misra3. See “Command-Line Information” on page 1-
176.

Why Use This Option
Use this option to specify the subset of MISRA C:2012 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: mandatory-required

mandatory
Check for mandatory guidelines.

 Check MISRA C:2012 (-misra3)

1-173

mandatory-required
Check for mandatory and required guidelines.

• Mandatory guidelines: Your code must comply with these guidelines.
• Required guidelines: You may deviate from these guidelines. However, you must

complete a formal deviation record, and your deviation must be authorized.

See Section 5.4 of the MISRA C:2012 guidelines. For an example of a deviation
record, see Appendix I of the MISRA C:2012 guidelines.

Note To turn off some required guidelines, instead of mandatory-required select

custom. To clear specific guidelines, click . In the Comment column, enter
your rationale for disabling a guideline. For instance, you can enter the Deviation ID
that refers to a deviation record for the guideline. The rationale appears in your
generated report.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration level
because the rules involve more than one translation unit. These rules are checked in
the compilation and linking phases of the analysis.

all
Check for mandatory, required, and advisory guidelines.

SQO-subset1
Check for only a subset of guidelines. In Polyspace Code Prover, observing these rules
can reduce the number of unproven results. For more information, see “Software
Quality Objective Subsets (C:2012)”.

SQO-subset2
Check for the subset SQO-subset1, plus some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For
more information, see “Software Quality Objective Subsets (C:2012)”.

1 Option Descriptions

1-174

from-file
Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
and recommendations you want to check for this coding standard from the right pane
of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

For projects with mixed C and C++ code, the MISRA C:2012 checker analyzes only .c
files.

• If you set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

 Check MISRA C:2012 (-misra3)

1-175

• Polyspace Code Prover does not support checking of the following:

• MISRA C:2012 Directive 4.13 and 4.14
• MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
• MISRA C:2012 Rule 22.1 - 22.4 and 22.6 - 22.10

For support of all MISRA C: 2012 rules including the security guidelines in
Amendment 1, use Polyspace Bug Finder.

Command-Line Information
Parameter: -misra3
Value: mandatory | mandatory-required | single-unit-rules | system-
decidable-rules | all | SQO-subset1 | SQO-subset2 | from-file
Default: mandatory-required
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -
misra3 mandatory-required
Example (Code Prover): polyspace-code-prover -lang c -sources file_name
-misra3 mandatory-required
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources file_name -misra3 mandatory-required
Example (Code Prover Server): polyspace-code-prover-server -lang c -
sources file_name -misra3 mandatory-required

Compatibility Considerations

Polyspace will no longer support text format for coding rules
file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard
checkers uses the XML format. You can save custom selections for all the coding
standards that Polyspace supports in the same file.

In previous releases, you saved your custom selection for each coding standard in
separate text files. Polyspace will stop supporting custom coding standard files in text
format in a future release.

1 Option Descriptions

1-176

Desktop interface:

If you have a project that contains custom coding standard selection files in text format,
Polyspace automatically updates and consolidates those files into a single XML file. If your
project has conflicting configurations that refer to the same custom selection file, the
software saves the consolidated coding standard selection for each configuration to
separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code

Metrics node of the Configuration pane, click . In the Findings selection window,
select the files then click Save Changes. Polyspace consolidates the files into a single
XML files, and saves this file as filename.xml, where filename is the name of the first
selected file alphabetically. For instance, if you select foo.conf and bar.conf, they are
saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file
StandardsConfiguration.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in
polyspaceserverroot\polyspace\examples\cxx\Bug_Finder_Example
\sources or polyspaceserverroot\polyspace\examples\cxx
\Code_Prover_Example\sources. Here, polyspaceserverroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra3 "custom_standard.conf" -checkers-selection-file

"custom_standard.conf.xml" -
misra3 from-file

.

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

 Check MISRA C:2012 (-misra3)

1-177

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”
• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2012 Directives and Rules”

1 Option Descriptions

1-178

Use generated code requirements (-misra3-
agc-mode)
Check for violations of MISRA C:2012 rules and directives that apply to generated code

Description
Specify whether to use the MISRA C:2012 categories for automatically generated code.
This option changes which rules are mandatory, required, or advisory.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependency” on page 1-180 for
other options that you must also enable.

Command line: Use the option -misra3-agc-mode. See “Command-Line Information”
on page 1-181.

Why Use This Option
Use this option to specify that you are checking for MISRA C:2012 rules in generated
code. The option modifies the MISRA C:2012 subsets so that they are tailored for
generated code.

Settings
 Off (default)

Use the normal categories (mandatory, required, advisory) for MISRA C:2012 coding
guideline checking.

 On (default for analyses from Simulink)
Use the generated code categories (mandatory, required, advisory, readability) for
MISRA C:2012 coding guideline checking.

 Use generated code requirements (-misra3-agc-mode)

1-179

For analyses started from the Simulink plug-in, this option is the default value.

Category changed to Advisory

These rules are changed to advisory:

• 5.3
• 7.1
• 8.4, 8.5, 8.14
• 10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8
• 14.1, 14.4
• 15.2, 15.3
• 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7
• 20.8

Category changed to Readability

These guidelines are changed to readability:

• Dir 4.5
• 2.3, 2.4, 2.5, 2.6, 2.7
• 5.9
• 7.2, 7.3
• 9.2, 9.3, 9.5
• 11.9
• 13.3
• 14.2
• 15.7
• 17.5, 17.7, 17.8
• 18.5
• 20.5

Dependency
To use this option, first select the Check MISRA C:2012 (-misra3) option.

1 Option Descriptions

1-180

Command-Line Information
Parameter: -misra3-agc-mode
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra3
all -misra3-agc-mode
Example (Code Prover): polyspace-code-prover -sources file_name -misra3
all -misra3-agc-mode
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -misra3 all -misra3-agc-mode
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -misra3 all -misra3-agc-mode

See Also
Check MISRA C:2012 (-misra3) | Do not generate results for (-do-not-
generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2012 Directives and Rules”

 Use generated code requirements (-misra3-agc-mode)

1-181

Effective boolean types (-boolean-types)
Specify data types that coding rule checker must treat as effectively Boolean

Description
Specify data types that the coding rule checker must treat as effectively Boolean. You can
specify a data type as effectively Boolean only if you have defined it through an enum or
typedef statement in your source code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 1-183 for
other options that you must also enable.

Command line: Use the option -boolean-types. See “Command-Line Information” on
page 1-184.

Why Use This Option
Use this option to allow Polyspace to check the following coding rules:

• MISRA C: 2004 and MISRA AC AGC

Rule
Number

Rule Statement

12.6 Operands of logical operators, &&, ||, and !, should be effectively
Boolean. Expressions that are effectively Boolean should not be used as
operands to other operators.

13.2 Tests of a value against zero should be made explicit, unless the
operand is effectively Boolean.

15.4 A switch expression should not represent a value that is effectively
Boolean.

• MISRA C: 2012

1 Option Descriptions

1-182

Rule
Number

Rule Statement

10.1 Operands shall not be of an inappropriate essential type
10.3 The value of an expression shall not be assigned to an object with a

narrower essential type or of a different essential type category
10.5 The value of an expression should not be cast to an inappropriate

essential type
14.4 The controlling expression of an if statement and the controlling

expression of an iteration-statement shall have essentially Boolean
type.

16.7 A switch-expression shall not have essentially Boolean type.

For example, in the following code, unless you specify myBool as effectively Boolean,
Polyspace detects a violation of MISRA C: 2012 rule 14.4.

typedef int myBool;

void func1(void);
void func2(void);

void func(myBool flag) {
 if(flag)
 func1();
 else
 func2();
}

Settings
No Default

Click to add a field. Enter a type name that you want Polyspace to treat as Boolean.

Dependencies
This option is enabled only if you select one of these options:

 Effective boolean types (-boolean-types)

1-183

• Check MISRA C:2004 (-misra2)
• Check MISRA AC AGC (-misra-ac-agc).
• Check MISRA C:2012 (-misra3)

Command-Line Information
Parameter: -boolean-types
Value: type1[,type2[,...]]
No Default
Example (Bug Finder): polyspace-bug-finder -sources filename -misra2
required-rules -boolean-types boolean1_t,boolean2_t
Example (Code Prover): polyspace-code-prover -sources filename -misra2
required-rules -boolean-types boolean1_t,boolean2_t
Example (Bug Finder Server): polyspace-bug-finder-server -sources
filename -misra2 required-rules -boolean-types boolean1_t,boolean2_t
Example (Code Prover Server): polyspace-code-prover-server -sources
filename -misra2 required-rules -boolean-types boolean1_t,boolean2_t

See Also
Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C:2004 (-misra2) |
Check MISRA C:2012 (-misra3)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2004 Rules”
“MISRA C:2012 Directives and Rules”

1 Option Descriptions

1-184

Allowed pragmas (-allowed-pragmas)
Specify pragma directives that are documented

Description
Specify pragma directives that must not be flagged by MISRA C:2004 rule 3.4 or MISRA
C++ rule 16-6-1. These rules require that you document all pragma directives.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 1-186 for
other options that you must also enable.

Command line: Use the option -allowed-pragmas. See “Command-Line Information”
on page 1-186.

Why Use This Option
MISRA C:2004/MISRA AC AGC rule 3.4 and MISRA C++ rule 16-6-1 require that all
pragma directives are documented within the documentation of the compiler. If you list a
pragma as documented using this analysis option, Polyspace does not flag use of the
pragma as a violation of these rules.

Settings
No Default

Click to add a field. Enter the pragma name that you want Polyspace to ignore during
coding rule checking .

 Allowed pragmas (-allowed-pragmas)

1-185

Dependencies
This option is enabled only if you select one of these options:

• Check MISRA C:2004 (-misra2)
• Check MISRA AC AGC (-misra-ac-agc).
• Check MISRA C++:2008 (-misra-cpp)

Command-Line Information
Parameter: -allowed-pragmas
Value: pragma1[,pragma2[,...]]
No Default
Example (Bug Finder): polyspace-bug-finder -sources filename -misra-cpp
required-rules -allowed-pragmas pragma_01,pragma_02
Example (Code Prover): polyspace-code-prover -sources filename -misra-
cpp required-rules -allowed-pragmas pragma_01,pragma_02
Example (Bug Finder Server): polyspace-bug-finder-server -sources
filename -misra-cpp required-rules -allowed-pragmas
pragma_01,pragma_02
Example (Code Prover Server): polyspace-code-prover-server -sources
filename -misra-cpp required-rules -allowed-pragmas
pragma_01,pragma_02

See Also
Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C++:2008 (-misra-cpp)
| Check MISRA C:2004 (-misra2)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2004 Rules”
“MISRA C++:2008 Rules”

1 Option Descriptions

1-186

Check custom rules (-custom-rules)
Follow naming conventions for identifiers

Note Polyspace will no longer support custom configuration files in text format in a
future release. See “Compatibility Considerations”.

Description
Define naming conventions for identifiers and check your code against them.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node.

Command line: Use the option -custom-rules. See “Command-Line Information” on
page 1-190.

Why Use This Option
Use this option to impose naming conventions on identifiers. Using a naming convention
allows you to easily determine the nature of an identifier from its name. For instance, if
you define a naming convention for structures, you can easily tell whether an identifier
represents a structured variable or not.

After analysis, the Results List pane lists violations of the naming conventions. On the
Source pane, for every violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
 On

Polyspace matches identifiers in your code against text patterns you define. Define
the text patterns in a custom coding rules file. To create a coding rules file,

 Check custom rules (-custom-rules)

1-187

• Use the custom rules wizard:

1
Click . A Findings selection window opens.

2 The Custom node in the left pane is highlighted. Expand the nodes in the
right pane to select custom rule you want to check.

3 For every custom rule you want to check:

a Select On .
b In the Convention column, enter the error message you want to display if

the rule is violated.

For example, for rule 4.3, All struct fields must follow the specified
pattern, you can enter All struct fields must begin with s_.
This message appears on the Result Details pane if:

• You specify the Pattern as s_[A-Za-z0-9_]+.
• A structure field in your code does not begin with s_.

c In the Pattern column, enter the text pattern.

For example, for rule 4.3, All struct fields must follow the specified
pattern, you can enter s_[A-Za-z0-9_]+. Polyspace reports violation of
rule 4.3 if a structure field does not begin with s_.

You can use Perl regular expressions to define patterns. For instance, you
can use the following expressions.

Expression Meaning
. Matches any single character except

newline
[a-
z0-9]

Matches any single letter in the set a-z,
or digit in the set 0-9

[^a-e] Matches any single letter not in the set
a-e

\d Matches any single digit
\w Matches any single alphanumeric

character or _

1 Option Descriptions

1-188

Expression Meaning
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For frequent patterns, you can use the following regular expressions:

• (?!__)[a-z0-9_]+(?!__), matches a text pattern that does not
start and end with two underscores.

int __text; //Does not match
int _text_; //Matches

• [a-z0-9_]+_(u8|u16|u32|s8|s16|s32) , matches a text pattern
that ends with a specific suffix.

int _text_; //Does not match
int _text_s16; //Matches
int _text_s33; // Does not match

• [a-z0-9_]+_(u8|u16|u32|s8|s16|s32)(_b3|_b8)? , matches a
text pattern that ends with a specific suffix and an optional second
suffix.

int _text_s16; //Matches
int _text_s16_b8; //Matches

For a complete list of regular expressions, see Perl documentation.

To use or update an existing coding rules file, click to open the Findings
selection window then do one of the following:

• Enter the full path to the file in the field provided
• Click Browse and navigate to the file location.

 Off (default)
Polyspace does not check your code against custom naming conventions.

 Check custom rules (-custom-rules)

1-189

https://perldoc.perl.org/perlre.html#Regular-Expressions

Command-Line Information
Parameter: -custom-rules
Value: Name of coding rules file
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -custom-
rules "C:\Standards\custom_config.xml"
Example (Code Prover): polyspace-code-prover -sources file_name -
custom-rules "C:\Standards\custom_config.xml"
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -custom-rules "C:\Standards\custom_config.xml"
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -custom-rules "C:\Standards\custom_config.xml"

Compatibility Considerations

Polyspace will no longer support text format for coding rules
file
Not recommended starting in R2019a

Starting in R2019a, the file where you define custom coding rules uses the XML format.
You can save selections for custom coding rules and all the coding standards that
Polyspace supports in the same file.

In previous releases, you saved your selection for each coding standard and custom
coding rules in separate text files. Polyspace will stop supporting custom coding rule files
in text format in a future release.

Desktop user interface:

If you have a project that contains custom coding rules and coding standard selection files
in text format, Polyspace automatically updates and consolidates those files into a single
XML file. If your project has conflicting configurations that refer to the same custom
selection file, the software saves the consolidated coding standard selection for each
configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code

Metrics node of the Configuration pane, click . In the Findings selection window,

1 Option Descriptions

1-190

select the files then click Save Changes. Polyspace consolidates the files into a single
XML files, and saves this file as filename.xml, where filename is the name of the first
selected file alphabetically. For instance, if you select foo.conf and bar.conf, they are
saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file
StandardsConfiguration.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in polyspaceroot
\polyspace\examples\cxx\Bug_Finder_Example\sources or polyspaceroot
\polyspace\examples\cxx\Code_Prover_Example\sources. Here,
polyspaceroot is the root installation folder for the Polyspace products, for instance,
C:\Program Files\Polyspace\R2019a. To update your script, replace reference to
the old file format with the new XML file format .

Example of Configuration File in XML Format

To turn on and define custom coding rule 8.1, use this entry:

<standard name="CUSTOM RULES">
 ...
 <section name="8 Constants">
 ...
 <check id="8.1" state="on">
 <convention>Constant name must begin with C_</convention>
 <pattern>C_[A-Z0-9_]*</pattern>
 <comment># Issue when constant name does not begin with c_</comment>
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”
• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “JSF C++ Rules”

 Check custom rules (-custom-rules)

1-191

• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”

See Also

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“Create Custom Coding Rules”

1 Option Descriptions

1-192

Check MISRA C++:2008 (-misra-cpp)
Check for violations of MISRA C++ rules

Note Polyspace will no longer support custom configuration files in text format in a
future release. See “Compatibility Considerations”.

Description
Specify whether to check for violation of MISRA C++ rules. Each value of the option
corresponds to a subset of rules to check.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependency” on page 1-194 for
other options that you must also enable.

Command line: Use the option -misra-cpp. See “Command-Line Information” on page
1-194.

Why Use This Option
Use this option to specify the subset of MISRA C++ rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

 Check MISRA C++:2008 (-misra-cpp)

1-193

all-rules
Check required and advisory coding rules.

SQO-subset1
Check only a subset of MISRA C++ rules. In Polyspace Code Prover, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C++)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (C+
+)”

from-file
Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
and recommendations you want to check for this coding standard from the right pane
of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

For projects with mixed C and C++ code, the MISRA C++ checker analyzes only .cpp
files.

Command-Line Information
Parameter: -misra-cpp
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | from-file

1 Option Descriptions

1-194

Default: required-rules
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra-
cpp all-rules
Example (Code Prover): polyspace-code-prover -sources file_name -misra-
cpp all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -misra-cpp all-rules
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -misra-cpp all-rules

Compatibility Considerations

Polyspace will no longer support text format for coding rules
file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard
checkers uses the XML format. You can save custom selections for all the coding
standards that Polyspace supports in the same file.

In previous releases, you saved your custom selection for each coding standard in
separate text files. Polyspace will stop supporting custom coding standard files in text
format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format,
Polyspace automatically updates and consolidates those files into a single XML file. If your
project has conflicting configurations that refer to the same custom selection file, the
software saves the consolidated coding standard selection for each configuration to
separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code

Metrics node of the Configuration pane, click . In the Findings selection window,
select the files then click Save Changes. Polyspace consolidates the files into a single
XML files, and saves this file as filename.xml, where filename is the name of the first
selected file alphabetically. For instance, if you select foo.conf and bar.conf, they are
saved as bar.conf.xml.

 Check MISRA C++:2008 (-misra-cpp)

1-195

Command-line:

If you do not have access to a Polyspace desktop interface, use the file
StandardsConfiguration.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in
polyspaceserverroot\polyspace\examples\cxx\Bug_Finder_Example
\sources or polyspaceserverroot\polyspace\examples\cxx
\Code_Prover_Example\sources. Here, polyspaceserverroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-misra-cpp "custom_standard.conf" -checkers-selection-file

"custom_standard.conf.xml" -
misra-cpp from-file

.

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”

1 Option Descriptions

1-196

• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C++:2008 Rules”

 Check MISRA C++:2008 (-misra-cpp)

1-197

Check JSF AV C++ rules (-jsf-coding-
rules)
Check for violations of JSF C++ rules

Note Polyspace will no longer support custom configuration files in text format in a
future release. See “Compatibility Considerations”.

Description
Specify whether to check for violation of JSF AV C++ rules (JSF++:2005). Each value of
the option corresponds to a subset of rules to check.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependency” on page 1-199 for
other options that you must also enable.

Command line: Use the option -jsf-coding-rules. See “Command-Line Information”
on page 1-200.

Why Use This Option
Use this option to specify the subset of JSF C++ rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding rule violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
Default: shall-rules

1 Option Descriptions

1-198

shall-rules
Check all Shall rules. Shall rules are mandatory requirements and require
verification.

shall-will-rules
Check all Shall and Will rules. Will rules are intended to be mandatory requirements
but do not require verification.

all-rules
Check all Shall, Will, and Should rules. Should rules are advisory rules.

from-file
Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
and recommendations you want to check for this coding standard from the right pane
of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Tips
• If your project uses a setting other than generic for Compiler (-compiler), some

rules might not be completely checked. For example, AV Rule 8: “All code shall
conform to ISO/IEC 14882:2002(E) standard C++.”

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

For projects with mixed C and C++ code, the JSF C++ checker analyzes only .cpp files.

 Check JSF AV C++ rules (-jsf-coding-rules)

1-199

Command-Line Information
Parameter: -jsf-coding-rules
Value: shall-rules | shall-will-rules | all-rules | from-file
Default: shall-rules
Example (Bug Finder): polyspace-bug-finder -sources file_name -jsf-
coding-rules all-rules
Example (Code Prover): polyspace-code-prover -sources file_name -jsf-
coding-rules all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -jsf-coding-rules all-rules
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -jsf-coding-rules all-rules

Compatibility Considerations

Polyspace will no longer support text format for coding rules
file
Not recommended starting in R2019a

Starting in R2019a, the file where you define a custom selection of coding standard
checkers uses the XML format. You can save custom selections for all the coding
standards that Polyspace supports in the same file.

In previous releases, you saved your custom selection for each coding standard in
separate text files. Polyspace will stop supporting custom coding standard files in text
format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format,
Polyspace automatically updates and consolidates those files into a single XML file. If your
project has conflicting configurations that refer to the same custom selection file, the
software saves the consolidated coding standard selection for each configuration to
separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code

Metrics node of the Configuration pane, click . In the Findings selection window,

1 Option Descriptions

1-200

select the files then click Save Changes. Polyspace consolidates the files into a single
XML files, and saves this file as filename.xml, where filename is the name of the first
selected file alphabetically. For instance, if you select foo.conf and bar.conf, they are
saved as bar.conf.xml.

Command-line:

If you do not have access to a Polyspace desktop interface, use the file
StandardsConfiguration.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in
polyspaceserverroot\polyspace\examples\cxx\Bug_Finder_Example
\sources or polyspaceserverroot\polyspace\examples\cxx
\Code_Prover_Example\sources. Here, polyspaceserverroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files
\Polyspace\R2019a. To update your script, see this table

Option Use Instead
-jsf-coding-rules
"custom_standard.conf"

-checkers-selection-file
"custom_standard.conf.xml" -jsf-
coding-rules from-file

.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For full list of rule id-s and section names, see:

• “AUTOSAR C++14 Rules”

 Check JSF AV C++ rules (-jsf-coding-rules)

1-201

• “CERT C Rules and Recommendations”
• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“JSF C++ Rules”

1 Option Descriptions

1-202

Check AUTOSAR C++ 14 (-autosar-cpp14)
Check for violations of AUTOSAR C++ 14 rules

Description
This option affects Bug Finder only.

Specify whether to check for violations of AUTOSAR C++ 14. Each value of the option
corresponds to a subset of guidelines to check.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 1-204 for
other options that you must also enable.

Command line: Use the option -autosar-cpp14. See “Command-Line Information” on
page 1-204.

Why Use This Option
Use this option to specify the subset of AUTSOAR C++ 14 rules to check for1.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding standard violation, Polyspace assigns a symbol to the keyword
or identifier relevant to the violation.

Settings
Default: all

1. The Polyspace checkers for AUTOSAR C++14 rules supports AUTOSAR C++14 release 18-03 (March
2018). Out of 390 rules from the standard, 194 rules are supported.

 Check AUTOSAR C++ 14 (-autosar-cpp14)

1-203

all
Check for violations of all AUTOSAR C++ 14 rules supported by Polyspace.

See “AUTOSAR C++14 Rules”.
required

Check for violations of required rules.

These rules are mandatory requirements placed on your code.
automated

Check for violations of automated rules.

You can automatically enforce these rules by means of static analysis.
from-file

Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
you want to check for this coding standard from the right pane of the Findings
selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to CPP or

C-CPP.

Command-Line Information
Parameter: -autosar-cpp14
Value: all | required | automated | from-file
Default: all
Example (Bug Finder): polyspace-bug-finder -lang cpp -sources file_name
-autosar-cpp14 required

1 Option Descriptions

1-204

Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -
sources file_name -autosar-cpp14 required

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“AUTOSAR C++14 Rules”

 Check AUTOSAR C++ 14 (-autosar-cpp14)

1-205

Check SEI CERT-C (-cert-c)
Check for violations of CERT C rules and recommendations

Description
This option affects Bug Finder only.

Specify whether to check for violations of CERT C rules and recommendations. Each
value of the option corresponds to a subset of the coding standard to check.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 1-215 for
other options that you must also enable.

Command line: Use the option -cert-c. See “Command-Line Information” on page 1-
215.

Why Use This Option
Use this option to specify the subset of CERT C rules and recommendations to check in
your code.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding standard violation, Polyspace assigns a symbol to the keyword
or identifier relevant to the violation.

Settings
Default: all

all-rules
Check for violations of CERT C rules only.

1 Option Descriptions

1-206

See the CERT C website for an explanation of the difference between rules and
recommendations.

List of CERT-C rules that Polyspace checks when you use all-rules

CERT C: Rule ARR30-C
CERT C: Rule ARR32-C
CERT C: Rule ARR36-C
CERT C: Rule ARR37-C
CERT C: Rule ARR38-C
CERT C: Rule ARR39-C
CERT C: Rule CON30-C
CERT C: Rule CON31-C
CERT C: Rule CON32-C
CERT C: Rule CON33-C
CERT C: Rule CON35-C
CERT C: Rule CON36-C
CERT C: Rule CON37-C
CERT C: Rule CON40-C
CERT C: Rule CON41-C
CERT C: Rule CON43-C
CERT C: Rule DCL30-C
CERT C: Rule DCL31-C
CERT C: Rule DCL36-C
CERT C: Rule DCL37-C
CERT C: Rule DCL38-C
CERT C: Rule DCL39-C
CERT C: Rule DCL40-C
CERT C: Rule DCL41-C
CERT C: Rule ENV30-C

 Check SEI CERT-C (-cert-c)

1-207

https://wiki.sei.cmu.edu/confluence/display/c/Rules+versus+Recommendations

CERT C: Rule ENV31-C
CERT C: Rule ENV32-C
CERT C: Rule ENV33-C
CERT C: Rule ENV34-C
CERT C: Rule ERR30-C
CERT C: Rule ERR32-C
CERT C: Rule ERR33-C
CERT C: Rule ERR34-C
CERT C: Rule EXP30-C
CERT C: Rule EXP32-C
CERT C: Rule EXP33-C
CERT C: Rule EXP34-C
CERT C: Rule EXP35-C
CERT C: Rule EXP36-C
CERT C: Rule EXP37-C
CERT C: Rule EXP39-C
CERT C: Rule EXP40-C
CERT C: Rule EXP42-C
CERT C: Rule EXP43-C
CERT C: Rule EXP44-C
CERT C: Rule EXP45-C
CERT C: Rule EXP46-C
CERT C: Rule EXP47-C
CERT C: Rule FIO30-C
CERT C: Rule FIO32-C
CERT C: Rule FIO34-C
CERT C: Rule FIO37-C
CERT C: Rule FIO38-C
CERT C: Rule FIO39-C

1 Option Descriptions

1-208

CERT C: Rule FIO40-C
CERT C: Rule FIO41-C
CERT C: Rule FIO42-C
CERT C: Rule FIO44-C
CERT C: Rule FIO45-C
CERT C: Rule FIO46-C
CERT C: Rule FIO47-C
CERT C: Rule FLP30-C
CERT C: Rule FLP32-C
CERT C: Rule FLP34-C
CERT C: Rule FLP36-C
CERT C: Rule FLP37-C
CERT C: Rule INT30-C
CERT C: Rule INT31-C
CERT C: Rule INT32-C
CERT C: Rule INT33-C
CERT C: Rule INT34-C
CERT C: Rule INT35-C
CERT C: Rule INT36-C
CERT C: Rule MEM30-C
CERT C: Rule MEM31-C
CERT C: Rule MEM33-C
CERT C: Rule MEM34-C
CERT C: Rule MEM35-C
CERT C: Rule MEM36-C
CERT C: Rule MSC30-C
CERT C: Rule MSC32-C
CERT C: Rule MSC33-C
CERT C: Rule MSC37-C

 Check SEI CERT-C (-cert-c)

1-209

CERT C: Rule MSC38-C
CERT C: Rule MSC39-C
CERT C: Rule MSC40-C
CERT C: Rule POS30-C
CERT C: Rule POS33-C
CERT C: Rule POS34-C
CERT C: Rule POS35-C
CERT C: Rule POS36-C
CERT C: Rule POS37-C
CERT C: Rule POS38-C
CERT C: Rule POS39-C
CERT C: Rule POS44-C
CERT C: Rule POS48-C
CERT C: Rule POS49-C
CERT C: Rule POS51-C
CERT C: Rule POS52-C
CERT C: Rule POS54-C
CERT C: Rule PRE30-C
CERT C: Rule PRE31-C
CERT C: Rule PRE32-C
CERT C: Rule SIG30-C
CERT C: Rule SIG31-C
CERT C: Rule SIG34-C
CERT C: Rule SIG35-C
CERT C: Rule STR30-C
CERT C: Rule STR31-C
CERT C: Rule STR32-C
CERT C: Rule STR34-C
CERT C: Rule STR37-C

1 Option Descriptions

1-210

CERT C: Rule STR38-C
CERT C: Rule WIN30-C

publish-2016
Check for violations of CERT C rules only, as defined in the 2016 edition of the SEI
CERT C Coding Standard.

See the CERT C website for an explanation of the difference between rules and
recommendations.

List of CERT-C rules that Polyspace checks when you use publish-2016

CERT C: Rule ARR30-C
CERT C: Rule ARR32-C
CERT C: Rule ARR36-C
CERT C: Rule ARR37-C
CERT C: Rule ARR38-C
CERT C: Rule ARR39-C
CERT C: Rule CON30-C
CERT C: Rule CON31-C
CERT C: Rule CON32-C
CERT C: Rule CON33-C
CERT C: Rule CON35-C
CERT C: Rule CON36-C
CERT C: Rule CON37-C
CERT C: Rule CON40-C
CERT C: Rule CON41-C
CERT C: Rule DCL30-C
CERT C: Rule DCL31-C
CERT C: Rule DCL36-C
CERT C: Rule DCL37-C
CERT C: Rule DCL38-C

 Check SEI CERT-C (-cert-c)

1-211

https://wiki.sei.cmu.edu/confluence/display/c/Rules+versus+Recommendations

CERT C: Rule DCL39-C
CERT C: Rule DCL40-C
CERT C: Rule DCL41-C
CERT C: Rule ENV30-C
CERT C: Rule ENV31-C
CERT C: Rule ENV32-C
CERT C: Rule ENV33-C
CERT C: Rule ENV34-C
CERT C: Rule ERR30-C
CERT C: Rule ERR32-C
CERT C: Rule ERR33-C
CERT C: Rule EXP30-C
CERT C: Rule EXP32-C
CERT C: Rule EXP33-C
CERT C: Rule EXP34-C
CERT C: Rule EXP35-C
CERT C: Rule EXP36-C
CERT C: Rule EXP37-C
CERT C: Rule EXP39-C
CERT C: Rule EXP40-C
CERT C: Rule EXP42-C
CERT C: Rule EXP43-C
CERT C: Rule EXP44-C
CERT C: Rule EXP45-C
CERT C: Rule EXP46-C
CERT C: Rule FIO30-C
CERT C: Rule FIO32-C
CERT C: Rule FIO34-C
CERT C: Rule FIO37-C

1 Option Descriptions

1-212

CERT C: Rule FIO38-C
CERT C: Rule FIO39-C
CERT C: Rule FIO40-C
CERT C: Rule FIO41-C
CERT C: Rule FIO42-C
CERT C: Rule FIO44-C
CERT C: Rule FIO45-C
CERT C: Rule FIO46-C
CERT C: Rule FIO47-C
CERT C: Rule FLP30-C
CERT C: Rule FLP32-C
CERT C: Rule FLP34-C
CERT C: Rule FLP36-C
CERT C: Rule FLP37-C
CERT C: Rule INT30-C
CERT C: Rule INT31-C
CERT C: Rule INT32-C
CERT C: Rule INT33-C
CERT C: Rule INT34-C
CERT C: Rule INT35-C
CERT C: Rule INT36-C
CERT C: Rule MEM30-C
CERT C: Rule MEM31-C
CERT C: Rule MEM33-C
CERT C: Rule MEM34-C
CERT C: Rule MEM35-C
CERT C: Rule MEM36-C
CERT C: Rule MSC30-C
CERT C: Rule MSC32-C

 Check SEI CERT-C (-cert-c)

1-213

CERT C: Rule MSC33-C
CERT C: Rule MSC37-C
CERT C: Rule MSC38-C
CERT C: Rule MSC39-C
CERT C: Rule MSC40-C
CERT C: Rule PRE30-C
CERT C: Rule PRE31-C
CERT C: Rule PRE32-C
CERT C: Rule SIG30-C
CERT C: Rule SIG31-C
CERT C: Rule SIG34-C
CERT C: Rule SIG35-C
CERT C: Rule STR30-C
CERT C: Rule STR31-C
CERT C: Rule STR32-C
CERT C: Rule STR34-C
CERT C: Rule STR37-C
CERT C: Rule STR38-C

all
Check for violations of all CERT C rules and recommendations supported by
Polyspace.

See “CERT C Rules and Recommendations”.
from-file

Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
and recommendations you want to check for this coding standard from the right pane
of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

1 Option Descriptions

1-214

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

For projects with mixed C and C++ code, the SEI CERT-C checker analyzes only .c
files.

Command-Line Information
Parameter: -cert-c
Value: all-rules | publish-2016 | all | from-file
Default: all
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -
cert-c all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -
sources file_name -cert-c all-rules

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“CERT C Rules and Recommendations”

 Check SEI CERT-C (-cert-c)

1-215

Check SEI CERT-C++ (-cert-cpp)
Check for violations of CERT C++ rules

Description
This option affects Bug Finder only.

Specify whether to check for violations of CERT C++ rules.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 1-217 for
other options that you must also enable.

Command line: Use the option -cert-cpp. See “Command-Line Information” on page
1-217.

Why Use This Option
Use this option to specify the subset of CERT C++ rules to check in your code.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding standard violation, Polyspace assigns a symbol to the keyword
or identifier relevant to the violation.

Settings
Default: all

all
Check for violations of all CERT C++ rules supported by Polyspace.

See “CERT C++ Rules”.

1 Option Descriptions

1-216

from-file
Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
you want to check for this coding standard from the right pane of the Findings
selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to CPP or

C-CPP.

For projects with mixed C and C++ code, the SEI CERT-C++ checker analyzes
only .cpp files.

Command-Line Information
Parameter: -cert-cpp
Value: all | from-file |
Default: all
Example (Bug Finder): polyspace-bug-finder -lang cpp -sources file_name
-cert-cpp all
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -
sources file_name -cert-cpp all

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”

 Check SEI CERT-C++ (-cert-cpp)

1-217

“Check for Coding Standard Violations”

1 Option Descriptions

1-218

Check ISO/IEC TS 17961 (-iso-17961)
Check for violations of ISO/IEC TS 17961 rules

Description
This option affects Bug Finder only.

Specify whether to check for violations of ISO/IEC TS 17961 rules.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node. See “Dependencies” on page 1-220 for
other options that you must also enable.

Command line: Use the option -iso-17961. See “Command-Line Information” on page
1-220.

Why Use This Option
Use this option to specify the subset of ISO/IEC TS 17961 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source
pane, for every coding standard violation, Polyspace assigns a symbol to the keyword
or identifier relevant to the violation.

Settings
Default: all

decidable
Check for violations of decidable rules. Violations of these rules depend only on
compile-time static properties, for instance object type or scope of identifiers.

 Check ISO/IEC TS 17961 (-iso-17961)

1-219

all
Check for violations of all ISO/IEC TS 17961 rules Polyspace supports.

See “ISO/IEC TS 17961 Rules”.
from-file

Specify an XML file where you configure a custom selection of checkers for this

coding standard. To create a configuration file, click , then select the rules
and recommendations you want to check for this coding standard from the right pane
of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window,
enter the full path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

Command-Line Information
Parameter: -iso-17961
Value:decidable | all | from-file
Default: all
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -
iso-17961 decidable

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”

1 Option Descriptions

1-220

“ISO/IEC TS 17961 Rules”

 Check ISO/IEC TS 17961 (-iso-17961)

1-221

Calculate code metrics (-code-metrics)
Compute and display code complexity metrics

Description
Specify that Polyspace must compute and display code complexity metrics for your source
code. The metrics include file metrics such as number of lines and function metrics such
as cyclomatic complexity and estimated size of local variables.

For more information, see “Compute Code Complexity Metrics”.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Coding Standards & Code Metrics node.

Command line: Use the option -code-metrics. See “Command-Line Information” on
page 1-223.

Why Use This Option
By default, Polyspace does not calculate code complexity metrics. If you want these
metrics in your analysis results, before running analysis, set this option.

High values of code complexity metrics can lead to obscure code and increase chances of
coding errors. Additionally, if you run a Code Prover verification on your source code, you
might benefit from checking your code complexity metrics first. If a function is too
complex, attempts to verify the function can lead to a lot of unproven code. For
information on how to cap your code complexity metrics, see “Compute Code Complexity
Metrics”.

Settings
 On

Polyspace computes and displays code complexity metrics on the Results List pane.

1 Option Descriptions

1-222

 Off (default)
Polyspace does not compute complexity metrics.

Tips
If you want to compute only the code complexity metrics for your code:

• In Bug Finder, disable checking of defects. See Find defects (-checkers).
• In Code Prover, run verification up to the Source Compliance Checking phase.

See Verification level (-to).

A Code Prover analysis computes the stack usage metrics after the source compliance
checking phase. If you stop a Code Prover verification before source compliance
checking, the stack usage metrics are not reported.

Command-Line Information
Parameter: -code-metrics
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -code-
metrics
Example (Code Prover): polyspace-code-prover -sources file_name -code-
metrics
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -code-metrics
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -code-metrics

See Also

Topics
“Compute Code Complexity Metrics”
“Code Metrics”

 Calculate code metrics (-code-metrics)

1-223

Find defects (-checkers)
Enable or disable defect checkers

Description
This option affects a Bug Finder analysis only.

Enable checkers for bugs/coding defects.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Bug Finder Analysis node.

Command line: Use the option -checkers. See “Command-Line Information” on page
1-225.

Why Use This Option
The default set of checkers is designed to find the most meaningful bugs in most software
development situations. If you have specific needs, enable or disable individual defect
checkers. For instance, if you want to follow a specific security standard, choose a
different subset of checkers.

Settings
Default: default

default
A subset of defects defined by the software.

See “Polyspace Bug Finder Defects Checkers Enabled by Default”.
all

All defects.

1 Option Descriptions

1-224

For a list of all defects checkers, see Bug Finder Defects.
CWE

A subset of defects that correspond to CWE™ IDs.

See “CWE Coding Standard and Polyspace Results”.
custom

Choose the defects you want to find by selecting categories of checkers or specific
defects.

Tips
You can use a spreadsheet to keep track of the defect checkers that you enable and add
notes explaining why you do not enable the other checkers. A spreadsheet of checkers is
provided in polyspaceroot\polyspace\resources. Here, polyspaceroot is the
Polyspace installation folder, such as C:\Program Files\Polyspace\R2019a.

Command-Line Information
Regardless of order, the shell script processes the -checkers option, and then -
disable-checkers option.

For the command-line parameters values, see “Short Names of Bug Finder Defect
Checkers”.
Parameter: -checkers
Value: default | all | none | CWE | defect group | defect parameters
Default: default
Parameter: -disable-checkers
Value: defect group |defect parameters
Example 1 (Bug Finder): polyspace-bug-finder -sources filename -
checkers numerical,data_flow -disable-checkers FLOAT_ZERO_DIV
Example 2 (Bug Finder): polyspace-bug-finder -sources filename -
checkers default -disable-checkers concurrency,dead_code
Example 1 (Bug Finder Server): polyspace-bug-finder-server -sources
filename -checkers numerical,data_flow -disable-checkers
FLOAT_ZERO_DIV

 Find defects (-checkers)

1-225

Example 2 (Bug Finder Server): polyspace-bug-finder-server -sources
filename -checkers default -disable-checkers concurrency,dead_code

See Also
“Defects”

Topics
“Specify Polyspace Analysis Options”
“Short Names of Bug Finder Defect Checkers”
“Bug Finder Defect Groups”

1 Option Descriptions

1-226

Class (-class-analyzer)
Specify classes that you want to verify

Description
This option affects a Code Prover analysis only.

Specify classes that Polyspace uses to generate a main.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 1-228 for other options
that you must also enable.

Command line: Use the option -class-analyzer. See “Command-Line Information” on
page 1-228.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option and the option Functions to call within the specified
classes (-class-analyzer-calls) to specify the class methods that the generated
main must call. Unless a class method is called directly or indirectly from main, the
software does not analyze the method.

Settings
Default: all

all
Polyspace can use all classes to generate a main. The generated main calls methods
that you specify using Functions to call within the specified classes.

 Class (-class-analyzer)

1-227

none
The generated main cannot call any class method.

custom
Polyspace can use classes that you specify to generate a main. The generated main
calls methods from classes that you specify using Functions to call within the
specified classes.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

Tips
If you select none for this option, Polyspace will not verify class methods that you do not
call explicitly in your code.

Command-Line Information
Parameter: -class-analyzer
Value: all | none | custom=class1[,class2,...]
Default: all
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -class-analyzer custom=myClass1,myClass2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -class-analyzer custom=myClass1,myClass2

See Also
Analyze class contents only (-class-only) | Functions to call within
the specified classes (-class-analyzer-calls) | Skip member
initialization check (-no-constructors-init-check) | Verify module or
library (-main-generator)

1 Option Descriptions

1-228

Topics
“Specify Polyspace Analysis Options”
“Verify C++ Classes” (Polyspace Code Prover)

 Class (-class-analyzer)

1-229

Functions to call within the specified classes
(-class-analyzer-calls)
Specify class methods that you want to verify

Description
This option affects a Code Prover analysis only.

Specify class methods that Polyspace uses to generate a main. The generated main can
call static, public and protected methods in classes that you specify using the Class
option.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 1-232 for other options
that you must also enable.

Command line: Use the option -class-analyzer-calls. See “Command-Line
Information” on page 1-232.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option and the option Class (-class-analyzer) to specify the class methods
that the generated main must call. Unless a class method is called directly or indirectly
from main, the software does not analyze the method.

Settings
Default: unused

1 Option Descriptions

1-230

all
The generated main calls all public and protected methods. It does not call methods
inherited from a parent class.

all-public
The generated main calls all public methods. It does not call methods inherited from
a parent class.

inherited-all
The generated main calls all public and protected methods including those inherited
from a parent class.

inherited-all-public
The generated main calls all public methods including those inherited from a parent
class.

unused
The generated main calls public and protected methods that are not called in the
code.

unused-public
The generated main calls public methods that are not called in the code. It does not
call methods inherited from a parent class.

inherited-unused
The generated main calls public and protected methods that are not called in the
code including those inherited from a parent class.

inherited-unused-public
The generated main calls public methods that are not called in the code including
those inherited from a parent class.

custom
The generated main calls the methods that you specify.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int).

 Functions to call within the specified classes (-class-analyzer-calls)

1-231

If the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Dependencies
You can use this option only if:

• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

Command-Line Information
Parameter: -class-analyzer-calls
Value: all | all-public | inherited-all | inherited-all-public | unused |
unused-public | inherited-unused | inherited-unused-public |
custom=method1[,method2,...]
Default: unused
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-
calls unused-public
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -class-analyzer custom=myClass1,myClass2 -
class-analyzer-calls unused-public

See Also
Class (-class-analyzer) | Verify module or library (-main-generator)

Topics
“Specify Polyspace Analysis Options”
“Verify C++ Classes” (Polyspace Code Prover)

1 Option Descriptions

1-232

Analyze class contents only (-class-only)
Do not analyze code other than class methods

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must verify only methods of classes that you specify using the
option Class (-class-analyzer).

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 1-234 for other options
that you must also enable.

Command line: Use the option -class-only. See “Command-Line Information” on
page 1-234.

Why Use This Option
Use this option to restrict the analysis to certain class methods only.

You specify these methods through the options:

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-

calls)

When you analyze a module or library, Code Prover generates a main function if one does
not exist. The main function calls class methods using these two options and functions
that are not class methods using other options. Code Prover analyzes these methods and
functions for robustness to all inputs. If you use this option, Code Prover analyzes the
methods only.

 Analyze class contents only (-class-only)

1-233

Settings
 On

Polyspace verifies the class methods only. It stubs functions out of class scope even if
the functions are defined in your code.

 Off (default)
Polyspace verifies functions out of class scope in addition to class methods.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using the Class (-class-
analyzer) option.

Tips
Use this option:

• For robustness verification of class methods. Unless you use this option, Polyspace
verifies methods that you call in your code only for your input combinations.

• In case of scaling.

Command-Line Information
Parameter: -class-only
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-
calls unused-public -class-only

1 Option Descriptions

1-234

Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -class-analyzer custom=myClass1,myClass2 -
class-analyzer-calls unused-public -class-only

See Also
Class (-class-analyzer) | Functions to call within the specified
classes (-class-analyzer-calls) | Verify module or library (-main-
generator)

Topics
“Specify Polyspace Analysis Options”
“Verify C++ Classes” (Polyspace Code Prover)

 Analyze class contents only (-class-only)

1-235

Initialization functions (-functions-called-
before-main)
Specify functions that you want the generated main to call ahead of other functions

Description
This option affects a Code Prover analysis only.

Specify functions that you want the generated main to call ahead of other functions.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 1-237 for other options
that you must also enable.

Command line: Use the option -functions-called-before-main. See “Command-
Line Information” on page 1-238.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option along with the option Functions to call (-main-generator-
calls) to specify which functions the generated main must call. Unless a function is
called directly or indirectly from main, the software does not analyze the function.

Settings
No Default

Enter function names or choose from a list.

1 Option Descriptions

1-236

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If the function or method is not overloaded, specify the function name. Otherwise, specify
the function prototype with arguments. For instance, in the following code, you must
specify the prototypes func(int) and func(double).

int func(int x) {
 return(x * 2);
}
double func(double x) {
 return(x * 2);
}

For C++, if the function is:

• A class method: The generated main calls the class constructor before calling this
function.

• Not a class method: The generated main calls this function before calling class
methods.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::init(int). If the
function does not have a parameter, use an empty parenthesis, for instance,
myClass::init().

Dependencies
This option is enabled only if you select Verify module or library under Code Prover
Verification and your code does not contain a main function.

Tips
Although these functions are called ahead of other functions, they can be called in
arbitrary order. If you want to call your initialization functions in a specific order,
manually write a main function to call them.

 Initialization functions (-functions-called-before-main)

1-237

Command-Line Information
Parameter: -functions-called-before-main
Value: function1[,function2[,...]]
No Default
Example 1 (Code Prover): polyspace-code-prover -sources file_name -
main-generator -functions-called-before-main myfunc
Example 2 (Code Prover): polyspace-code-prover -sources file_name -
main-generator -functions-called-before-main myClass::init(int)
Example 1 (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -functions-called-before-main myfunc
Example 2 (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -functions-called-before-main
myClass::init(int)

See Also
Class (-class-analyzer) | Functions to call (-main-generator-calls) |
Functions to call within the specified classes (-class-analyzer-
calls) | Variables to initialize (-main-generator-writes-variables) |
Verify module or library (-main-generator)

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

1 Option Descriptions

1-238

Verify whole application
Stop verification if sources files are incomplete and do not contain a main function

Description
This option affects a Code Prover analysis only.

Specify that Polyspace verification must stop if a main function is not present in the
source files.

If you select a Visual C++ setting for Compiler (-compiler), you can specify which
function must be considered as main. See Main entry point (-main).

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node.

Command line: There is no corresponding command-line option. See “Command-Line
Information” on page 1-240.

Settings
 On

Polyspace verification stops if it does not find a main function in the source files.
 Off (default)

Polyspace continues verification even when a main function is not present in the
source files. If a main is not present, it generates a file __polyspace_main.c that
contains a main function.

 Verify whole application

1-239

Command-Line Information
Unlike the user interface, by default, a verification from the command line stops if it does
not find a main function in the source files. If you specify the option -main-generator,
Polyspace generates a main if it cannot find one in the source files.

See Also
Show global variable sharing and usage only (-shared-variables-mode)
| Verify module or library (-main-generator)

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

1 Option Descriptions

1-240

Show global variable sharing and usage only
(-shared-variables-mode)
Compute global variable sharing and usage without running full analysis

Description
This option affects a Code Prover analysis only.

Specify this option to run a less extensive analysis that computes the global variable
sharing and usage in your entire application. The analysis does not verify your code for
run-time errors. The analysis results also include coding standards violations if you enable
coding standards checking, and code metrics if you enable code metrics computation.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node.

Command line: Use the option -shared-variables-mode. See “Command-Line
Information” on page 1-242.

Why Use This Option
You can see global variable sharing and usage without running a full analysis on your
entire application that includes run-time error detection. Run-time error detection on an
entire application can take a long time.

Settings
 On

Polyspace computes global variable sharing and usage but does not verify your code
for run-time errors.

 Show global variable sharing and usage only (-shared-variables-mode)

1-241

 Off (default)
Polyspace runs a full analysis on your code, including run-time error detection.

Dependencies
• User interface (desktop products only): This option is enabled only if you select

Verify whole application.
• When you enable this option, you must also enable at least one of these options.

•
•
•
•
•
•

Tips
• After you analyze your complete application to see global variable sharing and usage,

run a component-by-component Code Prover analysis to detect run-time errors.
• In the desktop product, you can see all read and write operations on global variables

in the “Variable Access” (Polyspace Code Prover) pane.
• In this less extensive analysis mode, the analysis checks for most but not all coding

standards violations, and computes most but not all code metrics.

Command-Line Information
Parameter: -shared-variables-mode
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
shared-variables-mode -enable-concurrency-detection
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -shared-variables-mode -enable-concurrency-detection

1 Option Descriptions

1-242

See Also

Topics
“Specify Polyspace Analysis Options”

Introduced in R2019b

 Show global variable sharing and usage only (-shared-variables-mode)

1-243

Main entry point (-main)
Specify a Microsoft Visual C++ extensions of main

Description
This option affects a Code Prover analysis only.

Specify the function that you want to use as main. If the function does not exist, the
verification stops with an error message. Use this option to specify Microsoft Visual C++
extensions of main.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 1-245 for other options
that you must also enable.

Command line: Use the option -main. See “Command-Line Information” on page 1-245.

Settings
Default: _tmain

_tmain
Use _tmain as entry point to your code.

wmain
Use wmain as entry point to your code.

_tWinMain
Use _tWinMain as entry point to your code.

wWinMain
Use wWinMain as entry point to your code.

WinMain
Use WinMain as entry point to your code.

1 Option Descriptions

1-244

DllMain
Use DllMain as entry point to your code.

Dependencies
This option is enabled only if you:

• Set Source code language (-lang) to CPP.
• Select Verify whole application.

Command-Line Information
Parameter: -main
Value: _tmain | wmain | _tWinMain | wWinMain | WinMain | DllMain
Example (Code Prover): polyspace-code-prover -sources file_name -
compiler visual14.0 -main _tmain
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -compiler visual14.0 -main _tmain

See Also
Verify module or library (-main-generator) | Verify whole application

Topics
“Specify Polyspace Analysis Options”

 Main entry point (-main)

1-245

Functions to call (-main-generator-calls)
Specify functions that you want the generated main to call after the initialization
functions

Description
This option affects a Code Prover analysis only.

Specify functions that you want the generated main to call. The main calls these
functions after the ones you specify through the option Initialization functions
(-functions-called-before-main).

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 1-247 for other options
that you must also enable.

Command line: Use the option -main-generator-calls. See “Command-Line
Information” on page 1-248.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option along with the option Initialization functions (-functions-
called-before-main) to specify which functions the generated main must call. Unless
a function is called directly or indirectly from main, the software does not analyze the
function.

Settings
Default: unused

1 Option Descriptions

1-246

none
The generated main does not call any function.

unused
The generated main calls only those functions that are not called in the source code.
It does not call inlined functions.

all
The generated main calls all functions except inlined ones.

custom
The generated main calls functions that you specify.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int).
If the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Dependencies
This option is available only if you select Verify module or library (-main-
generator).

Tips
• Select unused when you use Code Prover Verification > Verify files

independently.
• If you want the generated main to call an inlined function, select custom and specify

the name of the function.
• To verify a multitasking application without a main, select none.
• The generated main can call the functions in arbitrary order. If you want to call your

functions in a specific order, manually write a main function to call them.

 Functions to call (-main-generator-calls)

1-247

• To specify instantiations of templates as arguments, run analysis once with the option
argument all. Search for the template name in the analysis log and use the template
name as it appears in the analysis log for the option argument.

For instance, to specify this template function instantiation as option argument:

template <class T>
T GetMax (T a, T b) {
 T result;
 result = (a>b)? a : b;
 return (result);
}
template int GetMax<int>(int, int); // explicit instantiation

Run an analysis with the option -main-generator-calls all. Search for getMax
in the analysis log. You see the function format:

T1 getMax<int>(T1, T1)

To call only this template instantiation, remove the space between the arguments and
use the option:

-main-generator-calls custom="T1 getMax<int>(T1,T1)"

Command-Line Information
Parameter: -main-generator-calls
Value: none | unused | all | custom=function1[,function2[,...]]
Default: unused
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -main-generator-calls all
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -main-generator-calls all

See Also
Class (-class-analyzer) | Functions to call within the specified
classes (-class-analyzer-calls) | Initialization functions (-
functions-called-before-main) | Verify module or library (-main-
generator)

1 Option Descriptions

1-248

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function” (Polyspace Code Prover)

 Functions to call (-main-generator-calls)

1-249

Variables to initialize (-main-generator-
writes-variables)
Specify global variables that you want the generated main to initialize

Description
This option affects a Code Prover analysis only.

Specify global variables that you want the generated main to initialize. Polyspace
considers these variables to have any value allowed by their type.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 1-251 for other options
that you must also enable.

Command line: Use the option -main-generator-writes-variables. See
“Command-Line Information” on page 1-251.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option to specify which global variables the generated main must initialize.

Settings
Default:

• C code — public
• C++ Code — uninit

1 Option Descriptions

1-250

uninit
C++ Only

The generated main only initializes global variables that you have not initialized
during declaration.

none
The generated main does not initialize global variables.

public
The generated main initializes all global variables except those declared with
keywords static and const.

all
The generated main initializes all global variables except those declared with
keyword const.

custom

The generated main only initializes global variables that you specify. Click to add
a field. Enter a global variable name.

Dependencies
You can use this option only if the following are true:

• Your code does not contain a main function.
• Verify module or library (-main-generator) is selected.

The option is disabled if you enable the option Ignore default initialization of
global variables (-no-def-init-glob). Global variables are considered as
uninitialized until you explicitly initialize them in the code.

Command-Line Information
Parameter: -main-generator-writes-variables
Value: uninit | none | public | all | custom=variable1[,variable2[,...]]
Default: (C) public | (C++) uninit

 Variables to initialize (-main-generator-writes-variables)

1-251

Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -main-generator-writes-variables all
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -main-generator-writes-variables all

See Also
Verify module or library (-main-generator)

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function” (Polyspace Code Prover)

1 Option Descriptions

1-252

Skip member initialization check (-no-
constructors-init-check)
Do not check if class constructor initializes class members

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must not check whether each class constructor initializes all class
members.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 1-254 for other options
that you must also enable.

Command line: Use the option -no-constructors-init-check. See “Command-Line
Information” on page 1-254.

Why Use This Option
Use this option to disable checks for initialization of class members in constructors.

Settings
 On

Polyspace does not check whether each class constructor initializes all class
members.

 Off (default)
Polyspace checks whether each class constructor initializes all class members. It uses
the functions check_NIV() and check_NIP() in the generated main to perform
these checks. It checks for initialization of:

 Skip member initialization check (-no-constructors-init-check)

1-253

• Integer types such as int, char and enum, both signed or unsigned.
• Floating-point types such as float and double.
• Pointers.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using theClass (-class-
analyzer) option.

Command-Line Information
Parameter: -no-constructors-init-check
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-
calls unused-public -no-constructors-init-check
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -class-analyzer custom=myClass1,myClass2 -
class-analyzer-calls unused-public -no-constructors-init-check

See Also
Class (-class-analyzer) | Verify module or library (-main-generator)

Topics
“Specify Polyspace Analysis Options”
“Verify C++ Classes” (Polyspace Code Prover)

1 Option Descriptions

1-254

Verify files independently (-unit-by-unit)
Verify each source file independently of other source files

Description
This option affects a Code Prover analysis only.

Specify that each source file must be verified independently of other source files. Each file
is verified individually, independent of other files in the module. Verification results can be
viewed for the entire project or for individual files.

After you open the verification result for one file, in the user interface of the Polyspace
desktop products, you can see a summary of results for all files on the Dashboard pane.
You can open the results for each file directly from this summary table.

Each result file (with name ps_results.pscp) is saved in a subfolder of the results
folder. The subfolder has the same name as the source file being analyzed.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 1-256 for other options
that you must also enable.

Command line: Use the option -unit-by-unit. See “Command-Line Information” on
page 1-257.

Why Use This Option
There are many reasons you might want to verify each source file independently of other
files.

For instance, if verification of a project takes very long, you can perform a file by file
verification to identify which file is slowing the verification.

 Verify files independently (-unit-by-unit)

1-255

Settings
 On

Polyspace creates a separate verification job for each source file.

 Off (default)
Polyspace creates a single verification job for all source files in a module.

Dependencies
This option is enabled only if you select Verify module or library (-main-
generator).

Tips
• If you perform a file by file verification, you cannot specify multitasking options.
• If your verification for the entire project takes very long, perform a file by file
verification. After the verification is complete for a file, you can view the results while
other files are still being verified.

• You can generate a report of the verification results for each file or for all the files
together.

To generate a single report for all the files:

1 Open the results for one file.
2 Select Reporting > Run Report. Before generating the report, select the option

Generate a single report including all unit results.
• When you perform a file-by-file verification, you can see many instances of unused

variables. Some of these variables might be used in other files but show as unused in a
file-by-file verification.

If you want to ignore these results, use a review scope (named set of filters) that filters
out unused variables. See “Filter and Group Results”.

1 Option Descriptions

1-256

Command-Line Information
Parameter: -unit-by-unit
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -unit-
by-unit
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -unit-by-unit

See Also
Common source files (-unit-by-unit-common-source)

Topics
“Specify Polyspace Analysis Options”

 Verify files independently (-unit-by-unit)

1-257

Common source files (-unit-by-unit-
common-source)
Specify files that you want to include with each source file during a file by file verification

Description
This option affects a Code Prover analysis only.

For a file by file verification, specify files that you want to include with each source file
verification. These files are compiled once, and then linked to each verification.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node. See “Dependencies” on page 1-259 for other options
that you must also enable.

Command line: Use the option -unit-by-unit-common-source. See “Command-Line
Information” on page 1-259.

Why Use This Option
There are many reasons you might want to verify each source file independently of other
files. For instance, if verification of a project takes very long, you can perform a file by file
verification to identify which file is slowing the verification.

If you perform a file by file verification, some of your files might be missing information
present in the other files. Place the missing information in a common file and use this
option to specify the file for verification. For instance, if multiple source files call the same
function, use this option to specify a file that contains the function definition or a function
stub. Otherwise, Polyspace uses its own stubs for functions that are called but not defined
in the source files. The assumptions behind the Polyspace stubs can be broader than what
you want, leading to orange checks.

1 Option Descriptions

1-258

Settings
No Default

Click to add a field. Enter the full path to a file. Otherwise, use the button to
navigate to the file location.

Dependencies
This option is enabled only if you select Verify files independently (-unit-by-
unit).

Command-Line Information
Parameter: -unit-by-unit-common-source
Value: file1[,file2[,...]]
No Default
Example (Code Prover): polyspace-code-prover -sources file_name -unit-
by-unit -unit-by-unit-common-source definitions.c
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -unit-by-unit -unit-by-unit-common-source definitions.c

See Also
Verify files independently (-unit-by-unit)

Topics
“Specify Polyspace Analysis Options”

 Common source files (-unit-by-unit-common-source)

1-259

Verify model generated code (-main-
generator)
Specify that a main function must be generated if it is not present in source files

Description
In Bug Finder, use this option only for code generated from Simulink models.

Specify that Polyspace must generate a main function if it does not find one in the source
files.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node.

Command line: Use the option -main-generator. See “Command-Line Information” on
page 1-261.

Settings
This option is always enabled for code generated from models.

Polyspace generates a main function for the analysis. The generated main contains cyclic
code that executes in a loop. The loop can run an unspecified number of times.

The main performs the following functions before the loop begins:

• Initializes variables specified by Parameters (-variables-written-before-
loop).

• Calls the functions specified by Initialization functions (-functions-
called-before-loop).

The main then performs the following functions in the loop:

1 Option Descriptions

1-260

• Calls the functions specified by Step functions (-functions-called-in-
loop).

• Writes to variables specified by Inputs (-variables-written-in-loop).

Finally, the main calls the functions specified by Termination functions (-
functions-called-after-loop).

Command-Line Information
Parameter: -main-generator
Default: On
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator ...
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator ...
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -main-generator ...
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator ...

See Also
Initialization functions (-functions-called-before-loop) | Inputs (-
variables-written-in-loop) | Parameters (-variables-written-before-
loop) | Step functions (-functions-called-in-loop) | Termination
functions (-functions-called-after-loop) | Verify model generated code
(-main-generator)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Verify model generated code (-main-generator)

1-261

Initialization functions (-functions-called-
before-loop)
Specify functions that the generated main must call before the cyclic code loop

Description
Use this option only for code generated from Simulink models.

Specify functions that the generated main must call before the cyclic code begins.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Code Prover Verification node.

Command line: Use the option -functions-called-before-loop. See “Command-
Line Information” on page 1-263.

Settings
No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::init(int). If the
function does not have a parameter, use an empty parenthesis, for instance,
myClass::init().

Tips
• If you specify a function for the option Termination functions (-functions-

called-after-loop), you cannot specify it for this option.

1 Option Descriptions

1-262

Command-Line Information
Parameter: -functions-called-before-loop
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator -functions-called-before-loop myfunc
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -functions-called-before-loop myfunc
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -main-generator -functions-called-before-loop myfunc
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -functions-called-before-loop myfunc

See Also
Step functions (-functions-called-in-loop) | Termination functions (-
functions-called-after-loop) | Verify model generated code (-main-
generator)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Initialization functions (-functions-called-before-loop)

1-263

Step functions (-functions-called-in-
loop)
Specify functions that the generated main must call in the cyclic code loop

Description
Use this option only for code generated from Simulink models.

Specify functions that the generated main must call in each cycle of the cyclic code.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Code Prover Verification node.

Command line: Use the option -functions-called-in-loop. See “Command-Line
Information” on page 1-265.

Settings
Default: none

none
The generated main does not call functions in the cyclic code.

all
The generated main calls all functions except inlined ones. If you specify certain
functions for the options Initialization functions or Termination functions, the
generated main does not call those functions in the cyclic code.

custom

The generated main calls functions that you specify. Click to add a field. Enter
function name.

1 Option Descriptions

1-264

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int).
If the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Tips
If you have specified a function for the option Initialization functions (-
functions-called-before-loop) or Termination functions (-functions-
called-after-loop), to call it inside the cyclic code, use custom and specify the
function name.

Command-Line Information
Parameter: -functions-called-in-loop
Value: none | all | custom=function1[,function2[,...]]
Default: none
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator -functions-called-in-loop all
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -functions-called-in-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -main-generator -functions-called-in-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -functions-called-in-loop all

See Also
Initialization functions (-functions-called-before-loop) | Termination
functions (-functions-called-after-loop) | Verify model generated code
(-main-generator)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Step functions (-functions-called-in-loop)

1-265

Termination functions (-functions-called-
after-loop)
Specify functions that the generated main must call after the cyclic code loop

Description
Use this option only for code generated from Simulink models.

Specify functions that the generated main must call after the cyclic code ends.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Code Prover Verification node.

Command line: Use the option -functions-called-after-loop. See “Command-
Line Information” on page 1-267.

Settings
No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int). If
the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Tips
• If you specify a function for the option Initialization functions (-

functions-called-before-loop), you cannot specify it for this option.

1 Option Descriptions

1-266

Command-Line Information
Parameter: -functions-called-after-loop
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator -functions-called-after-loop myfunc
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -functions-called-after-loop myfunc
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -main-generator -functions-called-after-loop myfunc
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -functions-called-after-loop myfunc

See Also
Initialization functions (-functions-called-before-loop) | Step
functions (-functions-called-in-loop) | Verify model generated code (-
main-generator)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Termination functions (-functions-called-after-loop)

1-267

Parameters (-variables-written-before-
loop)
Specify variables that the generated main must initialize before the cyclic code loop

Description
Use this option only for code generated from Simulink models.

Specify variables that the generated main must initialize before the cyclic code loop
begins. Before the loop begins, Polyspace considers these variables to have any value
allowed by their type.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Code Prover Verification node.

Command line: Use the option -variables-written-before-loop. See “Command-
Line Information” on page 1-269.

Settings
Default: none

none
The generated main does not initialize variables.

all
The generated main initializes all variables except those declared with keyword
const.

1 Option Descriptions

1-268

custom

The generated main only initializes variables that you specify. Click to add a field.
Enter variable name. For C++ class members, use the syntax
className::variableName.

Command-Line Information
Parameter: -variables-written-before-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: public
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator -variables-written-before-loop all
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -variables-written-before-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -main-generator -variables-written-before-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -variables-written-before-loop all

See Also
Inputs (-variables-written-in-loop) | Verify model generated code (-
main-generator)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Parameters (-variables-written-before-loop)

1-269

Inputs (-variables-written-in-loop)
Specify variables that the generated main must initialize in the cyclic code loop

Description
Use this option only for code generated from Simulink models.

Specify variables that the generated main must initialize at the beginning of every
iteration of the cyclic code loop. At the beginning of every loop iteration, Polyspace
considers these variables to have any value allowed by their type.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Code Prover Verification node.

Command line: Use the option -variables-written-in-loop. See “Command-Line
Information” on page 1-271.

Settings
Default: none

none
The generated main does not initialize variables.

all
The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click to add a field.
Enter variable name. For C++ class members, use the syntax
className::variableName.

1 Option Descriptions

1-270

Command-Line Information
Parameter: -variables-written-in-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: none
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator -variables-written-in-loop all
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator -variables-written-in-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -main-generator -variables-written-in-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -main-generator -variables-written-in-loop all

See Also
Parameters (-variables-written-before-loop) | Verify model generated
code (-main-generator)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Inputs (-variables-written-in-loop)

1-271

Verify module or library (-main-generator)
Generate a main function if source files are modules or libraries that do not contain a
main

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must generate a main function if it does not find one in the source
files.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Code Prover Verification node.

Command line: Use the option -main-generator. See “Command-Line Information” on
page 1-273.

For the analogous option for model generated code, see Verify model generated
code (-main-generator).

Why Use This Option
Use this option if you are verifying a module or library. A Code Prover analysis requires a
main function. When verifying a module or library, your code might not have a main.

When you use this option, Code Prover generates a main function if one does not exist. If
a main exists, the analysis uses the existing main.

Settings
 On (default)

Polyspace generates a main function if it does not find one in the source files. The
generated main:

1 Option Descriptions

1-272

1 Initializes variables specified by Variables to initialize (-main-
generator-writes-variables).

2 Before calling other functions, calls the functions specified by Initialization
functions (-functions-called-before-main).

3 In all possible orders, calls the functions specified by Functions to call (-
main-generator-calls).

4 (C++ only) Calls class methods specified by Class (-class-analyzer) and
Functions to call within the specified classes (-class-
analyzer-calls).

If you do not specify the function and variable options above, the generated main:

• Initializes all global variables except those declared with keywords const and
static.

• In all possible orders, calls all functions that are not called anywhere in the source
files. Polyspace considers that global variables can be written between two
consecutive function calls. Therefore, in each called function, global variables
initially have the full range of values allowed by their type.

 Off
Polyspace stops if a main function is not present in the source files.

Tips
• If a main function is present in your source files, the verification uses that main

function, irrespective of whether you enable or disable this option.

The option is relevant only if a main function is not present in your source files.
• If you specify multitasking options, the verification ignores your specifications for

main generation. Instead, the verification introduces an empty main function.

For more information on the multitasking options, see “Configuring Polyspace
Multitasking Analysis Manually”.

Command-Line Information
Parameter: -main-generator

 Verify module or library (-main-generator)

1-273

Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator
Example (Code Prove Server): polyspace-code-prover-server -sources
file_name -main-generator

See Also
Class (-class-analyzer) | Functions to call (-main-generator-calls) |
Functions to call within the specified classes (-class-analyzer-
calls) | Initialization functions (-functions-called-before-main) |
Variables to initialize (-main-generator-writes-variables) | Verify
whole application

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function” (Polyspace Code Prover)

1 Option Descriptions

1-274

Consider volatile qualifier on fields (-
consider-volatile-qualifier-on-fields)
Assume that volatile qualified structure fields can have all possible values at any point
in code

Description
This option affects a Code Prover analysis only.

Specify that the verification must take into account the volatile qualifier on fields of a
structure.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Verification Assumptions node.

Command line: Use the option -consider-volatile-qualifier-on-fields. See
“Command-Line Information” on page 1-278.

Why Use This Option
The volatile qualifier on a variable indicates that the variable value can change
between successive operations even if you do not explicitly change it in your code. For
instance, if var is a volatile variable, the consecutive operations res = var; res
=var; can result in two different values of var being read into res.

Use this option so that the verification emulates the volatile qualifier for structure
fields. If you select this option, the software assumes that a volatile structure field has
a full range of values at any point in the code. The range is determined only by the data
type of the structure field.

 Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

1-275

Settings
 On

The verification considers the volatile qualifier on fields of a structure.

In the following example, the verification considers that the field val1 can have all
values allowed for the int type at any point in the code.

struct myStruct {
 volatile int val1;
 int val2;
};

Even if you write a specific value to val1 and read the variable in the next operation,
the variable read results in any possible value.

struct myStruct myStructInstance;
myStructInstance.val1 = 1;
assert (myStructInstance.val1 == 1); // Assertion can fail

 Off (default)
The verification ignores the volatile qualifier on fields of a structure.

In the following example, the verification ignores the qualifier on field val1.

struct myStruct {
 volatile int val1;
 int val2;
};

If you write a specific value to val1 and read the variable in the next operation, the
variable read results in that specific value.

struct myStruct myStructInstance;
myStructInstance.val1 = 1;
assert (myStructInstance.val1 == 1); // Assertion passes

Tips
• If your volatile fields do not represent values read from hardware and you do not

expect their values to change between successive operations, disable this option. You

1 Option Descriptions

1-276

are using the volatile qualifier for some other reason and the verification does not
need to consider full range for the field values.

• If you enable this option, the number of red, gray, and green checks in your code can
decrease. The number of orange checks can increase.

In the following example, a red or green check changes to orange or a gray check goes
away when the option is used. Considering the volatile qualifier changes the check
color. These examples use the following structure definition:

struct myStruct {
 volatile int field1;
 int field2;
};

Color
Without
Option

Result Without Option Result With Option

Green void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 == 1);
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 ==1);
}

Red void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 != 1);
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 !=1);
}

Gray void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 if (structVal.field1 != 1)
 {
 /* Perform operation */
 }
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 if (structVal.field1 != 1)
 {
 /* Perform operation */
 }
}

• In C++ code, the option also applies to class members.

 Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

1-277

Command-Line Information
Parameter: -consider-volatile-qualifier-on-fields
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
consider-volatile-qualifier-on-fields
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -consider-volatile-qualifier-on-fields

See Also

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016b

1 Option Descriptions

1-278

Float rounding mode (-float-rounding-
mode)
Specify rounding modes to consider when determining the results of floating point
arithmetic

Description
This option affects a Code Prover analysis only.

Specify the rounding modes to consider when determining the results of floating-point
arithmetic.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Verification Assumptions node.

Command line: Use the option -float-rounding-mode. See “Command-Line
Information” on page 1-282.

Why Use This Option
The default verification uses the round-to-nearest mode.

Use the rounding mode all if your code contains routines such as fesetround to specify
a rounding mode other than round-to-nearest. Although the verification ignores the
fesetround specification, it considers all rounding modes including the rounding mode
that you specified. Alternatively, for targets that can use extended precision (for instance,
using the flag -mfpmath=387), use the rounding mode all. However, for your Polyspace
analysis results to agree with run-time behavior, you must prevent use of extended
precision through a flag such as -ffloat-store.

Otherwise, continue to use the default rounding mode to-nearest. Because all rounding
modes are considered when you specify all, you can have many orange Overflow checks
resulting from overapproximation.

 Float rounding mode (-float-rounding-mode)

1-279

http://www.cplusplus.com/reference/cfenv/fesetround/

Settings
Default: to-nearest

to-nearest
The verification assumes the round-to-nearest mode.

all
The verification assumes all rounding modes for each operation involving floating-
point variables. The following rounding modes are considered: round-to-nearest,
round-towards-zero, round-towards-positive-infinity, and round-towards-negative-
infinity.

Tips
• The Polyspace analysis uses floating-point arithmetic that conforms to the IEEE® 754

standard. For instance, the arithmetic uses floating point instructions present in the
SSE instruction set. The GNU C flag -mfpmath=sse enforces use of this instruction
set. If you use the GNU C compiler with this flag to compile your code, your Polyspace
analysis results agree with your run-time behavior.

However, if your code uses extended precision, for instance using the GNU C flag -
mfpmath=387, your Polyspace analysis results might not agree with your run-time
behavior in some corner cases. See some examples of these corner cases in
codeprover_limitations.pdf in polyspaceroot\polyspace\verifier
\code_prover_desktop. Here, polyspaceroot is the Polyspace installation folder,
for instance, C:\Program Files\Polyspace\R2019a.

To prevent use of extended precision, on targets without SSE support, you can use a
flag such as -ffloat-store. For your Polyspace analysis, use all for rounding mode
to account for double rounding.

• The Overflow check uses the rounding modes that you specify. For instance, the
following table shows the difference in the result of the check when you change your
rounding modes.

1 Option Descriptions

1-280

Rounding mode: to-nearest Rounding mode: all
If results of floating-point operations are
rounded to nearest values:

• In the first addition operation, eps1
is just large enough that the value
nearest to FLT_MAX + eps1 is
greater than FLT_MAX. The Overflow
check is red.

• In the second addition operation,
eps2 is just small enough that the
value nearest to FLT_MAX + eps2 is
FLT_MAX. The Overflow check is
green.

#include <float.h>
#define eps1 0x1p103
#define eps2 0x0.FFFFFFp103

float func(int ch) {
 float left_op = FLT_MAX;
 float right_op_1 = eps1, \
right_op_2 = eps2;
 switch(ch) {
 case 1:
 return (left_op +\
right_op_1);
 case 2:
 return (left_op +\
right_op_2);
 default:
 return 0;
 }
}

Besides to-nearest mode, the Overflow
check also considers other rounding
modes.

• In the first addition operation, in to-
nearest mode, the value nearest to
FLT_MAX + eps1 is greater than
FLT_MAX, so the addition overflows.
But if rounded towards negative
infinity, the result is FLT_MAX, so the
addition does not overflow.
Combining these two rounding
modes, the Overflow check is
orange.

• In the second addition operation, in
to-nearest mode, the value nearest to
FLT_MAX + eps2 is FLT_MAX, so
the addition does not overflow. But if
rounded towards positive infinity, the
result is greater than FLT_MAX, so
the addition overflows. Combining
these two rounding modes, the
Overflow check is orange.

#include <float.h>
#define eps1 0x1p103
#define eps2 0x0.FFFFFFp103

float func(int ch) {
 float left_op = FLT_MAX;
 float right_op_1 = eps1, \
 right_op_2 = eps2;
 switch(ch) {
 case 1:
 return (left_op +\
right_op_1);
 case 2:
 return (left_op +\
right_op_2);

 Float rounding mode (-float-rounding-mode)

1-281

Rounding mode: to-nearest Rounding mode: all
 default:
 return 0;
 }
}

If you set the rounding mode to all and obtain an orange Overflow check, to
determine how the overflow can occur, consider all rounding modes.

Command-Line Information
Parameter: -float-rounding-mode
Value: to-nearest | all
Default: to-nearest
Example (Code Prover): polyspace-code-prover -sources file_name -float-
rounding-mode all
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -float-rounding-mode all

See Also
Overflow

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016a

1 Option Descriptions

1-282

Respect types in fields (-respect-types-
in-fields)
Do not cast nonpointer fields of a structure to pointers

Description
This option affects a Code Prover analysis only.

Specify that structure fields not declared initially as pointers will not be cast to pointers
later.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Verification Assumptions node.

Command line: Use the option -respect-types-in-fields. See “Command-Line
Information” on page 1-284.

Why Use This Option
Use this option to identify and forbid casts from nonpointer structure fields to pointers.

Settings
 On

The verification assumes that structure fields not declared initially as pointers will not
be cast to pointers later.

 Respect types in fields (-respect-types-in-fields)

1-283

Code with option off Code with option on
struct {
 unsigned int x1;
 unsigned int x2;
} S;

void funct(void) {
 int var, *tmp;
 S.x1 = &var;
 tmp = (int*)S.x1;
 *tmp = 1;
 assert(var==1);
}

In this example, the fields of S are
declared as integers but S.x1 is cast to
a pointer. With the option turned off,
Polyspace allows the cast.

struct {
 unsigned int x1;
 unsigned int x2;
} S;

void funct(void) {
 int var, *tmp;
 S.x1 = &var;
 tmp = (int*)S.x1;
 *tmp = 1;
 assert(var==1);
}

In this example, the fields of S are
declared as integers but S.x1 is cast to
a pointer. With the option turned on,
Polyspace ignores the cast. Therefore, it
ignores the initialization of var through
the pointer (int*)S.x1 and produces
a red Non-initialized local variable
error when var is read.

 Off (default)
The verification assumes that structure fields can be cast to pointers even when they
are not declared as pointers.

Command-Line Information
Parameter: -respect-types-in-fields
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
respect-types-in-fields
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -respect-types-in-fields

See Also
Non-initialized local variable | Respect types in global variables (-
respect-types-in-globals)

1 Option Descriptions

1-284

Topics
“Specify Polyspace Analysis Options”

 Respect types in fields (-respect-types-in-fields)

1-285

Respect types in global variables (-respect-
types-in-globals)
Do not cast nonpointer global variables to pointers

Description
This option affects a Code Prover analysis only.

Specify that global variables not declared initially as pointers will not be cast to pointers
later.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Verification Assumptions node.

Command line: Use the option -respect-types-in-globals. See “Command-Line
Information” on page 1-287.

Why Use This Option
Use this option to identify and forbid casts from nonpointer global variables to pointers.

Settings
 On

The verification assumes that global variables not declared initially as pointers will
not be cast to pointers later.

 Off (default)
The verification assumes that global variables can be cast to pointers even when they
are not declared as pointers.

1 Option Descriptions

1-286

Tips
If you select this option, the number of checks in your code can change. You can use this
option and the change in results to identify cases where you cast nonpointer variables to
pointers.

For instance, in the following example, when you select the option, the results have one
less orange check and one more red check.

Code with option off Code with option on
int global;
void main(void) {
 int local;
 global = (int)&local;
 (int)global = 5;
 assert(local==5);
}

In this example, global is declared as an
int variable but cast to a pointer. With the
option turned off, Polyspace allows the cast.

int global;
void main(void) {
 int local;
 global = (int)&local;
 (int)global = 5;
 assert(local==5);
}

In this example, global is declared as an
int variable but cast to a pointer. With the
option turned on, Polyspace ignores the
cast. Therefore, it ignores the initialization
of local through the pointer
(int*)global and produces a red Non-
initialized local variable error when
local is read.

Command-Line Information
Parameter: -respect-types-in-globals
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
respect-types-in-globals
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -respect-types-in-globals

See Also
Non-initialized local variable | Respect types in fields (-respect-
types-in-fields)

 Respect types in global variables (-respect-types-in-globals)

1-287

Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-288

Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe)
Specify that environment pointers can be unsafe to dereference unless constrained
otherwise

Description
This option affects a Code Prover analysis only.

Specify that the verification must consider environment pointers as unsafe unless
otherwise constrained. Environment pointers are pointers that can be assigned values
outside your code.

Environment pointers include:

• Global or extern pointers.
• Pointers returned from stubbed functions.

A function is stubbed if your code does not contain the function definition or you
override a function definition by using the option Functions to stub (-
functions-to-stub).

• Pointer parameters of functions whose calls are generated by the software.

A function call is generated if you verify a module or library and the module or library
does not have an explicit call to the function. You can also force a function call to be
generated with the option Functions to call (-main-generator-calls).

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Verification Assumptions node.

Command line: Use the option -stubbed-pointers-are-unsafe. See “Command-
Line Information” on page 1-292.

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

1-289

Why Use This Option
Use this option so that the verification makes more conservative assumptions about
pointers from external sources.

If you specify this option, the verification considers that environment pointers can have a
NULL value. If you read an environment pointer without checking for NULL, the Illegally
dereferenced pointer check shows a potential error in orange. The message associated
with the orange check shows the pointer can be NULL.

Settings
 On

The verification considers that environment pointers can have a NULL value.

 Off (default)
The verification considers that environment pointers:

• Cannot have a NULL value.
• Points within allowed bounds.

Tips
• Enable this option during the integration phase. In this phase, you provide complete

code for verification. Even if an orange check originates from external sources, you
are likely to place protections against unsafe pointers from such sources. For instance,
if you obtain a pointer from an unknown source, you check the pointer for NULL value.

Disable this option during the unit testing phase. In this phase, you focus on errors
originating from your unit.

• If you are verifying code implementation of AUTOSAR runnables, Code Prover
assumes that pointer arguments to runnables and pointers returned from Rte_
functions are not NULL. You cannot use this option to change the assumption. See
“Run Polyspace on AUTOSAR Code with Conservative Assumptions” (Polyspace Code
Prover).

• If you enable this option, the number of orange checks in your code might increase.

1 Option Descriptions

1-290

Environment Pointers Safe Environment Pointers Unsafe
The Illegally dereferenced pointer
check is green. The verification assumes
that env_ptr is not NULL and any
dereference is within allowed bounds.
The verification assumes that the result
of the dereference is full range. For
instance, in this case, the return value
has the full range of type int.

 int func (int *env_ptr) {
 return *env_ptr;
 }

The Illegally dereferenced pointer
check is orange. The verification
assumes that env_ptr can be NULL.

 int func (int *env_ptr) {
 return *env_ptr;
 }

If you enable this option, the number of gray checks might decrease.

Environment Pointers Safe Environment Pointers Unsafe
The verification assumes that env_ptr
is not NULL. The if condition is always
true and the else block is unreachable.

 #include <stdlib.h>
 int func (int *env_ptr) {
 if(env_ptr!=NULL)
 return *env_ptr;
 else
 return 0;
 }

The verification assumes that env_ptr
can be NULL. The if condition is not
always true and the else block can be
reachable.

 #include <stdlib.h>
 int func (int *env_ptr) {
 if(env_ptr!=NULL)
 return *env_ptr;
 else
 return 0;
 }

• Instead of considering all environment pointers as safe or unsafe, you can individually
constrain some of the environment pointers. See the description of Initialize Pointer
in “External Constraints for Polyspace Analysis” (Polyspace Code Prover).

When you individually constrain a pointer, you first specify an Init Mode, and then
specify through the Initialize Pointer option whether the pointer is Null, Not Null,
or Maybe Null. Depending on the Init Mode, you can either override the global
specification for all environment pointers or not.

• If you set the Init Mode of the pointer to INIT or PERMANENT, your selection for
Initialize Pointer overrides your specification for this option. For instance, if you
specify Not NULL for an environment pointer ptr, the verification assumes that

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

1-291

ptr is not NULL even if you specify that environment pointers must be considered
unsafe.

• If you set the Init Mode to MAIN GENERATOR, the verification uses your
specification for this option.

For pointers returned from stubbed functions, the option MAIN GENERATOR is not
available. If you override the global specification for such a pointer through the
Initialize Pointer option in constraints, you cannot toggle back to the global
specification without changing the Initialize Pointer option too.

• If you disable this option, the verification considers that dereferences at all pointer
depths are valid.

For instance, all the dereferences are considered valid in this code:

int*** stub(void);

void func2() {
 int ***ptr = stub();
 int **ptr2 = *ptr;
 int *ptr3 = *ptr2;
}

Command-Line Information
Parameter: -stubbed-pointers-are-unsafe
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
stubbed-pointers-are-unsafe
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -stubbed-pointers-are-unsafe

See Also
Constraint setup (-data-range-specifications)

Topics
“Specify Polyspace Analysis Options”
“Specify External Constraints”
“External Constraints for Polyspace Analysis”

1 Option Descriptions

1-292

Introduced in R2016b

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

1-293

Allow negative operand for left shifts (-
allow-negative-operand-in-shift)
Allow left shift operations on a negative number

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow left shift operations on a negative number.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node.

Command line: Use the option -allow-negative-operand-in-shift. See
“Command-Line Information” on page 1-295.

Why Use This Option
According to the C99 standard (sec 6.5.7), the result of a left shift operation on a negative
number is undefined. Following the standard, the verification produces a red check on left
shifts of negative numbers.

If your compiler has a well-defined behavior for left shifts of negative numbers, set this
option. Note that allowing left shifts of negative numbers can reduce the cross-compiler
portability of your code.

Settings
 On

The verification allows shift operations on a negative number, for instance, -2 << 2.

1 Option Descriptions

1-294

 Off (default)
If a shift operation is performed on a negative number, the verification generates an
error.

Command-Line Information
Parameter: -allow-negative-operand-in-shift
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -allow-
negative-operand-in-shift
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -allow-negative-operand-in-shift

See Also
Invalid shift operations

Topics
“Specify Polyspace Analysis Options”

 Allow negative operand for left shifts (-allow-negative-operand-in-shift)

1-295

Consider non finite floats (-allow-non-
finite-floats)
Enable an analysis mode that incorporates infinities and NaNs

Description
Enable an analysis mode that incorporates infinities and NaNs for floating point
operations.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node.

Command line: Use the option -allow-non-finite-floats. See “Command-Line
Information” on page 1-299.

Why Use This Option
Code Prover

By default, the analysis does not incorporate infinities and NaNs. For instance, the
analysis terminates the execution thread where a division by zero occurs and does not
consider that the result could be infinite.

If you use functions such as isinf or isnan and account for infinities and NaNs in your
code, set this option. When you set this option and a division by zero occurs for instance,
the execution thread continues with infinity as the result of the division.

Set this option alone if you are sure that you have accounted for infinities and NaNs in
your code. Using the option alone effectively disables many numerical checks on floating
point operations. If you have generally accounted for infinities and NaNs, but you are not
sure that you have considered all situations, set these additional options:

• Infinities (-check-infinite): Use warn-first.

1 Option Descriptions

1-296

• NaNs (-check-nan): Use warn-first.

Bug Finder

If the analysis flags comparisons using isinf or isnan as dead code, use this option. By
default, a Bug Finder analysis does not incorporate infinities and NaNs.

Settings
 On

The analysis allows infinities and NaNs. For instance, in this mode:

• The analysis assumes that floating-point operations can produce results such as
infinities and NaNs.

By using options Infinities (-check-infinite) and NaNs (-check-nan),
you can choose to highlight operations that produce nonfinite results and stop the
execution threads where the nonfinite results occur. These options are not
available for a Bug Finder analysis.

• The analysis assumes that floating-point variables with unknown values can have
any value allowed by their type, including infinite or NaN. Floating-point variables
with unknown values include volatile variables and return values of stubbed
functions.

 Off (default)
The analysis does not allow infinities and NaNs. For instance, in this mode:

• The Code Prover analysis produces a red check on a floating-point operation that
produces an infinity or a NaN as the only possible result on all execution paths.
The verification produces an orange check on a floating-point operation that can
potentially produce an infinity or NaN.

• The Code Prover analysis assumes that floating-point variables with unknown
values are full-range but finite.

• The Bug Finder analysis shows comparisons with infinity using isinf as dead
code.

 Consider non finite floats (-allow-non-finite-floats)

1-297

Tips
• The IEEE 754 Standard allows special quantities such as infinities and NaN so that you

can handle certain numerical exceptions without aborting the code. Some
implementations of the C standard support infinities and NaN.

• If your compiler supports infinities and NaNs and you account for them explicitly in
your code, use this option so that the verification also allows them.

For instance, if a division results in infinity, in your code, you specify an alternative
action. Therefore, you do not want the verification to highlight division operations
that result in infinity.

• If your compiler supports infinities and NaNs but you are not sure if you account for
them explicitly in your code, use this option so that the verification incorporates
infinities and NaNs. Use the options -check-nan and -check-infinite with
argument warn so that the verification highlights operations that result in infinities
and NaNs, but does not stop the execution thread. These options are not available
for a Bug Finder analysis.

• If you run a Code Prover analysis and use this option, checkers for overflow, division
by zero and other numerical run-time errors are disabled. See “Numerical Checks”
(Polyspace Code Prover).

If you run a Bug Finder analysis and use this option:

• The checkers for overflow and division by zero are disabled. See “Numerical
Defects”.

• The checker Floating point comparison with equality operators can
show false positives.

• If you select this option, the number and type of Code Prover checks in your code can
change.

For instance, in the following example, when you select the option, the results have
one less red check and three more green checks.

1 Option Descriptions

1-298

Infinities and NaNs Not Allowed Infinities and NaNs Allowed
Code Prover produces a Division by
zero error and stops verification.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

If you select this option, Code Prover
does not check for a Division by zero
error.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

The analysis assumes that dividing by
zero results in:

• Value of x equal to Inf
• Value of y equal to 0.0
• Value of z equal to NaN

In your analysis results in the Polyspace
user interface, if you place your cursor
on y and z, you can see the nonfinite
values Inf and NaN respectively in the
tooltip.

• You cannot run the Automatic Orange Tester in Code Prover if you incorporate non-
finites in your analysis.

Command-Line Information
Parameter: -allow-non-finite-floats
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -allow-
non-finite-floats
Example (Code Prover): polyspace-code-prover -sources file_name -allow-
non-finite-floats
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -allow-non-finite-floats
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -allow-non-finite-floats

 Consider non finite floats (-allow-non-finite-floats)

1-299

See Also
“Numerical Defects” | “Numerical Checks” (Polyspace Code Prover) | Infinities (-
check-infinite) | NaNs (-check-nan)

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016a

1 Option Descriptions

1-300

Infinities (-check-infinite)
Specify how to handle floating-point operations that result in infinity

Description
This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in infinities.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node. See “Dependencies” on page 1-303 for other options you must
also enable.

Command line: Use the option -check-infinite. See “Command-Line Information” on
page 1-303.

Why Use This Option
Use this option to enable detection of floating-point operations that result in infinities.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does
not flag these operations. Use this option to detect these operations while still
incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Overflow check.

 Infinities (-check-infinite)

1-301

double func(void) {
 double x=1.0/0.0;
 return x;
}

warn-first
The verification produces a check on the operation. The check determines if the result
of the operation is infinite when the operands themselves are not infinite. The
verification does not terminate the execution thread that produces infinity.

If the verification detects an operation that produces infinity as the only possible
result on all execution paths and the operands themselves are never infinite, the
check is red. If the operation can potentially result in infinity, the check is orange.

For instance, in the following code, there is a nonblocking Overflow check for infinity.

double func(void) {
 double x=1.0/0.0;
 return x;
}

Even though the Overflow check on the / operation is red, the verification continues.
For instance, a green Non-initialized local variable check appears on x in the
return statement.

forbid
The verification produces a check on the operation and terminates the execution
thread that produces infinity.

If the check is red, the verification does not continue for the remaining code in the
same scope as the check. If the check is orange, the verification continues but
removes from consideration the variable values that produced infinity.

For instance, in the following code, there is a blocking Overflow check for infinity.

double func(void) {
 double x=1.0/0.0;
 return x;
}

The verification stops because the Overflow check on the / operation is red. For
instance, a Non-initialized local variable check does not appear on x in the return
statement.

1 Option Descriptions

1-302

Dependencies
To use this option, you must enable the verification mode that incorporates infinities and
NaNs. See Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-infinite
Value: allow | warn-first | forbid
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -check-
infinite forbid
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -check-infinite forbid

See Also
Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | NaNs (-check-
nan)

Polyspace Results
Overflow

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016a

 Infinities (-check-infinite)

1-303

NaNs (-check-nan)
Specify how to handle floating-point operations that result in NaN

Description
This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in NaN.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node. See “Dependencies” on page 1-306 for other options you must
also enable.

Command line: Use the option -check-nan. See “Command-Line Information” on page
1-306.

Why Use This Option
Use this option to enable detection of floating-point operations that result in NaN-s.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does
not flag these operations. Use this option to detect these operations while still
incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Invalid operation on floats check.

1 Option Descriptions

1-304

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

warn-first
The verification produces a check on the operation. The check determines if the result
of the operation is NaN when the operands themselves are not NaN. For instance, the
check flags the operation val1 + val2 only if the result can be NaN when both
val1 and val2 are not NaN. The verification does not terminate the execution thread
that produces NaN.

If the verification detects an operation that produces NaN as the only possible result
on all execution paths and the operands themselves are never NaN, the check is red.
If the operation can potentially result in NaN, the check is orange.

For instance, in the following code, there is a nonblocking Invalid operation on
floats check for NaN.

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

Even though the Invalid operation on floats check on the - operation is red, the
verification continues. For instance, a green Non-initialized local variable check
appears on y in the return statement.

forbid
The verification produces a check on the operation and terminates the execution
thread that produces NaN.

If the check is red, the verification does not continue for the remaining code in the
same scope as the check. If the check is orange, the verification continues but
removes from consideration the variable values that produced a NaN.

For instance, in the following code, there is a blocking Invalid operation on floats
check for NaN.

double func(void) {
 double x=1.0/0.0;

 NaNs (-check-nan)

1-305

 double y=x-x;
 return y;
}

The verification stops because the Invalid operation on floats check on the -
operation is red. For instance, a Non-initialized local variable check does not
appear on y in the return statement.

The Invalid operation on floats check for NaN also appears on the / operation and
is green.

Dependencies
To use this option, you must enable the verification mode that incorporates infinities and
NaNs. See Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-nan
Value: allow | warn-first | forbid
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -check-
nan forbid
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -check-nan forbid

See Also
Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | Infinities (-
check-infinite)

Polyspace Results
Invalid operation on floats

Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-306

Introduced in R2016a

 NaNs (-check-nan)

1-307

Enable pointer arithmetic across fields (-
allow-ptr-arith-on-struct)
Allow arithmetic on pointer to a structure field so that it points to another field

Description
This option affects a Code Prover analysis only.

Specify that a pointer assigned to a structure field can point outside its bounds as long as
it points within the structure.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node. See “Dependency” on page 1-309 for other options you must
also enable.

Command line: Use the option -allow-ptr-arith-on-struct. See “Command-Line
Information” on page 1-310.

Why Use This Option
Use this option to relax the check for illegally dereferenced pointers. Once you assign a
pointer to a structure field, you can perform pointer arithmetic and use the result to
access another structure field.

Settings
 On

A pointer assigned to a structure field can point outside the bounds imposed by the
field as long as it points within the structure. For instance, in the following code,
unless you use this option, the verification will produce a red Illegally
dereferenced pointer check:

1 Option Descriptions

1-308

void main(void) {
struct S {char a; char b; int c;} x;
char *ptr = &x.b;
ptr ++;
*ptr = 1; // Red on the dereference, because ptr points outside x.b
}

 Off (default)
A pointer assigned to a structure field can point only within the bounds imposed by
the field.

Tips
• The verification does not allow a pointer with negative offset values. This behavior

occurs irrespective of whether you choose the option Enable pointer arithmetic
across fields.

• Using this option can slightly increase the number of orange checks. The option
relaxes the constraint that a pointer to a structure field cannot point to other fields of
the structure. In exchange for relaxing this constraint, the verification loses precision
on the boundary of fields within a structure and treats the structure as a whole.
Pointer dereferences that were previously green can now turn orange.

Use this option if you follow a policy of reviewing red checks only and you need to
work around red checks from pointer arithmetic within a structure.

• Before using this option, consider the costs of using pointer arithmetic across different
fields of a structure.

Unlike an array, members of a structure can have different data types. For efficient
storage, structures use padding to accommodate this difference. When you increment
a pointer pointing to a structure member, you might not point to the next member.
When you dereference this pointer, you cannot rely on what you are reading or writing
to.

Dependency
This option is available only if you set Source code language (-lang) to C.

 Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)

1-309

Command-Line Information
Parameter: -allow-ptr-arith-on-struct
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -allow-
ptr-arith-on-struct
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -allow-ptr-arith-on-struct

See Also
Allow incomplete or partial allocation of structures (-size-in-
bytes) | Illegally dereferenced pointer

Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-310

Detect stack pointer dereference outside
scope (-detect-pointer-escape)
Find cases where a function returns a pointer to one of its local variables

Description
This option affects a Code Prover analysis only.

Specify that the verification must detect cases where you access a variable outside its
scope via pointers. Such an access can happen, for example, when a function returns a
pointer to a local variable and you dereference the pointer outside the function. The
dereference causes undefined behavior because the local variable that the pointer points
to does not live outside the function.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node.

Command line: Use the option -detect-pointer-escape. See “Command-Line
Information” on page 1-313.

Why Use This Option
Use this option to enable detection of pointer escape.

Settings
 On

The Illegally dereferenced pointer check performs an additional task, besides its
usual specifications. When you dereference a pointer, the check also determines if you
are accessing a variable outside its scope through the pointer. The check is:

 Detect stack pointer dereference outside scope (-detect-pointer-escape)

1-311

• Red, if all the variables that the pointer points to are accessed outside their scope.

For instance, you dereference a pointer ptr in a function func that is called twice
in your code. In both calls, when you perform the dereference *ptr, ptr is
pointing to variables outside their scope. Therefore, the Illegally dereferenced
pointer check is red.

• Orange, if only some of the variables that the pointer points to are accessed
outside their scope.

• Green, if none of the variables that the pointer points to are accessed outside their
scope, and other requirements of the check are also satisfied.

In the following code, if you enable this option, Polyspace Code Prover produces a red
Illegally dereferenced pointer check on *ptr. Otherwise, the Illegally
dereferenced pointer check on *ptr is green.

void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

The Result Details pane displays a message indicating that ret is accessed outside
its scope.

1 Option Descriptions

1-312

 Off (default)
When you dereference a pointer, the Illegally dereferenced pointer check does not
check for whether you are accessing a variable outside its scope. The check is green
even if the pointer dereference is outside the variable scope, as long as it satisfies
these requirements:

• The pointer is not NULL.
• The pointer points within the memory buffer.

Tips
The detection of stack pointer deference outside scope does not apply to certain types of
pointers. For specific limitations, see “Limitations of Polyspace Verification” (Polyspace
Code Prover).

Command-Line Information
Parameter: -detect-pointer-escape
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
detect-pointer-escape
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -detect-pointer-escape

See Also
Illegally dereferenced pointer

Topics
“Specify Polyspace Analysis Options”

Introduced in R2015a

 Detect stack pointer dereference outside scope (-detect-pointer-escape)

1-313

Disable checks for non-initialization (-
disable-initialization-checks)
Disable checks for non-initialized variables and pointers

Description
This option affects a Code Prover analysis only.

Specify that Polyspace Code Prover must not check for non-initialization in your code.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node.

Command line: Use the option -disable-initialization-checks. See “Command-
Line Information” on page 1-316.

Why Use This Option
Use this option if you do not want to detect instances of non-initialized variables.

Settings
 On

Polyspace Code Prover does not perform the following checks:

• Non-initialized local variable: Local variable is not initialized before
being read.

• Non-initialized variable: Variable other than local variable is not initialized
before being read.

• Non-initialized pointer: Pointer is not initialized before being read.

1 Option Descriptions

1-314

• Return value not initialized: C function does not return value when
expected.

Polyspace assumes that, at declaration:

• Variables have full-range of values allowed by their type.
• Pointers can be NULL-valued or point to a memory block at an unknown offset.

 Off (default)
Polyspace Code Prover checks for non-initialization in your code. The software
displays red checks if, for instance, a variable is not initialized and orange checks if a
variable is initialized only on some execution paths.

Tips
• If you select this option, the software does not report most violations of MISRA C:2004

rule 9.1, and MISRA C:2012 Rule 9.1.
• If you select this option, the number and type of orange checks in your code can

change.

For instance, the following table shows an additional orange check with the option
enabled.

 Disable checks for non-initialization (-disable-initialization-checks)

1-315

Checks for Non-initialization
Enabled

Checks for Non-initialization
Disabled

void func(int flag) {
 int var1,var2;
 if(flag==0) {
 var1=var2;
 }
 else {
 var1=0;
 }
 var2=var1 + 1;
}

In this example, the software produces:

• A red Non-initialized local
variable check on var2 in the if
branch. The verification continues as
if only the else branch of the if
statement exists.

• A green Non-initialized local
variable check on var1 in the last
statement. var1 has the assigned
value 0.

• A green Overflow check on the +
operation.

void func(int flag) {
 int var1,var2;
 if(flag==0) {
 var1=var2;
 }
 else {
 var1=0;
 }
 var2=var1 + 1;
}

In this example, the software:

• Does not produce Non-initialized
local variable checks. At
initialization, the software assumes
that var2 has full range of int
values. Following the if statement,
because the software considers both
if branches, it assumes that var1
also has full range of int values.

• Produces an orange Overflow check
on the + operation. For instance, if
var1 has the maximum int value,
adding 1 to it can cause an overflow.

Command-Line Information
Parameter: -disable-initialization-checks
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -
disable-initialization-checks
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -disable-initialization-checks

1 Option Descriptions

1-316

See Also

Topics
“Specify Polyspace Analysis Options”

 Disable checks for non-initialization (-disable-initialization-checks)

1-317

Permissive function pointer calls (-
permissive-function-pointer)
Allow type mismatch between function pointers and the functions they point to

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow function pointer calls where the type of the
function pointer does not match the type of the function.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node. See “Dependency” on page 1-321 for other options you must
also enable.

Command line: Use the option -permissive-function-pointer. See “Command-
Line Information” on page 1-321.

Why Use This Option
By default, Code Prover does not recognize calls through function pointers when a type
mismatch occurs. Fix the type mismatch whenever possible.

Use this option if:

• You cannot fix the type mismatch, and
• The analysis does not cover a significant portion of your code because calls via

function pointers are not recognized.

1 Option Descriptions

1-318

Settings
 On

The verification must allow function pointer calls where the type of the function
pointer does not match the type of the function. For instance, a function declared as
int f(int*) can be called by a function pointer declared as int (*fptr)
(void*).

Only type mismatches between pointer types are allowed. Type mismatches between
nonpointer types cause compilation errors. For instance, a function declared as int
f(int) cannot be called by a function pointer declared as int (*fptr)(double).

 Off (default)
The verification must require that the argument and return types of a function pointer
and the function it calls are identical.

Type mismatches are detected with the check Correctness condition.

Tips
• With sources that use function pointers extensively, enabling this option can cause loss

in performance. This loss occurs because the verification has to consider more
execution paths.

• Using this option can increase the number of orange checks. Some of these orange
checks can reveal a real issue with the code.

Consider these examples where a type mismatch occurs between the function pointer
type and the function that it points to:

• In this example, the function pointer obj_fptr has an argument that is a pointer
to a three-element array. However, it points to a function whose corresponding
argument is a pointer to a four-element array. In the body of foo, four array
elements are read and incremented. The fourth element does not exist and the ++
operation reads a meaningless value.

 Permissive function pointer calls (-permissive-function-pointer)

1-319

typedef int array_three_elements[3];
typedef void (*fptr)(array_three_elements*);

typedef int array_four_elements[4];
void foo(array_four_elements*);

void main() {
 array_three_elements arr[3] = {0,0,0};
 array_three_elements *ptr;
 fptr obj_fptr;

 ptr = &arr;
 obj_fptr = &foo;

 //Call via function pointer
 obj_fptr(&ptr);
}

void foo(array_four_elements* x) {
 int i = 0;
 int *current_pos;

 for(i = 0; i< 4; i++) {
 current_pos = (*x) + i;
 (*current_pos)++;
 }
}

Without this option, an orange Correctness condition check appears on the
call obj_fptr(&ptr) and the function foo is not verified. If you use this option,
the body of foo contains several orange checks. Review the checks carefully and
make sure that the type mismatch does not cause issues.

• In this example, the function pointer has an argument that is a pointer to a
structure with three float members. However, the corresponding function
argument is a pointer to an unrelated structure with one array member. In the
function body, the strlen function is used assuming the array member. Instead the
strlen call reads the float members and can read meaningless values, for
instance, values stored in the structure padding.

1 Option Descriptions

1-320

#include <string.h>
struct point {
 float x;
 float y;
 float z;
};
struct message {
 char msg[10] ;
};
void foo(struct message*);

void main() {
 struct point pt = {3.14, 2048.0, -1.0} ;
 void (*obj_fptr)(struct point *) ;

 obj_fptr = &foo;

 //Call via function pointer
 obj_fptr(&pt);
}

void foo(struct message* x) {
 int y = strlen(x->msg) ;
}

Without this option, an orange Correctness condition check appears on the
call obj_fptr(&pt) and the function foo is not verified. If you use this option, the
function contains an orange check on the strlen call. Review the check carefully
and make sure that the type mismatch does not cause issues.

Dependency
This option is available only if you set Source code language (-lang) to C.

Command-Line Information
Parameter: -permissive-function-pointer
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -lang c
-permissive-function-pointer

 Permissive function pointer calls (-permissive-function-pointer)

1-321

Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -lang c -permissive-function-pointer

See Also
Correctness condition

Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-322

Overflow mode for signed integer (-signed-
integer-overflows)
Specify whether result of overflow is wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace flags signed integer overflows and whether the analysis wraps
the result of an overflow or restricts it to its extremum value.

Set Option
User interface (desktop products only): In the Configuration pane, the option is on the
Check Behavior node under Code Prover Verification.

Command line: Use the option -signed-integer-overflows. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option
Use this option to specify whether to check for signed integer overflows and to specify the
assumptions the analysis makes following an overflow.

Settings
Default: forbid

forbid
Polyspace flags signed integer overflows. If the Overflow check on an operation is:

• Red, Polyspace does not analyze the remaining code in the current scope.
• Orange, Polyspace analyzes the remaining code in the current scope. Polyspace

considers that:

 Overflow mode for signed integer (-signed-integer-overflows)

1-323

• After a positive Overflow, the result of the operation has an upper bound. This
upper bound is the maximum value allowed by the type of the result.

• After a negative Overflow, the result of the operation has a lower bound. This
lower bound is the minimum value allowed by the type of the result.

This behavior conforms to the ANSI C (ISO C++) standard.

In the following code, j has values in the range [1..231-1] before the orange
overflow. Polyspace considers that j has even values in the range
[2 .. 2147483646] after the overflow. Polyspace does not analyze the printf()
statement after the red overflow.

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // Result of * operation overflows
 i = i * 2;
 // Remaing code in current scope not analyzed
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [2 .. 2147483646]
 printf("%d", j);
 }
}

allow
Polyspace does not flag signed integer overflows. If an operation results in an
overflow, Polyspace analyzes the remaining code but wraps the result of the overflow.

1 Option Descriptions

1-324

In this code, the analysis does not flag any overflow in the code. However, the range
of j wraps around to even values in the range [-231..2] or [2..231-2] and the
value of i wraps around to -231.

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // i = 230
 i = i * 2;
 // i = -231
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 j = j * 2;
 // Range of j: even values in [-231..2] or [2..231-2]
 printf("%d", j);
 }
}

warn-with-wrap-around
Polyspace flags signed integer overflows. If an operation results in an overflow,
Polyspace analyzes the remaining code but wraps the result of the overflow.

In the following code, j has values in the range [1..231-1] before the orange
overflow. Polyspace considers that j has even values in the range [-231..2] or
[2..231-2] after the overflow.

Similarly, i has value 230 before the red overflow and value -231 after it .

 Overflow mode for signed integer (-signed-integer-overflows)

1-325

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // i = 230
 // Result of * operation overflows
 i = i * 2;
 // i = -231
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [-231..2] or [2..231-2]
 printf("%d", j);
 }
}

Tips
• To check for overflows on conversions from unsigned to signed integers of the same

size, set Overflow mode for unsigned integer to forbid or warn-with-wrap-
around. If you allow unsigned integer overflows, Polyspace does not flag overflows on
conversions and wraps the result of an overflow, even if you check for signed integer
overflows.

• In Polyspace Code Prover, overflowing signed constants are wrapped around. This
behavior cannot be changed by using the options. If you want to detect overflows with
signed constants, use the Polyspace Bug Finder checker Integer constant
overflow.

1 Option Descriptions

1-326

Command-Line Information
Parameter: -signed-integer-overflows
Value: forbid | allow | warn-with-wrap-around
Default: forbid
Example (Code Prover): polyspace-code-prover -sources file_name -
signed-integer-overflows allow
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -signed-integer-overflows allow

See Also
Overflow | Overflow mode for unsigned integer (-unsigned-integer-
overflows)

Topics
“Specify Polyspace Analysis Options”

Introduced in R2018b

 Overflow mode for signed integer (-signed-integer-overflows)

1-327

Overflow mode for unsigned integer (-
unsigned-integer-overflows)
Specify whether result of overflow is wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace flags unsigned integer overflows and whether the analysis
wraps the result of an overflow or restricts it to its extremum value.

Set Option
User interface (desktop products only): In the Configuration pane, the option is on the
Check Behavior node under Code Prover Verification.

Command line: Use the option -unsigned-integer-overflows. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option
Use this option to specify whether to check for unsigned integer overflows and to specify
the assumptions the analysis makes following an overflow.

Settings
Default: allow

forbid
Polyspace flags unsigned integer overflows. If the Overflow check on an operation is:

• Red, Polyspace does not analyze the remaining code in the current scope.
• Orange, Polyspace analyzes the remaining code in the current scope. Polyspace

considers that:

1 Option Descriptions

1-328

• After a positive Overflow, the result of the operation has an upper bound. This
upper bound is the maximum value allowed by the type of the result.

• After a negative Overflow, the result of the operation has a lower bound. This
lower bound is the minimum value allowed by the type of the result.

In the following code, j has values in the range [1..232-1] before the orange
overflow. Polyspace considers that j has even values in the range
[2 .. 4294967294] after the overflow. Polyspace does not analyze the printf()
statement after the red overflow.

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // Result of * operation overflows
 i = i * 2;
 // Remaing code in current scope not analyzed
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [2 .. 4294967294]
 printf("%u", j);
 }
}

allow
Polyspace does not flag unsigned integer overflows. If an operation results in an
overflow, Polyspace analyzes the remaining code but wraps the result of the overflow.
For instance, MAX_INT + 1 wraps to MIN_INT. This behavior conforms to the ANSI C
(ISO C++) standard.

 Overflow mode for unsigned integer (-unsigned-integer-overflows)

1-329

In this code, the analysis does not flag any overflow in the code. However, the range
of j wraps around to even values in the range [0..232-2]] and the value of i wraps
around to 0.

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // i = 231
 i = i * 2;
 // i = 0
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 j = j * 2;
 // Range of j: even values in [0 .. 4294967294]
 printf("%u", j);
 }
}

warn-with-wrap-around
Polyspace flags unsigned integer overflows. If an operation results in an overflow,
Polyspace analyzes the remaining code but wraps the result of the overflow. For
instance, MAX_INT + 1 wraps to MIN_INT.

In the following code, j has values in the range [1..232-1] before the orange
overflow. Polyspace considers that j has even values in the range [0 ..
4294967294] after the overflow.

Similarly, i has value 231 before the red overflow and value 0 after it.

1 Option Descriptions

1-330

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // i = 231
 i = i * 2;
 // i = 0
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 j = j * 2;
 // Range of j: even values in [0 .. 4294967294]
 printf("%u", j);
 }
}

Tips
• To check for overflows on conversions from unsigned to signed integers of the same

size, set Overflow mode for unsigned integer to forbid or warn-with-wrap-
around. If you allow unsigned integer overflows, Polyspace does not flag overflows on
conversions and wraps the result of an overflow, even if you check for signed integer
overflows.

• In Polyspace Code Prover, overflowing unsigned constants are wrapped around. This
behavior cannot be changed by using the options. If you want to detect overflows with
unsigned constants, use the Polyspace Bug Finder checker Unsigned integer
constant overflow.

Command-Line Information
Parameter: -unsigned-integer-overflows

 Overflow mode for unsigned integer (-unsigned-integer-overflows)

1-331

Value: forbid | allow | warn-with-wrap-around
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -
unsigned-integer-overflows allow
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -unsigned-integer-overflows allow

See Also
Overflow | Overflow mode for signed integer (-signed-integer-
overflows)

Topics
“Specify Polyspace Analysis Options”

Introduced in R2018b

1 Option Descriptions

1-332

Allow incomplete or partial allocation of
structures (-size-in-bytes)
Allow a pointer with insufficient memory buffer to point to a structure

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow dereferencing a pointer that points to a structure
but has a sufficient buffer for only some of the structure’s fields.

This type of pointer results when a pointer to a smaller structure is cast to a pointer to a
larger structure. The pointer resulting from the cast has sufficient buffer for only some
fields of the larger structure.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node.

Command line: Use the option -size-in-bytes. See “Command-Line Information” on
page 1-335.

Why Use This Option
Use this option to relax the check for illegally dereferenced pointers. You can point to a
structure even when the buffer allowed for the pointer is not sufficient for all the
structure fields.

 Allow incomplete or partial allocation of structures (-size-in-bytes)

1-333

Settings
 On

When a pointer with insufficient buffer is dereferenced,Polyspace does not produce an
Illegally dereferenced pointer error, as long as the dereference occurs within
allowed buffer.

For instance, in the following code, the pointer p has sufficient buffer for the first two
fields of the structure BIG. Therefore, with the option on, Polyspace considers that
the first two dereferences are valid. The third dereference takes p outside its allowed
buffer. Therefore, Polyspace produces an Illegally dereferenced pointer error on
the third dereference.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

void main(void) {
 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {
 p->a = 0 ;
 p->b = 0 ;
 p->c = 0 ; // Red IDP check
 }
}

 Off (default)
Polyspace does not allow dereferencing a pointer to a structure if the pointer does not
have sufficient buffer for all fields of the structure. It produces an Illegally
dereferenced pointer error the first time you dereference the pointer.

For instance, in the following code, even though the pointer p has sufficient buffer for
the first two fields of the structure BIG, Polyspace considers that dereferencing p is
invalid.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

1 Option Descriptions

1-334

void main(void) {
 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {
 p->a = 0 ; // Red IDP check
 p->b = 0 ;
 p->c = 0 ;
 }
}

Tips
• If you do not turn on this option, you cannot point to the field of a partially allocated

structure.

For instance, in the preceding example, if you do not turn on the option and perform
the assignment

int *ptr = &(p->a);

Polyspace considers that the assignment is invalid. If you dereference ptr, it produces
an Illegally dereferenced pointer error.

• Using this option can slightly increase the number of orange checks.

Command-Line Information
Parameter: -size-in-bytes
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -size-
in-bytes
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -size-in-bytes

See Also
Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)
| Illegally dereferenced pointer

 Allow incomplete or partial allocation of structures (-size-in-bytes)

1-335

Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-336

Subnormal detection mode (-check-
subnormal)
Detect operations that result in subnormal floating-point values

Description
This option affects a Code Prover analysis only.

Specify that the verification must check floating-point operations for subnormal results.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node.

Command line: Use the option -check-subnormal. See “Command-Line Information”
on page 1-340.

Why Use This Option
Use this option to detect floating-point operations that result in subnormal values.

Subnormal numbers have magnitudes less than the smallest floating-point number that
can be represented without leading zeros in the significand. The presence of subnormal
numbers indicates loss of significant digits. This loss can accumulate over subsequent
operations and eventually result in unexpected values. Subnormal numbers can also slow
down the execution on targets without hardware support.

Settings
Default: allow

allow
The verification does not check operations for subnormal results.

 Subnormal detection mode (-check-subnormal)

1-337

forbid
The verification checks for subnormal results.

The verification stops the execution path with the subnormal result and prevents
subnormal values from propagating further. Therefore, in practice, you see only the
first occurrence of the subnormal value.

warn-all
The verification checks for subnormal results and highlights all occurrences of
subnormal values. Even if a subnormal result comes from previous subnormal values,
the result is highlighted.

The verification continues even if the check is red.
warn-first

The verification checks for subnormal results but only highlights first occurrences of
subnormal values. If a subnormal value propagates to further subnormal results,
those subsequent results are not highlighted.

The verification continues even if the check is red.

For details of the result colors in each mode, see Subnormal float.

Tips
• If you want to see only those operations where a subnormal value originates from non-

subnormal operands, use the warn-first mode.

For instance, in the following code, arg1 and arg2 are unknown. The verification
assumes that they can take all values allowed for the type double. This assumption
can lead to subnormal results from certain operations. If you use the warn-first
mode, the first operation causing the subnormal result is highlighted.

1 Option Descriptions

1-338

warn-all warn-first
void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, all four operations can
have subnormal results. The four checks
for subnormal results are orange.

void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 and
difference2 can be subnormal if arg1
and arg2 are sufficiently close. The first
two checks for subnormal results are
orange. val1 and val2 cannot be
subnormal unless difference1 and
difference2 are subnormal. The last
two checks for subnormal results are
green.

Through red/orange checks, you see
only the first instance where a
subnormal value appears. You do not see
red/orange checks from those
subnormal values propagating to
subsequent operations.

• If you want to see where a subnormal value originates and do not want to see
subnormal results arising from the same cause more than once, use the forbid mode.

For instance, in the following code, arg1 and arg2 are unknown. The verification
assumes that they can take all values allowed for the type double. This assumption
can lead to subnormal results for arg1-arg2. If you use the forbid mode and
perform the operation arg1-arg2 twice in succession, only the first operation is
highlighted. The second operation is not highlighted because the subnormal result for
the second operation arises from the same cause as the first operation.

 Subnormal detection mode (-check-subnormal)

1-339

warn-all forbid
void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, all four operations can
have subnormal results. The four checks
for subnormal results are orange.

void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 can be
subnormal if arg1 and arg2 are
sufficiently close. The first check for
subnormal results is orange. Following
this check, the verification excludes
from consideration:

• The close values of arg1 and arg2
that led to the subnormal value of
difference1.

In the subsequent operation arg1 -
arg2, the check is green and
difference2 is not subnormal. The
result of the check on difference2
* 2 is green for the same reason.

• The subnormal value of
difference1.

In the subsequent operation
difference1 * 2, the check is
green.

• You cannot run the Automatic Orange Tester if you check for subnormals in your
verification.

Command-Line Information
Parameter: -check-subnormal
Value: allow | warn-first | warn-all | forbid
Default: allow

1 Option Descriptions

1-340

Example (Code Prover): polyspace-code-prover -sources file_name -check-
subnormal forbid
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -check-subnormal forbid

See Also
Polyspace Results
Subnormal float

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016b

 Subnormal detection mode (-check-subnormal)

1-341

Detect uncalled functions (-uncalled-
function-checks)
Detect functions that are not called directly or indirectly from main or another entry
point function

Description
This option affects a Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry
point function during run-time.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Check Behavior node.

Command line: Use the option -uncalled-function-checks. See “Command-Line
Information” on page 1-343.

Why Use This Option
Typically, after verification, the Dashboard pane shows functions that are not called
during verification. However, you do not see them in your analysis results or reports. You
cannot comment on them or justify them.

If you want to see these uncalled functions in your analysis results and reports, use this
option.

Settings
Default: none

1 Option Descriptions

1-342

none
The verification does not generate checks for uncalled functions.

never-called
The verification generates checks for functions that are defined but not called.

called-from-unreachable
The verification generates checks for functions that are defined and called from an
unreachable part of the code.

all
The verification generates checks for functions that are:

• Defined but not called
• Defined and called from an unreachable part of the code.

Command-Line Information
Parameter: -uncalled-function-checks
Value: none | never-called | called-from-unreachable | all
Default: none
Example (Code Prover): polyspace-code-prover -sources file_name -
uncalled-function-checks all
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -uncalled-function-checks all

See Also
Function not called | Function not reachable

Topics
“Specify Polyspace Analysis Options”

 Detect uncalled functions (-uncalled-function-checks)

1-343

Sensitivity context (-context-sensitivity)
Store call context information to identify function call that caused errors

Description
This option affects a Code Prover analysis only.

Specify the functions for which the verification must store call context information. If the
function is called multiple times, using this option helps you to distinguish between the
different calls.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Precision node.

Command line: Use the option -context-sensitivity. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option
Suppose a function is called twice in your code. The check color on each operation in the
function body is a combined result of both calls. If you want to distinguish between the
colors in the two calls, use this option.

For instance, if a function contains a red or orange check and a green check on the same
operation for two different calls, the software combines the contexts and displays an
orange check on the operation. If you use this option, the check turns dark orange and
the result details show the color of the check for each call.

1 Option Descriptions

1-344

For a tutorial on using this option, see “Identify Function Call with Run-Time Error”
(Polyspace Code Prover).

Settings
Default: none

none
The software does not store call context information for functions.

auto
The software stores call context information for checks in:

• Functions that form the leaves of the call tree. These functions are called by other
functions, but do not call functions themselves.

• Small functions. The software uses an internal threshold to determine whether a
function is small.

custom
The software stores call context information for functions that you specify. To enter

the name of a function, click .

Tips
• If you select this option, you do not see tooltips in the body of the functions that
benefit from this option (and keep the call contexts separate).

 Sensitivity context (-context-sensitivity)

1-345

• If you select this option, the analysis can show some code operations in grey
(unreachable code) even when you can identify execution paths leading to the
operations. In this case, the grey code indicates operations that might be unreachable
only in a particular call context.

For instance, suppose this function is called with the arguments -1 and 1 :

int isPositive (int num) {
 if(num < 0)
 return 0;
 return 1;
}

If you use the option with this function as argument, there are two unreachable code
checks:

• The check on if is grey because when the function is called with argument -1, the
if condition is always true.

• The check on the code inside the if branch is grey because when the function is
called with argument 1, the if condition is always false.

Each unreachable code check indicates code that is unreachable only in a particular
call context. You see the call context in the result details.

Command-Line Information
Parameter: -context-sensitivity
Value: function1[,function2,...]
Default: none
Example (Code Prover): polyspace-code-prover -sources file_name -
context-sensitivity myFunc1,myFunc2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -context-sensitivity myFunc1,myFunc2

To allow the software to determine which functions receive call context storage, use the
option -context-sensitivity-auto.

1 Option Descriptions

1-346

See Also

Topics
“Specify Polyspace Analysis Options”
“Identify Function Call with Run-Time Error” (Polyspace Code Prover)

 Sensitivity context (-context-sensitivity)

1-347

Improve precision of interprocedural
analysis (-path-sensitivity-delta)
Avoid certain verification approximations for code with fewer lines

Description
This option affects a Code Prover analysis only.

For smaller code, use this option to improve the precision of cross-functional analysis.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Precision node.

Command line: Use the option -path-sensitivity-delta. See “Command-Line
Information” on page 1-349.

Why Use This Option
Use this option to avoid certain software approximations on execution paths. Avoiding
these approximations results in fewer orange checks but a much longer verification time.

For instance, for deep function call hierarchies or nested conditional statements, to
complete verification in a reasonable amount of time, the software combines many
execution paths and stores less information at each stage of verification. If you use this
option, the software stores more information about the execution paths, resulting in a
more precise verification.

Settings
Default: Off

Enter a positive integer to turn on this option.

1 Option Descriptions

1-348

Entering a higher value leads to a greater number of proven results, but also increases
verification time exponentially. For instance, a value of 10 can result in very long
verification times.

Tips
Use this option only when you have less than 1000 lines of code.

Command-Line Information
Parameter: -path-sensitivity-delta
Value: Positive integer
Example (Code Prover): polyspace-code-prover -sources file_name -path-
sensitivity-delta 1
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -path-sensitivity-delta 1

See Also

Topics
“Specify Polyspace Analysis Options”
“Improve Verification Precision” (Polyspace Code Prover)

 Improve precision of interprocedural analysis (-path-sensitivity-delta)

1-349

Precision level (-O)
Specify a precision level for the verification

Description
This option affects a Code Prover analysis only.

Specify the precision level that the verification must use.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Precision node.

Command line: Use the option -O#, for instance, -O0 or -O1. See “Command-Line
Information” on page 1-351.

Why Use This Option
Higher precision leads to greater number of proven results but also requires more
verification time. Each precision level corresponds to a different algorithm used for
verification.

In most cases, you see the optimal balance between precision and verification time at
level 2.

Settings
Default: 2

0
This option corresponds to a static interval verification.

1
This option corresponds to a more complex static interval verification.

1 Option Descriptions

1-350

2
This option corresponds to a complex polyhedron model of domain values with
additional precision for interprocedural analysis depending on the option Improve
precision of interprocedural analysis (-path-sensitivity-delta).

3
This option is only suitable for code having less than 1000 lines. Using this option, the
percentage of proven results can be very high.

Tips
• For best results in reasonable time, use the default level 2. If the verification takes a

long time, reduce precision. However, the number of unproven checks can increase.
Likewise, to reduce orange checks, you can improve your precision. But the
verification can take significantly longer time.

• The precision levels 2 and below begin to take effect only from verification levels
higher than Software Safety Analysis level 0. See also Verification
level (-to).

For instance, to reduce analysis time, you might have reduced the verification level to
Software Safety Analysis level 0. Do not try to reduce the precision level
below 2 to lower the analysis time further.

Note that algorithms used in precision level 3 can also apply to the verification level
Software Safety Analysis level 0.

Command-Line Information
Parameter: -O0 | -O1 | -O2 | -O3
Default: -O2
Example (Code Prover): polyspace-code-prover -sources file_name -O1
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -O1

See Also
Specific precision (-modules-precision) | Verification level (-to)

 Precision level (-O)

1-351

Topics
“Specify Polyspace Analysis Options”
“Improve Verification Precision” (Polyspace Code Prover)

1 Option Descriptions

1-352

Specific precision (-modules-precision)
Specify source files you want to verify at higher precision than the remaining verification

Description
This option affects a Code Prover analysis only.

Specify source files that you want to verify at a precision level higher than that for the
entire verification.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Precision node. See “Dependency” on page 1-354 for other options you
must also enable.

Command line: Use the option -modules-precision. See “Command-Line
Information” on page 1-354.

Why Use This Option
If a specific file is verified imprecisely leading to many orange checks in the file and
elsewhere, you can improve the precision for that file.

Note that increasing precision also increases verification time.

Settings
Default: All files are verified with the precision you specified using Precision >
Precision level.

Click to enter the name of a file without the extension .c and the corresponding
precision level.

 Specific precision (-modules-precision)

1-353

Dependency
This option is available only if you set Source code language (-lang) to C or C-CPP.

Command-Line Information
Parameter: -modules-precision
Value: file:O0 | file:O1 | file:O2 | file:O3
Example (Code Prover): polyspace-code-prover -sources file_name -O1 -
modules-precision My_File:02
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -O1 -modules-precision My_File:02

See Also
Precision level (-O)

Topics
“Specify Polyspace Analysis Options”
“Improve Verification Precision” (Polyspace Code Prover)

1 Option Descriptions

1-354

Verification level (-to)
Specify number of times the verification process runs on your code

Description
This option affects a Code Prover analysis only.

Specify the number of times the Polyspace verification process runs on your source code.
Each run can lead to greater number of proven results but also requires more verification
time.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Precision node.

Command line: Use the option -to. See “Command-Line Information” on page 1-359.

Why Use This Option
There are many reasons you might want to increase or decrease the verification level. For
instance:

• Coding rules are checked early during the compilation phase, with some exception
only. If you check for coding rules alone, you can lower the verification level. See
“Check for Coding Standard Violations”.

• If you see many orange checks after verification, try increasing the verification level.
However, increasing the verification level also increases verification time.

In most cases, you see the optimal balance between precision and verification time at
level 2.

Settings
Default: Software Safety Analysis level 2

 Verification level (-to)

1-355

Source Compliance Checking
Polyspace checks for compilation errors only. Most coding rule violations are also
found in this phase.

Software Safety Analysis level 0
The verification process performs some simple analysis. The analysis is designed to
reach completion despite complexities in the code.

If the verification gets stuck at a higher level, try running to this level and review the
results.

Software Safety Analysis level 1
The verification process analyzes each function once with algorithms whose
complexity depends on the precision level. See Precision level (-O). The
analysis starts from the top of the function call hierarchy (an actual or generated
main function) and propagates to the leaves of the call hierarchy.

Software Safety Analysis level 2
The verification process analyzes each function twice. In the first pass, the analysis
propagates from the top of the function call hierarchy to the leaves. In the second
pass, the analysis propagates from the leaves back to the top. Each pass uses
information gathered from the previous pass.

Use this option for most accurate results in reasonable time.
Software Safety Analysis level 3

The verification process runs three times on each function: from the top of the
function call hierarchy to the leaves, from the leaves to the top, and from the top to
the leaves again. Each pass uses information gathered from the previous pass.

Software Safety Analysis level 4
The verification process runs four passes on each function: from the top of the
function call hierarchy to the leaves twice. Each pass uses information gathered from
the previous pass.

other
If you use this option, Polyspace verification will make 20 passes unless you stop it
manually.

1 Option Descriptions

1-356

Tips
• Use a higher verification level for fewer orange checks.

In some cases, if the verification can detect that results of maximum precision are
available after an earlier level, the verification stops and does not proceed to the level
that you specify.

Difference between Level 0 and 1

The following example illustrates the difference between Software Safety
Analysis level 0 and Software Safety Analysis level 1:

 Verification level (-to)

1-357

Software Safety Analysis Level 0 Software Safety Analysis Level 1
#include <stdlib.h>

void ratio (float x, float *y)
{
 *y=(abs(x-*y))/(x+*y);
}

void level1 (float x,
 float y, float *t)
{ float v;
 v = y;
 ratio (x, &y);
 *t = 1.0/(v - 2.0 * x);
}

float level2(float v)
{
 float t;
 t = v;
 level1(0.0, 1.0, &t);
 return t;
}

void main(void)
{
 float r,d;
 d= level2(1.0);
 r = 1.0 / (2.0 - d);
}

#include <stdlib.h>

void ratio (float x, float *y)
{
 *y=(abs(x-*y))/(x+*y);
}

void level1 (float x,
 float y, float *t)
{ float v;
 v = y;
 ratio (x, &y);
 *t = 1.0/(v - 2.0 * x);
}

float level2(float v)
{
 float t;
 t = v;
 level1(0.0, 1.0, &t);
 return t;
}

void main(void)
{
 float r,d;
 d= level2(1.0);
 r = 1.0 / (2.0 - d);
}

In the table, verification produces an orange Division by Zero check during level 0
verification. The check turns green during level 1. The verification acquires more
precise knowledge of x in the higher level.

If a higher verification level fails because the verification runs out of memory, but
results are available at a lower level, Polyspace displays the results from the lower
level.

• For best results, use the option Software Safety Analysis level 2. If the
verification takes too long, use a lower Verification level. Fix red errors and gray
code before rerunning the verification with higher verification levels.

1 Option Descriptions

1-358

• Use the option Other sparingly since it can increase verification time by an
unreasonable amount. Using Software Safety Analysis level 2 provides
optimal verification of your code in most cases.

• If the Verification Level is set to Source Compliance Checking, do not run
verification on a remote server. The source compliance checking, or compilation,
phase takes place on your local computer anyway. Therefore, if you are running
verification only to the end of compilation, run verification on your local computer.

• If you want to see global variable sharing and usage only use to run a less extensive
analysis.

Command-Line Information
Parameter: -to
Value: compile | pass0 | pass1 | pass2 | pass3 | pass4 | other
Default: pass2
Example (Code Prover): polyspace-code-prover -sources file_name -to
pass2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -to pass2

You can also use these additional values not available in the user interface:

• C projects: c-to-il (C to intermediate language conversion phase)
• C++ projects: cpp-to-il (C++ to intermediate language conversion phase), cpp-

normalize (C++ normalization phase), cpp-link (C++ link phase)

Use these values only if you have specific reasons to do so. For instance, to generate a
blank constraints (DRS) template for C++ projects, you have to run an analysis upto the
cpp-normalize phase.

See Also
Precision level (-O)

Topics
“Specify Polyspace Analysis Options”
“Improve Verification Precision” (Polyspace Code Prover)

 Verification level (-to)

1-359

Verification time limit (-timeout)
Specify a time limit on your verification

Description
This option affects a Code Prover analysis only.

Specify a time limit for the verification in hours. If the verification does not complete
within that limit, it stops.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Precision node.

Command line: Use the option -timeout. See “Command-Line Information” on page 1-
361.

Why Use This Option
Use this option to impose a time limit on the verification.

By default, if an internal step in the verification lasts for more than 24 hours, the
verification stops. You can use this option to reduce the time limit even further. Note that
you can have verification results despite the verification timing out. For instance, if a step
in Software Safety Analysis level 1 times out, you still get the results from level 0. See
Verification level (-to).

The option is useful only in very specific cases. Suppose your code has certain constructs
that might slow down the verification. To check this, you can impose a time limit on the
verification so that the verification stops if it takes too long.

Typically, Technical Support asks you to use this option as needed.

1 Option Descriptions

1-360

Settings
Enter the time in hours. For fractions of an hour, specify decimal form.

Command-Line Information
Parameter: -timeout
Value: time
Example (Code Prover): polyspace-code-prover -sources file_name -
timeout 5.75
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -timeout 5.75

See Also

Topics
“Specify Polyspace Analysis Options”
“Improve Verification Precision” (Polyspace Code Prover)

 Verification time limit (-timeout)

1-361

Inline (-inline)
Specify functions that must be cloned internally for each function call

Description
This option affects a Code Prover analysis only.

Specify the functions that the verification must clone internally for every function call.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Scaling node.

Command line: Use the option -inline. See “Command-Line Information” on page 1-
364.

Why Use This Option
Use this option sparingly. Sometimes, using the option helps to work around scaling
issues during verification. If your verification takes too long, Technical Support can ask
you to use this option for certain functions.

Do not use this option to understand results. For instance, suppose a function is called
twice in your code. The check color on each operation in the function body is a combined
result of both calls. If you want to distinguish between the colors in the two calls, use the
option Sensitivity context (-context-sensitivity).

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

1 Option Descriptions

1-362

• Click to list functions in your code. Choose functions from the list.

The verification internally clones the function for each call. For instance, if you specify the
function func for inlining and func is called twice, the software creates two copies of
func for verification. The copies are named using the convention
func_pst_inlined_ver where ver is the version number. You see both copies on the
Call Hierarchy pane.

However, for each run-time check in the function body, you see only one color in your
verification results. The semantics of the check color is different from the normal
specification.

Red checks:

• Normally, if a function is called twice and an operation causes a definite error only in
one of the calls, the check color is orange.

• If you use this option, the worst color is shown for the check. Therefore, the check is
red.

Gray checks:

• Normally, if a function is called twice and an if statement branch is unreachable in
only one of the calls, the branch is shown as reachable.

• If you use this option, the worst color is shown for the check. Therefore, the if branch
appears gray.

Do not use this option to understand results. Use this option only if a certain function
causes scaling issues.

Tips
• Use this option to identify the cause of a Non-terminating call error.

• Situation: Sometimes, a red Non-terminating call check can appear on a
function call though a red check does not appear in the function body. The function
body represents all calls to the function. Therefore, if some calls to a function do
not cause an error, an orange check appears in the function body.

• Action: If you use this option, for every function call, there is a corresponding
function body. Therefore, you can trace a red check on a function call to a red
check in the function body.

 Inline (-inline)

1-363

• Using this option can sometimes duplicate a lot of code and lead to scaling problems.
Therefore choose functions to inline carefully.

• Choose functions to inline based on hints provided by the alias verification.
• Do not use this option for entry point functions, including main.
• Using this option can increase the number of gray Unreachable code checks.

For example, in the following code, if you enter max for Inline, you obtain two
Unreachable code checks, one for each call to max.

int max(int a, int b) {
 return a > b ? a : b;
}

void main() {
 int i=3, j=1, k;
 k=max(i,j);
 i=0;
 k=max(i,j);
}

• If you use the keyword inline before a function definition, place the definition in a
header file and call the function from multiple source files, you have the same result as
using the option Inline.

• For C++ code, this option applies to all overloaded methods of a class.

Command-Line Information
Parameter: -inline
Value: function1[,function2[,...]]
No Default
Example (Code Prover): polyspace-code-prover -sources file_name -inline
func1,func2
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -inline func1,func2

1 Option Descriptions

1-364

See Also

Topics
“Specify Polyspace Analysis Options”

 Inline (-inline)

1-365

Depth of verification inside structures (-k-
limiting)
Limit the depth of analysis for nested structures

Description
This option affects a Code Prover analysis only.

Specify a limit to the depth of analysis for nested structures.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Scaling node.

Command line: Use the option -k-limiting. See “Command-Line Information” on
page 1-367.

Why Use This Option
Use this option if the analysis is slow because your code has a structure that is many
levels deep.

Typically, you see a warning message when a structure with a deep hierarchy is slowing
down the verification.

Settings
Default: Full depth of nested structures is analyzed.

Enter a number to specify the depth of analysis for nested structures. For instance, if you
specify 0, the analysis does not verify a structure inside a structure.

If you specify a number less than 2, the verification could be less precise.

1 Option Descriptions

1-366

Command-Line Information
Parameter: -k-limiting
Value: positive integer
Example (Code Prover): polyspace-code-prover -sources file_name -k-
limiting 3
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -k-limiting 3

See Also

Topics
“Specify Polyspace Analysis Options”

 Depth of verification inside structures (-k-limiting)

1-367

Generate report
Specify whether to generate a report after the analysis

Description
Specify whether to generate a report along with analysis results.

Depending on the format you specify, you can view this report using an external software.
For example, if you specify the format PDF, you can view the report in a pdf reader.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Reporting node.

Command line: See “Command-Line Information” on page 1-370.

Why Use This Option
You can generate a report from your analysis results for archiving purposes. You can
provide this report to your management or clients as proof of code quality.

Using other analysis options, you can tailor the report content and format for your
specific needs. See Bug Finder and Code Prover report (-report-template)
and Output format (-report-output-format).

Settings
 On

Polyspace generates an analysis report using the template and format you specify.

The report is stored in the Polyspace-Doc subfolder of your results folder.

1 Option Descriptions

1-368

In Polyspace desktop products, to open your results folder from the user interface, on
the Project Browser pane, right-click the results node and select Open Folder with
File Manager.

To change the results folder location, see “Project and Results Folder Contents”.

On the command-line, the results folder is the argument of the option -results-
dir.

 Off (default)
Polyspace does not generate an analysis report. You can still view your results in the
Polyspace interface.

Tips
This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the Polyspace
desktop products, select Reporting > Run Report. Alternatively, at the command line,
use the polyspace-report-generator command.

 Generate report

1-369

After analysis, you can also export the result as a text file for further customization. Use
the option -generate-results-list-file with the polyspace-report-generator
command.

Command-Line Information
There is no command-line option to solely turn on the report generator. However, using
the options -report-template for template and -report-output-format for output
format automatically turns on the report generator.

See Also
Bug Finder and Code Prover report (-report-template) | Output format
(-report-output-format) | polyspace-report-generator

Topics
“Specify Polyspace Analysis Options”
“Generate Reports”

1 Option Descriptions

1-370

Bug Finder and Code Prover report (-
report-template)
Specify template for generating analysis report

Description
Specify template for generating analysis report.

.rpt files for the report templates are available in polyspaceroot\toolbox
\polyspace\psrptgen\templates\. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Reporting node. You have separate options for Bug Finder and Code Prover analysis.
See “Dependencies” on page 1-378 for other options you must also enable.

Command line: Use the option -report-template. See “Command-Line Information”
on page 1-379.

Why Use This Option
Depending on the template that you use, the report contains information about certain
types of results from the Results List pane. The template also determines what
information is presented in the report and how the information is organized. See the
template descriptions below.

Settings – Bug Finder
Default: BugFinderSummary

BugFinder
The report lists:

 Bug Finder and Code Prover report (-report-template)

1-371

• Polyspace Bug Finder Summary: Number of results in the project. The results
are summarized by file. The files that are partially analyzed because of compilation
errors are listed in a separate table.

• Code Metrics: Summary of the various code complexity metrics. For more
information, see “Code Metrics”.

• Coding Rules: Coding rule violations in the source code. For each rule violation,
the report lists the:

• Rule number and description.
• Function containing the rule violation.
• Review information, such as Severity, Status and comments.

• Defects: Defects found in the source code. For each defect, the report lists the:

• Function containing the defect.
• Defect information on the Result Details pane.
• Review information, such as Severity, Status and comments.

• Configuration Settings: List of analysis options that Polyspace uses for analysis.
If you configured your project for multitasking, this section also lists the
Concurrency Modeling Summary. If your project has source files with
compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section
states the rules along with the information whether they were enabled or disabled.

BugFinderSummary
The report lists:

• Polyspace Bug Finder Summary: Number of results in the project. The results
are summarized by file. The files that are partially analyzed because of compilation
errors are listed in a separate table.

• Code Metrics: Summary of the various code complexity metrics. For more
information, see “Code Metrics”.

• Coding Rules Summary: Coding rules along with number of violations.
• Defect Summary: Defects that Polyspace Bug Finder looks for. For each defect,

the report lists the:

• Defect group.

1 Option Descriptions

1-372

• Defect name.
• Number of instances of the defect found in the source code.

• Configuration Settings: List of analysis options that Polyspace uses for analysis.
If you configured your project for multitasking, this section also lists the
Concurrency Modeling Summary. For more information, see “Analysis Options”.
If your project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section
states the rules along with the information whether they were enabled or disabled.

CodeMetrics
The report lists the following:

• Code Metrics Summary: Various quantities related to the source code. For more
information, see “Code Metrics”.

• Code Metrics Details: Various quantities related to the source code with the
information broken down by file and function.

• Configuration Settings: List of analysis options that Polyspace uses for analysis.
If you configured your project for multitasking, this section also lists the
Concurrency Modeling Summary. If your project has source files with
compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section
states the rules along with the information whether they were enabled or disabled.

CodingStandards
The report contains separate chapters for each coding standard enabled in the
analysis (for instance, MISRA C: 2012, CERT C, custom rules, and so on). Each
chapter contains the following information:

• Summary - Violations by File: Graph showing each file with number of rule
violations.

• Summary - Violations by Rule: Graph showing each rule with number of
violations. If a rule is not enabled or not violated, it does not appear in the graph.

• Summary for all Files: Table showing each file with number of rule violations.
• Summary for Enabled Guidelines or Summary for Enabled Rules: Table

showing each guideline or rule with number of violations.

 Bug Finder and Code Prover report (-report-template)

1-373

• Violations: Tables listing each rule violation, along with information such as ID,
function name, severity, status, and so on. One table is created per file.

An appendix lists the options used in the Polyspace analysis.
SecurityCWE

The report contains the same information as the BugFinder report. However, in the
Defects chapter, an additional column lists the CWE rules mapped to each defect.
The Configuration Settings appendix also includes a Security Standard to
Polyspace Result Map.

Metrics
Only available for results downloaded from the Polyspace Metrics interface.

The report lists information useful to quality engineers and available on the Polyspace
Metrics interface, including:

• Information about whether the project satisfies quality objectives
• Time taken in each phase of analysis
• Metrics about the whole project. For each metric, the report lists the quality

threshold and whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of

violations justified and whether the justifications satisfy quality objectives.
• Definite as well as possible run-time errors in the project. For each type of run-

time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

Settings – Code Prover
Default: Developer

CodeMetrics
The report contains a summary of code metrics, followed by the complete metrics for
an application.

1 Option Descriptions

1-374

CodingStandards
The report contains separate chapters for each coding standard enabled in the
analysis (for instance, MISRA C: 2012, custom rules, and so on). Each chapter
contains the following information:

• Summary - Violations by File: Graph showing each file with number of rule
violations.

• Summary - Violations by Rule: Graph showing each rule with number of
violations. If a rule is not enabled or not violated, it does not appear in the graph.

• Summary for all Files: Table showing each file with number of rule violations.
• Summary for Enabled Guidelines or Summary for Enabled Rules: Table

showing each guideline or rule with number of violations.
• Violations: Tables listing each rule violation, along with information such as ID,

function name, severity, status, and so on. One table is created per file.

An appendix lists the options used in the Polyspace analysis.
Developer

The report lists information useful to developers, including:

• Summary of results
• Coding rule violations
• List of proven run-time errors or red checks
• List of unproven run-time errors or orange checks
• List of unreachable procedures or gray checks
• Global variable usage in code. See “Global Variables” (Polyspace Code Prover).

The report also contains the Polyspace configuration settings and modifiable
assumptions used in the analysis. If your project has source files with compilation
errors, these files are also listed.

DeveloperReview
The report lists the same information as the Developer report. However, the
reviewed results are sorted by severity and status, and unreviewed results are sorted
by file location.

Developer_withGreenChecks
The report lists the same information as the Developer report. In addition, the
report lists code proven to be error-free or green checks.

 Bug Finder and Code Prover report (-report-template)

1-375

Quality
The report lists information useful to quality engineers, including:

• Summary of results
• Statistics about the code
• Graphs showing distributions of checks per file

The report also contains the Polyspace configuration settings and modifiable
assumptions used in the analysis. If your project has source files with compilation
errors, these files are also listed.

VariableAccess
The report displays the global variable access in your source code. The report first
displays the number of global variables of each type. For information on the types, see
“Global Variables” (Polyspace Code Prover). For each global variable, the report
displays the following information:

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.
• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table

displays the following information:

• File and function containing the operation in the form
file_name.function_name.

The entry for each read or write operation is denoted by ||. Write operations
are denoted by < and read operations by >.

• Line and column number of the operation.

This report captures the information available on the Variable Access pane in the
Polyspace user interface.

CallHierarchy
The report displays the call hierarchy in your source code. For each function call in
your source code, the report displays the following information:

• Level of call hierarchy, where the function is called.

1 Option Descriptions

1-376

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the
hierarchy. Beginning from main or an entry point, there are three function calls
leading to the current call.

• File containing the function call.

In addition, the line and column is also displayed.
• File containing the function definition.

In addition, the line and column where the function definition begins is also
displayed.

In addition, the report also displays uncalled functions.

This report captures the information available on the Call Hierarchy pane in the
Polyspace user interface.

SoftwareQualityObjectives
The report lists information useful to quality engineers and available on the Polyspace
Metrics interface, including:

• Information about whether the project satisfies quality objectives
• Time taken in each phase of verification
• Metrics about the whole project. For each metric, the report lists the quality

threshold and whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of

violations justified and whether the justifications satisfy quality objectives.
• Definite as well as possible run-time errors in the project. For each type of run-

time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

This template is available only if you generate a report from results uploaded to the
Polyspace Access web interface or from results uploaded to the Polyspace Metrics
web interface (and then downloaded to the Polyspace user interface) . In each case,
you have to set the objectives explicitly in the web interface and then generate the
reports.

 Bug Finder and Code Prover report (-report-template)

1-377

SoftwareQualityObjectives_Summary
The report contains the same information as the SoftwareQualityObjectives
report. However, it does not have the supporting appendices with details of code
metrics, coding rule violations and run-time errors.

This template is available only if you generate a report from results uploaded to the
Polyspace Access web interface or from results uploaded to the Polyspace Metrics
web interface (and then downloaded to the Polyspace user interface). In each case,
you have to set a quality objective level explicitly in the web interface and then
generate the reports.

Dependencies
In the user interface of the Polyspace desktop products, this option is enabled only if you
select the Generate report option.

Tips
• This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the
Polyspace desktop products, select Reporting > Run Report. Alternatively, at the
command line, use the polyspace-report-generator command.

After analysis, you can also export the result as a text file for further customization.
Use the option -generate-results-list-file with the polyspace-report-
generator command.

• In Bug Finder, the report does not contain the line or column number for a result. Use
the report for archiving, gathering statistics and checking whether results have been
reviewed and addressed (for certification purposes or otherwise). To review a result in
your source code, use the Polyspace user interface or your IDE if you are using a
Polyspace plugin.

• If you use the SoftwareQualityObjectives_Summary and
SoftwareQualityObjectives templates to generate reports, the pass/fail status
depends on whether you set the quality objectives level in Polyspace Metrics or
Polyspace Access:

1 Option Descriptions

1-378

• In Polyspace Access, the pass/fail status is determined based on all results. For
instance, if you use the level SQO-4 which sets a threshold of 60% on orange
overflow checks, your project has a FAIL status if the percentage of green and
justified orange overflow checks is less than 60% of all green and orange overflow
checks.

• In Polyspace Metrics, the pass/fail status is determined based on a file-by-file basis.
The overall status is FAIL if one of the files have a FAIL status. For instance, if you
use the level SQO-4 which sets a threshold of 60% on orange overflow checks, your
project has a FAIL status if the percentage of green and justified orange overflow
checks in any file is less than 60% of green and orange overflow checks in that file.

• The first chapter of the reports contain a summary of the relevant results. You can
enter a Pass/Fail status in that chapter for your project based on the summary. If you
use the template SoftwareQualityObjectives or
SoftwareQualityObjectives_Summary, the status is automatically assigned based
on your objectives and the verification results. For more information on enforcing
objectives using Polyspace Metrics, see “Compare Metrics Against Software Quality
Objectives”.

Command-Line Information
Parameter: -report-template
Value: Full path to template.rpt
Example (Bug Finder): polyspace-bug-finder -sources file_name -report-
template polyspaceroot\toolbox\polyspace\psrptgen\templates
\bug_finder\BugFinder.rpt
Example (Code Prover): polyspace-code-prover -sources file_name -
report-template polyspaceroot\toolbox\polyspace\psrptgen\templates
\Developer.rpt
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -report-template polyspaceroot\toolbox\polyspace\psrptgen
\templates\bug_finder\BugFinder.rpt
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -report-template polyspaceroot\toolbox\polyspace\psrptgen
\templates\Developer.rpt

See Also
Generate report | Output format (-report-output-format) | polyspace-
report-generator

 Bug Finder and Code Prover report (-report-template)

1-379

Topics
“Specify Polyspace Analysis Options”
“Generate Reports”

1 Option Descriptions

1-380

Output format (-report-output-format)
Specify output format of generated report

Description
Specify output format of analysis report.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Reporting node. See “Dependencies” on page 1-382 for other options you must also
enable.

Command line: Use the option -report-output-format. See “Command-Line
Information” on page 1-382.

Why Use This Option
Use this option to specify whether you want a report in PDF, HTML or another format.

Settings
Default: Word

HTML
Generate report in .html format

PDF
Generate report in .pdf format

Word
Generate report in .docx format.

 Output format (-report-output-format)

1-381

Tips
• This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the
Polyspace desktop products, select Reporting > Run Report. Alternatively, at the
command line, use the polyspace-report-generator command.

After analysis, you can also export the result as a text file for further customization.
Use the option -generate-results-list-file with the polyspace-report-
generator command.

• If the table of contents or graphics in a .docx report appear outdated, select the
content of the report and refresh the document. Use keyboard shortcuts Ctrl+A to
select the content and F9 to refresh it.

Dependencies
In the user interface of the Polyspace desktop products, this option is enabled only if you
select the Generate report option.

Command-Line Information
Parameter: -report-output-format
Value: html | pdf | word
Default: word
Example (Bug Finder): polyspace-bug-finder -sources file_name -report-
output-format pdf
Example (Code Prover): polyspace-code-prover -sources file_name -
report-output-format pdf
Example (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -report-output-format pdf
Example (Code Prover Server): polyspace-code-prover-server -sources
file_name -report-output-format pdf

See Also
Bug Finder and Code Prover report (-report-template) | Generate report
| polyspace-report-generator

1 Option Descriptions

1-382

Topics
“Specify Polyspace Analysis Options”
“Generate Reports”

 Output format (-report-output-format)

1-383

Run Bug Finder or Code Prover analysis on a
remote cluster (-batch)
Enable batch remote analysis

Description
This option applies to the Polyspace desktop products only. The option is used to send the
analysis from a desktop to a server (where the analysis runs using the Polyspace server
products).

Specify that the analysis must be offloaded to a remote server.

To offload a Polyspace analysis, you need:

• Polyspace Bug Finder Server™ and/or Polyspace Code Prover Server, and MATLAB
Parallel Server™ on the server.

• Polyspace Bug Finder and/or Polyspace Code Prover on the desktop.

See “Install Products for Submitting Polyspace Analysis from Desktops to Remote
Server”.

Set Option
User interface: In your project configuration, the option is on the Run Settings node.
You have separate options for a Bug Finder and a Code Prover analysis.

Command line: Use the option -batch. See “Command-Line Information” on page 1-
386.

Why Use This Option
Use this option if you want the analysis to run on a remote cluster instead of your local
desktop.

For instance, you can run remote analysis when:

1 Option Descriptions

1-384

• You want to shut down your local machine but not interrupt the analysis.
• You want to free execution time on your local machine.
• You want to transfer the analysis to a more powerful computer.

Settings
 On

Run batch analysis on a remote computer. In this remote analysis mode, the analysis
is queued on a cluster after the compilation phase. Therefore, on your local computer,
after the analysis is queued:

• If you are running the analysis from the Polyspace user interface, you can close
the user interface.

• If you are running the analysis from the command line, you can close the
command-line window.

You can manage the queue from the Polyspace Job Monitor. To use the Polyspace Job
Monitor:

• In the Polyspace user interface, select Tools > Open Job Monitor. See “Send
Polyspace Analysis from Desktop to Remote Servers”.

• On the DOS or UNIX® command line, use the polyspace-jobs-manager
command. For more information, see “Send Polyspace Analysis from Desktop to
Remote Servers Using Scripts”.

• On the MATLAB command line, use the polyspaceJobsManager function.

After the analysis, you might have to manually download the results from the cluster.
 Off (default)

Do not run batch analysis on a remote computer.

Dependencies
• If you use a third-party scheduler instead of the MATLAB Job Scheduler, add the

option -no-credentials-check. The credentials check performed in the product is
only compatible with the MATLAB Job Scheduler. In the Polyspace user interface, add
this option to the Other field.

 Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

1-385

• Do not run a Code Prover analysis on a remote cluster if you run up to the
Verification Level of Source Compliance Checking. For both local and remote
analysis, the source compliance checking or compilation phase takes place on your
local computer. Therefore, if you are running only up to this phase, run on your local
computer.

Command-Line Information
To run a remote analysis from the command line, use with the -scheduler option.
Parameter: -batch
Value: -scheduler host_name if you have not set the Job scheduler host name in
the Polyspace user interface
Default: Off
Example (Bug Finder): polyspace-bug-finder -batch -scheduler NodeHost
polyspace-bug-finder -batch -scheduler MJSName@NodeHost
Example (Code Prover): polyspace-code-prover -batch -scheduler NodeHost
polyspace-code-prover -batch -scheduler MJSName@NodeHost

See Also
-scheduler

Topics
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”
“Specify Polyspace Analysis Options”
“Send Polyspace Analysis from Desktop to Remote Servers”
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”

1 Option Descriptions

1-386

Upload results to Polyspace Metrics (-add-
to-results-repository)
Upload analysis results for viewing on Polyspace Metrics web dashboard

Description
This option applies to the Polyspace desktop products only.

Specify upload of analysis results to the Polyspace Metrics results repository, allowing
Web-based reporting of results and code metrics.

Set Option
User interface: In your project configuration, the option is on the Run Settings node.
You have separate options for a Bug Finder and a Code Prover analysis. See
“Dependencies” on page 1-388 for other options that you must also enable.

Command line: Use the option -add-to-results-repository. See “Command-Line
Information” on page 1-388.

Why Use This Option
Polyspace Metrics is a web dashboard that generates code quality metrics from your
analysis results. Using this dashboard, you can:

• Provide your management a high-level overview of your code quality.
• Compare your code quality against predefined standards.
• Establish a process where you review in detail only those results that fail to meet

standards.
• Track improvements or regression in code quality over time.

See “Generate Code Quality Metrics with Polyspace Metrics”.

 Upload results to Polyspace Metrics (-add-to-results-repository)

1-387

Settings
 On

Analysis results are stored in the Polyspace Metrics results repository. This allows you
to use a Web browser to view results and code metrics.

The results are not downloaded automatically to your desktop.

 Off (default)
Analysis results are stored locally.

Dependencies
The option to upload to Polyspace Metrics is available only if you select Run Bug Finder
or Code Prover analysis on a remote cluster (-batch).

If you perform a local analysis on your desktop, you can later upload your results to
Polyspace Metrics. Right-click your results file and select Upload to Metrics.

Command-Line Information
Parameter: -add-to-results-repository
Default: Off
Example (Bug Finder): polyspace-bug-finder -batch -scheduler NodeHost -
add-to-results-repository -password passwordName
Example (Code Prover): polyspace-code-prover -batch -scheduler NodeHost
-add-to-results-repository -password passwordName

The password is optional.

The upload uses the Polyspace Metrics server that you set up in the Polyspace user
interface. See “Set Up Polyspace Metrics”. If you want to explicitly specify the Polyspace
Metrics server during upload, use the option -polyspace-metrics-server
serverName:portNumber. For instance:

-add-to-results-repository -polyspace-metrics-server localhost:12427

1 Option Descriptions

1-388

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

Topics
“Set Up Polyspace Metrics”
“Generate Code Quality Metrics with Polyspace Metrics”

 Upload results to Polyspace Metrics (-add-to-results-repository)

1-389

Use fast analysis mode for Bug Finder (-
fast-analysis)
Run analysis using faster local mode

Description
This option affects a Bug Finder analysis only.

Run analysis using faster local mode. The first run analyzes all files, but subsequent runs
analyze only the files that you edited since the previous analysis.

Fast analysis mode is a faster way to analyze code for localized defects and coding rules.
When you launch fast analysis, Bug Finder analyzes your code for a subset of defects and
coding rules.

Set Option
User interface (desktop products only): In your project configuration, the option is
available on the Run Settings node.

Command line: Use the option -fast-analysis. See “Command-Line Information” on
page 1-393.

Why Use This Option
If you use this option, you have to wait less for analysis results from your second analysis
onwards. During development, you can frequently run analysis in fast mode and quickly
check for new defects or coding rule violations.

Polyspace produces results quickly because the analysis is localized. When you rerun in
fast-analysis mode, Polyspace reanalyzes only those files that need to be reanalyzed,
regenerating results even more quickly. These situations trigger a reanalysis.

1 Option Descriptions

1-390

Situation What Is Reanalyzed
You modified a source file. Modified source file
You modified a header file. Source files that include the modified header

file (directly or indirectly)
You added or removed an analysis
option.

All files

Previous fast-analysis results were not
found.

For instance, you deleted the results
folder.

All files

You upgraded to a later release of
Polyspace and ran the analysis.

All files

Comments from the previous analysis are
retained and imported to the current analysis.

For example, consider a Polyspace project with three .c files and you fix a bug in one of
the files. When you rerun the analysis, Polyspace reanalyzes only the one file that you
changed.

The results of fast analysis appear in a folder separate from the results of normal analysis.

 Use fast analysis mode for Bug Finder (-fast-analysis)

1-391

Settings
Default: Off

 On
Polyspace Bug Finder runs in fast-analysis mode. Polyspace analyzes code for only a
subset of defects and coding rules. If you have selected any defects or coding rules
that are not supported by fast-analysis, you code is not checked for those results.

 Off
Polyspace Bug Finder runs in the normal mode. Analysis checks for all selected
defects, coding rules, and code metrics.

Tips

Comments Import
If you enter comments in your results, the comments are automatically imported to the
next analysis in fast mode.

To import the comments from fast mode results to results of a regular Bug Finder
analysis, do one of the following:

• Select Tools > Import Comments. Navigate to the sibling results folder
BF_Fast_Result and import comments from the fast mode results.

• When reviewing results of fast mode, enter the comments directly into your code. If
you run a regular analysis on this code, the comments are imported to your analysis
results.

For details on how to enter code comments, see “Annotate Code and Hide Known or
Acceptable Results”.

Fast Analysis Limitations
In fast analysis mode, you cannot perform these actions:

• You cannot create a new results folder for each run. Even if you choose to create a
new result folder, each new run overwrites the previous one.

1 Option Descriptions

1-392

• You cannot specify constraints using the option Constraint setup (-data-
range-specifications).

• You cannot run the analysis on a remote cluster.

Command-Line Information
Parameter: -fast-analysis
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources filename -fast-
analysis
Example (Bug Finder Server): polyspace-bug-finder-server -sources
filename -fast-analysis

See Also

Topics
“Bug Finder Results Found in Fast Analysis Mode”

 Use fast analysis mode for Bug Finder (-fast-analysis)

1-393

Command/script to apply after the end of
the code verification (-post-analysis-
command)
Specify command or script to be executed after analysis

Description
Specify a command or script to be executed after the analysis.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Advanced Settings node.

Command line: Use the option -post-analysis-command. See “Command-Line
Information” on page 1-396.

Why Use This Option
Create scripts for tasks that you want performed after the Polyspace analysis.

For instance, you want to be notified by email that the Polyspace analysis is over. Create a
script that sends an email and use this option to execute the script after the Polyspace
analysis.

Settings
No Default

Enter full path to the command or script, or click to navigate to the location of the
command or script. After the analysis, this script is executed.

1 Option Descriptions

1-394

The script is executed in the Polyspace results folder. In your script, consider the results
folder as the current folder for relative paths to other files.

For a Perl script, in Windows, specify the full path to the Perl executable followed by the
full path to the script. For example, to specify a Perl script send_email.pl that sends an
email once the analysis is over, enter polyspaceroot\sys\perl\win32\bin
\perl.exe <absolute_path>\send_email.pl. Here, polyspaceroot is the
location of the current Polyspace installation, such as C:\Program Files\Polyspace
\R2019a\, and <absolute_path> is the location of the Perl script.

Tips

Running post analysis commands on the server
If you perform verification on a remote server, after verification, the software executes
your command on the server, not on the client desktop. If your command executes a
script, the script must be present on the server.

For instance, if you specify the command, /local/utils/send_mail.sh, the Shell
script send_email.sh must be present on the server in /local/utils/. The software
does not copy the script send_email.sh from your desktop to the server before
executing the command. If the script is not present on the server, you encounter an error.
Sometimes, there are multiple servers that the MATLAB Job Scheduler can run the
verification on. Place the script on each of the servers because you do not control which
server eventually runs your verification.

Running post analysis commands in the Polyspace user
interface
To test the use of this option, run the following Perl script from a folder containing a
Polyspace project (.psprj file). The script parses the latest Polyspace log file in the
folder Module_1\CP_Result and writes the current project name and date to a file
report.txt. The file is saved in Module_1\CP_Result.

 Command/script to apply after the end of the code verification (-post-analysis-command)

1-395

foreach my $file (`ls Module_1\\CP_Result\\Polyspace_*.log`) {
 open (FH, $file);

while ($line = <FH>) {
 if ($line =~ m/Ending at: (.*)/) {
 $date=$1;
 }
 if ($line =~ m/-prog=(.*)/) {
 $project=$1;
 }
 }
}

my $filename = 'report.txt';
open(my $fh, '>', $filename) or die "Could not open file '$filename' $!";

print $fh "date=$date\n";
print $fh "project=$project\n";

close $fh;

In Linux, you can specify the Perl script for this option.

In Windows, instead of specifying the Perl script directly, specify a .bat file that invokes
Perl and runs this script. For instance, the .bat file can contain the following line
(assuming that the .bat file and .pl file are in the Polyspace project folder). Depending
on your MATLAB installation, change the path to perl.exe appropriately.

"C:\Program Files\MATLAB\R2018b\sys\perl\win32\bin\perl.exe" command.pl

Run Code Prover. Check that the folder Module_1\CP_Result contains the file
report.txt with the project name and date.

Command-Line Information
Parameter: -post-analysis-command
Value: Path to executable file or command in quotes
No Default
Example in Linux (Bug Finder): polyspace-bug-finder -sources file_name -
post-analysis-command `pwd`/send_email.pl

1 Option Descriptions

1-396

Example in Linux (Code Prover) : polyspace-code-prover -sources file_name
-post-analysis-command `pwd`/send_email.pl
Example in Linux (Bug Finder Server): polyspace-bug-finder-server -
sources file_name -post-analysis-command `pwd`/send_email.pl
Example in Linux (Code Prover Server): polyspace-code-prover-server -
sources file_name -post-analysis-command `pwd`/send_email.pl
Example in Windows: polyspace-bug-finder -sources file_name -post-
analysis-command "C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin
\perl.exe" "C:\My_Scripts\send_email"

Note that in Windows, you use the full path to the Perl executable.

See Also
Command/script to apply to preprocessed files (-post-preprocessing-
command)

Topics
“Specify Polyspace Analysis Options”

 Command/script to apply after the end of the code verification (-post-analysis-command)

1-397

Automatic Orange Tester (-automatic-
orange-tester)
Specify that Automatic Orange Tester must be executed after verification

Description
This option affects a Code Prover analysis only. Use this option only if you review the
Code Prover results in the Polyspace desktop products.

Specify that the Automatic Orange Tester must be executed at the end of the verification.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Advanced Settings node. See “Dependency” on page 1-399 for other options you
must also enable.

Command line: Use the option -automatic-orange-tester. See “Command-Line
Information” on page 1-399.

Why Use This Option
The Automatic Orange Tester runs dynamic tests on your code. The dynamic tests help
you determine if an orange check represents a real run-time error or an imprecision of
Polyspace analysis. For a tutorial, see “Test Orange Checks for Run-Time Errors”
(Polyspace Code Prover).

To run the Automatic Orange Tester after verification, you must select this option before
verification. During verification, Polyspace generates additional source code to test each
orange check for errors. When you run the Automatic Orange Tester later, the software
uses this instrumented code for testing.

1 Option Descriptions

1-398

Settings
 On

After verification, when you run the Automatic Orange Tester, Polyspace creates tests
for unproven code and runs them.

 Off (default)
You cannot launch the Automatic Orange Tester after verification.

Dependency
This option is available only if you set Source code language (-lang) to C or C-CPP.

Tips
• To launch the Automatic Orange Tester, after verification, open your results. Select

Tools > Automatic Orange Tester.
• When using the automatic orange tester, you cannot:

• Select Division round down under Target & Compiler.
• Select the options c18, tms320c3c. x86_64 or sharc21x61 for Target &

Compiler > Target processor type.
• Specify the type char as 16-bit or short as 8-bit using the option mcpu...

(Advanced) for Target & Compiler > Target processor type. For the same
option, you must specify the type pointer as 32-bit.

• Specify global asserts in the code, having the form Pst_Global_Assert(A,B). In
global assert mode, you cannot use Constraint setup under Inputs & Stubbing.

• Select these options related to floating-point verification: Subnormal detection
mode and Consider non finite floats.

Command-Line Information
Parameter: -automatic-orange-tester
Default: Off

 Automatic Orange Tester (-automatic-orange-tester)

1-399

Example (Code Prover): polyspace-code-prover -sources file_name -lang c
-automatic-orange-tester

See Also
Maximum loop iterations (-automatic-orange-tester-loop-max-
iteration) | Maximum test time (-automatic-orange-tester-timeout) |
Number of automatic tests (-automatic-orange-tester-tests-number)

Topics
“Specify Polyspace Analysis Options”
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)
“Limitations of Automatic Orange Tester” (Polyspace Code Prover)

1 Option Descriptions

1-400

Maximum loop iterations (-automatic-
orange-tester-loop-max-iteration)
Specify number of loop iterations after which Automatic Orange Tester considers infinite
loop

Description
This option affects a Code Prover analysis only. Use this option only if you review the
Code Prover results in the Polyspace desktop products.

Specify number of loop iterations after which the Automatic Orange Tester considers the
loop to be infinite. Specifying a large number decreases the possibility of identifying an
infinite loop incorrectly, but takes more time to complete.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Advanced Settings node. See “Dependencies” on page 1-401 for other options you
must also enable.

Command line: Use the option -automatic-orange-tester-loop-max-iteration.
See “Command-Line Information” on page 1-402.

Settings
Default: 1000

Enter number of loop iterations. The maximum value that the software supports is 1000.

Dependencies
This option is enabled only if you set the following options:

 Maximum loop iterations (-automatic-orange-tester-loop-max-iteration)

1-401

• Set Source code language (-lang) to C or C-CPP.
• Specify the option Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information
Parameter: -automatic-orange-tester-loop-max-iteration
Value: positive integer
Default: 1000
Example (Code Prover): polyspace-code-prover -sources file_name -lang c
-automatic-orange-tester -automatic-orange-tester-loop-max-iteration
500

See Also
Automatic Orange Tester (-automatic-orange-tester)

Topics
“Specify Polyspace Analysis Options”
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

1 Option Descriptions

1-402

Number of automatic tests (-automatic-
orange-tester-tests-number)
Specify number of tests that Automatic Orange Tester must run

Description
This option affects a Code Prover analysis only. Use this option only if you review the
Code Prover results in the Polyspace desktop products.

Specify number of tests that you want the Automatic Orange Tester to run. The more the
number of tests, the greater the possibility of finding a run-time error, but longer it takes
to complete.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Advanced Settings node. See “Dependencies” on page 1-403 for other options you
must also enable.

Command line: Use the option -automatic-orange-tester-tests-number. See
“Command-Line Information” on page 1-404.

Settings
Default: 500

Enter number of tests up to a maximum of 100,000.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C or C-CPP.

 Number of automatic tests (-automatic-orange-tester-tests-number)

1-403

• Specify the option Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information
Parameter: -automatic-orange-tester-tests-number
Value: positive integer
Default: 500
Example (Code Prover): polyspace-code-prover -sources file_name -lang c
-automatic-orange-tester -automatic-orange-tester-tests-number 500

See Also
Automatic Orange Tester (-automatic-orange-tester)

Topics
“Specify Polyspace Analysis Options”
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

1 Option Descriptions

1-404

Maximum test time (-automatic-orange-
tester-timeout)
Specify time in seconds allowed for a single test in Automatic Orange Tester

Description
This option affects a Code Prover analysis only. Use this option only if you review the
Code Prover results in the Polyspace desktop products.

Specify time in seconds allowed for a single test. After this time is over, the Automatic
Orange Tester proceeds to the next test. Increasing this time reduces number of tests that
do not complete, but increases total verification time.

Set Option
User interface (desktop products only): In your project configuration, the option is on
the Advanced Settings node. See “Dependencies” on page 1-405 for other options you
must also enable.

Command line: Use the option -automatic-orange-tester-timeout. See
“Command-Line Information” on page 1-406.

Settings
Default: 5

Enter time in seconds. The maximum value that the software supports is 60.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C or C-CPP.

 Maximum test time (-automatic-orange-tester-timeout)

1-405

• Specify the option Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information
Parameter: -automatic-orange-tester-timeout
Value: time
Default: 5
Example (Code Prover): polyspace-code-prover -sources file_name -lang c
-automatic-orange-tester -automatic-orange-tester-test-timeout 10

See Also
Automatic Orange Tester (-automatic-orange-tester)

Topics
“Specify Polyspace Analysis Options”
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

1 Option Descriptions

1-406

Other
Specify additional flags for analysis

Description
This option is useful only if you run an analysis in the user interface of the Polyspace
desktop products.

Enter command-line-style flags such as -max-processes.

Set Option
In your project configuration, the option is on the Advanced Settings node. You can
enter multiple options in this field. If you enter the same option multiple times with
different arguments, the analysis uses your last argument.

Why Use This Option
Use this option to add nonofficial or command-line only options to the analyzer.

Tip
Nonofficial options: In rare circumstances, to work around very specific issues,
MathWorks Technical Support might provide you some undocumented options. If you are
running verification from the user interface, you use the Other field in the Configuration
pane to enter the options. Sometimes, the options and their arguments have to be
preceded by extra flags. When providing you the option, Technical Support will let you
know if the extra flags are required.
Possible Flags: -extra-flags | -c-extra-flags | -cpp-extra-flags | -
cfe-extra-flags | -il-extra-flags
Example (Bug Finder): polyspace-bug-finder -extra-flags -option-name -
extra-flags option_param
Example (Code Prover): polyspace-code-prover -extra-flags -option-name
-extra-flags option_param

 Other

1-407

Example (Bug Finder Server): polyspace-bug-finder-server -extra-flags -
option-name -extra-flags option_param
Example (Code Prover Server): polyspace-code-prover-server -extra-flags
-option-name -extra-flags option_param

1 Option Descriptions

1-408

Polyspace Command-Line Options

2

-asm-begin -asm-end
Exclude compiler-specific asm functions from analysis

Syntax
-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]"

Description
-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]" excludes
compiler-specific assembly language source code functions from the analysis. You must
use these two options together.

Polyspace recognizes most inline assemblers by default. Use the option only if compilation
errors occur due to introduction of assembly code. For more information, see “Assembly
Code” (Polyspace Code Prover).

Mark the offending code block by two #pragma directives, one at the beginning of the
assembly code and one at the end. In the command usage, give these marks in the same
order for -asm-begin as they are for -asm-end.

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

Examples
A block of code is delimited by #pragma start1 and #pragma end1. These names must
be in the same order for their respective options. Either:

-asm-begin "start1" -asm-end "end1"

or

-asm-begin "mark1,...markN,start1" -asm-end "mark1,...markN,end1"

The following example marks two functions for exclusion, foo_1 and foo_2.

2 Polyspace Command-Line Options

2-2

Code:

#pragma asm_begin_foo
int foo(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_foo

#pragma asm_begin_bar
void bar(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_bar

Polyspace Command:

• Bug Finder:

polyspace-bug-finder -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Code Prover:

polyspace-code-prover -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Bug Finder Server:

polyspace-bug-finder-server -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Code Prover Server:

polyspace-code-prover-server -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

asm_begin_foo and asm_begin_bar mark the beginning of the assembly source code
sections to be ignored. asm_end_foo and asm_end_bar mark the end of those
respective sections.

See Also

Topics
“Specify Polyspace Analysis Options”

 -asm-begin -asm-end

2-3

-author
Specify project author

Syntax
-author "value"

Description
-author "value" assigns an author to the Polyspace project. The name appears as the
project owner in Polyspace Metrics and on generated reports.

The default value is the user name of the current user, given by the DOS or UNIX
command whoami.

In the user interface of the Polyspace desktop products, select to specify the Project
name, Version, and Author parameters in the Polyspace Project – Properties dialog box.

Examples
Assign a project author to your Polyspace Project.

• Bug Finder:

polyspace-bug-finder -author "John Smith"
• Code Prover:

polyspace-code-prover -author "John Smith"
• Bug Finder Server:

polyspace-bug-finder-server -author "John Smith"
• Code Prover Server:

polyspace-code-prover-server -author "John Smith"

2 Polyspace Command-Line Options

2-4

See Also
-date | -prog

Topics
“Specify Polyspace Analysis Options”

 -author

2-5

-custom-target
Create a custom target processor with specific data type sizes

Syntax
-custom-target target_sizes

Description
-custom-target target_sizes defines a custom target processor for the Polyspace
analysis. The target processor definition includes sizes in bytes of fundamental data types,
signedness of plain char, alignment of structures and underlying types of standard
typedef-s such as size_t, ptrdiff_t and wchar_t.

target_sizes is a comma-separated list specifying these values. From left to right, the
values are the following. If a data type is not supported, -1 is used for its size.

Specification Possible Values
Whether plain char is signed true or false
Size of char in bits

Other sizes are in bytes.

Number

Size of short Number
Size of int Number
Size of short long Number
Size of long Number
Size of long long Number
Size of float Number
Size of double Number
Size of long double Number
Size of pointer Number

2 Polyspace Command-Line Options

2-6

Specification Possible Values
Maximum alignment of all integer types Number
Maximum alignment of variables of type
struct or union

Number

Endianness little or big
Underlying type of size_t unknown, signed_char, unsigned_char,

short, unsigned_short, short_long,
unsigned_short_long, int,
unsigned_int, long, unsigned_long,
long_long or unsigned_long_long

Underlying type of ptrdiff_t Same possible values as size_t
Underlying type of wchar_t Same possible values as size_t

Typically, this option is used when the polyspace-configure command creates an
options file for the subsequent Polyspace analysis. However, you can directly enter this
option when manually writing options files. This option is useful in situations where your
target specifications are not covered by one of the predefined target processors. See
Target processor type (-target).

Examples
An usage of the option looks like this:

-custom-target false,8,2,4,-1,4,8,4,8,8,4,8,1,little,unsigned_int,int,unsigned_int

The option argument translates to the following target specification.

Specification Possible Values
Whether plain char is signed false
Size of char 8 bits
Size of short 2 bytes
Size of int 4 bytes
Size of short long short long is not supported.
Size of long 4 bytes

 -custom-target

2-7

Specification Possible Values
Size of long long 8 bytes
Size of float 4 bytes
Size of double 8 bytes
Size of long double 8 bytes
Size of pointer 4 bytes
Maximum alignment of all integer types 8 bytes
Maximum alignment of variables of type
struct or union

1 byte

Endianness little
Underlying type of size_t unsigned int
Underlying type of ptrdiff_t int
Underlying type of wchar_t unsigned int

See Also
Generic target options | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”

2 Polyspace Command-Line Options

2-8

-date
Specify date of analysis

Syntax
-date "date"

Description
-date "date" specifies the date stamp for the analysis in the format dd/mm/yyyy. By
default the value is the date the analysis starts.

Examples
Assign a date to your Polyspace Project:

• Bug Finder:

polyspace-bug-finder -date "15/03/2012"

• Code Prover:

polyspace-code-prover -date "15/03/2012"

• Bug Finder Server:

polyspace-bug-finder-server -date "15/03/2012"

• Code Prover Server:

polyspace-code-prover-server -date "15/03/2012"

See Also
-author | -date

 -date

2-9

Topics
“Specify Polyspace Analysis Options”

2 Polyspace Command-Line Options

2-10

-doc | -documentation
Display Polyspace documentation in help browser

Syntax
-doc
-documentation

Description
-doc and -documentation opens Polyspace documentation in a help browser. You can
see information such as getting started, workflows and reference pages for commands
and analysis options. You can also search through the documentation in the help browser.

Examples
Display Polyspace documentation in a help browser:

• Bug Finder:

polyspace-bug-finder -doc
polyspace-bug-finder -documentation

• Code Prover:

polyspace-code-prover -doc
polyspace-code-prover -documentation

• Bug Finder Server:

polyspace-bug-finder-server -doc
polyspace-bug-finder-server -documentation

• Code Prover Server:

polyspace-code-prover-server -doc
polyspace-code-prover-server -documentation

 -doc | -documentation

2-11

See Also
-h[elp]

2 Polyspace Command-Line Options

2-12

-function-behavior-specifications
Map imprecisely analyzed function to standard function for precise analysis

Syntax
-function-behavior-specifications file1[, file2, [...]]

Description
-function-behavior-specifications file1[, file2, [...]] specifies XML
files that map your library functions to corresponding standard functions that Polyspace
recognizes. Mapping your library functions to standard functions can help with precision
improvement or allow automatic detection of threads.

If you run verification from the command line, specify the absolute path to the XML files
or path relative to the folder from which you run the command. If you run verification
from the user interface (desktop products only), specify the absolute path in the Other
field.

Using Option for Precision Improvement
This section applies only to a Code Prover analysis.

Use this option to reduce the number of orange checks from imprecise analysis of your
function. Sometimes, the verification does not analyze certain kinds of functions precisely
because of inherent limitations in static verification. In those cases, if you find a standard
function that is a close analog of your function, use this mapping. Though your function
itself is not analyzed, the analysis is more precise at the locations where you call the
function. For instance, if the verification cannot analyze your function cos32 precisely
and considers full range for its return value, map it to the cos function for a return value
in [-1,1].

The verification ignores the body of your function. However, the verification emulates
your function behavior in the following ways:

 -function-behavior-specifications

2-13

• The verification assumes the same return values for your function as the standard
function.

For instance, if you map your function cos32 to the standard function cos, the
verification assumes that cos32 returns values in [-1,1].

• The verification checks for the same issues as it checks with the standard function.

For instance, if you map your function acos32 to the standard function acos,
the Invalid use of standard library routine check determines if the
argument of acos32 is in [-1,1].

A sample file function-behavior-specifications-sample.xml shows the
functions that you can map to. The file is in polyspaceroot\polyspace\verifier
\cxx\ where polyspaceroot is the Polyspace installation folder. The functions that you
can map to include:

• Standard library functions from math.h.
• Memory management functions from string.h.
• __ps_meminit: A function specific to Polyspace that initializes a memory area.

Sometimes, the verification does not recognize your memory initialization function and
produces an orange Non-initialized local variable check on a variable that
you initialized through this function. If you know that your memory initialization
function initializes the variable through its address, map your function to
__ps_meminit. The check turns green.

• __ps_lookup_table_clip: A function specific to Polyspace that returns a value
within the range of the input array.

Sometimes, the verification considers full range for the return values of functions that
look up values in large arrays (look-up table functions). If you know that the return
value of a look-up table function must be within the range of values in its input array,
map the function to __ps_lookup_table_clip.

In code generated from models, the verification by default makes this assumption for
look-up table functions. To identify if the look-up table uses linear interpolation and no
extrapolation, the verification uses the function names. Use the mapping only for
handwritten functions, for instance, functions in a C/C++ S-Function block. The
names of those functions do not follow specific conventions. You must explicitly specify
them.

2 Polyspace Command-Line Options

2-14

Using Option for Concurrency Detection
This section applies both to a Bug Finder and a Code Prover analysis.

Use this option for automatic detection of thread-creation functions and functions that
begin and end critical sections. Polyspace supports automatic detection for certain
families of multitasking primitives only. Extend the support using this option.

If your thread-creation function, for instance, does not belong to one of the supported
families, map your function to a supported concurrency primitive.

To find which multitasking primitives can be automatically detected, see “Auto-Detection
of Thread Creation and Critical Section in Polyspace”.

Examples
Specify Mapping to Standard Function
You can adapt the sample mapping XML file provided with your Polyspace installation and
map your function to a standard function.

Suppose the default verification produces an orange User assertion check on this
code:

double x = acos32(1.0) ;
assert(x <= 2.0);

Suppose you know that the function acos32 behaves like the function acos and the
return value is 0. You expect the check on the assert statement to be green. However,
the verification considers that acos32 returns any value in the range of type double
because acos32 is not precisely analyzed. The check is orange. To map your function
acos32 to acos:

1 Copy the file function-behavior-specifications-sample.xml from
polyspaceroot\polyspace\verifier\cxx\ to another location, for instance,
"C:\Polyspace_projects\Common\Config_files". Change the write
permissions on the file.

2 To map your function to a standard function, modify the contents of the XML file. To
map your function acos32 to the standard library function acos, change the
following code:

 -function-behavior-specifications

2-15

<function name="my_lib_cos" std="acos"> </function>

To:

<function name="acos32" std="acos"> </function>

3 Specify the location of the file for verification:

• Code Prover:

polyspace-code-prover -function-behavior-specifications
 "C:\Polyspace_projects\Common\Config_files
 \function-behavior-specifications-sample.xml"

• Code Prover Server:

polyspace-code-prover-server -function-behavior-specifications
 "C:\Polyspace_projects\Common\Config_files
 \function-behavior-specifications-sample.xml"

Specify Mapping to Standard Function with Argument
Remapping
Sometimes, the arguments of your function do not map one-to-one with arguments of the
standard function. In those cases, remap your function argument to the standard function
argument. For instance:

• __ps_lookup_table_clip:

This function specific to Polyspace takes only a look-up table array as argument and
returns values within the range of the look-up table. Your look-up table function might
have additional arguments besides the look-up table array itself. In this case, use
argument remapping to specify which argument of your function is the look-up table
array.

For instance, suppose a function my_lookup_table has the following declaration:

double my_lookup_table(double u0, const real_T *table,
 const double *bp0);

The second argument of your function my_lookup_table is the look-up table array.
In the file function-behavior-specifications-sample.xml, add this code:

2 Polyspace Command-Line Options

2-16

<function name="my_lookup_table" std="__ps_lookup_table_clip">
 <mapping std_arg="1" arg="2"></mapping>
</function>

When you call the function:

res = my_lookup_table(u, table10, bp);

The verification interprets the call as:

res =__ps_lookup_table_clip(table10);

The verification assumes that the value of res lies within the range of values in
table10.

• __ps_meminit:

This function specific to Polyspace takes a memory address as the first argument and a
number of bytes as the second argument. The function assumes that the bytes in
memory starting from the memory address are initialized with a valid value. Your
memory initialization function might have additional arguments. In this case, use
argument remapping to specify which argument of your function is the starting
address and which argument is the number of bytes.

For instance, suppose a function my_meminit has the following declaration:

 void my_meminit(enum InitKind k, void* dest, int is_aligned,
 unsigned int size);

The second argument of your function is the starting address and the fourth argument
is the number of bytes. In the file function-behavior-specifications-
sample.xml, add this code:

<function name="my_meminit" std="__ps_meminit">
 <mapping std_arg="1" arg="2"></mapping>
 <mapping std_arg="2" arg="4"></mapping>
</function>

When you call the function:

my_meminit(INIT_START_BY_END, &buffer, 0, sizeof(buffer));

The verification interprets the call as:

__ps_meminit(&buffer, sizeof(buffer));

 -function-behavior-specifications

2-17

The verification assumes that sizeof(buffer) number of bytes starting from
&buffer are initialized.

• memset: Variable number of arguments.

If your function has variable number of arguments, you cannot map it directly to a
standard function without explicit argument remapping. For instance, say your
function is declared as:

void* my_memset(void*, int, size_t, ...)

To map the function to the memset function, use the following mapping:

<function name="my_memset" std="memset">
 <mapping std_arg="1" arg="1"></mapping>
 <mapping std_arg="2" arg="2"></mapping>
 <mapping std_arg="3" arg="3"></mapping>
</function>

Effect of Mapping on Precision
These examples show the result of mapping certain functions to standard functions:

• my_acos → acos:

If you use the mapping, the User assertion check turns green. The verification
assumes that the return value of my_acos is 0.

• Before mapping:

double x = my_acos(1.0);
assert(x <= 2.0);

• Mapping specification:

<function name="my_acos" std="acos">
</function>

• After mapping:

double x = my_acos(1.0);
assert(x <= 2.0);

• my_sqrt → sqrt:

2 Polyspace Command-Line Options

2-18

If you use the mapping, the Invalid use of standard library routine check
turns red. Otherwise, the verification does not check whether the argument of
my_sqrt is nonnegative.

• Before mapping:

res = my_sqrt(-1.0);

• Mapping specification:

<function name="my_sqrt" std="sqrt">
</function>

• After mapping:

res = my_sqrt(-1.0);

• my_lookup_table (argument 2) →__ps_lookup_table_clip (argument 1):

If you use the mapping, the User assertion check turns green. The verification
assumes that the return value of my_lookup_table is within the range of the look-up
table array table.

• Before mapping:

double table[3] = {1.1, 2.2, 3.3}
.
.
double res = my_lookup_table(u, table, bp);
assert(res >= 1.1 && res <= 3.3);

• Mapping specification:

<function name="my_lookup_table" std="__ps_lookup_table_clip">
 <mapping std_arg="1" arg="2"></mapping>
</function>

• After mapping:

double table[3] = {1.1, 2.2, 3.3}
.
.
res_real = my_lookup_table(u, table9, bp);
assert(res_real >= 1.1 && res_real <= 3.3);

• my_meminit →__ps_meminit:

 -function-behavior-specifications

2-19

If you use the mapping, the Non-initialized local variable check turns green.
The verification assumes that all fields of the structure x are initialized with valid
values.

• Before mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(struct X));
return x.field1;

• Mapping specification:

<function name="my_meminit" std="__ps_meminit">
 <mapping std_arg="1" arg="1"></mapping>
 <mapping std_arg="2" arg="2"></mapping>
</function>

• After mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(struct X));
return x.field1;

• my_meminit →__ps_meminit:

If you use the mapping, the Non-initialized local variable check turns red.
The verification assumes that only the field field1 of the structure x is initialized
with valid values.

• Before mapping:

struct X {
 int field1 ;
 int field2 ;

2 Polyspace Command-Line Options

2-20

};
.
.
struct X x;
my_meminit(&x, sizeof(int));
return x.field2;

• Mapping specification:

<function name="my_meminit" std="__ps_meminit">
</function>

• After mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(int));
return x.field2;

Effect of Mapping on Concurrency Detection
In this example, the Polyspace support for automatic concurrency detection is extended
by mapping unsupported functions to the supported Pthreads functions.

• Thread creation function: createTask → pthread_create
• Function that begins critical section: takeLock → pthread_mutex_lock
• Function that ends critical section: releaseLock → pthread_mutex_unlock

If you use the mapping, a Bug Finder analysis can determine the multitasking model used
in your code and find possible race conditions.

• Before mapping:

The analysis does not detect the data race on var2.

typedef void* (*FUNT) (void*);

extern int takeLock(int* t);
extern int releaseLock(int* t);

 -function-behavior-specifications

2-21

// First argument is the function, second the id
extern int createTask(FUNT,int*,int*,void*);

int t_id1,t_id2;
int lock;

int var1;
int var2;

void* task1(void* a) {
 takeLock(&lock);
 var1++;
 var2++;
 releaseLock(&lock);
 return 0;
}

void* task2(void* a) {
 takeLock(&lock);
 var1++;
 releaseLock(&lock);
 var2++;
 return 0;
}

void main() {
 createTask(task1,&t_id1,0,0);
 createTask(task2,&t_id2,0,0);
}

• Mapping specification:

Based on the number and type of parameters of the function createTask, it is
convenient to map createTask to the thread creation function pthread_create.
The other available alternatives, createThread or OSTaskCreate, have different
argument types.

Even when mapping to pthread_create, argument remapping is required, because
the arguments do not correspond exactly. The thread start routine is the third
argument of pthread_create but the first argument of createTask.

<function name="createTask" std="pthread_create" >
 <mapping std_arg="1" arg="2"></mapping>
 <mapping std_arg="3" arg="1"></mapping>
 <mapping std_arg="2" arg="3"></mapping>

2 Polyspace Command-Line Options

2-22

 <mapping std_arg="4" arg="4"></mapping>
</function>
<function name="takeLock" std="pthread_mutex_lock" >
</function>
<function name="releaseLock" std="pthread_mutex_unlock" >
</function>

For the list of supported functions that you can map to, see the sample mapping file
function-behavior-specifications-sample.xml in polyspaceroot
\polyspace\verifier\cxx\. polyspaceroot is the Polyspace installation folder,
such as C:\Program Files\Polyspace\R2019a. See also “Auto-Detection of
Thread Creation and Critical Section in Polyspace”.

• After mapping:

The analysis detects the data race on var2.

typedef void* (*FUNT) (void*);

extern int takeLock(int* t);
extern int releaseLock(int* t);
// First argument is the function, second the id
extern int createTask(FUNT,int*,int*,void*);

int t_id1,t_id2;
int lock;

int var1;
int var2;

void* task1(void* a) {
 takeLock(&lock);
 var1++;
 var2++;
 releaseLock(&lock);
 return 0;
}

void* task2(void* a) {
 takeLock(&lock);
 var1++;
 releaseLock(&lock);
 var2++;
 return 0;
}

 -function-behavior-specifications

2-23

void main() {
 createTask(task1,&t_id1,0,0);
 createTask(task2,&t_id2,0,0);
}

See Also

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016b

2 Polyspace Command-Line Options

2-24

-generate-launching-script-for
Extract information from project file

Syntax
-generate-launching-script-for PRJFILE

Description
-generate-launching-script-for PRJFILE extracts information from a project file
PRJFILE (created in the user interface of the Polyspace desktop products) so that you can
run an analysis from the command line. For each project module and each configuration
in each module, a folder is created containing the following files::

• source_command.txt — List of source files for the -sources-list-file option.
• options_command.txt — List of the analysis options for the -options-file

option.
• temporal_exclusions.txt — List of temporal exclusions, generated only if you

specify the Temporally exclusive tasks (-temporal-exclusions-file)
option.

• .polyspace_conf.psprj — A copy of the project file Polyspace used to generate the
scripting files.

• launchingCommand.sh (UNIX) or launchingCommand.bat (DOS) — shell script
that calls the correct commands. The script also calls any options that cannot be given
to the -options-file command, such as -batch or -add-to-results-
repository. You can give this file additional analysis options as parameters.

Note The script that Polyspace generates runs the same analysis that Polyspace runs
from the user interface. If your project runs in the Polyspace user interface, the script will
run from the command line.

 -generate-launching-script-for

2-25

Examples
Extract information to run myproject from the command line. Use this option with the
desktop binary polyspace:

• Bug Finder:

polyspace -generate-launching-script-for myproject.psprj -bug-finder
• Code Prover:

polyspace -generate-launching-script-for myproject.psprj

See Also

Topics
“Configure Polyspace Analysis Options in User Interface and Generate Scripts”

2 Polyspace Command-Line Options

2-26

-h | -help
Display list of possible options

Syntax
-h
-help

Description
-h and -help display the list of possible options in the command window along with
option argument syntax.

Examples
Display the command-line help:

• Bug Finder:

polyspace-bug-finder -h
polyspace-bug-finder -help

• Code Prover:

polyspace-code-prover -h
polyspace-code-prover -help

• Bug Finder Server:

polyspace-bug-finder-server -h
polyspace-bug-finder-server -help

• Code Prover Server:

polyspace-code-prover-server -h
polyspace-code-prover-server -help

 -h | -help

2-27

-doc | -documentation

2 Polyspace Command-Line Options

2-28

-I
Specify include folder for compilation

Syntax
-I folder

Description
-I folder specifies a folder that contains include files required for compiling your
sources. You can specify only one folder for each instance of -I. However, you can specify
this option multiple times.

The analysis looks for include files relative to the folder paths that you specify. For
instance, if your code contains the preprocessor directive #include<../mylib.h> and
you include the folder:

C:\My_Project\MySourceFiles\Includes

the folder C:\My_Project\MySourceFiles must contain a file mylib.h.

The analysis automatically includes the ./sources folder (if it exists) after the include
folders that you specify.

Examples
Include two folders with the analysis:

• Bug Finder:

polyspace-bug-finder -I /com1/inc -I /com1/sys/inc

• Code Prover:

polyspace-code-prover -I /com1/inc -I /com1/sys/inc

 -I

2-29

• Bug Finder Server:

polyspace-bug-finder-server -I /com1/inc -I /com1/sys/inc
• Code Prover Server:

polyspace-code-prover-server -I /com1/inc -I /com1/sys/inc

The source folder is implicitly included. Include files in the source folder can be found
automatically without explicit inclusion of the source folder with the -I option.

See Also

Topics
“Specify Polyspace Analysis Options”

2 Polyspace Command-Line Options

2-30

-import-comments
Import review information from previous analysis

Syntax
-import-comments resultsFolder

Description
-import-comments resultsFolder imports the review information (status, severity
and additional notes) from a previous analysis, as specified by the results folder.

You can import review information from the same type of results only. For instance:

• You cannot import review information from a results of a Bug Finder checker to a
Code Prover run-time check. Even when the checker names sound similar, the
underlying semantics of Bug Finder and Code Prover can be different. The only
exception is checkers for coding rules. You can import comments between Bug Finder
and Code Prover for coding rule violations.

• You cannot import review information from results of a file-by-file verification in Code
Prover to results of a regular Code Prover verification.

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

Examples
Increment your project’s version number (-version) and import review information from
the previous results:

• Bug Finder:

polyspace-bug-finder -version 1.3
 -import-comments C:\Results\myProj\1.2

 -import-comments

2-31

• Code Prover:

polyspace-code-prover -version 1.3
 -import-comments C:\Results\myProj\1.2

• Bug Finder Server:

polyspace-bug-finder-server -version 1.3
 -import-comments C:\Results\myProj\1.2

• Code Prover Server:

polyspace-code-prover-server -version 1.3
 -import-comments C:\Results\myProj\1.2

See Also
-v[ersion] | polyspace-comments-import

Topics
“Import Review Information from Previous Polyspace Analysis”

2 Polyspace Command-Line Options

2-32

-max-processes
Specify maximum number of processors for analysis

Syntax
-max-processes num

Description
-max-processes num specifies the maximum number of processes that you want the
analysis to use. On a multicore system, the software parallelizes the analysis and creates
the specified number of processes to speed up the analysis. The valid range of num is 1 to
128.

Unless you specify this option, a Code Prover verification uses up to four processes. If you
have fewer than four processes, the verification uses the maximum available number. To
increase or restrict the number of processes, use this option.

Unless you specify this option, a Bug Finder analysis uses the maximum number of
available processes. Use this option to restrict the number of processes used.

To use this option effectively, determine the number of processors available for use. If the
number of processes you create is greater than the number of processors available, the
analysis does not benefit from the parallelization. Check the system information in your
operating system.

Note that when you start a verification, a message states the number of logical processors
detected on your system. However, the analysis is parallelized to the physical processor
cores on a machine. Multithreading implementations such as hyper-threading is not taken
into account.

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

 -max-processes

2-33

Examples
Disable parallel processing during the analysis:

• Bug Finder:

polyspace-bug-finder -max-processes 1
• Code Prover:

polyspace-code-prover -max-processes 1
• Bug Finder Server:

polyspace-bug-finder-server -max-processes 1
• Code Prover Server:

polyspace-code-prover-server -max-processes 1

Tips
You must have at least 4 GB of RAM per processor for analysis. For instance, if your
machine has 16 GB of RAM, do not use this option to specify more than four processes.

See Also

Topics
“Specify Polyspace Analysis Options”

2 Polyspace Command-Line Options

2-34

-non-preemptable-tasks
Specify functions that represent nonpreemptable tasks

Syntax
-non-preemptable-tasks function1[,function2[,...]]

Description
This option affects a Bug Finder analysis only.

-non-preemptable-tasks function1[,function2[,...]] specifies functions that
represent nonpreemptable tasks.

The functions cannot be interrupted by other noncyclic tasks and cyclic tasks but can be
interrupted by interrupts, preemptable or nonpreemptable. Noncyclic tasks are specified
with the option Tasks (-entry-points), cyclic tasks with the option Cyclic tasks
(-cyclic-tasks) and interrupts with the option Interrupts (-interrupts). For
examples, see “Define Preemptable Interrupts and Nonpreemptable Tasks”.

To specify a function as a nonpreemptable cyclic task, you must first specify the function
as a cyclic or noncyclic task. The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section
details (-critical-section-begin -critical-section-end) | Cyclic tasks
(-cyclic-tasks) | Interrupts (-interrupts) | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

 -non-preemptable-tasks

2-35

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”
“Concurrency Defects”

Introduced in R2016b

2 Polyspace Command-Line Options

2-36

-options-file
Run Polyspace using list of options

Syntax
-options-file file

Description
-options-file file specifies a file which lists your analysis options. The file must be
a text file with each option on a separate line. Use # to add comments to this file.

Examples
1 Create an options file called listofoptions.txt with your options. For example:

• Bug Finder or Bug Finder Server:

#These are the options for MyBugFinderProject
-lang c
-prog MyBugFinderProject
-author jsmith
-sources "mymain.c,funAlgebra.c,funGeometry.c"
-target x86_64
-compiler generic
-dos
-misra2 required-rules
-do-not-generate-results-for all-headers
-checkers default
-disable-checkers concurrency
-results-dir C:\Polyspace\MyBugFinderProject

• Code Prover or Code Prover Server:

#These are the options for MyCodeProverProject
-lang c
-prog MyCodeProverProject

 -options-file

2-37

-author jsmith
-sources "mymain.c,funAlgebra.c,funGeometry.c"
-target x86_64
-compiler generic
-dos
-misra2 required-rules
-do-not-generate-results-for all-headers
-main-generator
-results-dir C:\Polyspace\MyCodeProverProject

2 Run Polyspace using options in the file listofoptions.txt:

• Bug Finder:

polyspace-bug-finder -options-file listofoptions.txt
• Code Prover:

polyspace-code-prover -options-file listofoptions.txt
• Bug Finder Server:

polyspace-bug-finder-server -options-file listofoptions.txt
• Code Prover Server:

polyspace-code-prover-server -options-file listofoptions.txt

See Also

Topics
“Specify Polyspace Analysis Options”

2 Polyspace Command-Line Options

2-38

-options-for-sources
Specify analysis options specific to a source file

Syntax
-options-for-sources filename options

Description
-options-for-sources filename options associates a semicolon-separated list of
Polyspace analysis options with the source file specified by filename..

This option is primarily used when the polyspace-configure command creates an
options file for the subsequent Polyspace analysis. The option -options-for-sources
associates a group of analysis options such as include folders and macro definitions with
specific source files.

However, you can directly enter this option when manually writing options files. This
option is useful in situations where you want to associate a group of options with a
specific source file without applying it to other files.

In the user interface of the Polyspace desktop products, you can create a Polyspace
project from your build command. The project uses the option -options-for-sources
to associate specific Polyspace analysis options with specific files. However, when you
open the project in the user interface, you cannot see the use of this option. Open the
project in a text editor to see this option.

Examples
In this sample options file, the include folder /usr/lib/gcc/x86_64-linux-gnu/6/
include and the macros __STDC_VERSION__ and __GNUC__ are associated only with
the source file file.c and not fileAnother.c.

 -options-for-sources

2-39

-options-for-sources file.c;-I /usr/lib/gcc/x86_64-linux-gnu/6/include;
-options-for-sources file.c;-D __STDC_VERSION__=201112L;-D __GNUC__=6;
-sources file.c
-sources fileAnother.c

For the options used in this example, see:

• -sources
• -I
• Preprocessor definitions (-D)

See Also
-options-file | polyspace-configure

Topics
“Specify Polyspace Analysis Options”

2 Polyspace Command-Line Options

2-40

-preemptable-interrupts
Specify functions that represent preemptable interrupts

Syntax
-preemptable-interrupts function1[,function2[,...]]

Description
This option affects a Bug Finder analysis only.

-preemptable-interrupts function1[,function2[,...]] specifies functions
that represent preemptable interrupts.

The function acts as an interrupt in every way except that it can be interrupted by other
interrupts, preemptable or nonpreemptable. Interrupts are specified with the option
Interrupts (-interrupts). For examples, see “Define Preemptable Interrupts and
Nonpreemptable Tasks”.

To specify a function as a preemptable interrupt, you must first specify the function as an
interrupt. The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

See Also
-non-preemptable-tasks | -preemptable-interrupts | Critical section
details (-critical-section-begin -critical-section-end) | Cyclic tasks
(-cyclic-tasks) | Interrupts (-interrupts) | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

 -preemptable-interrupts

2-41

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”
“Concurrency Defects”

Introduced in R2016b

2 Polyspace Command-Line Options

2-42

-prog
Specify name of project

Syntax
-prog projectName

Description
-prog projectName specifies a name for your Polyspace project. This name must use
only letters, numbers, underscores (_), dashes (-), or periods (.).

The name appears in the analysis log and a few other places.

Examples
Assign a name to your Polyspace project:

• Bug Finder:

polyspace-bug-finder -prog MyApp
• Code Prover:

polyspace-code-prover -prog MyApp
• Bug Finder Server:

polyspace-bug-finder-server -prog MyApp
• Code Prover Server:

polyspace-code-prover-server -prog MyApp

See Also
-author | -date

 -prog

2-43

Topics
“Specify Polyspace Analysis Options”

2 Polyspace Command-Line Options

2-44

-regex-replace-rgx -regex-replace-fmt
Make replacements in preprocessor directives

Syntax
-regex-replace-rgx matchFileName -regex-replace-fmt
replacementFileName

Description
-regex-replace-rgx matchFileName -regex-replace-fmt
replacementFileName replaces tokens in preprocessor directives for the purposes of
Polyspace analysis. The original source code is unchanged. You match a token using a
regular expression in the file matchFileName and replace the token using a replacement
in the file replacementFileName.

Use this option only to replace or remove tokens in the preprocessor directives before
preprocessing. If a token in your source code causes a compilation error, you can typically
replace or remove the token from the preprocessed code. Use the more convenient option
Command/script to apply to preprocessed files (-post-preprocessing-
command). You cannot make the replacements in preprocessed code only for tokens in
preprocessor directives.

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

In the user interface, specify absolute paths to the text files with the search and replace
patterns.

Examples
Suppose you want to replace _rom_beg in this #define directive:

#define ROM_BEG_ADDR (uint16*)(&_rom_beg)

 -regex-replace-rgx -regex-replace-fmt

2-45

and modify the directive to:

#define ROM_BEG_ADDR (0x4000u)

Specify this regular expression in a file match.txt:

^\s*#define\s+ROM_BEG_ADDR\s+\(uint16_t*\)\(\&_rom_beg\)

These elements are used in the regular expression:

• ^ asserts position at the start of a line.
• \s* represents zero or more whitespace characters.
• \s+ represents one or more whitespace characters.

The characters *, &, (and) in the original expression are escaped with \. For a complete
list of regular expressions, see Perl documentation.

Specify the replacement in a file replace.txt.

#define ROM_BEG_ADDR \(0x4000u\)

Specify the two text files during analysis with the options -regex-replace-rgx and -
regex-replace-fmt:

• Bug Finder:

polyspace-bug-finder -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Code Prover:

polyspace-code-prover -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Bug Finder Server:

polyspace-bug-finder-server -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Code Prover Server:

polyspace-code-prover-server -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

2 Polyspace Command-Line Options

2-46

https://perldoc.perl.org/perlre.html#Regular-Expressions

See Also
Command/script to apply to preprocessed files (-post-preprocessing-
command)

Topics
“Specify Polyspace Analysis Options”

 -regex-replace-rgx -regex-replace-fmt

2-47

-report-output-name
Specify name of report

Syntax
-report-output-name reportName

Description
-report-output-name reportName specifies the name of an analysis report.

The default name for a report is Prog_Template.Format:

• Prog is the name of the project specified by -prog.
• TemplateName is the type of report template specified by -report-template.
• Format is the file extension for the report specified by -report-output-format.

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

Examples
Specify the name of the analysis report:

• Bug Finder:

polyspace-bug-finder -report-template Developer
 -report-output-name Airbag_v3.doc

• Code Prover:

polyspace-code-prover -report-template Developer
 -report-output-name Airbag_v3.doc

• Bug Finder Server:

2 Polyspace Command-Line Options

2-48

polyspace-bug-finder-server -report-template Developer
 -report-output-name Airbag_v3.doc

• Code Prover Server:

polyspace-code-prover-server -report-template Developer
 -report-output-name Airbag_v3.doc

See Also
Bug Finder and Code Prover report (-report-template) | Output format
(-report-output-format)

Topics
“Specify Polyspace Analysis Options”
“Generate Reports”

 -report-output-name

2-49

-results-dir
Specify the results folder

Syntax
-results-dir resultsFolder

Description
-results-dir resultsFolder specifies where to save the analysis results. The
default location at the command line is the current folder.

If you are running analysis in the user interface of the Polyspace desktop products, see
“Run Polyspace Analysis on Desktop”.

Examples
Specify to store your results in the RESULTS folder:

• Bug Finder:

polyspace-bug-finder -results-dir RESULTS
• Code Prover:

polyspace-code-prover -results-dir RESULTS
• Bug Finder Server:

polyspace-bug-finder-server -results-dir RESULTS
• Code Prover Server:

polyspace-code-prover-server -results-dir RESULTS

You can create the name of the results folder based on the verification date and time. For
instance, in a Bash shell, enter these commands to create a variable RESULTS that begins
with results_ and contains the current date and time:

2 Polyspace Command-Line Options

2-50

export DATETIME=$(date +%d%B_%HH%M_%A)
export RESULTS=results_$DATE

You can then use the variable RESULTS as argument of the option -results-dir:

-results-dir $RESULTS

See Also

Topics
“Specify Polyspace Analysis Options”

 -results-dir

2-51

-scheduler
Specify cluster or job scheduler

Syntax
-scheduler schedulingOption

Description
-scheduler schedulingOption specifies the head node of the MATLAB Parallel
Server cluster that manages Polyspace analysis submissions from multiple clients and
allocates the analysis to worker nodes. You use this option along with the option Run Bug
Finder or Code Prover analysis on a remote cluster (-batch) to offload
an analysis from a desktop to a remote cluster. Note that you use this option with the
commands in the desktop products (polyspace-bug-finder and polyspace-code-
prover) and not the commands in the server products (polyspace-bug-finder-
server and polyspace-code-prover-server).

For more information, see “Install Products for Submitting Polyspace Analysis from
Desktops to Remote Server”.

Examples
Run a batch analysis on a remote server using one of these syntaxes for the job scheduler:

• Bug Finder:

polyspace-bug-finder -batch -scheduler NodeHost
polyspace-bug-finder -batch -scheduler 192.168.1.124:12400
polyspace-bug-finder -batch -scheduler MJSName@NodeHost

• Code Prover:

polyspace-code-prover -batch -scheduler NodeHost
polyspace-code-prover -batch -scheduler 192.168.1.124:12400
polyspace-code-prover -batch -scheduler MJSName@NodeHost

2 Polyspace Command-Line Options

2-52

For details, see “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”.

You can track the status of the job using the polyspace-jobs-manager command:

polyspace-jobs-manager listjobs -scheduler NodeHost

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

Topics
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”

 -scheduler

2-53

-sources
Specify source files

Syntax
-sources file1[,file2,...]
-sources file1 -sources file2

Description
-sources file1[,file2,...] or -sources file1 -sources file2 specifies the
list of source files that you want to analyze. You can use standard UNIX wildcards with
this option to specify your sources.

The source files are compiled in the order in which they are specified.

Examples
Analyze the files mymain.c, funAlgebra.c, and funGeometry.c.

• Bug Finder:

polyspace-bug-finder -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Code Prover:

polyspace-code-prover -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Bug Finder Server:

polyspace-bug-finder-server -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Code Prover Server:

2 Polyspace Command-Line Options

2-54

polyspace-code-prover-server -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

See Also
-sources-list-file | polyspace-configure

Topics
“Specify Polyspace Analysis Options”

 -sources

2-55

-sources-list-file
Specify file containing list of sources

Syntax
-sources-list-file file_path

Description
-sources-list-file file_path specifies the absolute path to a text file that lists
each file name that you want to analyze.

To specify your sources in the text file, on each line, specify the path to a source file. You
can specify an absolute path or a path relative to the folder from which you are running
the analysis. For example:

C:\Sources\myfile.c
C:\Sources2\myfile2.c

Examples
Run analysis on files listed in files.txt:

• Bug Finder:

polyspace-bug-finder -sources-list-file "C:\Analysis\files.txt"
polyspace-bug-finder -sources-list-file "/home/polyspace/files.txt"

• Code Prover:

polyspace-code-prover -sources-list-file "C:\Analysis\files.txt
polyspace-code-prover -sources-list-file "/home/polyspace/files.txt"

• Bug Finder Server:

polyspace-bug-finder-server -sources-list-file "C:\Analysis\files.txt"
polyspace-bug-finder-server -sources-list-file "/home/polyspace/files.txt"

2 Polyspace Command-Line Options

2-56

• Code Prover Server:

polyspace-code-prover-server -sources-list-file "C:\Analysis\files.txt
polyspace-code-prover-server -sources-list-file "/home/polyspace/files.txt"

See Also

Topics
“Specify Polyspace Analysis Options”

 -sources-list-file

2-57

-submit-job-from-previous-compilation-
results
Specify that the analysis job must be resubmitted without recompilation

Syntax
-submit-job-from-previous-compilation-results

Description
-submit-job-from-previous-compilation-results specifies that the Polyspace
analysis must start after the compilation phase with compilation results from a previous
analysis. The option is primarily useful when offloading a Polyspace analysis from
desktops to remote servers. If a remote analysis stops after compilation, for instance
because of communication problems between the server and client computers, use this
option. Note that you use this option with the commands in the desktop products
(polyspace-bug-finder and polyspace-code-prover) and not the commands in the
server products (polyspace-bug-finder-server and polyspace-code-prover-
server).

When you perform a remote analysis:

1 On the local host computer, the Polyspace software performs code compilation and
coding rule checking.

2 The analysis job is then submitted to the MATLAB job scheduler on the head node of
the MATLAB Parallel Server cluster.

3 The head node of the MATLAB Parallel Server cluster assigns the verification job to a
worker node, where the remaining phases of the Polyspace analysis occur.

If an analysis stops after completing the first step and you restart the analysis, use this
option to reuse compilation results from the previous analysis. You thereby avoid
restarting the analysis from the compilation phase.

If previous compilation results do not exist in the current folder, an error occurs. Remove
the option and restart analysis from the compilation phase.

2 Polyspace Command-Line Options

2-58

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

Examples
Specify remote analysis with compilation results from a previous analysis:

• Bug Finder:

polyspace-bug-finder -batch -scheduler localhost
 -submit-job-from-previous-compilation-results

• Code Prover:

polyspace-code-prover -batch -scheduler localhost
 -submit-job-from-previous-compilation-results

See Also

Topics
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”

 -submit-job-from-previous-compilation-results

2-59

-termination-functions
Specify process termination functions

Syntax
-termination-functions function1[,function2[,...]]

Description
-termination-functions function1[,function2[,...]] specifies functions that
behave like the exit function and terminate your program.

Use this option to specify program termination functions that are declared but not defined
in your code.

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

Examples
Polyspace detects an Integer division by zero defect in the following code because it
does not recognize that my_exit terminates the program.

void my_exit();

double reciprocal(int val) {
 if(val==0)
 my_exit();
 return (1/val);
}

To prevent Polyspace from flagging the division operation, use the -termination-
functions option:

polyspace-bug-finder -termination-functions my_exit

2 Polyspace Command-Line Options

2-60

http://www.cplusplus.com/reference/cstdlib/exit/

See Also
polyspaceBugFinder

Topics
“Run Polyspace Analysis from Command Line”

 -termination-functions

2-61

-tmp-dir-in-results-dir
Keep temporary files in results folder

Syntax
-tmp-dir-in-results-dir

Description
-tmp-dir-in-results-dir specifies that temporary files must be stored in a subfolder
of the results folder. Use this option only when the standard temporary folder does not
have enough disk space. If the results folder is mounted on a network drive, this option
can slow down your processor.

To learn how Polyspace determines the temporary folder location, see “Storage of
Temporary Files”.

If you are running an analysis from the user interface (Polyspace desktop products only),
on the Configuration pane, you can enter this option in the Other field. See Other.

Examples
Store temporary files in the results folder:

• Bug Finder:

polyspace-bug-finder -tmp-dir-in-results-dir
• Code Prover:

polyspace-code-prover -tmp-dir-in-results-dir
• Bug Finder Server:

polyspace-bug-finder-server -tmp-dir-in-results-dir
• Code Prover Server:

2 Polyspace Command-Line Options

2-62

polyspace-code-prover-server -tmp-dir-in-results-dir

See Also

Topics
“Specify Polyspace Analysis Options”

 -tmp-dir-in-results-dir

2-63

-v | -version
Display Polyspace version number

Syntax
-v
-version

Description
-v or -version displays the version number of your Polyspace product.

Examples
Display the version number and release of your Polyspace product:

• Bug Finder:

polyspace-bug-finder -v
• Code Prover:

polyspace-code-prover -v
• Bug Finder Server:

polyspace-bug-finder-server -v
• Code Prover Server:

polyspace-code-prover-server -v

2 Polyspace Command-Line Options

2-64

-xml-annotations-description
Apply custom code annotations to Polyspace analysis results

Syntax
-xml-annotations-description file_path

Description
-xml-annotations-description file_path uses the annotation syntax defined in
the XML file located in file_path to interpret code annotations in your source files. You
can use the XML file to specify an annotation syntax and map it to the Polyspace
annotation syntax. When you run an analysis by using this option, you can justify and hide
results with annotations that use your syntax. If you run Polyspace at the command line,
file_path is the absolute path or path relative to the folder from which you run the
command. If you run Polyspace through the user interface, file_path is the absolute
path.

If you are running an analysis through the user interface, you can enter this option in the
Other field, under the Advanced Settings node on the Configuration pane. See Other.

Why Use This Option
If you have existing annotations from previous code reviews, you can import these
annotations to Polyspace. You do not have to review and justify results that you have
already annotated. Similarly, if your code comments must adhere to a specific format, you
can map and import that format to Polyspace.

 -xml-annotations-description

2-65

Examples
Import Existing Annotations for Coding Rule Violations
Suppose that you have previously reviewed source file zero_div.c containing the
following code, and justified certain MISRA C: 2012 violations by using custom
annotations.

#include <stdio.h>

/* Violation of Misra C:2012
rules 8.4 and 8.7 on the next
line of code. */

int func(int p) //My_rule 50, 51
{
 int i;
 int j = 1;

 i = 1024 / (j - p);
 return i;
}

/* Violation of Misra C:2012
rule 8.4 on the next line of
code */

int main(void){ //My_rule 50
 int x=func(2);
 return x;
}

The code comments My_rule 50, 51 and My_rule 50 do not use the Polyspace
annotation syntax. Instead, you use a convention where you place all MISRA rules in a
single numbered list. In this list, rules 8.4 and 8.7 correspond to the numbers 50 and
51.You can check this code for MISRA C: 2012 violations by typing the command:

• Bug Finder:

polyspace-bug-finder -sources source_path -misra3 all
• Code Prover:

polyspace-code-prover -sources source_path -misra3 all

2 Polyspace Command-Line Options

2-66

• Bug Finder Server:

polyspace-bug-finder-server -sources source_path -misra3 all

• Code Prover Server:

polyspace-code-prover-server -sources source_path -misra3 all

source_path is the path to zero_div.c.

The annotated violations appear in the Results List pane. You must review and justify
them again.

This XML example defines the annotation format used in zero_div.c and maps it to the
Polyspace annotation syntax:

• The format of the annotation is the keyword My_rule, followed by a space and one or
more comma-separated alphanumeric rule identifiers.

• Rule identifiers 50 and 51 are mapped to MISRA C: 2012 rules 8.4 and 8.7
respectively. The mapping uses the Polyspace annotation syntax.

 -xml-annotations-description

2-67

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="example annotation">

 <Expressions Search_For_Keywords="My_rule"
 Separator_Result_Name="," >

 <!-- This section defines the annotation syntax format -->
 <Expression Mode="SAME_LINE"
 Regex="My_rule\s(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />

 </Expressions>
 <!-- This section maps the user annotation to the Polyspace
 annotation syntax -->
 <Mapping>
 <Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>
 <Result_Name_Mapping Rule_Identifier="51" Family="MISRA-C3" Result_Name="8.7"/>
 </Mapping>
</Annotations>

To import the existing annotations and apply them to the corresponding Polyspace results:

1 Copy the preceding code example to a text editor and save it on your machine as
annotations_description.xml, for instance in C:\Polyspace_workspace
\annotations\.

2 Rerun the analysis on zero_div.c by using the command:

• Bug Finder:

polyspace-bug-finder -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Code Prover:

polyspace-code-prover -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Bug Finder Server:

2 Polyspace Command-Line Options

2-68

polyspace-bug-finder-server -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Code Prover Server:

polyspace-code-prover-server -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

Polyspace considers the annotated results justified and hides them in the Results List
pane.

See Also

Topics
“Specify Polyspace Analysis Options”
“Define Custom Annotation Format”

 -xml-annotations-description

2-69

“Annotation Description Full XML Template”

Introduced in R2017b

2 Polyspace Command-Line Options

2-70

Defects

3

Alignment changed after memory
reallocation
Memory reallocation changes the originally stricter alignment of an object

Description
Alignment changed after memory reallocation occurs when you use realloc() to
modify the size of objects with strict memory alignment requirements.

Risk
The pointer returned by realloc() can be suitably assigned to objects with less strict
alignment requirements. A misaligned memory allocation can lead to buffer underflow or
overflow, an illegally dereferenced pointer, or access to arbitrary memory locations. In
processors that support misaligned memory, the allocation impacts the performance of
the system.

Fix
To reallocate memory:

1 Resize the memory block.

• In Windows, use _aligned_realloc() with the alignment argument used in
_aligned_malloc() to allocate the original memory block.

• In UNIX/Linux, use the same function with the same alignment argument used to
allocate the original memory block.

2 Copy the original content to the new memory block.
3 Free the original memory block.

Note This fix has implementation-defined behavior. The implementation might not
support the requested memory alignment and can have additional constraints for the size
of the new memory.

3 Defects

3-2

Examples

Memory Reallocated Without Preserving the Original
Alignment
#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;
 int *ptr1;

 /* Allocate memory with 4096 bytes alignment */

 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */
 }

 /*Reallocate memory without using the original alignment.
 ptr1 may not be 4096 bytes aligned. */

 ptr1 = (int *)realloc(ptr, sizeof(int) * resize);

 if (ptr1 == NULL)
 {
 /* Handle error */
 }

 /* Processing using ptr1 */

 /* Free before exit */
 free(ptr1);
}

 Alignment changed after memory reallocation

3-3

In this example, the allocated memory is 4096-bytes aligned. realloc() then resizes the
allocated memory. The new pointer ptr1 might not be 4096-bytes aligned.

Correction — Specify the Alignment for the Reallocated Memory

When you reallocate the memory, use posix_memalign() and pass the alignment
argument that you used to allocate the original memory.

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;

 /* Allocate memory with 4096 bytes alignment */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */
 }

 /* Reallocate memory using the original alignment. */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int) * resize) != 0)
 {
 /* Handle error */
 free(ptr);
 ptr = NULL;
 }

 /* Processing using ptr */

 /* Free before exit */
 free(ptr);
}

Result Information
Group: Dynamic memory
Language: C | C++

3 Defects

3-4

Default: On
Command-Line Syntax: ALIGNMENT_CHANGE
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

 Alignment changed after memory reallocation

3-5

Assertion
Failed assertion statement

Description
Assertion occurs when you use an assert, and the asserted expression is or could be
false.

Note Polyspace does not flag assert(0) as an assertion defect because these
statements are commonly used to disable certain sections of code.

Risk
Typically you use assert statements for functional testing in debug mode. An assertion
failure found using static analysis indicates that the corresponding functional test would
fail at run time.

Fix
The fix depends on the root cause of the defect. For instance, the root cause can be
unconstrained input from an external source that eventually led to the assertion failure.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

3 Defects

3-6

Examples

Check Assertion on Unsigned Integer
#include <assert.h>

void asserting_x(unsigned int theta) {
 theta =+ 5;
 assert(theta < 0);
}

In this example, the assert function checks if the input variable, theta, is less than or
equal to zero. The assertion fails because theta is an unsigned integer, so the value at
the beginning of the function is at least zero. The += statement increases this positive
value by five. Therefore, the range of theta is [5..MAX_INT]. theta is always greater
than zero.

Correction — Change Assert Expression

One possible correction is to change the assertion expression. By changing the less-than-
or-equal-to sign to a greater-than-or-equal-to sign, the assertion does not fail.

#include <assert.h>

void asserting_x(unsigned int theta) {
 theta =+ 5;
 assert(theta > 0);
}

Correction — Fix Code

One possible correction is to fix the code related to the assertion expression. If the
assertion expression is true, fix your code so the assertion passes.

#include <assert.h>
#include <stdlib.h>

void asserting_x(int theta) {
 theta = -abs(theta);
 assert(theta < 0);
}

 Assertion

3-7

Asserting Zero
#include <assert.h>

#define FLAG 0

int main(void){
 int i_test_z = 0;
 float f_test_z = (float)i_test_z;

 assert(i_test_z);
 assert(f_test_z);
 assert(FLAG);

 return 0;
}

In this example, Polyspace does not flag assert(FLAG) as a violation because a macro
defines FLAG as 0. The Polyspace Bug Finder assertion checker does not flag assertions
with a constant zero parameter, assert(0). These types of assertions are commonly
used as dynamic checks during runtime. By inserting assert(0), you indicate that the
program must not reach this statement during run time, otherwise the program crashes.

However, the assertion checker does flag failed assertions caused by a variable value
equal to zero, as seen in the example with assert(i_test_z) and assert(f_test_z).

Check Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: ASSERT
Impact: High

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”

3 Defects

3-8

“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Assertion

3-9

Atomic variable accessed twice in an
expression
Variable can be modified between accesses

Description
Atomic variable accessed twice in an expression occurs when C atomic types or C++
std::atomic class variables appear twice in an expression and there are:

• Two atomic read operations on the variable.
• An atomic read and a distinct atomic write operation on the variable.

The C standard defines certain operations on atomic variables that are thread safe and do
not cause data race conditions. Unlike individual operations, a pair of operations on the
same atomic variable in an expression is not thread safe.

Risk
A thread can modify the atomic variable between the pair of atomic operations, which can
result in a data race condition.

Fix
Do not reference an atomic variable twice in the same expression.

Examples

Referencing Atomic Variable Twice in an Expression
#include <stdatomic.h>

atomic_int n = ATOMIC_VAR_INIT(0);

3 Defects

3-10

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic

int compute_sum(void)
{
 return n * (n + 1) / 2;
}

In this example, the global variable n is referenced twice in the return statement of
compute_sum(). The value of n can change between the two distinct read operations.
compute_sum() can return an incorrect value.

Correction — Pass Variable as Function Argument

One possible correction is to pass the variable as a function argument n. The variable is
copied to memory and the read operations on the copy guarantee that compute_sum()
returns a correct result. If you pass a variable of type int instead of type atomic_int,
the correction is still valid.

#include <stdatomic.h>

int compute_sum(atomic_int n)
{
 return n * (n + 1) / 2;
}

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: ATOMIC_VAR_ACCESS_TWICE
Impact: Medium

See Also
Atomic load and store sequence not atomic | Data race | Data race
including atomic operations | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

 Atomic variable accessed twice in an expression

3-11

Introduced in R2018b

3 Defects

3-12

Atomic load and store sequence not atomic
Variable accessible between load and store operations

Description
Atomic load and store sequence not atomic occurs when you use these functions to
load, and then store an atomic variable.

• C functions:

• atomic_load()
• atomic_load_explicit()
• atomic_store()
• atomic_store_explicit()

• C++ functions:

• std::atomic_load()
• std::atomic_load_explicit()
• std::atomic_store()
• std::atomic_store_explicit()
• std::atomic::load()
• std::atomic::store()

A thread cannot interrupt an atomic load or an atomic store operation on a variable, but a
thread can interrupt a store, and then load sequence.

Risk
A thread can modify a variable between the load and store operations, resulting in a data
race condition.

 Atomic load and store sequence not atomic

3-13

Fix
To read, modify, and store a variable atomically, use a compound assignment operator
such as +=, atomic_compare_exchange() or atomic_fetch_*-family functions.

Examples

Loading Then Storing an Atomic Variable
#include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC_VAR_INIT(false);

void init_flag(void)
{
 atomic_init(&flag, false);
}

void toggle_flag(void)
{
 bool temp_flag = atomic_load(&flag);
 temp_flag = !temp_flag;
 atomic_store(&flag, temp_flag);
}

bool get_flag(void)
{
 return atomic_load(&flag);
}

In this example, variable flag of type atomic_bool is referenced twice inside the
toggle_flag() function. The function loads the variable, negates its value, then stores
the new value back to the variable. If two threads call toggle_flag(), the second
thread can access flag between the load and store operations of the first thread. flag
can end up in an incorrect state.

Correction — Use Compound Assignment to Modify Variable

One possible correction is to use a compound assignment operator to toggle the value of
flag. The C standard defines the operation by using ^= as atomic.

3 Defects

3-14

 #include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC_VAR_INIT(false);

void toggle_flag(void)
{
 flag ^= 1;
}

bool get_flag(void)
{
 return flag;
}

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: ATOMIC_VAR_SEQUENCE_NOT_ATOMIC
Impact: Medium

See Also
Atomic variable accessed twice in an expression | Data race | Data race
including atomic operations | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

 Atomic load and store sequence not atomic

3-15

Invalid deletion of pointer
Pointer deallocation using delete without corresponding allocation using new

Description
Invalid deletion of pointer occurs when:

• You release a block of memory with the delete operator but the memory was
previously not allocated with the new operator.

• You release a block of memory with the delete operator using the single-object
notation but the memory was previously allocated as an array with the new operator.

This defect applies only to C++ source files.

Risk
The risk depends on the cause of the issue:

• The delete operator releases a block of memory allocated on the heap. If you try to
access a location on the heap that you did not allocate previously, a segmentation fault
can occur.

• If you use the single-object notation for delete on a pointer that is previously
allocated with the array notation for new, the behavior is undefined.

The issue can also highlight other coding errors. For instance, you perhaps wanted to use
the delete operator or a previous new operator on a different pointer.

Fix
The fix depends on the cause of the issue:

• In most cases, you can fix the issue by removing the delete statement. If the pointer
is not allocated memory from the heap with the new operator, you do not need to
release the pointer with delete. You can simply reuse the pointer as required or let
the object be destroyed at the end of its scope.

3 Defects

3-16

• In case of mismatched notation for new and delete, correct the mismatch. For
instance, to allocate and deallocate a single object, use this notation:

classType* ptr = new classType;
delete ptr;

To allocate and deallocate an array objects, use this notation:

classType* p2 = new classType[10];
delete[] p2;

If the issue highlights a coding error such as use of delete or new on the wrong pointer,
correct the error.

Examples

Deleting Static Memory
void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)
 *(ptr+i)=1;

 delete[] ptr;
}

The pointer ptr is released using the delete operator. However, ptr points to a memory
location that was not dynamically allocated.

Correction: Remove Pointer Deallocation

If the number of elements of the array ptr is known at compile time, one possible
correction is to remove the deallocation of the pointer ptr.

void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)

 Invalid deletion of pointer

3-17

 *(ptr+i)=1;
}

Correction — Add Pointer Allocation

If the number of array elements is not known at compile time, one possible correction is
to dynamically allocate memory to the array ptr using the new operator.

void assign_ones(int num)
{
 int *ptr = new int[num];

 for(int i=0; i < num; i++)
 *(ptr+i) = 1;

 delete[] ptr;
 }

Mismatched new and delete
int main (void)
{
 int *p_scale = new int[5];

 //more code using scal

 delete p_scale;
}

In this example, p_scale is initialized to an array of size 5 using new int[5]. However,
p_scale is deleted with delete instead of delete[]. The new-delete pair does not
match. Do not use delete without the brackets when deleting arrays.

Correction — Match delete to new

One possible correction is to add brackets so the delete matches the new []
declaration.

int main (void)
{
 int *p_scale = new int[5];

 //more code using p_scale

3 Defects

3-18

 delete[] p_scale;
}

Correction — Match new to delete

Another possible correction is to change the declaration of p_scale. If you meant to
initialize p_scale as 5 itself instead of an array of size 5, you must use different syntax.
For this correction, change the square brackets in the initialization to parentheses. Leave
the delete statement as it is.

int main (void)
{
 int *p_scale = new int(5);

 //more code using p_scale

 delete p_scale;
}

Check Information
Group: Dynamic memory
Language: C++
Default: Off
Command-Line Syntax: BAD_DELETE
Impact: High
CWE ID: 404

See Also
Find defects (-checkers) | Invalid free of pointer | Memory leak

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Invalid deletion of pointer

3-19

https://cwe.mitre.org/data/definitions/404.html

Invalid use of == operator
Equality operation in assignment statement

Description
Invalid use of == operator occurs when you use an equality operator instead of an
assignment operator in a simple statement.

Risk
The use of == operator instead of an = operator can silently produce incorrect results. If
you intended to assign a value to a variable, the assignment does not occur. The variable
retains its previous value or if not initialized previously, stays uninitialized.

Fix
Use the = (assignment) operator instead of the == (equality) operator.

The check appears on chained assignment and equality operators such as:

compFlag = val1 == val2;

For better readability of your code, place the equality check in parenthesis.

compFlag = (val1 == val2);

If the use of == operator is intended, add comments to your result or code to avoid
another review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Equality Evaluation in for-Loop
void populate_array(void)
{

3 Defects

3-20

 int i = 0;
 int j = 0;
 int array[4];

 for (j == 5; j < 9; j++) {
 array[i] = j;
 i++;
 }
}

Inside the for-loop, the statement j == 5 tests whether j is equal to 5 instead of setting
j to 5. The for-loop iterates from 0 to 8 because j starts with a value of 0, not 5. A by-
product of the invalid equality operator is an out-of-bounds array access in the next line.

Correction — Change to Assignment Operator

One possible correction is to change the == operator to a single equal sign (=). Changing
the == sign resolves both defects because the for-loop iterates the intended number of
times.

void populate_array(void)
{
 int i = 0;
 int j = 0;
 int array[4];

 for (j = 5; j < 9; j++) {
 array[i] = j;
 i++;
 }
}

Check Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: BAD_EQUAL_EQUAL_USE
Impact: High
CWE ID: 480, 482

 Invalid use of == operator

3-21

https://cwe.mitre.org/data/definitions/480.html
https://cwe.mitre.org/data/definitions/482.html

See Also
Find defects (-checkers) | Invalid use of = (assignment) operator

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-22

Invalid use of = operator
Assignment in conditional statement

Description
Invalid use of = operator occurs when an assignment is made inside the predicate of a
conditional, such as if or while.

In C and C++, a single equal sign is an assignment not a comparison. Using a single
equal sign in a conditional statement can indicate a typo or a mistake.

Risk
• Conditional statement tests the wrong values— The single equal sign operation

assigns the value of the right operand to the left operand. Then, because this
assignment is inside the predicate of a conditional, the program checks whether the
new value of the left operand is nonzero or not NULL.

• Maintenance and readability issues — Even if the assignment is intended, someone
reading or updating the code can misinterpret the assignment as an equality
comparison instead of an assignment.

Fix
• If the assignment is a bug, to check for equality, add a second equal sign (==).
• If the assignment inside the conditional statement was intentional, to improve

readability, separate the assignment and the test. Move the assignment outside the
control statement. In the control statement, simply test the result of the assignment.

If you do not want to fix the issue, add comments to your result or code to avoid
another review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 Invalid use of = operator

3-23

Examples
Single Equal Sign Inside an if Condition
#include <stdio.h>

void bad_equals_ex(int alpha, int beta)
{
 if(alpha = beta)
 {
 printf("Equal\n");
 }
}

The equal sign is flagged as a defect because the assignment operator is used within the
predicate of the if-statement. The predicate assigns the value beta to alpha, then
implicitly tests whether alpha is true or false.

Correction — Change Expression to Comparison

One possible correction is adding an additional equal sign. This correction changes the
assignment to a comparison. The if condition compares whether alpha and beta are
equal.

#include <stdio.h>

void equality_test(int alpha, int beta)
{
 if(alpha == beta)
 {
 printf("Equal\n");
 }
}

Correction — Assignment and Comparison Inside the if Condition

If an assignment must be made inside the predicate, a possible correction is adding an
explicit comparison. This correction assigns the value of beta to alpha, then explicitly
checks whether alpha is nonzero. The code is clearer.

#include <stdio.h>

int assignment_not_zero(int alpha, int beta)

3 Defects

3-24

{
 if((alpha = beta) != 0)
 {
 return alpha;
 }
 else
 {
 return 0;
 }
}

Correction — Move Assignment Outside the if Statement

If the assignment can be made outside the control statement, one possible correction is to
separate the assignment and comparison. This correction assigns the value of beta to
alpha before the if. Inside the if-condition, only alpha is given to test if alpha is
nonzero or not NULL.

#include <stdio.h>

void assign_and_print(int alpha, int beta)
{
 alpha = beta;
 if(alpha)
 {
 printf("%d", alpha);
 }
}

Check Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: BAD_EQUAL_USE
Impact: Medium
CWE ID: 480, 481

See Also
Find defects (-checkers) | Invalid use of == (equality) operator

 Invalid use of = operator

3-25

https://cwe.mitre.org/data/definitions/480.html
https://cwe.mitre.org/data/definitions/481.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-26

Bad file access mode or status
Access mode argument of function in fopen or open group is invalid

Description
Bad file access mode or status occurs when you use functions in the fopen or open
group with invalid or incompatible file access modes, file creation flags, or file status flags
as arguments. For instance, for the open function, examples of valid:

• Access modes include O_RDONLY, O_WRONLY, and O_RDWR
• File creation flags include O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC.
• File status flags include O_APPEND, O_ASYNC, O_CLOEXEC, O_DIRECT, O_DIRECTORY,

O_LARGEFILE, O_NOATIME, O_NOFOLLOW, O_NONBLOCK, O_NDELAY, O_SHLOCK,
O_EXLOCK, O_FSYNC, O_SYNC and so on.

The defect can occur in the following situations.

Situation Risk Fix
You pass an empty or invalid
access mode to the fopen
function.

According to the ANSI C
standard, the valid access
modes for fopen are:

• r,r+
• w,w+
• a,a+
• rb, wb, ab
• r+b, w+b, a+b
• rb+, wb+, ab+

fopen has undefined
behavior for invalid access
modes.

Some implementations allow
extension of the access
mode such as:

• GNU: rb
+cmxe,ccs=utf

• Visual C++: a+t, where
t specifies a text mode.

However, your access mode
string must begin with one
of the valid sequences.

Pass a valid access mode to
fopen.

 Bad file access mode or status

3-27

Situation Risk Fix
You pass the status flag
O_APPEND to the open
function without combining
it with either O_WRONLY or
O_RDWR.

O_APPEND indicates that
you intend to add new
content at the end of a file.
However, without O_WRONLY
or O_RDWR, you cannot write
to the file.

The open function does not
return -1 for this logical
error.

Pass either O_APPEND|
O_WRONLY or O_APPEND|
O_RDWR as access mode.

You pass the status flags
O_APPEND and O_TRUNC
together to the open
function.

O_APPEND indicates that
you intend to add new
content at the end of a file.
However, O_TRUNC indicates
that you intend to truncate
the file to zero. Therefore,
the two modes cannot
operate together.

The open function does not
return -1 for this logical
error.

Depending on what you
intend to do, pass one of the
two modes.

You pass the status flag
O_ASYNC to the open
function.

On certain implementations,
the mode O_ASYNC does not
enable signal-driven I/O
operations.

Use the fcntl(pathname,
F_SETFL, O_ASYNC);
instead.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

3 Defects

3-28

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Invalid Access Mode with fopen
#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "rw");
 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

In this example, the access mode rw is invalid. Because r indicates that you open the file
for reading and w indicates that you create a new file for writing, the two access modes
are incompatible.

Correction — Use Either r or w as Access Mode

One possible correction is to use the access mode corresponding to what you intend to do.

#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "w");
 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

Result Information
Group: Programming
Language: C | C++
Default: Off

 Bad file access mode or status

3-29

Command-Line Syntax: BAD_FILE_ACCESS_MODE_STATUS
Impact: Medium
CWE ID: 628, 686

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-30

https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/686.html

Floating point comparison with equality
operators
Imprecise comparison of floating-point variables

Description
Floating point comparison with equality operators occurs when you use an equality
(==) or inequality (!=) operation with floating-point numbers.

Polyspace does not raise a defect for an equality or inequality operation with floating-
point numbers when:

• The comparison is between two float constants.

 float flt = 1.0;
 if (flt == 1.1)

• The comparison is between a constant and a variable that can take a finite, reasonably
small number of values.

float x;

int rand = random();
switch(rand) {
case 1: x = 0.0; break;
case 2: x = 1.3; break;
case 3: x = 1.7; break;
case 4: x = 2.0; break;
default: x = 3.5; break; }
…
if (x==1.3)

• The comparison is between floating-point expressions that contain only integer values.

float x = 0.0;
for (x=0.0;x!=100.0;x+=1.0) {
…
if (random) break;
}

 Floating point comparison with equality operators

3-31

if (3*x+4==2*x-1)
…
if (3*x+4 == 1.3)

• One of the operands is 0.0, unless you use the option flag -detect-bad-float-op-
on-zero.

/* Defect detected when
you use the option flag */

if (x==0.0f)

If you are running an analysis through the user interface, you can enter this option in
the Other field, under the Advanced Settings node on the Configuration pane. See
Other.

At the command line, add the flag to your analysis command.

polyspace-bug-finder -sources filename ^
-checkers BAD_FLOAT_OP -detect-bad-float-op-on-zero

Risk
Checking for equality or inequality of two floating-point values might return unexpected
results because floating-point representations are inexact and involve rounding errors.

Fix
Instead of checking for equality of floating-point values:

if (val1 == val2)

check if their difference is less than a predefined tolerance value (for instance, the value
FLT_EPSILON defined in float.h):

#include <float.h>
if(fabs(val1-val2) < FLT_EPSILON)

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

3 Defects

3-32

Examples

Floats Inequality in for-loop
#include <stdio.h>
#include <math.h>
#include <float.h>

void func(void)
{
 float f;
 for (f = 1.0; f != 2.0; f = f + 0.1)
 (void)printf("Value: %f\n", f);
}

In this function, the for-loop tests the inequality of f and the number 2.0 as a stopping
mechanism. The number of iterations is difficult to determine, or might be infinite,
because of the imprecision in floating-point representation.

Correction — Change the Operator

One possible correction is to use a different operator that is not as strict. For example, an
inequality like >= or <=.

#include <stdio.h>
#include <math.h>
#include <float.h>

void func(void)
{
 float f;
 for (f = 1.0; f <= 2.0; f = f + 0.1)
 (void)printf("Value: %f\n", f);
}

Check Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: BAD_FLOAT_OP

 Floating point comparison with equality operators

3-33

Impact: Medium
CWE ID: 873

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-34

https://cwe.mitre.org/data/definitions/873.html

Invalid free of pointer
Pointer deallocation without a corresponding dynamic allocation

Description
Invalid free of pointer occurs when a block of memory released using the free function
was not previously allocated using malloc, calloc, or realloc.

Risk
The free function releases a block of memory allocated on the heap. If you try to access
a location on the heap that you did not allocate previously, a segmentation fault can occur.

The issue can highlight coding errors. For instance, you perhaps wanted to use the free
function or a previous malloc function on a different pointer.

Fix
In most cases, you can fix the issue by removing the free statement. If the pointer is not
allocated memory from the heap with malloc or calloc, you do not need to free the
pointer. You can simply reuse the pointer as required.

If the issue highlights a coding error such as use of free or malloc on the wrong
pointer, correct the error.

If the issue occurs because you use the free function to free memory allocated with the
new operator, replace the free function with the delete operator.

Examples

Invalid Free of Pointer Error
#include <stdlib.h>

 Invalid free of pointer

3-35

void Assign_Ones(void)
{
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;

 free(p);
 /* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points to a memory
location that was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction
is to remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)
 {
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;
 /* Fix: Remove deallocation of p */
 }

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time, one possible
correction is to dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)
{
 int *p;
 /* Fix: Allocate memory dynamically to p */
 p=(int*) calloc(10,sizeof(int));
 for(int i=0;i<10;i++)
 *(p+i)=1;
 free(p);
}

3 Defects

3-36

Check Information
Group: Dynamic Memory
Language: C | C++
Default: On
Command-Line Syntax: BAD_FREE
Impact: High
CWE ID: 404, 590, 762

See Also
Find defects (-checkers) | Invalid deletion of pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Invalid free of pointer

3-37

https://cwe.mitre.org/data/definitions/404.html
https://cwe.mitre.org/data/definitions/590.html
https://cwe.mitre.org/data/definitions/762.html

Unsafe conversion between pointer and
integer
Misaligned or invalid results from conversions between pointer and integer types

Description
Unsafe conversion between pointer and integer checks for pointer to integer and
integer to pointers conversions. If you convert between a pointer, intptr_t, or
uintprt_t and an integer type, such as enum, ptrdiff_t, or pid_t, Polyspace raises a
defect.

Risk
The mapping between pointers and integers is not always consistent with the addressing
structure of the environment.

Converting from pointers to integers can create:

• Truncated or out of range integer values.
• Invalid integer types.

Converting from integers to pointers can create:

• Misaligned pointers or misaligned objects.
• Invalid pointer addresses.

Fix
Where possible, avoid pointer-to-integer or integer-to-pointer conversions. If you want to
convert a void pointer to an integer, so that you do not change the value, use types:

• C99 — intptr_t or uintptr_t
• C90 — size_t or ssize_t

3 Defects

3-38

Examples

Integer to Pointer Conversions
unsigned int *badintptrcast(void)
{
 unsigned int *ptr0 = (unsigned int *)0xdeadbeef;
 char *ptr1 = (char *)0xdeadbeef;
 return (unsigned int *)(ptr0 - (unsigned int *)ptr1);
}

In this example, there are three conversions, two unsafe conversions and one safe
conversion. The first conversion of 0xdeadbeef to unsigned int* causes alignment
issues for the pointer. The second conversion of 0xdeadbeef to char * is safe because
there are no alignment issues for char. The third conversion in the return casts
ptrdiff_t to a pointer. This pointer might or might not point to an invalid address.

Correction — Use intptr_t

One possible correction is to use intptr_t types to store the pointer address
0xdeadbeef. Also, you can change the second pointer to an integer offset so that there is
no longer a conversion from ptrdiff_t to a pointer.

#include <stdint.h>

unsigned int *badintptrcast(void)
{
 intptr_t iptr0 = (intptr_t)0xdeadbeef;
 int offset = 0;
 return (unsigned int *)(iptr0 - offset);
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: BAD_INT_PTR_CAST
Impact: Medium
CWE ID: 465, 466, 587, 758

 Unsafe conversion between pointer and integer

3-39

https://cwe.mitre.org/data/definitions/465.html
https://cwe.mitre.org/data/definitions/466.html
https://cwe.mitre.org/data/definitions/587.html
https://cwe.mitre.org/data/definitions/758.html

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

3 Defects

3-40

Missing unlock
Lock function without unlock function

Description
Missing unlock occurs when:

• A task calls a lock function.
• The task ends without a call to an unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task, my_task, calls a lock function, my_lock, other tasks
calling my_lock must wait until my_task calls the corresponding unlock function.
Polyspace requires that both lock and unlock functions must have the form void
func(void).

To find this defect, before analysis, you must specify the multitasking options. On the
Configuration pane, select Multitasking.

Risk
An unlock function ends a critical section so that other waiting tasks can enter the critical
section. A missing unlock function can result in tasks blocked for an unnecessary length
of time.

Fix
Identify the critical section of code, that is, the section that you want to be executed as an
atomic block. At the end of this section, call the unlock function that corresponds to the
lock function used at the beginning of the section.

There can be other reasons and corresponding fixes for the defect. Perhaps you called the
incorrect unlock function. Check the lock-unlock function pair in your Polyspace analysis
configuration and fix the mismatch.

See examples of fixes below. To avoid the issue, you can follow the practice of calling the
lock and unlock functions in the same module at the same level of abstraction. For

 Missing unlock

3-41

instance, in this example, func calls the lock and unlock function at the same level but
func2 does not.

void func() {
 my_lock();
 {
 ...
 }
 my_unlock();
}

void func2() {
 {
 my_lock();
 ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Missing Unlock

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset()
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)

3 Defects

3-42

{
 begin_critical_section();
 global_var += 1;
}

In this example, to emulate multitasking behavior, specify the following options:

Option Value
Configure
multitasking manually
Tasks (-entry-points) my_task, reset
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset. my_task enters a critical section
through the call begin_critical_section();. my_task ends without calling
end_critical_section.

Correction — Provide Unlock

One possible correction is to call the unlock function end_critical_section after the
instructions in the critical section.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)

 Missing unlock

3-43

{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
 end_critical_section();
}

Unlock in Condition

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var = 0;
 end_critical_section();
 }
 index++;
 }
}

3 Defects

3-44

In this example, to emulate multitasking behavior, specify the following options.

Option Specification
Configure
multitasking manually
Tasks (-entry-points) my_task, reset
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset.

In the while loop, my_task enters a critical section through the call
begin_critical_section();. In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section ends through a call to
end_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the
critical section does not end. Therefore, a Missing unlock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration
of the while loop, the lock function begin_critical_section is called again. A
Double lock defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases
above is possible. Therefore, a Missing unlock defect and a Double lock defect appear
on the call begin_critical_section.

Correction — Place Unlock Outside Condition

One possible correction is to call the unlock function end_critical_section outside
the if condition.

 Missing unlock

3-45

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var=0;
 }
 end_critical_section();
 index++;
 }
}

Correction — Place Unlock in Every Conditional Branch

Another possible correction is to call the unlock function end_critical_section in
every branches of the if condition.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;

3 Defects

3-46

 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var=0;
 end_critical_section();
 }
 else
 end_critical_section();
 index++;
 }
}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: BAD_LOCK
Impact: High
CWE ID: 667

See Also
Configure multitasking manually | Critical section details (-critical-
section-begin -critical-section-end) | Data race | Data race including
atomic operations | Data race through standard library function call |
Deadlock | Destruction of locked mutex | Double lock | Double unlock |
Find defects (-checkers) | Missing lock | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Configuring Polyspace Multitasking Analysis Manually”
“Interpret Polyspace Bug Finder Results”

 Missing unlock

3-47

https://cwe.mitre.org/data/definitions/667.html

“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2014b

3 Defects

3-48

Incorrect order of network connection
operations
Socket is not correctly established due to bad order of connection steps or missing steps

Description
Incorrect order of network connection operations occurs when you perform
operations on a network connection at the wrong point of the connection lifecycle.

Risk
Sending or receiving data to an incorrectly connected socket can cause unexpected
behavior or disclosure of sensitive information.

If you do not connect your socket correctly or change the connection by mistake, you can
send sensitive data to an unexpected port. You can also get unexpected data from an
incorrect socket.

Fix
During socket connection and communication, check the return of each call and the
length of the data.

Before reading, writing, sending, or receiving information, create sockets in this order:

• For a connection-oriented server socket (SOCK_STREAM or SOCK_SEQPACKET):

socket(...);
bind(...);
listen(...);
accept(...);

• For a connectionless server socket (SOCK_DGRAM):

socket(...);
bind(...);

 Incorrect order of network connection operations

3-49

• For a client socket (connection-oriented or connectionless):

socket(...);
connect(...);

Examples

Connecting a Connection-Oriented Server Socket
include <stdio.h>
include <string.h>
include <time.h>
include <arpa/inet.h>
include <unistd.h>

enum { BUF_SIZE=1025 };

volatile int rd;

int stream_socket_server(int argc, char *argv[])
{
 int listenfd = 0, connfd = 0;
 struct sockaddr_in serv_addr;

 char sendBuff[BUF_SIZE];
 time_t ticks;
 struct tm * timeinfo;

 listenfd = socket(AF_INET, SOCK_STREAM, 0);
 memset(&serv_addr, 48, sizeof(serv_addr));
 memset(sendBuff, 48, sizeof(sendBuff));

 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port = htons(5000);

 bind(listenfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr));

 listen(listenfd, 10);

 while(1)
 {

3 Defects

3-50

 connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime (sendBuff,BUF_SIZE,"%I:%M%p.",timeinfo);

 write(listenfd, sendBuff, strlen(sendBuff));

 close(connfd);
 sleep(1);
 }
}

This example creates a connection-oriented network connection. The function calls the
correct functions in the correct order: socket, bind, listen, accept. However, the
program should write to the connfd socket instead of the listenfd socket.

Correction — Use Safe Socket

One possible correction is to write to the connfd function instead of the listenfd
socket.

include <stdio.h>
include <string.h>
include <time.h>
include <arpa/inet.h>
include <unistd.h>

enum { BUF_SIZE=1025 };

volatile int rd;

int stream_socket_server_good(int argc, char *argv[])
{
 int listenfd = 0, connfd = 0;
 struct sockaddr_in serv_addr;

 char sendBuff[BUF_SIZE];
 time_t ticks;
 struct tm * timeinfo;

 listenfd = socket(AF_INET, SOCK_STREAM, 0);
 memset(&serv_addr, 48, sizeof(serv_addr));
 memset(sendBuff, 48, sizeof(sendBuff));

 Incorrect order of network connection operations

3-51

 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port = htons(5000);

 bind(listenfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr));
 listen(listenfd, 10);

 while(1)
 {
 connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);
 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime (sendBuff,BUF_SIZE,"%I:%M%p.",timeinfo);
 write(connfd, sendBuff, strlen(sendBuff));
 close(connfd);
 sleep(1);
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: BAD_NETWORK_CONNECT_ORDER
Impact: Medium
CWE ID: 666

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-52

https://cwe.mitre.org/data/definitions/666.html

Use of plain char type for numerical value
Plain char variable in arithmetic operation without explicit signedness

Description
Use of plain char type for numerical value detects char variables without explicit
signedness that are being used in these ways:

• To store non-char constants
• In an arithmetic operation when the char is:

• A negative value.
• The result of a sign changing overflow.

• As a buffer offset.

char variables without a signed or unsigned qualifier can be either signed or unsigned
depending on your compiler.

Risk
Operations on a plain char can result in unexpected numerical values. If the char is used
as an offset, the char can cause buffer overflow or underflow.

Fix
When initializing a char variable, to avoid implementation-defined confusion, explicitly
state whether the char is signed or unsigned.

Examples
Divide by char Variable
#include <stdio.h>

 Use of plain char type for numerical value

3-53

void badplaincharuse(void)
{
 char c = 200;
 int i = 1000;
 (void)printf("i/c = %d\n", i/c);
}

In this example, the char variable c can be signed or unsigned depending on your
compiler. Assuming 8-bit, two's complement character types, the result is either i/c = 5
(unsigned char) or i/c = -17 (signed char). The correct result is unknown without
knowing the signedness of char.

Correction — Add signed Qualifier

One possible correction is to add a signed qualifier to char. This clarification makes the
operation defined.

#include <stdio.h>

void badplaincharuse(void)
{
 signed char c = -56;
 int i = 1000;
 (void)printf("i/c = %d\n", i/c);
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: BAD_PLAIN_CHAR_USE
Impact: Medium
CWE ID: 682, 758

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”

3 Defects

3-54

https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/758.html

“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

 Use of plain char type for numerical value

3-55

Bad order of dropping privileges
Dropped higher elevated privileges before dropping lower elevated privileges

Description
Bad order of dropping privileges checks the order of privilege drops. If you drop
higher elevated privileges before dropping lower elevated privileges, Polyspace raises a
defect. For example dropping elevated primary group privileges before dropping elevated
ancillary group privileges.

Risk
If you drop privileges in the wrong order, you can potentially drop higher privileges that
you need to drop lower privileges. The incorrect order can mean, privileges are not
dropped, compromising the security of your program.

Fix
Respect this order of dropping elevated privileges:

• Drop (elevated) ancillary group privileges, then drop (elevated) primary group
privileges.

• Drop (elevated) primary group privileges, then drop (elevated) user privileges.

Examples

Dropping User Privileges First
#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()

3 Defects

3-56

static void sanitize_privilege_drop_check(uid_t olduid, gid_t oldgid)
{
 if (seteuid(olduid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
 if (setegid(oldgid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
}
void badprivilegedroporder(void) {
 uid_t
 newuid = getuid(),
 olduid = geteuid();
 gid_t
 newgid = getgid(),
 oldgid = getegid();

 if (setuid(newuid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (setgid(newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (olduid == 0) {
 /* drop ancillary groups IDs only possible for root */
 if (setgroups(1, &newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 }

 sanitize_privilege_drop_check(olduid, oldgid);
}

In this example, there are two privilege drops made in the incorrect order. setgid
attempts to drop group privileges. However, setgid requires the user privileges, which
were dropped previously using setuid, to perform this function. After dropping group

 Bad order of dropping privileges

3-57

privileges, this function attempts to drop ancillary groups privileges by using setgroups.
This task requires the higher primary group privileges that were dropped with setgid.
At the end of this function, it is possible to regain group privileges because the order of
dropping privileges was incorrect.

Correction — Reverse Privilege Drop Order

One possible correction is to drop the lowest level privileges first. In this correction,
ancillary group privileges are dropped, then primary group privileges are dropped, and
finally user privileges are dropped.

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()

static void sanitize_privilege_drop_check(uid_t olduid, gid_t oldgid)
{
 if (seteuid(olduid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
 if (setegid(oldgid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
}
void badprivilegedroporder(void) {
 uid_t
 newuid = getuid(),
 olduid = geteuid();
 gid_t
 newgid = getgid(),
 oldgid = getegid();

 if (olduid == 0) {
 /* drop ancillary groups IDs only possible for root */
 if (setgroups(1, &newgid) == -1) {
 /* handle error condition */
 fatal_error();

3 Defects

3-58

 }
 }
 if (setgid(getgid()) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (setuid(getuid()) == -1) {
 /* handle error condition */
 fatal_error();
 }

 sanitize_privilege_drop_check(olduid, oldgid);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: BAD_PRIVILEGE_DROP_ORDER
Impact: High
CWE ID: 250, 696

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

 Bad order of dropping privileges

3-59

https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/696.html

Incorrect pointer scaling
Implicit scaling in pointer arithmetic might be ignored

Description
Incorrect pointer scaling occurs when Polyspace Bug Finder considers that you are
ignoring the implicit scaling in pointer arithmetic.

For instance, the defect can occur in the following situations.

Situation Risk Possible Fix
You use the sizeof
operator in arithmetic
operations on a pointer.

The sizeof operator
returns the size of a data
type in number of bytes.

Pointer arithmetic is already
implicitly scaled by the size
of the data type of the
pointed variable. Therefore,
the use of sizeof in pointer
arithmetic produces
unintended results.

Do not use sizeof operator
in pointer arithmetic.

You perform arithmetic
operations on a pointer, and
then apply a cast.

Pointer arithmetic is
implicitly scaled. If you do
not consider this implicit
scaling, casting the result of
a pointer arithmetic
produces unintended
results.

Apply the cast before the
pointer arithmetic.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click

3 Defects

3-60

options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Use of sizeof Operator
void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2*(sizeof(int)));
}

In this example, the operation 2*(sizeof(int)) returns twice the size of an int
variable in bytes. However, because pointer arithmetic is implicitly scaled, the number of
bytes by which ptr is offset is 2*(sizeof(int))*(sizeof(int)).

In this example, the incorrect scaling shifts ptr outside the bounds of the array.
Therefore, a Pointer access out of bounds error appears on the * operation.

Correction — Remove sizeof Operator

One possible correction is to remove the sizeof operator.

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2);
}

Cast Following Pointer Arithmetic
int func(void) {
 int x = 0;

 Incorrect pointer scaling

3-61

 char r = *(char *)(&x + 1);
 return r;
}

In this example, the operation &x + 1 offsets &x by sizeof(int). Following the
operation, the resulting pointer points outside the allowed buffer. When you dereference
the pointer, a Pointer access out of bounds error appears on the * operation.

Correction — Apply Cast Before Pointer Arithmetic

If you want to access the second byte of x, first cast &x to a char* pointer and then
perform the pointer arithmetic. The resulting pointer is offset by sizeof(char) bytes
and still points within the allowed buffer, whose size is sizeof(int) bytes.

int func(void) {
 int x = 0;
 char r = *((char *)(&x)+ 1);
 return r;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: BAD_PTR_SCALING
Impact: Medium
CWE ID: 468

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-62

https://cwe.mitre.org/data/definitions/468.html

Missing or double initialization of thread
attribute
Duplicated initialization of thread attributes or noninitialized thread attribute used in
functions that expect initialized attributes

Description
Missing or double initialization of thread attribute occurs during one of these
situations:

• You initialize a thread attribute twice with a function such as pthread_attr_init
without an intermediate call to a function such as pthread_attr_destroy.

The function pthread_attr_destroy destroys a thread attribute object and enables
the system to reclaim resources associated with the object.

• You use a noninitialized thread attribute in a function such as pthread_create,
which expects an initialized attribute. A thread attribute might be noninitialized
because it was never initialized previously or destroyed with the
pthread_attr_destroy function.

Noninitialized thread attributes are detected for all functions in the POSIX standard.

The Result Details pane describes whether the attribute is doubly initialized or
noninitialized and also shows previous related events.

Note that a thread attribute is considered initialized only if the call to
pthread_attr_init is successful. For instance, the thread attribute is not initialized in
the if branch here:

pthread_attr_t attr;
int thread_success;

thread_success = pthread_attr_init(&attr);
if(thread_success != 0) {
 /* Thread attribute considered noninitialized */
}

 Missing or double initialization of thread attribute

3-63

The issue is also flagged if you do not check the return value from a call to
pthread_attr_init.

Risk
Initializing a thread attribute without destroying the previously initialized attribute or
using noninitialized thread attributes leads to undefined behavior.

Fix
Before using a thread attribute, initialize the attribute by using the pthread_attr_init
function.

pthread_attr_t attr;
int thread_success;

/* Initialize attribute */
thread_success = pthread_attr_init(&attr);
if(thread_success != 0) {
 /* Handle initialization error */
}
...
/* Use attribute */
thread_sucess = pthread_create(&thr, &attr, &thread_start, NULL);

After initialization, destroy a thread attribute by using pthread_attr_destroy before
initializing again:

pthread_attr_t attr;
int thread_success;

/* Destroy attribute */
thread_success = pthread_attr_destroy(&attr);
if(thread_success != 0) {
 /* Handle destruction error */
}
...
/* Reinitialize attribute */
thread_success = pthread_attr_init(&attr);

3 Defects

3-64

Examples

Use of Noninitialized Thread Attribute
#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_attr_t attr;

 if(thread_success == pthread_create(&id, &attr, thread_func, NULL)) {
 }

 return 0;
}

In this example, the attribute attr is not initialized before its use in the
pthread_create call.

Correction – Initialize Thread Attribute Before Use

Before using a thread attribute in the pthread_create function, initialize the attribute
with the pthread_attr_init function.

#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_attr_t attr;

 if(thread_success != pthread_attr_init(&attr)) {
 return 0;
 }

 Missing or double initialization of thread attribute

3-65

 if(thread_success == pthread_create(&id, &attr, thread_func, NULL)) {
 }

 return 0;
}

Return Value from Thread Attribute Initialization Not Checked
#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_attr_t attr;

 pthread_attr_init(&attr);

 if(thread_success == pthread_create(&id, &attr, thread_func, NULL)) {
 }

 return 0;
}

In this example, the return value of pthread_attr_init is not checked. If the thread
attribute initialization fails, the error does not get handled. A possibly undefined thread
attribute is later used in the pthread_create function.

Correction – Handle Errors from Thread Attribute Initialization

One possible correction is to use the thread attribute only if the return value from
pthread_attr_init indicates successful initialization.

#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_attr_t attr;

3 Defects

3-66

 if(thread_success != pthread_attr_init(&attr)) {
 return 0;
 }

 if(thread_success == pthread_create(&id, &attr, thread_func, NULL)) {
 }

 return 0;
}

Check Information
Group: Concurrency
Language: C
Default: Off
Command-Line Syntax: BAD_THREAD_ATTRIBUTE
Impact: Medium

See Also
Join or detach of a joined or detached thread | Use of undefined
thread ID

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019b

 Missing or double initialization of thread attribute

3-67

Umask used with chmod-style arguments
Argument to umask allows external user too much control

Description
Umask used with chmod-style arguments checks for umask commands that have an
argument specified in the style of arguments to chmod.

For new files, the umask value specifies which permissions not to set, in other words
which permissions to remove. The umask argument is bitwise-negated and then applied to
new file permissions.

In contrast, chmod sets the permissions as you specify them.

Risk
If you use chmod-style arguments, you specify opposite permissions of what you want.
This mistake can give external users unintended read/write access to new files and
folders.

Fix
Set the umask so that the user (u) has fewer permissions turned off than the group (g).
Set umask so that the group has fewer permissions turned off than other users (o), or u
<= g <= o.

You can see the umask value by calling,

umask

or the symbolic value by calling,

umask -S

3 Defects

3-68

Examples
Setting the Default Mask
#include <stdio.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>

typedef mode_t (*umask_func)(mode_t);

const mode_t default_mode = (
 S_IRUSR /* 00400 */
 | S_IWUSR /* 00200 */
 | S_IRGRP /* 00040 */
 | S_IWGRP /* 00020 */
 | S_IROTH /* 00004 */
 | S_IWOTH /* 00002 */
); /* 00666 (i.e. -rw-rw-rw-) */

static void my_umask(mode_t mode)
{
 umask(mode);
}

int umask_use(mode_t m)
{
 my_umask(default_mode);
 return 0;
}

This example uses a function called my_umask to set the default mask mode. However,
the default_mode variable gives the permissions 666 or -rw-rw-rw. umask negates
this value. However, this negation means the default mask mode turns off read/write
permissions for the user, group users, and other outside users.

Correction — Negate Preferred Permissions

One possible correction is to negate the default_mode argument to my_umask. This
correction nullifies the negation umask for new files.

#include <stdio.h>
#include <assert.h>

 Umask used with chmod-style arguments

3-69

#include <sys/types.h>
#include <sys/stat.h>

typedef mode_t (*umask_func)(mode_t);

const mode_t default_mode = (
 S_IRUSR /* 00400 */
 | S_IWUSR /* 00200 */
 | S_IRGRP /* 00040 */
 | S_IWGRP /* 00020 */
 | S_IROTH /* 00004 */
 | S_IWOTH /* 00002 */
); /* 00666 (i.e. -rw-rw-rw-) */

static void my_umask(mode_t mode)
{
 umask(mode);
}

int umask_use(mode_t m)
{
 my_umask(~default_mode);
 return 0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: BAD_UMASK
Impact: Low
CWE ID: 560, 922

See Also
Vulnerable permission assignments | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

3 Defects

3-70

https://cwe.mitre.org/data/definitions/560.html
https://cwe.mitre.org/data/definitions/922.html

External Websites
umask — Linux Manual Page

Introduced in R2015b

 Umask used with chmod-style arguments

3-71

http://man7.org/linux/man-pages/man2/umask.2.html

Missing lock
Unlock function without lock function

Description
Missing lock occurs when a task calls an unlock function before calling the
corresponding lock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task my_task calls a lock function my_lock, other tasks calling
my_lock must wait till my_task calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Risk
A call to an unlock function without a corresponding lock function can indicate a coding
error. For instance, perhaps the unlock function does not correspond to the lock function
that begins the critical section.

Fix
The fix depends on the root cause of the defect. For instance, if the defect occurs because
of a mismatch between lock and unlock function, check the lock-unlock function pair in
your Polyspace analysis configuration and fix the mismatch.

See examples of fixes below. To avoid the issue, you can follow the practice of calling the
lock and unlock functions in the same module at the same level of abstraction. For
instance, in this example, func calls the lock and unlock function at the same level but
func2 does not.

void func() {
 my_lock();
 {
 ...

3 Defects

3-72

 }
 my_unlock();
}

void func2() {
 {
 my_lock();
 ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Missing lock

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{
 global_var += 1;
 end_critical_section();
}

In this example, to emulate multitasking behavior, you must specify the following options:

 Missing lock

3-73

Option Specification
Configure
multitasking manually
Tasks (-entry-points) my_task, reset
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset. my_task calls
end_critical_section before calling begin_critical_section.

Correction — Provide Lock

One possible correction is to call the lock function begin_critical_section before
the instructions in the critical section.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{

3 Defects

3-74

 begin_critical_section();
 global_var += 1;
 end_critical_section();
}

Lock in Condition

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 if(index%10==0) {
 begin_critical_section();
 global_var ++;
 }
 end_critical_section();
 index++;
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure
multitasking manually
Tasks (-entry-points) my_task, reset

 Missing lock

3-75

Option Specification
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset.

In the while loop, my_task leaves a critical section through the call
end_critical_section();. In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section begins through a call to
begin_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the
critical section does not begin. Therefore, a Missing lock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration
of the while loop, the unlock function end_critical_section is called again. A
Double unlock defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases
above are possible. Therefore, a Missing lock defect and a Double unlock defect
appear on the call end_critical_section.

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: BAD_UNLOCK
Impact: Medium
CWE ID: 832

3 Defects

3-76

https://cwe.mitre.org/data/definitions/832.html

See Also
Configure multitasking manually | Critical section details (-critical-
section-begin -critical-section-end) | Data race | Data race including
atomic operations | Data race through standard library function call |
Deadlock | Destruction of locked mutex | Double lock | Double unlock |
Find defects (-checkers) | Missing unlock | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Configuring Polyspace Multitasking Analysis Manually”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2014b

 Missing lock

3-77

Bitwise and arithmetic operation on the
same data
Statement with mixed bitwise and arithmetic operations

Description
Bitwise and arithmetic operation on a same data detects statements with bitwise and
arithmetic operations on the same variable or expression.

Risk
Mixed bitwise and arithmetic operations do compile. However, the size of integer types
affects the result of these mixed operations. Mixed operations also reduce readability and
maintainability.

Fix
Separate bitwise and arithmetic operations, or use only one type of operation per
statement.

Examples

Shift and Addition
unsigned int bitwisearithmix()
{
 unsigned int var = 50;
 var += (var << 2) + 1;
 return var;
}

This example shows bitwise and arithmetic operations on the variable var. var is shifted
by two (bitwise), then increased by 1 and added to itself (arithmetic).

3 Defects

3-78

Correction — Arithmetic Operations Only

You can reduce this expression to arithmetic-only operations: var + (var << 2) is
equivalent to var * 5.

unsigned int bitwisearithmix()
{
 unsigned int var = 50;
 var = var * 5 +1;
 return var;
}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: BITWISE_ARITH_MIX
Impact: Low
CWE ID: 710

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

 Bitwise and arithmetic operation on the same data

3-79

https://cwe.mitre.org/data/definitions/710.html

Bitwise operation on negative value
Undefined behavior for bitwise operations on negative values

Description
Bitwise operation on negative value detects bitwise operators (>>, ^, |, ~, but, not,
&) used on signed integer variables with negative values.

Risk
If the value of the signed integer is negative, bitwise operation results can be unexpected
because:

• Bitwise operations on negative values are compiler-specific.
• Unexpected calculations can lead to additional vulnerabilities, such as buffer overflow.

Fix
When performing bitwise operations, use unsigned integers to avoid unexpected results.

Examples
Right-Shift of Negative Integer
#include <stdio.h>
#include <stdarg.h>

static void demo_sprintf(const char *format, ...)
{
 int rc;
 va_list ap;
 char buf[sizeof("256")];

 va_start(ap, format);
 rc = vsprintf(buf, format, ap);

3 Defects

3-80

 if (rc == -1 || rc >= sizeof(buf)) {
 /* Handle error */
 }
 va_end(ap);
}

void bug_bitwiseneg()
{
 int stringify = 0x80000000;
 demo_sprintf("%u", stringify >> 24);
}

In this example, the statement demo_sprintf("%u", stringify >> 24) stops the
program unexpectedly. You expect the result of stringify >> 24 to be 0x80. However,
the actual result is 0xffffff80 because stringify is signed and negative. The sign bit
is also shifted.

Correction — Add unsigned Keyword

By adding the unsigned keyword, stringify is not negative and the right-shift
operation gives the expected result of 0x80.

#include <stdio.h>
#include <stdarg.h>

static void demo_sprintf(const char *format, ...)
{
 int rc;
 va_list ap;
 char buf[sizeof("256")];

 va_start(ap, format);
 rc = vsprintf(buf, format, ap);
 if (rc == -1 || rc >= sizeof(buf)) {
 /* Handle error */
 }
 va_end(ap);
}

void corrected_bitwiseneg()
{
 unsigned int stringify = 0x80000000;
 demo_sprintf("%u", stringify >> 24);
}

 Bitwise operation on negative value

3-81

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: BITWISE_NEG
Impact: Medium
CWE ID: 682, 758

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

3 Defects

3-82

https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/758.html

Bytewise operations on nontrivial class
object
Value representations may be improperly initialized or compared

Description
Bytewise operations on nontrivial class object occurs when you use C Standard
library functions to perform bytewise operation on non-trivial or non-standard layout class
type objects. For definitions of trivial and standard layout classes, see the C++ Standard,
[class], paragraphs 6 and 7 respectively.

The checker raises a defect you initialize or copy non-trivial class type objects using these
functions:

• std::memset
• std::memcpy
• std::strcpy
• std::memmove

Or when you compare non-standard layout class type objects using these functions:

• std::memcmp
• std::strcmp

Bytewise operations on nontrivial class object raises no defect if the bytewise
operation is performed through an alias. For example no defect is raised in the bytewise
comparison and copy operations in this code. The bytewise operations use dptr and
sptr, the aliases of non-trivial or non-standard layout class objects d and s.

 Bytewise operations on nontrivial class object

3-83

https://www.iso.org/standard/68564.html

void func(NonTrivialNonStdLayout *d, const NonTrivialNonStdLayout *s)
{
 void* dptr = (void*)d;
 const void* sptr = (void*)s;
 // ...
 // ...
 // ...
 if (!std::memcmp(dptr, sptr, sizeof(NonTrivialNonStdLayout))) {
 (void)std::memcpy(dptr, sptr, sizeof(NonTrivialNonStdLayout));
 // ...
 }
}

Risk
Performing bytewise comparison operations by using C Standard library functions on non-
trivial or non-standard layout class type object might result in unexpected values due to
implementation details. The object representation depends on the implementation details,
such as the order of private and public members, or the use of virtual function pointer
tables to represent the object.

Performing bytewise setting operations by using C Standard library functions on non-
trivial or non-standard layout class type object can change the implementation details.
The operation might result in abnormal program behavior or a code execution
vulnerability. For instance, if the address of a member function is overwritten, the call to
this function invokes an unexpected function.

Fix
To perform bytewise operations non-trivial or non-standard layout class type object, use
these C++ special member functions instead of C Standard library functions.

C Standard Library Functions C++ Member Functions
std::memset Class constructor
std::memcpy

std::strcpy

std::memmove

Class copy constructor

Class move constructor

Copy assignment operator

Move assignment operator

3 Defects

3-84

C Standard Library Functions C++ Member Functions
std::memcmp

std::strcmp

operator<()

operator>()

operator==()

operator!=()

Examples

Using memset with non-trivial class object
#include <cstring>
#include <iostream>
#include <utility>

class nonTrivialClass
{
 int scalingFactor;
 int otherData;
public:
 nonTrivialClass() : scalingFactor(1) {}
 void set_other_data(int i);
 int f(int i)
 {
 return i / scalingFactor;
 }
 // ...
};

void func()
{
 nonTrivialClass c;
 // ... Code that mutates c ...
 std::memset(&c, 0, sizeof(nonTrivialClass));
 std::cout << c.f(100) << std::endl;
}

 Bytewise operations on nontrivial class object

3-85

In this example, func() uses std::memset to reinitialize non-trivial class object c after
it is first initialized with its default constructor. This bytewise operation might not
properly initialize the value representation of c.

Correction — Define Function Template That Uses std::swap

One possible correction is to define a function template clear() that uses std::swap to
perform a swap operation. The call to clear()properly reinitializes object c by swapping
the contents of c and default initialized object empty.

 #include <cstring>
#include <iostream>
#include <utility>

class nonTrivialClass
{
 int scalingFactor;
 int otherData;
public:
 nonTrivialClass() : scalingFactor(1) {}
 void set_other_data(int i);
 int f(int i)
 {
 return i / scalingFactor;
 }
 // ...
};

template <typename T>
T& clear(T& o)
{
 using std::swap;
 T empty;
 swap(o, empty);
 return o;
}

void func()
{
 nonTrivialClass c;
 // ... Code that mutates c ...

 clear(c);

3 Defects

3-86

 std::cout << c.f(100) << std::endl;
}

Result Information
Group: Object Oriented
Language: C++
Default: Off
Command-Line Syntax: MEMOP_ON_NONTRIVIAL_OBJ
Impact: Medium

See Also
Copy of overlapping memory | Find defects (-checkers) | Memory
comparison of strings | Memory comparison of padding data

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019b

 Bytewise operations on nontrivial class object

3-87

Blocking operation while holding lock
Task performs lengthy operation while holding a lock

Description
Blocking operation while holding lock occurs when a task (thread) performs a
potentially lengthy operation while holding a lock.

The checker considers calls to these functions as potentially lengthy:

• Functions that access a network such as recv
• System call functions such as fork, pipe and system
• Functions for I/O operations such as getchar and scanf
• File handling functions such as fopen, remove and lstat
• Directory manipulation functions such as mkdir and rmdir

The checker automatically detects certain primitives that hold and release a lock, for
instance, pthread_mutex_lock and pthread_mutex_unlock. For the full list of
primitives that are automatically detected, see “Auto-Detection of Thread Creation and
Critical Section in Polyspace”.

Risk
If a thread performs a lengthy operation when holding a lock, other threads that use the
lock have to wait for the lock to be available. As a result, system performance can slow
down or deadlocks can occur.

Fix
Perform the blocking operation before holding the lock or after releasing the lock.

Some functions detected by this checker can be called in a way that does not make them
potentially lengthy. For instance, the function recv can be called with the parameter
O_NONBLOCK which causes the call to fail if no message is available. When called with this
parameter, recv does not wait for a message to become available.

3 Defects

3-88

Examples

Network I/O Operations with recv While Holding Lock
#include <pthread.h>
#include <sys/socket.h>

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

void thread_foo(void *ptr) {
 unsigned int num;
 int result;
 int sock;

 /* sock is a connected TCP socket */

 if ((result = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle Error */
 }

 if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
 /* Handle Error */
 }

 /* ... */

 if ((result = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle Error */
 }
}

int main() {
 pthread_t thread;
 int result;

 if ((result = pthread_mutexattr_settype(
 &attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle Error */

 Blocking operation while holding lock

3-89

 }

 if (pthread_create(&thread, NULL,(void*(*)(void*))& thread_foo, NULL) != 0) {
 /* Handle Error */
 }

 /* ... */

 pthread_join(thread, NULL);

 if ((result = pthread_mutex_destroy(&mutex)) != 0) {
 /* Handle Error */
 }

 return 0;
}

In this example, in each thread created with pthread_create, the function thread_foo
performs a network I/O operation with recv after acquiring a lock with
pthread_mutex_lock. Other threads using the same lock variable mutex have to wait
for the operation to complete and the lock to become available.

Correction — Perform Blocking Operation Before Acquiring Lock

One possible correction is to call recv before acquiring the lock.

#include <pthread.h>
#include <sys/socket.h>

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

void thread_foo(void *ptr) {
 unsigned int num;
 int result;
 int sock;

 /* sock is a connected TCP socket */
 if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle Error */

3 Defects

3-90

 }

 /* ... */

 if ((result = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle Error */
 }
}

int main() {
 pthread_t thread;
 int result;

 if ((result = pthread_mutexattr_settype(
 &attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle Error */
 }

 if (pthread_create(&thread, NULL,(void*(*)(void*))& thread_foo, NULL) != 0) {
 /* Handle Error */
 }

 /* ... */

 pthread_join(thread, NULL);

 if ((result = pthread_mutex_destroy(&mutex)) != 0) {
 /* Handle Error */
 }

 return 0;
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: BLOCKING_WHILE_LOCKED

 Blocking operation while holding lock

3-91

Impact: Low
CWE ID: 667

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

3 Defects

3-92

https://cwe.mitre.org/data/definitions/667.html

Return of non const handle to encapsulated
data member
Method returns pointer or reference to internal member of object

Description
Return of non-const handle to encapsulated data member occurs when:

• A class method returns a handle to a data member. Handles include pointers and
references.

• The method is more accessible than the data member. For instance, the method has
access specifier public, but the data member is private or protected.

Risk
The access specifier determines the accessibility of a class member. For instance, a class
member declared with the private access specifier cannot be accessed outside a class.
Therefore, nonmember, nonfriend functions cannot modify the member.

When a class method returns a handle to a less accessible data member, the member
accessibility changes. For instance, if a public method returns a pointer to a private
data member, the data member is effectively not private anymore. A nonmember,
nonfriend function calling the public method can use the returned pointer to view and
modify the data member.

Also, if you assign the pointer to a data member of an object to another pointer, when you
delete the object, the second pointer can be left dangling. The second pointer points to
the part of an object that does not exist anymore.

Fix
One possible fix is to avoid returning a handle to a data member from a class method.
Return a data member by value so that a copy of the member is returned. Modifying the
copy does not change the data member.

 Return of non const handle to encapsulated data member

3-93

If you must return a handle, use a const qualifier with the method return type so that the
handle allows viewing, but not modifying, the data member.

Examples
Return of Pointer to private Data Member
#include <string>
#define NUM_RECORDS 100

struct Date {
 int dd;
 int mm;
 int yyyy;
};

struct Period {
 Date startDate;
 Date endDate;
};

class DataBaseEntry {
private:
 std::string employeeName;
 Period employmentPeriod;
public:
 Period* getPeriod(void);
};

Period* DataBaseEntry::getPeriod(void) {
 return &employmentPeriod;
}

void use(Period*);
void reset(Period*);

int main() {
 DataBaseEntry dataBase[NUM_RECORDS];
 Period* tempPeriod;
 for(int i=0;i < NUM_RECORDS;i++) {

3 Defects

3-94

 tempPeriod = dataBase[i].getPeriod();
 use(tempPeriod);
 reset(tempPeriod);
 }
 return 0;
}

void reset(Period* aPeriod) {
 aPeriod->startDate.dd = 1;
 aPeriod->startDate.mm = 1;
 aPeriod->startDate.yyyy = 2000;
}

In this example, employmentPeriod is private to the class DataBaseEntry. It is
therefore immune from modification by nonmember, nonfriend functions. However,
returning a pointer to employmentPeriod breaks this encapsulation. For instance, the
nonmember function reset modifies the member startDate of employmentPeriod.

Correction: Return Member by Value

One possible correction is to return the data member employmentPeriod by value
instead of pointer. Modifying the return value does not change the data member because
the return value is a copy of the data member.

#include <string>
#define NUM_RECORDS 100

struct Date {
 int dd;
 int mm;
 int yyyy;
};

struct Period {
 Date startDate;
 Date endDate;
};

class DataBaseEntry {
private:
 std::string employeeName;
 Period employmentPeriod;
public:

 Return of non const handle to encapsulated data member

3-95

 Period getPeriod(void);
};

Period DataBaseEntry::getPeriod(void) {
 return employmentPeriod;
}

void use(Period*);
void reset(Period*);

int main() {
 DataBaseEntry dataBase[NUM_RECORDS];
 Period tempPeriodVal;
 Period* tempPeriod;
 for(int i=0;i < NUM_RECORDS;i++) {
 tempPeriodVal = dataBase[i].getPeriod();
 tempPeriod = &tempPeriodVal;
 use(tempPeriod);
 reset(tempPeriod);
 }
 return 0;
}

void reset(Period* aPeriod) {
 aPeriod->startDate.dd = 1;
 aPeriod->startDate.mm = 1;
 aPeriod->startDate.yyyy = 2000;
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: BREAKING_DATA_ENCAPSULATION
Impact: Medium
CWE ID: 375, 767

See Also
Find defects (-checkers)

3 Defects

3-96

https://cwe.mitre.org/data/definitions/375.html
https://cwe.mitre.org/data/definitions/767.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Return of non const handle to encapsulated data member

3-97

Character value absorbed into EOF
Data type conversion makes a valid character value same as End-of-File (EOF)

Description
Character value absorbed into EOF occurs when you perform a data type conversion
that makes a valid character value indistinguishable from EOF (End-of-File). Bug Finder
flags the defect in one of the following situations:

• End-of-File: You perform a data type conversion such as from int to char that
converts a non-EOF character value into EOF.

char ch = (char)getchar()

You then compare the result with EOF.

if((int)ch == EOF)

The conversion can be explicit or implicit.
• Wide End-of-File: You perform a data type conversion that can convert a non-WEOF

wide character value into WEOF, and then compare the result with WEOF.

Risk
The data type char cannot hold the value EOF that indicates the end of a file. Functions
such as getchar have return type int to accommodate EOF. If you convert from int to
char, the values UCHAR_MAX (a valid character value) and EOF get converted to the same
value -1 and become indistinguishable from each other. When you compare the result of
this conversion with EOF, the comparison can lead to false detection of EOF. This rationale
also applies to wide character values and WEOF.

Fix
Perform the comparison with EOF or WEOF before conversion.

3 Defects

3-98

Examples

Return Value of getchar Converted to char
#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 char ch;
 ch = getchar();
 if (EOF == (int)ch) {
 fatal_error();
 }
 return ch;
}

In this example, the return value of getchar is implicitly converted to char. If getchar
returns UCHAR_MAX, it is converted to -1, which is indistinguishable from EOF. When you
compare with EOF later, it can lead to a false positive.

Correction — Perform Comparison with EOF Before Conversion

One possible correction is to first perform the comparison with EOF, and then convert
from int to char.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 int i;
 i = getchar();
 if (EOF == i) {
 fatal_error();
 }
 else {
 return (char)i;
 }
}

 Character value absorbed into EOF

3-99

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: CHAR_EOF_CONFUSED
Impact: High
CWE ID: 704

See Also
Errno not checked | Find defects (-checkers) | Invalid use of standard
library integer routine | Misuse of sign-extended character value |
Returned value of a sensitive function not checked

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

3 Defects

3-100

https://cwe.mitre.org/data/definitions/704.html

Misuse of sign-extended character value
Data type conversion with sign extension causes unexpected behavior

Description
Misuse of sign-extended character value occurs when you convert a signed or plain
char variable containing possible negative values to a wider integer data type (or
perform an arithmetic operation that does the conversion) and then use the resulting
value in one of these ways:

• For comparison with EOF (using == or !=)
• As array index
• As argument to a character-handling function in ctype.h, for instance, isalpha() or

isdigit()

If you convert a signed char variable with a negative value to a wider type such as int,
the sign bit is preserved (sign extension). This can lead to specific problems even in
situations where you think you have accounted for the sign bit.

For instance, the signed char value of -1 can represent the character EOF (end-of-file),
which is an invalid character. Suppose a char variable var acquires this value. If you
treat var as a char variable, you might want to write special code to account for this
invalid character value. However, if you perform an operation such as var++ (involving
integer promotion), it leads to the value 0, which represents a valid value '\0' by
accident. You transitioned from an invalid to a valid value through the arithmetic
operation.

Even for negative values other than -1, a conversion from signed char to signed int can
lead to other issues. For instance, the signed char value -126 is equivalent to the
unsigned char value 130 (corresponding to an extended character '\202'). If you
convert the value from char to int, the sign bit is preserved. If you then cast the
resulting value to unsigned int, you get an unexpectedly large value, 4294967170
(assuming 32-bit int). If your code expects the unsigned char value of 130 in the final
unsigned int variable, you can see unexpected results.

The underlying cause of this issue is the sign extension during conversion to a wider type.
Most architectures use two's complement representation for storing values. In this

 Misuse of sign-extended character value

3-101

representation, the most significant bit indicates the sign of the value. When converted to
a wider type, the conversion is done by copying this sign bit to all the leading bits of the
wider type, so that the sign is preserved. For instance, the char value of -3 is represented
as 11111101 (assuming 8-bit char). When converted to int, the representation is:

11111111 11111111 11111111 11111101

The value -3 is preserved in the wider type int. However, when converted to unsigned
int, the value (4294967293) is no longer the same as the unsigned char equivalent of
the original char value. If you are not aware of this issue, you can see unexpected results
in your code.

Risk
In the following cases, Bug Finder flags use of variables after a conversion from char to a
wider data type or an arithmetic operation that implicitly converts the variable to a wider
data type:

• If you compare the variable value with EOF:

A char value of -1 can represent the invalid character EOF or the valid extended
character value '\377' (corresponding to the unsigned char equivalent, 255).
After a char variable is cast to a wider type such as int, because of sign extension,
the char value -1, representing one of EOF or '\377' becomes the int value -1,
representing only EOF. The unsigned char value 255 can no longer be recovered
from the int variable. Bug Finder flags this situation so that you can cast the variable
to unsigned char first (or avoid the char-to-int conversion or converting operation
before comparison with EOF). Only then, a comparison with EOF is meaningful. See
“Sign-Extended Character Value Compared with EOF” on page 3-103.

• If you use the variable value as an array index:

After a char variable is cast to a wider type such as int, because of sign extension,
all negative values retain their sign. If you use the negative values directly to access
an array, you cause buffer overflow/underflow. Even when you account for the negative
values, the way you account for them might result in incorrect elements being read
from the array. See “Sign-Extended Character Value Used as Array Index” on page 3-
104.

• If you pass the variable value as argument to a character-handling function:

According to the C11 standard (Section 7.4), if you supply an integer argument that
cannot be represented as unsigned char or EOF, the resulting behavior is

3 Defects

3-102

undefined. Bug Finder flags this situation because negative char values after
conversion can no longer be represented as unsigned char or EOF. For instance, the
signed char value -126 is equivalent to the unsigned char value 130, but the signed
int value -126 cannot be represented as unsigned char or EOF.

Fix
Before conversion to a wider integer data type, cast the signed or plain char value
explicitly to unsigned char.

If you use the char data type to not represent characters but simply as a smaller data
type to save memory, your use of sign-extended char values might avoid the risks
mentioned earlier. If so, add comments to your result or code to avoid another review. See
“Address Polyspace Results Through Bug Fixes or Justifications”.

Examples
Sign-Extended Character Value Compared with EOF
#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = *buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

 Misuse of sign-extended character value

3-103

In this example, the function parser can traverse a string input buf. If a character in the
string has the value -1, it can represent either EOF or the valid character value '\377'
(corresponding to the unsigned char equivalent 255). When converted to the int
variable c, its value becomes the integer value -1, which is always EOF. The later
comparison with EOF will not detect if the value returned from parser is actually EOF.

Correction — Cast to unsigned char Before Conversion

One possible correction is to cast the plain char value to unsigned char before
conversion to the wider int type. Only then can you test if the return value of parser is
really EOF.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = (unsigned char)*buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

Sign-Extended Character Value Used as Array Index
#include <limits.h>
#include <stddef.h>
#include <stdio.h>

#define NUL '\0'
#define SOH 1 /* start of heading */

3 Defects

3-104

#define STX 2 /* start of text */
#define ETX 3 /* end of text */
#define EOT 4 /* end of transmission */
#define ENQ 5 /* enquiry */
#define ACK 6 /* acknowledge */

static const int ascii_table[UCHAR_MAX + 1] =
{
 [0]=NUL,[1]=SOH, [2]=STX, [3]=ETX, [4]=EOT, [5]=ENQ,[6]=ACK,
 /* ... */
 [126] = '~',
 /* ... */
 [130/*-126*/]='\202',
 /* ... */
 [255 /*-1*/]='\377'
};

int lookup_ascii_table(char c)
{
 int i;
 i = (c < 0 ? -c : c);
 return ascii_table[i];
}

In this example, the char variable c is converted to the int variable i. If c has negative
values, they are converted to positive values before assignment to i. However, this
conversion can lead to unexpected values when i is used as array index. For instance:

• If c has the value -1 representing the invalid character EOF, you want to probably treat
this value separately. However, in this example, a value of c equal to -1 leads to a value
of i equal to 1. The function lookup_ascii_table returns the value
ascii_table[1] (or SOH) without the invalid character value EOF being accounted
for.

If you use the char data type to not represent characters but simply as a smaller data
type to save memory, you need not worry about this issue.

• If c has a negative value, when assigned to i, its sign is reversed. However, if you
access the elements of ascii_table through i, this sign reversal can result in
unexpected values being read.

 Misuse of sign-extended character value

3-105

For instance, if c has the value -126, i has the value 126. The function
lookup_ascii_table returns the value ascii_table[126] (or '~') but you
probably expected the value ascii_table[130] (or '\202').

Correction – Cast to unsigned char

To correct the issues, avoid the conversion from char to int. First, check c for the value
EOF. Then, cast the value of the char variable c to unsigned char and use the result as
array index.

#include <limits.h>
#include <stddef.h>
#include <stdio.h>

#define NUL '\0'
#define SOH 1 /* start of heading */
#define STX 2 /* start of text */
#define ETX 3 /* end of text */
#define EOT 4 /* end of transmission */
#define ENQ 5 /* enquiry */
#define ACK 6 /* acknowledge */

static const int ascii_table[UCHAR_MAX + 1] =
{
 [0]=NUL,[1]=SOH, [2]=STX, [3]=ETX, [4]=EOT, [5]=ENQ,[6]=ACK,
 /* ... */
 [126] = '~',
 /* ... */
 [130/*-126*/]='\202',
 /* ... */
 [255 /*-1*/]='\377'
};

int lookup_ascii_table(char c)
{
 int r = EOF;
 if (c != EOF) /* specific handling EOF, invalid character */
 r = ascii_table[(unsigned char)c]; /* cast to 'unsigned char' */
 return r;
}

3 Defects

3-106

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: CHARACTER_MISUSE
Impact: Medium
CWE ID: 704

See Also
Character value absorbed into EOF | Errno not checked | Find defects (-
checkers) | Invalid use of standard library integer routine | Returned
value of a sensitive function not checked

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

 Misuse of sign-extended character value

3-107

https://cwe.mitre.org/data/definitions/704.html

File manipulation after chroot() without
chdir("/")
Path-related vulnerabilities for file manipulated after call to chroot

Description
File manipulation after chroot() without chdir("/") detects access to the file
system outside of the jail created by chroot. By calling chroot, you create a file system
jail that confines access to a specific file subsystem. However, this jail is ineffective if you
do not call chdir("/").

Risk
If you do not call chdir("/") after creating a chroot jail, file manipulation functions
that takes a path as an argument can access files outside of the jail. An attacker can still
manipulate files outside the subsystem that you specified, making the chroot jail
ineffective.

Fix
After calling chroot, call chdir("/") to make your chroot jail more secure.

Examples
Open File in chroot-jail
#include <unistd.h>
#include <stdio.h>

const char root_path[] = "/var/ftproot";
const char log_path[] = "file.log";
FILE* chrootmisuse() {
 FILE* res;
 chroot(root_path);

3 Defects

3-108

 chdir("base");
 res = fopen(log_path, "r");
 return res;
}

This example uses chroot to create a chroot-jail. However, to use the chroot jail
securely, you must call chdir("\") afterward. This example calls chdir("base"),
which is not equivalent. Bug Finder also flags fopen because fopen opens a file in the
vulnerable chroot-jail.

Correction — Call chdir("/")

Before opening files, call chdir("/").

#include <unistd.h>
#include <stdio.h>

const char root_path[] = "/var/ftproot";
const char log_path[] = "file.log";
FILE* chrootmisuse() {
 FILE* res;
 chroot(root_path);
 chdir("/");
 res = fopen(log_path, "r");
 return res;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: CHROOT_MISUSE
Impact: Medium
CWE ID: 243, 922

See Also
Umask used with chmod-style arguments | Vulnerable path manipulation |
Find defects (-checkers)

 File manipulation after chroot() without chdir("/")

3-109

https://cwe.mitre.org/data/definitions/243.html
https://cwe.mitre.org/data/definitions/922.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-110

Use of previously closed resource
Function operates on a previously closed stream

Description
Use of previously closed resource occurs when a function operates on a stream that
you closed earlier in your code.

Risk
The standard states that the value of a FILE* pointer is indeterminate after you close the
stream associated with it. Operations using the FILE* pointer can produce unintended
results.

Fix
One possible fix is to close the stream only at the end of operations. Another fix is to
reopen the stream before using it again.

Examples

Use of FILE* Pointer After Closing Stream
#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fclose(fp);
 fprintf(fp,"text");
 }
}

 Use of previously closed resource

3-111

In this example, fclose closes the stream associated with fp. When you use fprintf on
fp after fclose, the Use of previously closed resource defect appears.

Correction — Close Stream After All Operations

One possible correction is to reverse the order of the fprintf and fclose operations.

#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fprintf(fp,"text");
 fclose(fp);
 }
}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: CLOSED_RESOURCE_USE
Impact: High
CWE ID: 672, 826, 910

See Also
Find defects (-checkers) | MISRA C:2012 Rule 22.6

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-112

https://cwe.mitre.org/data/definitions/672.html
https://cwe.mitre.org/data/definitions/826.html
https://cwe.mitre.org/data/definitions/910.html

Writing to const qualified object
Object declared with a const qualifier is modified

Description
Writing to const qualified object occurs when you do one of the following:

• Use a const-qualified object as the destination of an assignment.
• Pass a const-qualified object to a function that modifies the argument.

For instance, the defect can occur in the following situations:

• You pass a const-qualified object as first argument of one of the following functions:

• mkstemp
• mkostemp
• mkostemps
• mkdtemp

• You pass a const-qualified object as the destination argument of one of the following
functions:

• strcpy
• strncpy
• strcat
• memset

• You perform a write operation on a const-qualified object.

Risk
The risk depends upon the modifications made to the const-qualified object.

 Writing to const qualified object

3-113

Situation Risk
Passing to mkstemp, mkostemp,
mkostemps, mkdtemp, and so on.

These functions replace the last six
characters of their first argument with a
string. Therefore, they expect a modifiable
char array as their first argument.

Passing to strcpy, strncpy, strcat,
memset and so on.

These functions modify their destination
argument. Therefore, they expect a
modifiable char array as their destination
argument.

Writing to the object The const qualifier implies an agreement
that the value of the object will not be
modified. By writing to a const-qualified
object, you break the agreement. The result
of the operation is undefined.

Fix
The fix depends on the modification made to the const-qualified object.

Situation Fix
Passing to mkstemp, mkostemp,
mkostemps, mkdtemp, and so on.

Pass a non-const object as first argument
of the function.

Passing to strcpy, strncpy, strcat,
memset and so on.

Pass a non-const object as destination
argument of the function.

Writing to the object Perform the write operation on a non-
const object.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

3 Defects

3-114

Examples

Writing to const-Qualified Object
#include <string.h>

const char* buffer = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

In this example, because buffer is const-qualified, strchr(buffer,'X') returns a
const-qualified char* pointer. When this char* pointer is used as the destination
argument of strcpy, a Writing to const qualified object error appears.

Correction — Copy const-Qualified Object to Non-const Object

One possible correction is to assign the constant string to a non-const object and use the
non-const object as destination argument of strchr.

#include <string.h>

char buffer[] = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: CONSTANT_OBJECT_WRITE
Impact: High
CWE ID: 227, 471, 686

 Writing to const qualified object

3-115

https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/471.html
https://cwe.mitre.org/data/definitions/686.html

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-116

Copy operation modifying source operand
Copy operation modifies data member of source object

Description
Copy operation modifying source operand occurs when a copy constructor or copy
assignment operator modifies a mutable data member of its source operand.

For instance, this copy constructor A modifies the data member m of its source operand
other:

class A {
 mutable int m;

public:
 ...
 A(const A &other) : m(other.m) {
 other.m = 0; //Modification of source
 }
}

Risk
A copy operation with a copy constructor (or copy assignment operator):

className new_object = old_object; //Calls copy constructor of className

copies its source operand old_object to its destination operand new_object. After the
operation, you expect the destination operand to be a copy of the unmodified source
operand. If the source operand is modified during copy, this assumption is violated.

Fix
Do not modify the source operand in the copy operation.

If you are modifying the source operand in a copy constructor to implement a move
operation, use a move constructor instead. Move constructors are defined in the C++11
standard and later.

 Copy operation modifying source operand

3-117

Examples
Copy Constructor Modifying Source

#include <algorithm>
#include <vector>

class A {
 mutable int m;

public:
 A() : m(0) {}
 explicit A(int m) : m(m) {}

 A(const A &other) : m(other.m) {
 other.m = 0;
 }

 A& operator=(const A &other) {
 if (&other != this) {
 m = other.m;
 other.m = 0;
 }
 return *this;
 }

 int get_m() const { return m; }
};

void f() {
 std::vector<A> v{10};
 A obj(12);
 std::fill(v.begin(), v.end(), obj);
}

In this example, a vector of ten objects of type A is created. The std::fill function
copies an object of type A, which has a data member with value 12, to each of the ten
objects. After this operation, you might expect that all ten objects in the vector have a
data member with value 12.

However, the first copy modifies the data member of the source to the value 0. The
remaining nine copies copy this value. After the std::fill call, the first object in the

3 Defects

3-118

vector has a data member with value 12 and the remaining objects have data members
with value 0.

Correction — Use Move Constructor for Modifying Source

Do not modify data members of the source operand in a copy constructor or copy
assignment operator. If you want your class to have a move operation, use a move
constructor instead of a copy constructor.

In this corrected example, the copy constructor and copy assignment operator of class A
do not modify the data member m. A separate move constructor modifies the source
operand.

#include <algorithm>
#include <vector>

class A {
 int m;

public:
 A() : m(0) {}
 explicit A(int m) : m(m) {}

 A(const A &other) : m(other.m) {}
 A(A &&other) : m(other.m) { other.m = 0; }

 A& operator=(const A &other) {
 if (&other != this) {
 m = other.m;
 }
 return *this;
 }

 //Move constructor
 A& operator=(A &&other) {
 m = other.m;
 other.m = 0;
 return *this;
 }

 int get_m() const { return m; }
};

 Copy operation modifying source operand

3-119

void f() {
 std::vector<A> v{10};
 A obj(12);
 std::fill(v.begin(), v.end(), obj);
}

Result Information
Group: Object Oriented
Language: C++
Default: On
Command-Line Syntax: COPY_MODIFYING_SOURCE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

External Websites
Move constructors (C++11 and beyond)

Introduced in R2018b

3 Defects

3-120

https://en.cppreference.com/w/cpp/language/move_constructor

Inconsistent cipher operations
You perform encryption and decryption steps in succession with the same cipher context
without a reinitialization in between

Description
Inconsistent cipher operations occurs when you perform an encryption and decryption
step with the same cipher context. You do not reinitialize the context in between those
steps. The checker applies to symmetric encryption only.

For instance, you set up a cipher context for decryption using EVP_DecryptInit_ex.

EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

However, you use the context for encryption using EVP_EncryptUpdate.

EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

Risk
Mixing up encryption and decryption steps can lead to obscure code. It is difficult to
determine at a glance whether the current cipher context is used for encryption or
decryption. The mixup can also lead to race conditions, failed encryption, and unexpected
ciphertext.

Fix
After you set up a cipher context for a certain family of operations, use the context for
only that family of operations.

For instance, if you set up a cipher context for decryption using EVP_DecryptInit_ex,
use the context afterward for decryption only.

 Inconsistent cipher operations

3-121

Examples

Encryption Step Following Decryption Step

#include <openssl/evp.h>
#include <stdlib.h>

/* Using the cryptographic routines */

unsigned char *out_buf;
int out_len;
unsigned char g_key[16];
unsigned char g_iv[16];
void func(unsigned char* src, int len) {

 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Cipher context set up for decryption*/
 EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, g_key, g_iv);

 /* Update step for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

In this example, the cipher context ctx is set up for decryption using
EVP_DecryptInit_ex. However, immediately afterward, the context is used for
encryption using EVP_EncryptUpdate.

Correction — Change Setup Step

One possible correction is to change the setup step. If you want to use the cipher context
for encryption, set it up using EVP_EncryptInit_ex.

#include <openssl/evp.h>
#include <stdlib.h>

unsigned char *out_buf;

3 Defects

3-122

int out_len;
unsigned char g_key[16];
unsigned char g_iv[16];

void func(unsigned char* src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Cipher context set up for encryption*/
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, g_key, g_iv);

 /* Update step for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_BAD_FUNCTION
Impact: Medium
CWE ID: 372, 664

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

 Inconsistent cipher operations

3-123

https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

Constant block cipher initialization vector
Initialization vector is constant instead of randomized

Description
Constant block cipher initialization vector occurs when you use a constant for the
initialization vector (IV) during encryption.

Risk
Using a constant IV is equivalent to not using an IV. Your encrypted data is vulnerable to
dictionary attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC
(Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with the
encrypted output from the previous block. To protect the first block, these modes use a
random initialization vector (IV). If you use a constant IV to encrypt multiple data streams
that have a common beginning, your data becomes vulnerable to dictionary attacks.

Fix
Produce a random IV by using a strong random number generator.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Examples

Constants Used for Initialization Vector

#include <openssl/evp.h>
#include <stdlib.h>

3 Defects

3-124

#define SIZE16 16

/* Using the cryptographic routines */

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16] = {'1', '2', '3', '4','5','6','b','8','9',
 '1','2','3','4','5','6','7'};
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the initialization vector iv has constants only. The constant initialization
vector makes your cipher vulnerable to dictionary attacks.

Correction — Use Random Initialization Vector

One possible correction is to use a strong random number generator to produce the
initialization vector. The corrected code here uses the function RAND_bytes declared in
openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

/* Using the cryptographic routines */

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_CONSTANT_IV
Impact: Medium
CWE ID: 310, 326, 329

 Constant block cipher initialization vector

3-125

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/329.html

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

3 Defects

3-126

Constant cipher key
Encryption or decryption key is constant instead of randomized

Description
Constant cipher key occurs when you use a constant for the encryption or decryption
key.

Risk
If you use a constant for the encryption or decryption key, an attacker can retrieve your
key easily.

You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data
encrypted using that key is not secure.

Fix
Produce a random key by using a strong random number generator.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Examples

Constants Used for Key

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16] = {'1', '2', '3', '4','5','6','b','8','9',

 Constant cipher key

3-127

 '1','2','3','4','5','6','7'};
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the cipher key, key, has constants only. An attacker can easily retrieve a
constant key.

Correction — Use Random Key

Use a strong random number generator to produce the cipher key. The corrected code
here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_CONSTANT_KEY
Impact: Medium
CWE ID: 310, 320, 321, 326, 522

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

3 Defects

3-128

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/321.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/522.html

Introduced in R2017a

 Constant cipher key

3-129

Missing cipher algorithm
An encryption or decryption algorithm is not associated with the cipher context

Description
Missing cipher algorithm occurs when you do not assign a cipher algorithm when
setting up your cipher context.

You can initialize your cipher context without an algorithm. However, before you encrypt
or decrypt your data, you must associate the cipher context with a cipher algorithm.

Risk
A missing cipher algorithm can lead to run-time errors or at least, non-secure ciphertext.

Before encryption or decryption, you set up a cipher context that has the information
required for encryption: the cipher algorithm and mode, an encryption or decryption key
and an initialization vector (for modes that require initialization vectors).

ret = EVP_EncryptInit(&ctx, EVP_aes_128_cbc(), key, iv)

The function EVP_aes_128_cbc() specifies that the Advanced Encryption Standard
(AES) algorithm must be used for encryption. The function also specifies a block size of
128 bits and the Cipher Bloch Chaining (CBC) mode.

Instead of specifying the algorithm, you can use NULL in the initialization step. However,
before using the cipher context for encryption or decryption, you must perform an
additional initialization that associates an algorithm with the context. Otherwise, the
update steps for encryption or decryption can lead to run-time errors.

Fix
Before your encryption or decryption steps

 ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len)

associate your cipher context ctx with an algorithm.

3 Defects

3-130

ret = EVP_EncryptInit(ctx, EVP_aes_128_cbc(), key, iv)

Examples

Algorithm Missing During Context Initialization

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char key[SIZE16];
unsigned char iv[SIZE16];
void func(void) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 EVP_EncryptInit_ex(ctx, NULL, NULL, key, iv);
}

In this example, an algorithm is not provided when the cipher context ctx is initialized.

Before you encrypt or decrypt your data, you have to provide a cipher algorithm. If you
perform a second initialization to provide the algorithm, the cipher context is completely
re-initialized. Therefore, the current initialization statement using EVP_EncryptInit_ex
is redundant.

Correction — Provide Algorithm During Initialization

One possible correction is to provide an algorithm when you initialize the cipher context.
In the corrected code below, the routine EVP_aes_128_cbc invokes the Advanced
Encryption Standard (AES) algorithm. The routine also specifies a block size of 128 bits
and the Cipher Block Chaining (CBC) mode for encryption.

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char key[SIZE16];

 Missing cipher algorithm

3-131

unsigned char iv[SIZE16];
void func(unsigned char *src, int len, unsigned char *out_buf, int out_len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_ALGORITHM
Impact: Medium
CWE ID: 310, 573

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

3 Defects

3-132

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/573.html

Missing cipher data to process
Final encryption or decryption step is performed without previous update steps

Description
Missing cipher data to process occurs when you perform the final step of a block
cipher encryption or decryption incorrectly.

For instance, you do one of the following:

• You do not perform update steps for encrypting or decrypting the data before
performing a final step.

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);
...
/* Missing update step */
...
/* Final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

• You perform consecutive final steps without intermediate initialization and update
steps.

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);
...
/* Update step(s) */
ret = EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
...
/* Final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);
...
/* Missing initialization and update */
...
/* Second final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

• You perform a cleanup of the cipher context and then perform a final step.

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 Missing cipher data to process

3-133

...
/* Update step(s) */
ret = EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
...
/* Cleanup of cipher context */
EVP_CIPHER_CTX_cleanup(ctx);
...
/* Second final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

Risk
Block ciphers break your data into blocks of fixed size. During encryption or decryption,
the update step encrypts or decrypts your data in blocks. Any leftover data is encrypted
or decrypted by the final step. The final step adds padding to the leftover data so that it
occupies one block, and then encrypts or decrypts the padded data.

If you perform the final step before performing the update steps, or perform the final step
when there is no data to process, the behavior is undefined. You can also encounter run-
time errors.

Fix
Perform encryption or decryption in this sequence:

• Initialization of cipher context
• Update steps
• Final step
• Cleanup of context

Examples

Missing Update Steps for Encryption Before Final Step

#include <openssl/evp.h>
#include <stdlib.h>

3 Defects

3-134

#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(void) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Missing update steps for encryption */

 /* Final encryption step */
 EVP_EncryptFinal_ex(ctx, out_buf, &out_len);
}

In this example, after the cipher context is initialized, there are no update steps for
encrypting the data. The update steps are supposed to encrypt one or more blocks of
data, leaving the final step to encrypt data that is left over in a partial block. If you
perform the final step without previous update steps, the behavior is undefined.

Correction — Perform Update Steps for Encryption Before Final Step

Perform update steps for encryption before the final step. In the corrected code below, the
routine EVP_EncryptUpdate performs the update steps.

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(unsigned char *src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 Missing cipher data to process

3-135

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

 /* Final encryption step */
 EVP_EncryptFinal_ex(ctx, out_buf, &out_len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_DATA
Impact: Medium
CWE ID: 311, 325, 372, 664

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

3 Defects

3-136

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

Missing cipher final step
You do not perform a final step after update steps for encrypting or decrypting data

Description
Missing cipher final step occurs when you do not perform a final step after your update
steps for encrypting or decrypting data.

For instance, you do the following:

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv);
...
/* Update step */
ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len);
...
/* Missing final step */
...
/* Cleanup of cipher context */
EVP_CIPHER_CTX_cleanup(ctx);

Risk
Block ciphers break your data into blocks of fixed size. During encryption or decryption,
the update step encrypts or decrypts your data in blocks. Any leftover data is encrypted
or decrypted by the final step. The final step adds padding to the leftover data so that it
occupies one block, and then encrypts or decrypts the padded data.

If you do not perform the final step, leftover data remaining in a partial block is not
encrypted or decrypted. You can face incomplete or unexpected output.

Fix
After your update steps for encryption or decryption, perform a final step to encrypt or
decrypt leftover data.

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv);

 Missing cipher final step

3-137

...
/* Update step(s) */
ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len);
...
/* Final step */
ret = EVP_EncryptFinal_ex(&ctx, out_buf, &out_len);
...
/* Cleanup of cipher context */
EVP_CIPHER_CTX_cleanup(ctx);

Examples

Cleanup of Cipher Context Before Final Step

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(unsigned char *src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

 /* Missing final encryption step */

 /* Cleanup of cipher context */
 EVP_CIPHER_CTX_cleanup(ctx);
}

3 Defects

3-138

In this example, the cipher context ctx is cleaned up before a final encryption step. The
final step is supposed to encrypt leftover data. Without the final step, the encryption is
incomplete.

Correction — Perform Final Encryption Step

After your update steps for encryption, perform a final encryption step to encrypt leftover
data. In the corrected code below, the routine EVP_EncryptFinal_ex is used to perform
this final step.

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(unsigned char *src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

 /* Final encryption step */
 EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

 /* Cleanup of cipher context */
 EVP_CIPHER_CTX_cleanup(ctx);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off

 Missing cipher final step

3-139

Command-Line Syntax: CRYPTO_CIPHER_NO_FINAL
Impact: Medium
CWE ID: 311, 325, 372, 664

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

3 Defects

3-140

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

Missing block cipher initialization vector
Context used for encryption or decryption is associated with NULL initialization vector or
not associated with an initialization vector

Description
Missing block cipher initialization vector occurs when you encrypt or decrypt data
using a NULL initialization vector (IV).

Note You can initialize your cipher context with a NULL initialization vector (IV).
However, if your algorithm requires an IV, before the encryption or decryption step, you
must associate the cipher context with a non-NULL IV.

Risk
Many block cipher modes use an initialization vector (IV) to prevent dictionary attacks. If
you use a NULL IV, your encrypted data is vulnerable to such attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC
(Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with the
encrypted output from the previous block. To protect the first block, these modes use a
random initialization vector (IV). If you use a NULL IV, you get the same ciphertext when
encrypting the same plaintext. Your data becomes vulnerable to dictionary attacks.

Fix
Before your encryption or decryption steps

 ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len)

associate your cipher context ctx with a non-NULL initialization vector.

ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv)

 Missing block cipher initialization vector

3-141

Examples

NULL Initialization Vector Used for Encryption

#include <openssl/evp.h>
#include <stdlib.h>
#define fatal_error() abort()

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *key, unsigned char *src, int len){
 if (key == NULL)
 fatal_error();

 /* Last argument is initialization vector */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, NULL);

 /* Update step with NULL initialization vector */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

In this example, the initialization vector associated with the cipher context ctx is NULL.
If you use this context to encrypt your data, your data is vulnerable to dictionary attacks.

Correction — Use Random Initialization Vector

Use a strong random number generator to produce the initialization vector. The corrected
code here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define fatal_error() abort()
#define SIZE16 16

unsigned char *out_buf;
int out_len;

3 Defects

3-142

int func(EVP_CIPHER_CTX *ctx, unsigned char *key, unsigned char *src, int len){
 if (key == NULL)
 fatal_error();
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);

 /* Last argument is initialization vector */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update step with non-NULL initialization vector */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_IV
Impact: Medium
CWE ID: 310, 326, 329

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

 Missing block cipher initialization vector

3-143

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/329.html

Missing cipher key
Context used for encryption or decryption is associated with NULL key or not associated
with a key

Description
Missing cipher key occurs when you encrypt or decrypt data using a NULL encryption
or decryption key.

Note You can initialize your cipher context with a NULL key. However, before you
encrypt or decrypt your data, you must associate the cipher context with a non-NULL key.

Risk
Encryption or decryption with a NULL key can lead to run-time errors or at least, non-
secure ciphertext.

Fix
Before your encryption or decryption steps

 ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len)

associate your cipher context ctx with a non-NULL key.

ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv)

Sometimes, you initialize your cipher context with a non-NULL key

ret = EVP_EncryptInit_ex(&ctx, cipher_algo_1, NULL, key, iv)

but change the cipher algorithm later. When you change the cipher algorithm, you use a
NULL key.

 ret = EVP_EncryptInit_ex(&ctx, cipher_algo_2, NULL, NULL, NULL)

3 Defects

3-144

The second statement reinitializes the cipher context completely but with a NULL key. To
avoid this issue, every time you initialize a cipher context with an algorithm, associate it
with a key.

Examples
NULL Key Used for Encryption

#include <openssl/evp.h>
#include <stdlib.h>
#define fatal_error() abort()

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv, unsigned char *src, int len){
 if (iv == NULL)
 fatal_error();

 /* Fourth argument is cipher key */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, NULL, iv);

 /* Update step with NULL key */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

In this example, the cipher key associated with the context ctx is NULL. When you use
this context to encrypt your data, you can encounter run-time errors.

Correction — Use Random Cipher Key

Use a strong random number generator to produce the cipher key. The corrected code
here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define fatal_error() abort()

 Missing cipher key

3-145

#define SIZE16 16

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv, unsigned char *src, int len){
 if (iv == NULL)
 fatal_error();
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);

 /* Fourth argument is cipher key */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update step with non-NULL cipher key */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_KEY
Impact: Medium
CWE ID: 310, 320, 573, 664

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

3 Defects

3-146

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Predictable block cipher initialization vector
Initialization vector is generated from a weak random number generator

Description
Predictable block cipher initialization vector occurs when you use a weak random
number generator for the block cipher initialization vector.

Risk
If you use a weak random number generator for the initiation vector, your data is
vulnerable to dictionary attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC
(Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with the
encrypted output from the previous block. To protect the first block, these modes use a
random initialization vector (IV). If you use a weak random number generator for your IV,
your data becomes vulnerable to dictionary attacks.

Fix
Use a strong pseudo-random number generator (PRNG) for the initialization vector. For
instance, use:

• OS-level PRNG such as /dev/random on UNIX or CryptGenRandom() on Windows
• Application-level PRNG such as Advanced Encryption Standard (AES) in Counter

(CTR) mode, HMAC-SHA1, etc.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

 Predictable block cipher initialization vector

3-147

Examples

Predictable Initialization Vector
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_pseudo_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the function RAND_pseudo_bytes declared in openssl/rand.h
produces the initialization vector. The byte sequences that RAND_pseudo_bytes
generates are not necessarily unpredictable.

Correction — Use Strong Random Number Generator

Use a strong random number generator to produce the initialization vector. The corrected
code here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Cryptography
Language: C | C++

3 Defects

3-148

Default: Off
Command-Line Syntax: CRYPTO_CIPHER_PREDICTABLE_IV
Impact: Medium
CWE ID: 310, 329, 330, 338

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

 Predictable block cipher initialization vector

3-149

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/329.html
https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/338.html

Predictable cipher key
Encryption or decryption key is generated from a weak random number generator

Description
Predictable cipher key occurs when you use a weak random number generator for the
encryption or decryption key.

Risk
If you use a weak random number generator for the encryption or decryption key, an
attacker can retrieve your key easily.

You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data
encrypted using that key is not secure.

Fix
Use a strong pseudo-random number generator (PRNG) for the key. For instance:

• Use an OS-level PRNG such as /dev/random on UNIX or CryptGenRandom() on
Windows

• Use an application-level PRNG such as Advanced Encryption Standard (AES) in
Counter (CTR) mode, HMAC-SHA1, etc.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Examples

Predictable Cipher Key

3 Defects

3-150

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_pseudo_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the function RAND_pseudo_bytes declared in openssl/rand.h
produces the cipher key. However, the byte sequences that RAND_pseudo_bytes
generates are not necessarily unpredictable.

Correction — Use Strong Random Number Generator

One possible correction is to use a strong random number generator to produce the
cipher key. The corrected code here uses the function RAND_bytes declared in openssl/
rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_PREDICTABLE_KEY
Impact: Medium
CWE ID: 310, 326, 330, 338

 Predictable cipher key

3-151

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/338.html

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

3 Defects

3-152

Weak cipher algorithm
Encryption algorithm associated with the cipher context is weak

Description
Weak cipher algorithm occurs when you associate a weak encryption algorithm with
the cipher context.

Risk
Some encryption algorithms have known flaws. Though the OpenSSL library still supports
the algorithms, you must avoid using them.

If your cipher algorithm is weak, an attacker can decrypt your data by exploiting a known
flaw or brute force attacks.

Fix
Use algorithms that are well-studied and widely acknowledged as secure.

For instance, the Advanced Encryption Standard (AES) is a widely accepted cipher
algorithm.

Examples

Use of DES Algorithm

#include <openssl/evp.h>
#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 Weak cipher algorithm

3-153

 const EVP_CIPHER * ciph = EVP_des_cbc();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

In this example, the routine EVP_des_cbc() invokes the Data Encryption Standard
(DES) algorithm, which is now considered as non-secure and relatively slow.

Correction — Use AES Algorithm

One possible correction is to use the faster and more secure Advanced Encryption
Standard (AES) algorithm instead.

#include <openssl/evp.h>
#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 const EVP_CIPHER * ciph = EVP_aes_128_cbc();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_WEAK_CIPHER
Impact: Medium
CWE ID: 310, 326, 327

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

3 Defects

3-154

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html

Introduced in R2017a

 Weak cipher algorithm

3-155

Weak cipher mode
Encryption mode associated with the cipher context is weak

Description
Weak cipher mode occurs when you associate a weak block cipher mode with the cipher
context.

The cipher mode that is especially flagged by this defect is the Electronic Code Book
(ECB) mode.

Risk
The ECB mode does not support protection against dictionary attacks.

An attacker can decrypt your data even using brute force attacks.

Fix
Use a cipher mode more secure than ECB.

For instance, the Cipher Block Chaining (CBC) mode protects against dictionary attacks
by:

• XOR-ing each block of data with the encrypted output from the previous block.
• XOR-ing the first block of data with a random initialization vector (IV).

Examples

Use of ECB Mode

#include <openssl/evp.h>

3 Defects

3-156

#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 const EVP_CIPHER * ciph = EVP_aes_128_ecb();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

In this example, the routine EVP_aes_128_ecb() invokes the Advanced Encryption
Standard (AES) algorithm in the Electronic Code Book (ECB) mode. The ECB mode does
not support protection against dictionary attacks.

Correction — Use CBC Mode

One possible correction is to use the Cipher Block Chaining (CBC) mode instead.

#include <openssl/evp.h>
#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 const EVP_CIPHER * ciph = EVP_aes_128_cbc();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_WEAK_MODE
Impact: Medium
CWE ID: 310, 326, 327

See Also
Find defects (-checkers)

 Weak cipher mode

3-157

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

3 Defects

3-158

Context initialized incorrectly for digest
operation
Context used for digest operation is initialized for a different digest operation

Description
Context initialized incorrectly for digest operation occurs when you initialize an
EVP_MD_CTX context object for a specific digest operation but use the context for a
different operation.

For instance, you initialize the context for creating a message digest only.

ret = EVP_DigestInit(ctx, EVP_sha256())

However, you perform a final step for signing:

ret = EVP_SignFinal(&ctx, out, &out_len, pkey);

The error is shown only if the final step is not consistent with the initialization of the
context. If the intermediate update steps are inconsistent, it does not trigger an error
because the intermediate steps do not depend on the nature of the operation. For
instance, EVP_DigestUpdate works identically to EVP_SignUpdate.

Risk
Mixing up different operations on the same context can lead to obscure code. It is difficult
to determine at a glance whether the current object is used for message digest creation,
signing, or verification. The mixup can also lead to a failure in the operation or
unexpected message digest.

Fix
After you set up a context for a certain family of operations, use the context for only that
family of operations. For instance, use these pairs of functions for initialization and final
steps.

 Context initialized incorrectly for digest operation

3-159

• EVP_DigestInit : EVP_DigestFinal
• EVP_DigestInit_ex : EVP_DigestFinal_ex
• EVP_DigestSignInit : EVP_DigestSignFinal

If you want to reuse an existing context object for a different family of operations,
reinitialize the context.

Examples
Inconsistent Initial and Final Digest Operation

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf16;
unsigned int out_len16;

void func(unsigned char *src, size_t len){
 EVP_MD_CTX* ctx = EVP_MD_CTX_create();

 ret = EVP_SignInit_ex(ctx, EVP_sha256(), NULL);
 if (ret != 1) fatal_error();

 ret = EVP_SignUpdate(ctx, src, len);
 if (ret != 1) fatal_error();

 ret = EVP_DigestSignFinal(ctx, out_buf16, (size_t*) out_len16);

 if (ret != 1) fatal_error();
}

In this example, the context object is initialized for signing only with EVP_SignInit but
the final step attempts to create a signed digest with EVP_DigestSignFinal.

Correction — Use One Family of Operations

One possible correction is to use the context object for signing only. Change the final step
to EVP_SignFinal in keeping with the initialization step.

3 Defects

3-160

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf16;
unsigned int out_len16;

void corrected_cryptomdbadfunction(unsigned char *src, size_t len, EVP_PKEY* pkey){
 EVP_MD_CTX* ctx = EVP_MD_CTX_create();

 ret = EVP_SignInit_ex(ctx, EVP_sha256(), NULL);
 if (ret != 1) fatal_error();

 ret = EVP_SignUpdate(ctx, src, len);
 if (ret != 1) fatal_error();

 ret = EVP_SignFinal(ctx, out_buf16, &out_len16, pkey);
 if (ret != 1) fatal_error();
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_MD_BAD_FUNCTION
Impact: Medium
CWE ID: 310, 353, 354, 372, 573, 664

See Also
Find defects (-checkers) | Nonsecure hash algorithm

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Context initialized incorrectly for digest operation

3-161

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/353.html
https://cwe.mitre.org/data/definitions/354.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Nonsecure hash algorithm
Context used for message digest creation is associated with weak algorithm

Description
Nonsecure hash algorithm occurs when you use a cryptographic hash function that is
proven to be weak against certain forms of attack.

The hash functions flagged by this checker include SHA-0, SHA-1, MD4, MD5, and
RIPEMD-160. The checker detects the use of these hash functions in:

• Functions from the EVP API such as EVP_DigestUpdate or EVP_SignUpdate.
• Functions from the low level API such as SHA1_Update or MD5_Update.

Risk
You use a hash function to create a message digest from input data and thereby ensure
integrity of your data. The hash functions flagged by this checker use algorithms with
known weaknesses that an attacker can exploit. The attacks can comprise the integrity of
your data.

Fix
Use a more secure hash function. For instance, use the later SHA functions such as
SHA-224, SHA-256, SHA-384, and SHA-512.

Examples

Use of MD5 Algorithm

#include <openssl/evp.h>

#define fatal_error() exit(-1)

3 Defects

3-162

int ret;
unsigned char *out_buf;
unsigned int out_len;

void func(unsigned char *src, size_t len, EVP_PKEY* pkey){
 EVP_MD_CTX* ctx = EVP_MD_CTX_create();

 ret = EVP_SignInit_ex(ctx, EVP_md5(), NULL);
 if (ret != 1) fatal_error();

 ret = EVP_DigestUpdate(ctx,src,len);

 if (ret != 1) fatal_error();

 ret = EVP_SignFinal(ctx, out_buf, &out_len, pkey);
 if (ret != 1) fatal_error();
}

In this example, during initialization with EVP_SignInit_ex, the context object is
associated with the weak hash function MD5. The checker flags the usage of this context
in the update step with EVP_DigestUpdate.

Correction — Use SHA-2 Family Function

One possible correction is to use a hash function from the SHA-2 family, such as SHA-256.

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
unsigned int out_len;

void func(unsigned char *src, size_t len, EVP_PKEY* pkey){
 EVP_MD_CTX* ctx = EVP_MD_CTX_create();

 ret = EVP_SignInit_ex(ctx, EVP_sha256(), NULL);
 if (ret != 1) fatal_error();

 ret = EVP_SignUpdate(ctx, src, len);
 if (ret != 1) fatal_error();

 Nonsecure hash algorithm

3-163

 ret = EVP_SignFinal(ctx, out_buf, &out_len, pkey);
 if (ret != 1) fatal_error();
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_MD_WEAK_HASH
Impact: Medium
CWE ID: 310, 327, 328, 353, 522

See Also
Context initialized incorrectly for digest operation | Find defects (-
checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

3 Defects

3-164

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/328.html
https://cwe.mitre.org/data/definitions/353.html
https://cwe.mitre.org/data/definitions/522.html

Context initialized incorrectly for
cryptographic operation
Context used for public key cryptography operation is initialized for a different operation

Description
Context initialized incorrectly for cryptographic operation occurs when you
initialize an EVP_PKEY_CTX object for a specific public key cryptography operation but
use the object for a different operation.

For instance, you initialize the context for encryption.

ret = EVP_PKEY_encrypt_init(ctx);

However, you use the context for decryption without reinitializing the context.

ret = EVP_PKEY_decrypt(ctx, out, &out_len, in, in_len);

The checker detects if the context object used in these functions has been initialized by
using the corresponding initialization functions: EVP_PKEY_paramgen,
EVP_PKEY_keygen, EVP_PKEY_encrypt, EVP_PKEY_verify,
EVP_PKEY_verify_recover,EVP_PKEY_decrypt, EVP_PKEY_sign,
EVP_PKEY_derive,and EVP_PKEY_derive_set_peer.

Risk
Mixing up different operations on the same context can lead to obscure code. It is difficult
to determine at a glance whether the current object is used for encryption, decryption,
signature, or another operation. The mixup can also lead to a failure in the operation or
unexpected ciphertext.

Fix
After you set up a context for a certain family of operations, use the context for only that
family of operations.For instance, use these pairs of functions for initialization and usage
of the EVP_PKEY_CTX context object.

 Context initialized incorrectly for cryptographic operation

3-165

• For encryption with EVP_PKEY_encrypt, initialize the context with
EVP_PKEY_encrypt_init.

• For signature verification with EVP_PKEY_verify, initialize the context with
EVP_PKEY_verify_init.

• For key generation with EVP_PKEY_keygen, initialize the context with
EVP_PKEY_keygen_init.

If you want to reuse an existing context object for a different family of operations,
reinitialize the context.

Examples
Encryption Using Context Initialized for Decryption

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf10;
size_t out_len10;
int func(unsigned char *src, size_t len, EVP_PKEY_CTX *ctx){
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_decrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf10, &out_len10, src, len);
}

In this example, the context is initialized for decryption but used for encryption.

Correction — Use One Family of Operations

One possible correction is to initialize the object for encryption.

#include <openssl/evp.h>

#define fatal_error() exit(-1)

3 Defects

3-166

int ret;
unsigned char *out_buf10;
size_t out_len10;
int func(unsigned char *src, size_t len, EVP_PKEY_CTX *ctx){
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf10, &out_len10, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_INCORRECT_INIT
Impact: Medium
CWE ID: 310, 325, 372, 573, 664

See Also
Find defects (-checkers) | Incorrect key for cryptographic algorithm |
Missing parameters for key generation | Missing data for encryption,
decryption or signing operation | Missing peer key | Missing private
key | Missing public key | Nonsecure parameters for key generation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Context initialized incorrectly for cryptographic operation

3-167

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Incorrect key for cryptographic algorithm
Public key cryptography operation is not supported by the algorithm used in context
initialization

Description
Incorrect key for cryptographic algorithm occurs when you initialize a context object
with a key for a specific algorithm but perform an operation that the algorithm does not
support.

For instance, you initialize the context with a key for the DSA algorithm.

ret = EVP_PKEY_set1_DSA(pkey,dsa);
ctx = EVP_PKEY_CTX_new(pkey, NULL);

However, you use the context for encrypting data, an operation that the DSA algorithm
does not support.

ret = EVP_PKEY_encrypt(ctx,out, &out_len, in, in_len);

Risk
If the algorithm does not support your cryptographic operation, you do not see the
expected results. For instance, if you use the DSA algorithm for encryption, you might get
unexpected ciphertext.

Fix
Use the algorithm that is appropriate for the cryptographic operation that you want to
perform:

• Diffie-Hellman (DH): For key derivation.
• Digital Signature Algorithm (DSA): For signature.
• RSA: For encryption and signature.
• Elliptic curve (EC): For key derivation and signature.

3 Defects

3-168

Examples

Encryption with DSA Algorithm

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len, DSA * dsa){
 EVP_PKEY_CTX *ctx;
 EVP_PKEY *pkey = NULL;

 pkey = EVP_PKEY_new();
 if(pkey == NULL) fatal_error();

 ret = EVP_PKEY_set1_DSA(pkey,dsa);
 if (ret <= 0) fatal_error();

 ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

In this example, the context object is initialized with a key associated with the DSA
algorithm. However, the object is used for encryption, an operation that the DSA
algorithm does not support.

Correction — Use RSA Algorithm

One possible correction is to initialize the context object with a key associated with the
RSA algorithm.

#include <openssl/evp.h>
#include <openssl/rsa.h>

 Incorrect key for cryptographic algorithm

3-169

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len, RSA * rsa){
 EVP_PKEY_CTX *ctx;
 EVP_PKEY *pkey = NULL;

 pkey = EVP_PKEY_new();
 if(pkey == NULL) fatal_error();

 ret = EVP_PKEY_set1_RSA(pkey,rsa);
 if (ret <= 0) fatal_error();

 ctx = EVP_PKEY_CTX_new(pkey, NULL); /* RSA key is set in the context */
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx); /* Encryption operation is set in the context */
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_INCORRECT_KEY
Impact: Medium
CWE ID: 310, 325, 573, 664

See Also
Context initialized incorrectly for cryptographic operation | Find
defects (-checkers) | Missing parameters for key generation | Missing
data for encryption, decryption or signing operation | Missing peer

3 Defects

3-170

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

key | Missing private key | Missing public key | Nonsecure parameters for
key generation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Incorrect key for cryptographic algorithm

3-171

Missing data for encryption, decryption or
signing operation
Data provided for public key cryptography operation is NULL or data length is zero

Description
Missing data for encryption, decryption or signing operation occurs when the data
provided for an encryption, decryption, signing, or authentication operation is NULL or
the data length is zero.

For instance, you unintentionally provide a NULL value for in or a zero value for in_len
in this decryption operation:

ret = EVP_PKEY_decrypt(ctx, out, &out_len, in, in_len);

Or, you provide a NULL value for md or sig, or a zero value for md_len or sig_len in
this verification operation:

ret = EVP_PKEY_verify(ctx, md, mdlen, sig, siglen);

Risk
With NULL data or zero length, the operation does not occur. The redundant operation
often indicates a coding error.

Fix
Check the placement of the encryption, decryption, or signing operation. If the operation
is intended to happen, make sure that the data provided is non-NULL. Set the data length
to a nonzero value.

3 Defects

3-172

Examples

Zero Data Length for Signing Operation

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY_CTX * ctx){
 if (ctx == NULL) fatal_error();
 unsigned char* sig = (unsigned char*) "0123456789";
 unsigned char* md = (unsigned char*) "0123456789";

 ret = EVP_PKEY_verify_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256());
 if (ret <= 0) fatal_error();
 return EVP_PKEY_verify(ctx, sig, 0, md, 0);
}

In this example, the data lengths (third and fifth arguments to EVP_PKEY_verify) are
zero. The operation fails.

Correction — Use Nonzero Data Length

One possible correction is to use a nonzero length for the signature and the data believed
to be signed.

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY_CTX * ctx){
 if (ctx == NULL) fatal_error();
 unsigned char* sig = (unsigned char*) "0123456789";
 unsigned char* md = (unsigned char*) "0123456789";

 ret = EVP_PKEY_verify_init(ctx);
 if (ret <= 0) fatal_error();

 Missing data for encryption, decryption or signing operation

3-173

 ret = EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256());
 if (ret <= 0) fatal_error();
 return EVP_PKEY_verify(ctx, sig, 10, md, 10);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_DATA
Impact: Medium
CWE ID: 310, 325, 372, 573

See Also
Context initialized incorrectly for cryptographic operation | Find
defects (-checkers) | Incorrect key for cryptographic algorithm |
Missing parameters for key generation | Missing peer key | Missing
private key | Missing public key | Nonsecure parameters for key
generation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

3 Defects

3-174

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html

Missing parameters for key generation
Context used for key generation is associated with NULL parameters

Description
Missing parameters for key generation occurs when you perform a key generation
step with a context object without first associating the object with required parameters.

For instance, you associate a EVP_PKEY_CTX context object with an empty EVP_PKEY
object params before key generation :

EVP_PKEY * params = EVP_PKEY_new();
...
EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new(params, NULL);
...
EVP_PKEY_keygen(ctx, &pkey);

Risk
Without appropriate parameters, the key generation step does not occur. The redundant
operation often indicates a coding error.

Fix
Check the placement of the key generation step. If the operation is intended, make sure
that the parameters are set before key generation.

Certain algorithms use default parameters. For instance, if you specify the DSA algorithm
when creating the EVP_PKEY_CTX object, a default key length of 1024 bits is used:

kctx = EVP_PKEY_CTX_new_id(EVP_PKEY_DSA, NULL);

Specifying the algorithm during context creation is sufficient to avoid this defect. Only if
you use the Elliptic Curve (EC) algorithm, you must also specify the curve explicitly
before key generation.

 Missing parameters for key generation

3-175

However, the default parameters can generate keys that are too weak for encryption.
Weak parameters can trigger another defect. To change default parameters, use functions
specific to the algorithm. For instance, to set parameters, you can use these functions:

• Diffie-Hellman (DH): Use EVP_PKEY_CTX_set_dh_paramgen_prime_len and
EVP_PKEY_CTX_set_dh_paramgen_generator.

• Digital Signature Algorithm (DSA): Use EVP_PKEY_CTX_set_dsa_paramgen_bits.
• RSA: Use EVP_PKEY_CTX_set_rsa_padding,

EVP_PKEY_CTX_set_rsa_pss_saltlen,
EVP_PKEY_CTX_set_rsa_rsa_keygen_bits, and
EVP_PKEY_CTX_set_rsa_keygen_pubexp.

• Elliptic curve (EC): Use EVP_PKEY_CTX_set_ec_paramgen_curve_nid and
EVP_PKEY_CTX_set_ec_param_enc.

Examples

Empty Parameters During Key Generation

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 EVP_PKEY * params = EVP_PKEY_new();
 if (params == NULL) fatal_error();

 EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new(params, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

In this example, the context object ctx is associated with an empty parameter object
params. The context object does not have the required parameters for key generation.

3 Defects

3-176

Correction — Specify Algorithm During Context Creation

One possible correction is to specify an algorithm, such as RSA, during context creation.
For stronger encryption, use 2048 bits for key length instead of the default 1024 bits.

#include <openssl/evp.h>
#include <openssl/rsa.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();

 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();

 return EVP_PKEY_keygen(ctx, &pkey);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_PARAMS
Impact: Medium
CWE ID: 310, 325, 372, 573

See Also
Context initialized incorrectly for cryptographic operation | Find
defects (-checkers) | Incorrect key for cryptographic algorithm |
Missing data for encryption, decryption or signing | Missing peer key |
Missing private key | Missing public key | Nonsecure parameters for key
generation

 Missing parameters for key generation

3-177

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

3 Defects

3-178

Missing peer key
Context used for shared secret derivation is associated with NULL peer key or not
associated with a peer key at all

Description
Missing peer key occurs when you use a context object for shared secret derivation but
you have not previously associated the object with a non-NULL peer key.

For instance, you initialize the context object, and then use the object for shared secret
derivation without an intermediate step where the object is associated with a peer key:

EVP_PKEY_derive_init(ctx);
/* Missing step for associating peer key with context */
ret = EVP_PKEY_derive(ctx, out_buf, &out_len);

The counterpart checker Missing private key checks for a private key in shared
secret derivation.

Risk
Without a peer key, the shared secret derivation step does not occur. The redundant
operation often indicates a coding error.

Fix
Check the placement of the shared secret derivation step. If the operation is intended,
make sure that you have completed these steps prior to the operation:

• Generate a non-NULL peer key.

For instance:

EVP_PKEY* peerkey = NULL;
EVP_PKEY_keygen(EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL), &peerkey);

• Associate a non-NULL context object with the peer key.

 Missing peer key

3-179

For instance:

EVP_PKEY_derive_set_peer(ctx,peerkey);

Examples

Missing Step for Associating Peer Key with Context

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(EVP_PKEY *pkey){
 if (pkey == NULL) fatal_error();

 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();
 ret = EVP_PKEY_derive_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_derive(ctx, out_buf, &out_len);
}

In this example, the context object ctx is associated with a private key but not a peer key.
The EVP_PKEY_derive function uses this context object for shared secret derivation.

Correction — Set Peer Key in Context

One possible correction is to use the function EVP_PKEY_derive_set_peer and
associate a peer key with the context object. Make sure that the peer key is non-NULL.

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

3 Defects

3-180

int ret;
unsigned char *out_buf;
size_t out_len;

int func(EVP_PKEY *pkey, EVP_PKEY* peerkey){
 if (pkey == NULL) fatal_error();
 if (peerkey == NULL) fatal_error();

 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();
 ret = EVP_PKEY_derive_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_derive_set_peer(ctx,peerkey);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_derive(ctx, out_buf, &out_len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_PEER
Impact: Medium
CWE ID: 310, 320, 573, 664

See Also
Context initialized incorrectly for cryptographic operation | Find
defects (-checkers) | Incorrect key for cryptographic algorithm |
Missing parameters for key generation | Missing data for encryption,
decryption or signing | Missing private key | Missing public key |
Nonsecure parameters for key generation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Missing peer key

3-181

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Missing private key
Context used for cryptography operation is associated with NULL private key or not
associated with a private key at all

Description
Missing private key occurs when you use a context object for decryption, signature, or
shared secret derivation but you have not previously associated the object with a non-
NULL private key.

For instance, you initialize the context object with a NULL private key and use the object
for decryption later.

ctx = EVP_PKEY_CTX_new(pkey, NULL);
...
ret = EVP_PKEY_decrypt_init(ctx);
...
ret = EVP_PKEY_decrypt(ctx, out, &out_len, in, in_len);

The counterpart checker Missing public key checks for a public key in encryption
and authentication operations. The checker Missing peer key checks for a peer key in
shared secret derivation.

Risk
Without a private key, the decryption, signature, or shared secret derivation step does not
occur. The redundant operation often indicates a coding error.

Fix
Check the placement of the operation (decryption, signature, or shared secret derivation).
If the operation is intended, make sure you have completed these steps prior to the
operation:

• Generate a non-NULL private key.

For instance:

3 Defects

3-182

EVP_PKEY *pkey = NULL;
kctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);

EVP_PKEY_keygen_init(kctx);
EVP_PKEY_CTX_set_rsa_keygen_bits(kctx, RSA_2048BITS);
EVP_PKEY_keygen(kctx, &pkey);

• Associate a non-NULL context object with the private key.

For instance:

ctx = EVP_PKEY_CTX_new(pkey, NULL);

Note: If you use EVP_PKEY_CTX_new_id instead of EVP_PKEY_CTX_new, you are not
associating the context object with a private key.

Examples
Missing Step for Associating Private Key with Context

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len){
 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_decrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_decrypt(ctx, out_buf, &out_len, src, len);
}

In this example, the context object ctx is initialized with EVP_PKEY_CTX_new_id instead
of EVP_PKEY_CTX_new. The function EVP_PKEY_CTX_new_id does not associate the
context object with a key. However, the EVP_PKEY_decrypt function uses this object for
decryption.

 Missing private key

3-183

Correction — Associate Private Key with Context During Initialization

One possible correction is to use the EVP_PKEY_CTX_new function for context
initialization and associate a private key with the context object. In the following
correction, the private key pkey is obtained from an external source and checked for
NULL before use.

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len, EVP_PKEY *pkey){
 if (pkey == NULL) fatal_error();

 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_decrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_decrypt(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_PRIVATE_KEY
Impact: Medium
CWE ID: 310, 320, 573, 664

See Also
Context initialized incorrectly for cryptographic operation | Find
defects (-checkers) | Incorrect key for cryptographic algorithm |

3 Defects

3-184

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Missing parameters for key generation | Missing data for encryption,
decryption or signing | Missing peer key | Missing public key | Nonsecure
parameters for key generation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Missing private key

3-185

Missing public key
Context used for cryptography operation is associated with NULL public key or not
associated with a public key at all

Description
Missing public key occurs when you use a context object for encryption or signature
authentication but you have not previously associated the object with a non-NULL public
key.

For instance, you initialize the context object with a NULL public key and use the object
for encryption later.

ctx = EVP_PKEY_CTX_new(pkey, NULL);
...
ret = EVP_PKEY_encrypt_init(ctx);
...
ret = EVP_PKEY_encrypt(ctx, out, &out_len, in, in_len);

The counterpart checker Missing private key checks for a private key in decryption
and signature operations.

Risk
Without a public key, the encryption or signature authentication step does not happen.
The redundant operation often indicates a coding error.

Fix
Check the placement of the operation (encryption or signature authentication). If the
operation is intended to happen, make sure you have done these steps prior to the
operation:

• You generated a non-NULL public key.

For instance:

3 Defects

3-186

EVP_PKEY *pkey = NULL;
kctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);

EVP_PKEY_keygen_init(kctx);
EVP_PKEY_CTX_set_rsa_keygen_bits(kctx, RSA_2048BITS);
EVP_PKEY_keygen(kctx, &pkey);

• You associated a non-NULL context object with the public key.

For instance:

ctx = EVP_PKEY_CTX_new(pkey, NULL);

Note: If you use EVP_PKEY_CTX_new_id instead of EVP_PKEY_CTX_new, you are not
associating the context object with a public key.

Examples
Missing Step for Associating Private Key with Context

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len){
 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

In this example, the context object ctx is initialized with EVP_PKEY_CTX_new_id instead
of EVP_PKEY_CTX_new. The function EVP_PKEY_CTX_new_id does not associate the
context object with a key. However, the EVP_PKEY_encrypt function uses this object for
decryption.

 Missing public key

3-187

Correction — Associate Public Key with Context During Initialization

One possible correction is to use the EVP_PKEY_CTX_new function for context
initialization and associate a public key with the context object. In the following
correction, the public key pkey is obtained from an external source and checked for
NULL before use.

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len, EVP_PKEY *pkey){
 if (pkey == NULL) fatal_error();

 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_PUBLIC_KEY
Impact: Medium
CWE ID: 310, 320, 573, 664

See Also
Context initialized incorrectly for cryptographic operation | Find
defects (-checkers) | Incorrect key for cryptographic algorithm |

3 Defects

3-188

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Missing parameters for key generation | Missing data for encryption,
decryption or signing | Missing peer key | Missing private key |
Nonsecure parameters for key generation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Missing public key

3-189

Nonsecure parameters for key generation
Context used for key generation is associated with weak parameters

Description
Nonsecure parameters for key generation occurs when you attempt key generation
by using an EVP_PKEY_CTX context object that is associated with weak parameters. What
constitutes a weak parameter depends on the public key algorithm used. In the DSA
algorithm, a weak parameter can be the result of setting an insufficient parameter length.

For instance, you set the number of bits used for DSA parameter generation to 512 bits,
and then use the parameters for key generation:

EVP_PKEY_CTX *pctx,*kctx;
EVP_PKEY *params, *pkey;

/* Initializations for parameter generation */
pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_DSA, NULL);
params = EVP_PKEY_new();

/* Parameter generation */
ret = EVP_PKEY_paramgen_init(pctx);
ret = EVP_PKEY_CTX_set_dsa_paramgen_bits(pctx, KEYLEN_512BITS);
ret = EVP_PKEY_paramgen(pctx, ¶ms);

/* Initializations for key generation */
kctx = EVP_PKEY_CTX_new(params, NULL);
pkey = EVP_PKEY_new();

/* Key generation */
ret = EVP_PKEY_keygen_init(kctx);
ret = EVP_PKEY_keygen(kctx, &pkey);

Risk
Weak parameters lead to keys that are not sufficiently strong for encryption and expose
sensitive information to known ways of attack.

3 Defects

3-190

Fix
Depending on the algorithm, use these parameters:

• Diffie-Hellman (DH): Set the length of the DH prime parameter to 2048 bits.

ret = EVP_PKEY_CTX_set_dh_paramgen_prime_len(pctx, 2048);

Set the DH generator to 2 or 5.

ret = EVP_PKEY_CTX_set_dh_paramgen_generator(pctx, 2);
• Digital Signature Algorithm (DSA): Set the number of bits used for DSA parameter

generation to 2048 bits.

ret = EVP_PKEY_CTX_set_dsa_paramgen_bits(pctx, 2048);
• RSA: Set the RSA key length to 2048 bits.

ret = EVP_PKEY_CTX_set_rsa_keygen_bits(kctx, 2048);
• Elliptic curve (EC): Avoid using curves that are known to be broken, for instance,

X9_62_prime256v1. Use, for instance, sect239k1.

ret = EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, NID_sect239k1);

Examples

Insufficient Bits for RSA Key Generation

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();

 Nonsecure parameters for key generation

3-191

 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 512);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

In this example, the RSA key generation uses 512 bits, which makes the generated key
vulnerable to attacks.

Correction — Use 2048 bits

Use 2048 bits for RSA key generation.

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_WEAK_PARAMS
Impact: Medium
CWE ID: 310, 326, 327, 522

3 Defects

3-192

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/522.html

See Also
Context initialized incorrectly for cryptographic operation | Find
defects (-checkers) | Incorrect key for cryptographic algorithm |
Missing parameters for key generation | Missing data for encryption,
decryption or signing | Missing peer key | Missing private key | Missing
public key

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

External Websites
https://safecurves.cr.yp.to/
https://csrc.nist.gov/publications/detail/fips/186/4/final

Introduced in R2018a

 Nonsecure parameters for key generation

3-193

https://safecurves.cr.yp.to/
https://csrc.nist.gov/publications/detail/fips/186/4/final

Incompatible padding for RSA algorithm
operation
Cryptography operation is not supported by the padding type set in context

Description
Incompatible padding for RSA algorithm operation occurs when you perform an RSA
algorithm operation on a context object that is not compatible with the padding
previously associated with the object.

For instance, you associate the OAEP padding scheme with a context object but later use
the context for signature verification, an operation that the padding scheme does not
support.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);
...
ret = EVP_PKEY_verify(ctx, out, out_len, in, in_len);

Risk
Padding schemes remove determinism from the RSA algorithm and protect RSA
operations from certain kinds of attack.

When you use an incorrect padding scheme, the RSA operation can fail or result in
unexpected ciphertext.

Fix
Before performing an RSA operation, associate the context object with a padding scheme
that is compatible with the operation.

• Encryption: Use the OAEP padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_OAEP_PADDING or the RSA_padding_add_PKCS1_OAEP function.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);

3 Defects

3-194

You can also use the PKCS#1v1.5 or SSLv23 schemes. Be aware that these schemes
are considered insecure.

You can then use functions such as EVP_PKEY_encrypt / EVP_PKEY_decrypt or
RSA_public_encrypt / RSA_private_decrypt on the context.

• Signature: Use the RSA-PSS padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_PSS_PADDING.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PSS_PADDING);

You can also use the ANSI X9.31, PKCS#1v1.5, or SSLv23 schemes. Be aware that
these schemes are considered insecure.

You can then use functions such as the EVP_PKEY_sign-EVP_PKEY_verify pair or
the RSA_private_encrypt-RSA_public_decrypt pair on the context.

If you perform two kinds of operation with the same context, after the first operation,
reset the padding scheme in the context before the second operation.

Examples

OAEP Padding for Signature Operation

#include <stddef.h>
#include <openssl/rsa.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;

int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();
 return RSA_private_encrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING);
}

In this example, the function RSA_private_encrypt performs a signature operation by
using the OAEP padding scheme, which supports encryption operations only.

 Incompatible padding for RSA algorithm operation

3-195

Correction — Use Padding Scheme That Supports Signature

One possible correction is to use the RSA-PSS padding scheme. The corrected example
uses the function RSA_padding_add_PKCS1_PSS to associate the padding scheme with
the context.

#include <stddef.h>
#include <openssl/evp.h>
#include <openssl/rsa.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *msg_pad;
unsigned char *out_buf;

int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 ret = RSA_padding_add_PKCS1_PSS(rsa, msg_pad, src, EVP_sha256(), -2);
 if (ret <= 0) fatal_error();

 return RSA_private_encrypt(len, msg_pad, out_buf, rsa, RSA_NO_PADDING);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_BAD_PADDING
Impact: Medium
CWE ID: 310, 372, 573, 664

See Also
Find defects (-checkers) | Missing blinding for RSA algorithm | Missing
padding for RSA algorithm | Nonsecure RSA public exponent | Weak
padding for RSA algorithm

3 Defects

3-196

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Incompatible padding for RSA algorithm operation

3-197

Nonsecure RSA public exponent
Context used in key generation is associated with low exponent value

Description
Nonsecure RSA public exponent occurs when you attempt RSA key generation by
using a context object that is associated with a low public exponent.

For instance, you set a public exponent of 3 in the context object, and then use it for key
generation.

/* Set public exponent */
ret = BN_dec2bn(&pubexp, "3");

/* Initialize context */
ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
pkey = EVP_PKEY_new();
ret = EVP_PKEY_keygen_init(kctx);

/* Set public exponent in context */
ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp);

/* Generate key */
ret = EVP_PKEY_keygen(kctx, &pkey);

Risk
A low RSA public exponent makes certain kinds of attacks more damaging, especially
when a weak padding scheme is used or padding is not used at all.

Fix
It is recommended to use a public exponent of 65537. Using a higher public exponent can
make the operations slower.

3 Defects

3-198

Examples

Using RSA Public Exponent of 3

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 BIGNUM* pubexp;
 EVP_PKEY_CTX* ctx;

 pubexp = BN_new();
 if (pubexp == NULL) fatal_error();
 ret = BN_set_word(pubexp, 3);
 if (ret <= 0) fatal_error();

 ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

In this example, an RSA public exponent of 3 is associated with the context object ctx.
The low exponent makes operations that use the generated key vulnerable to certain
attacks.

Correction — Use Public Exponent of 65537

One possible correction is to use the recommended public exponent 65537.

#include <stddef.h>

 Nonsecure RSA public exponent

3-199

#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 BIGNUM* pubexp;
 EVP_PKEY_CTX* ctx;

 pubexp = BN_new();
 if (pubexp == NULL) fatal_error();
 ret = BN_set_word(pubexp, 65537);
 if (ret <= 0) fatal_error();

 ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_LOW_EXPONENT
Impact: Medium
CWE ID: 310, 326, 327, 522

See Also
Find defects (-checkers) | Incompatible padding for RSA algorithm
operation | Missing blinding for RSA algorithm | Missing padding for
RSA algorithm | Weak padding for RSA algorithm

3 Defects

3-200

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/522.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Nonsecure RSA public exponent

3-201

Missing blinding for RSA algorithm
Context used in decryption or signature verification is not blinded against timing attacks

Description
Missing blinding for RSA algorithm occurs when you do not enable blinding for an
RSA context object before using the object for decryption or signature verification.

For instance, you do not turn on blinding in the context object rsa before this decryption
step:

 ret = RSA_public_decrypt(in_len, in, out, rsa, RSA_PKCS1_PADDING)

Risk
Without blinding, the time it takes for the cryptographic operation to be completed has a
correlation with the key value. An attacker can gather information about the RSA key by
measuring the time for completion. Blinding removes this correlation and protects the
decryption or verification operation against timing attacks.

Fix
Before performing RSA decryption or signature verification, enable blinding.

ret = RSA_blinding_on(rsa, NULL);

Examples

Blinding Disabled Before Decryption

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

3 Defects

3-202

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 RSA_blinding_off(rsa);
 return RSA_private_decrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING);
}

In this example, blinding is disabled for the context object rsa. Decryption with this
context object can be vulnerable to timing attacks.

Correction — Enable Blinding Before Decryption

One possible correction is to explicitly enable blinding before decryption. Even if blinding
might be enabled previously or by default, explicitly enabling blinding ensures that the
security of the current decryption step is not reliant on the caller of func.

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 ret = RSA_blinding_on(rsa, NULL);
 if (ret <= 0) fatal_error();
 return RSA_private_decrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_NO_BLINDING

 Missing blinding for RSA algorithm

3-203

Impact: Medium
CWE ID: 310, 326, 573

See Also
Find defects (-checkers) | Incompatible padding for RSA algorithm
operation | Missing padding for RSA algorithm | Nonsecure RSA public
exponent | Weak padding for RSA algorithm

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

3 Defects

3-204

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/573.html

Missing padding for RSA algorithm
Context used in encryption or signing operation is not associated with any padding

Description
Missing padding for RSA algorithm occurs when you perform RSA encryption or
signature by using a context object without associating the object with a padding scheme.

For instance, you perform encryption by using a context object that was initially not
associated with a specific padding.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_NO_PADDING);
...
ret = EVP_PKEY_encrypt(ctx, out, &out_len, in, in_len)

Risk
Padding schemes remove determinism from the RSA algorithm and protect RSA
operations from certain kinds of attack. Padding ensures that a given message does not
lead to the same ciphertext each time it is encrypted. Without padding, an attacker can
launch chosen-plaintext attacks against the cryptosystem.

Fix
Before performing an RSA operation, associate the context object with a padding scheme
that is compatible with the operation.

• Encryption: Use the OAEP padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_OAEP_PADDING or the RSA_padding_add_PKCS1_OAEP function.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);

You can also use the PKCS#1v1.5 or SSLv23 schemes. Be aware that these schemes
are considered insecure.

 Missing padding for RSA algorithm

3-205

You can then use functions such as EVP_PKEY_encrypt / EVP_PKEY_decrypt or
RSA_public_encrypt / RSA_private_decrypt on the context.

• Signature: Use the RSA-PSS padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_PSS_PADDING.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PSS_PADDING);

You can also use the ANSI X9.31, PKCS#1v1.5, or SSLv23 schemes. Be aware that
these schemes are considered insecure.

You can then use functions such as the EVP_PKEY_sign-EVP_PKEY_verify pair or
the RSA_private_encrypt-RSA_public_decrypt pair on the context.

If you perform two kinds of operation with the same context, after the first operation,
reset the padding scheme in the context before the second operation.

Examples

Encryption Without Padding

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len){
 EVP_PKEY_CTX *ctx;
 EVP_PKEY* pkey;

 /* Key generation */
 ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA,NULL);
 if (ctx == NULL) fatal_error();

3 Defects

3-206

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_keygen(ctx, &pkey);
 if (ret <= 0) fatal_error();

 /* Encryption */
 EVP_PKEY_CTX_free(ctx);
 ctx = EVP_PKEY_CTX_new(pkey,NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

In this example, before encryption with EVP_PKEY_encrypt, a specific padding is not
associated with the context object ctx.

Correction — Set Padding in Context Before Encryption

One possible correction is to set the OAEP padding scheme in the context.

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len){
 EVP_PKEY_CTX *ctx;
 EVP_PKEY* pkey;

 /* Key generation */
 ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA,NULL);
 if (ctx == NULL) fatal_error();

 Missing padding for RSA algorithm

3-207

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_keygen(ctx, &pkey);
 if (ret <= 0) fatal_error();

 /* Encryption */
 EVP_PKEY_CTX_free(ctx);
 ctx = EVP_PKEY_CTX_new(pkey,NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);
 if (ret <= 0) fatal_error();
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_NO_PADDING
Impact: Medium
CWE ID: 310, 326, 327, 780

See Also
Find defects (-checkers) | Incompatible padding for RSA algorithm
operation | Missing blinding for RSA algorithm | Nonsecure RSA public
exponent | Weak padding for RSA algorithm

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

3 Defects

3-208

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/780.html

Weak padding for RSA algorithm
Context used in encryption or signing operation is associated with insecure padding type

Description
Weak padding for RSA algorithm occurs when you perform RSA encryption or
signature by using a context object that was previously associated with a weak padding
scheme.

For instance, you perform encryption by using a context object that is associated with the
PKCS#1v1.5 padding scheme. The scheme is considered insecure and has already been
broken.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING);
...
ret = EVP_PKEY_encrypt(ctx, out, &out_len, in, in_len)

Risk
Padding schemes remove determinism from the RSA algorithm and protect RSA
operations from certain kinds of attacks. Padding schemes such as PKCS#1v1.5, ANSI
X9.31, and SSLv23 are known to be vulnerable. Do not use these padding schemes for
encryption or signature operations.

Fix
Before performing an RSA operation, associate the context object with a strong padding
scheme.

• Encryption: Use the OAEP padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_OAEP_PADDING or the RSA_padding_add_PKCS1_OAEP function.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);

You can then use functions such as EVP_PKEY_encrypt / EVP_PKEY_decrypt or
RSA_public_encrypt / RSA_private_decrypt on the context.

 Weak padding for RSA algorithm

3-209

• Signature: Use the RSA-PSS padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_PSS_PADDING.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PSS_PADDING);

You can then use functions such as the EVP_PKEY_sign-EVP_PKEY_verify pair or
the RSA_private_encrypt-RSA_public_decrypt pair on the context.

Examples

Encryption with PKCS#1v1.5 Padding

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;

int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 return RSA_public_encrypt(len, src, out_buf, rsa, RSA_PKCS1_PADDING);
}

In this example, the PKCS#1v1.5 padding scheme is used in the encryption step.

Correction — Use OAEP Padding Scheme

Use the OAEP padding scheme for stronger encryption.

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

3 Defects

3-210

int ret;
unsigned char *out_buf;

int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 return RSA_public_encrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_WEAK_PADDING
Impact: Medium
CWE ID: 310, 326, 327, 780

See Also
Find defects (-checkers) | Incompatible padding for RSA algorithm
operation | Missing blinding for RSA algorithm | Missing padding for
RSA algorithm | Nonsecure RSA public exponent

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Weak padding for RSA algorithm

3-211

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/780.html

Nonsecure SSL/TLS protocol
Context used for handling SSL/TLS connections is associated with weak protocol

Description
Nonsecure SSL/TLS protocol occurs when you do not disable nonsecure protocols in an
SSL_CTX or SSL context object before using the object for handling SSL/TLS connections.

For instance, you disable the protocols SSL2.0 and TLS1.0 but forget to disable the
protocol SSL3.0, which is also considered weak.

/* Create and configure context */
ctx = SSL_CTX_new(SSLv23_method());
SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2|SSL_OP_NO_TLSv1);

/* Use context to handle connection */
ssl = SSL_new(ctx);
SSL_set_fd(ssl, NULL);
ret = SSL_connect(ssl);

Risk
The protocols SSL2.0, SSL3.0, and TLS1.0 are considered weak in the cryptographic
community. Using one of these protocols can expose your connections to cross-protocol
attacks. The attacker can decrypt an RSA ciphertext without knowing the RSA private
key.

Fix
Disable the nonsecure protocols in the context object before using the object to handle
connections.

/* Create and configure context */
ctx = SSL_CTX_new(SSLv23_method());
SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2|SSL_OP_NO_SSLv3|SSL_OP_NO_TLSv1);

3 Defects

3-212

Examples

Nonsecure Protocols Not Disabled

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <openssl/ssl.h>
#include <openssl/err.h>

#define fatal_error() exit(-1)

int ret;
int func(){
 SSL_CTX *ctx;
 SSL *ssl;

 SSL_library_init();

 /* context configuration */
 ctx = SSL_CTX_new(SSLv23_client_method());
 if (ctx==NULL) fatal_error();

 ret = SSL_CTX_use_certificate_file(ctx, "cert.pem", SSL_FILETYPE_PEM);
 if (ret <= 0) fatal_error();

 ret = SSL_CTX_load_verify_locations(ctx, NULL, "ca/path");
 if (ret <= 0) fatal_error();

 /* Handle connection */
 ssl = SSL_new(ctx);
 if (ssl==NULL) fatal_error();
 SSL_set_fd(ssl, NULL);

 return SSL_connect(ssl);
}

In this example, the protocols SSL2.0, SSL3.0, and TLS1.0 are not disabled in the context
object before the object is used for a new connection.

 Nonsecure SSL/TLS protocol

3-213

Correction — Disable Nonsecure Protocols

Disable nonsecure protocols before using the objects for a new connection. Use the
function SSL_CTX_set_options to disable the protocols SSL2.0, SSL3.0, and TLS1.0.

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <openssl/ssl.h>
#include <openssl/err.h>

#define fatal_error() exit(-1)

int ret;
int func(){
 SSL_CTX *ctx;
 SSL *ssl;

 SSL_library_init();

 /* context configuration */
 ctx = SSL_CTX_new(SSLv23_client_method());
 if (ctx==NULL) fatal_error();

 SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2|SSL_OP_NO_SSLv3|SSL_OP_NO_TLSv1);

 ret = SSL_CTX_use_certificate_file(ctx, "cert.pem", SSL_FILETYPE_PEM);
 if (ret <= 0) fatal_error();

 ret = SSL_CTX_load_verify_locations(ctx, NULL, "ca/path");
 if (ret <= 0) fatal_error();

 /* Handle connection */
 ssl = SSL_new(ctx);
 if (ssl==NULL) fatal_error();
 SSL_set_fd(ssl, NULL);

 return SSL_connect(ssl);
}

3 Defects

3-214

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_SSL_WEAK_PROTOCOL
Impact: Medium
CWE ID: 310, 327, 522, 693

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Nonsecure SSL/TLS protocol

3-215

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/522.html
https://cwe.mitre.org/data/definitions/693.html

C++ reference type qualified with const or
volatile
Reference type declared with a redundant const or volatile qualifier

Description
C++ reference type qualified with const or volatile occurs when a variable with
reference type is declared with the const or volatile qualifier, for instance:

char &const c;

Risk
The C++14 Standard states that const or volatile qualified references are ill formed
(unless they are introduced through a typedef, in which case they are ignored). For
instance, a reference to one variable cannot be made to refer to another variable.
Therefore, using the const qualifier is not required for a variable with a reference type.

Often the use of these qualifiers indicate a coding error. For instance, you meant to
declare a reference to a const-qualified type:

char const &c;

but instead declared a const-qualified reference:

char &const c;

If your compiler does not detect the error, you can see unexpected results. For instance,
you might expect c to be immutable but see a different value of c compared to its value at
declaration.

Fix
See if the const or volatile qualifier is incorrectly placed. For instance, see if you
wanted to refer to a const-qualified type and entered:

char &const c;

3 Defects

3-216

instead of:

char const &c;

If the qualifier is incorrectly placed, fix the error. Place the const or volatilequalifier
before the & operator. Otherwise, remove the redundant qualifier.

Examples

const-Qualified Reference Type
int func (int &const iRef) {
 iRef++;
 return iRef%2;
}

In this example, iRef is a const-qualified reference type. Since iRef cannot refer to
another variable, the const qualifier is redundant.

Correction — Remove const Qualifier

Remove the redundant const qualifier. Since iRef is modified in func, it is not meant to
refer to a const-qualified variable. Moving the const qualifier before & will cause a
compilation error.

int func (int &iRef) {
 iRef++;
 return iRef%2;
}

Correction — Fix Placement of const Qualifier

If you do not identify to modify iRef in func, declare iRef as a reference to a const-
qualified variable. Place the const qualifier before the & operator. Make sure you do not
modify iRef in func.

int func (int const &iRef) {
 return (iRef+1)%2;
}

 C++ reference type qualified with const or volatile

3-217

Result Information
Group: Good practice
Language: C++
Default: Off
Command-Line Syntax: CV_QUALIFIED_REFERENCE_TYPE
Impact: Low

See Also
C++ reference to const-qualified type with subsequent modification |
Find defects (-checkers) | Qualifier removed in conversion | Unreliable
cast of function pointer | Unreliable cast of pointer | Writing to
const qualified object

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019a

3 Defects

3-218

Vulnerable permission assignments
Argument gives read/write/search permissions to external users

Description
Vulnerable permission assignments looks at functions that can change file
permissions, such as chmod, umask, creat, or open. If the specified permissions allow
unintended actors to modify or read the resource, Bug Finder flags the functions as a
defect.

Risk
If you give outside users or outside groups a wider range or permissions than required,
you potentially expose your sensitive information and your modifications. This defect is
especially dangerous for permissions related to:

• Program configurations
• Program executions
• Sensitive user data

Fix
Set your permissions so that the user (u) has more permissions than the group (g), and so
the group has more permissions than other users (o), or u >= g >= o.

Examples

Create File with Other Permissions
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

 Vulnerable permission assignments

3-219

void bug_dangerouspermissions(const char * log_path) {
 mode_t mode = S_IROTH | S_IXOTH | S_IWOTH;
 int fd = creat(log_path, mode);

 if (fd) {
 write(fd, "Hello\n", 6);
 }
 close(fd);
 unlink(log_path);
}

In this example, the log_path file is created with more rights for the other outside users,
than the current user. The permissions are ---------rwx.

Correction — Modify User Permissions

One possible correction is to modify the user permissions for the file. In this correction,
the user has read/write/execute permissions, but other users do not.

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

void corrected_dangerouspermissions(const char * log_path) {
 mode_t mode = S_IRUSR | S_IXUSR | S_IWUSR;
 int fd = creat(log_path, mode);

 if (fd) {
 write(fd, "Hello\n", 6);
 }
 close(fd);
 unlink(log_path);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: DANGEROUS_PERMISSIONS
Impact: Medium

3 Defects

3-220

CWE ID: 732, 922

See Also
Umask used with chmod-style arguments | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Vulnerable permission assignments

3-221

https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/922.html

Use of dangerous standard function
Dangerous functions cause possible buffer overflow in destination buffer

Description
The Use of dangerous standard function check highlights uses of functions that are
inherently dangerous or potentially dangerous given certain circumstances. The following
table lists possibly dangerous functions, the risks of using each function, and what
function to use instead.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You cannot
control the length of input from the
console.

fgets

cin Inherently dangerous — You cannot
control the length of input from the
console.

Avoid or prefaces calls to cin
with cin.width.

strcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

strncpy

stpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

stpncpy

lstrcpy or
StrCpy

Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

StringCbCopy,
StringCchCopy, strncpy,
strcpy_s, or strlcpy

3 Defects

3-222

Dangerous
Function

Risk Level Safer Function

strcat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

strncat, strlcat, or
strcat_s

lstrcat or
StrCat

Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or
strlcat

wcpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

wcsncat, wcslcat, or
wcncat_s

wcscpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcsncpy

sprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

snprintf

vsprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

vsnprintf

Risk
These functions can cause buffer overflow, which attackers can use to infiltrate your
program.

 Use of dangerous standard function

3-223

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Using sprintf
#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

This example function uses sprintf to copy the string str to dst. However, if str is
larger than the buffer, sprintf can cause buffer overflow.

3 Defects

3-224

Correction — Use snprintf with Buffer Size

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: DANGEROUS_STD_FUNC
Impact: Low
CWE ID: 242, 676

See Also
Use of obsolete standard function | Unsafe standard function | Invalid
use of standard library string routine | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”

 Use of dangerous standard function

3-225

https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/676.html

“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-226

Mismatch between data length and size
Data size argument is not computed from actual data length

Description
Mismatch between data length and size looks for memory copying functions such as
memcpy, memset, or memmove. If you do not control the length argument and data buffer
argument properly, Bug Finder raises a defect.

Risk
If an attacker can manipulate the data buffer or length argument, the attacker can cause
buffer overflow by making the actual data size smaller than the length.

This mismatch in length allows the attacker to copy memory past the data buffer to a new
location. If the extra memory contains sensitive information, the attacker can now access
that data.

This defect is similar to the SSL Heartbleed bug.

Fix
When copying or manipulating memory, compute the length argument directly from the
data so that the sizes match.

Examples

Copy Buffer of Data
#include <stdlib.h>
#include <string.h>

typedef struct buf_mem_st {
 char *data;

 Mismatch between data length and size

3-227

 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

 length = *(unsigned short *)os->data;
 memcpy(&(beta.data[num]), os->data + 2, length);

 return(1);
}

This function copies the buffer alpha into a buffer beta. However, the length variable is
not related to data+2.

Correction — Check Buffer Length

One possible correction is to check the length of your buffer against the maximum value
minus 2. This check ensures that you have enough space to copy the data to the beta
structure.

#include <stdlib.h>
#include <string.h>

typedef struct buf_mem_st {
 char *data;
 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;

3 Defects

3-228

 num = 0;

 length = *(unsigned short *)os->data;
 if (length<(os->max -2)) {
 memcpy(&(beta.data[num]), os->data + 2, length);
 }

 return(1);

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: DATA_LENGTH_MISMATCH
Impact: Medium
CWE ID: 130, 240

See Also
Copy of overlapping memory | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Mismatch between data length and size

3-229

https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/240.html

Data race
Multiple tasks perform unprotected nonatomic operations on shared variable

Description
Data race occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a write operation.
3 At least one operation is nonatomic. For data race on both atomic and nonatomic

operations, see Data race including atomic operations.

See “Define Atomic Operations in Multitasking Code”.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Configuring Polyspace Multitasking Analysis Manually”.

Risk
Data race can result in unpredictable values of the shared variable because you do not
control the order of the operations in different tasks.

Data races between two write operations are more serious than data races between a
write and read operation. Two write operations can interfere with each other and result in
indeterminate values. To identify write-write conflicts, use the filters on the Detail
column of the Results List pane. For these conflicts, the Detail column shows the
additional line:

 Variable value may be altered by write-write concurrent access.

See “Filter and Group Results”.

3 Defects

3-230

Fix
To fix this defect, protect the operations on the shared variable using critical sections,
temporal exclusion or another means. See “Protections for Shared Variables in
Multitasking Code”.

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access Protections
column shows existing protections on the calls. To see the function call sequence leading

to the conflicts, click the icon. For an example, see below.

Examples
Unprotected Operation on Global Variable from Multiple Tasks

int var;
void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

 Data race

3-231

Option Specification
Configure
multitasking manually
Tasks (-entry-points) task1

task2

task3
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks task1, task2, and task3 call the function increment.
increment contains the operation var++ that can involve multiple machine instructions
including:

• Reading var.
• Writing an increased value to var.

These machine instructions, when executed from task1 and task2, can occur
concurrently in an unpredictable sequence. For example, reading var from task1 can
occur either before or after writing to var from task2. Therefore the value of var can be
unpredictable.

Though task3 calls increment inside a critical section, other tasks do not use the same
critical section. The operations in the critical section of task3 are not mutually exclusive
with operations in other tasks.

Therefore, the three tasks are operating on a shared variable without common protection.
In your result details, you see each pair of conflicting function calls.

3 Defects

3-232

If you click the icon, you see the function call sequence starting from the entry point
to the read or write operation. You also see that the operation starting from task3 is in a
critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

Correction — Place Operation in Critical Section

One possible correction is to place the operation in critical section. You can implement
the critical section in multiple ways. For instance:

• You can place var++ in a critical section. When task1 enters its critical section, the
other tasks cannot enter their critical sections until task1 leaves its critical section.
The operation var++ from the three tasks cannot interfere with each other.

 Data race

3-233

To implement the critical section, in the function increment, place the operation var
++ between calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 begin_critical_section();
 var++;
 end_critical_section();
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 increment();
}

• You can place the call to increment in the same critical section in the three tasks.
When task1 enters its critical section, the other tasks cannot enter their critical
sections until task1 leaves its critical section. The calls to increment from the three
tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call increment between
calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

3 Defects

3-234

void increment(void) {
 var++;
}

void task1(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task2(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive
tasks (-temporal-
exclusions-file)

task1 task2 task3

On the command-line, you can use the following:

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2 task3

 Data race

3-235

Unprotected Operation in Threads Created with
pthread_create
#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 count = count + 1;
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 c = count;
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 return 1;
}

In this example, Bug Finder detects the creation of separate threads with
pthread_create. The Data race defect is raised because the operation count =
count + 1 in the thread with id thread_increment conflicts with the operation c =
count in the thread with id thread_get. The variable count is accessed in multiple
threads without a common protection.

3 Defects

3-236

The two conflicting operations are nonatomic. The operation c = count is nonatomic on
32-bit targets. See “Define Atomic Operations in Multitasking Code”.

Correction — Protect Operations with pthread_mutex_lock and
pthread_mutex_unlock Pair

To prevent concurrent access on the variable count, protect operations on count with a
critical section. Use the functions pthread_mutex_lock and pthread_mutex_unlock
to implement the critical section.

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 pthread_mutex_lock(&count_mutex);
 count = count + 1;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 pthread_mutex_lock(&count_mutex);
 c = count;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 Data race

3-237

 return 1;
}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DATA_RACE
Impact: High
CWE ID: 366, 413

See Also
Configure multitasking manually | Critical section details (-critical-
section-begin -critical-section-end) | Data race including atomic
operations | Data race through standard library function call |
Deadlock | Destruction of locked mutex | Disabling all interrupts (-
routine-disable-interrupts -routine-enable-interrupts) | Double lock |
Double unlock | Find defects (-checkers) | Missing lock | Missing unlock |
Target processor type (-target) | Tasks (-entry-points) | Temporally
exclusive tasks (-temporal-exclusions-file)

Topics
“Analyze Multitasking Programs in Polyspace”
“Protections for Shared Variables in Multitasking Code”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Define Atomic Operations in Multitasking Code”

Introduced in R2014b

3 Defects

3-238

https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/413.html

Data race including atomic operations
Multiple tasks perform unprotected operations on shared variable

Description
Data race including atomic operations occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a write operation.

If you check for this defect, you can see data races on both atomic and non-atomic
operations. To see data races on non-atomic operations alone, select Data race. Bug
Finder considers an operation as atomic if it can be performed in one machine
instruction. For instance, the operation:

int var = 0;

can be performed in one machine instruction on targets where the size of int is less than
the word size on the target (or pointer size). See “Define Atomic Operations in
Multitasking Code”. If you do not want to use this definition of atomic operations, turn on
this checker.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Risk
Data race can result in unpredictable values of the shared variable because you do not
control the order of the operations in different tasks.

Fix
To fix this defect, protect the operations on the shared variable using critical sections,
temporal exclusion or another means. See “Protections for Shared Variables in
Multitasking Code”.

 Data race including atomic operations

3-239

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access Protections
column shows existing protections on the calls. To see the function call sequence leading

to the conflicts, click the icon. For an example, see below.

Examples

Unprotected Atomic Operation on Global Variable from
Multiple Tasks

#include<stdio.h>

int var;

void begin_critical_section(void);
void end_critical_section(void);

void task1(void) {
 var = 1;
}

void task2(void) {
 int local_var;
 local_var = var;
 printf("%d", local_var);
}

void task3(void) {
 begin_critical_section();
 /* Operations in task3 */
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

3 Defects

3-240

Option Specification
Configure
multitasking manually
Tasks (-entry-points) task1

task2

task3
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the write operation var=1; in task task1 executes concurrently with
the read operation local_var=var; in task task2.

task3 uses a critical section that can be reused for the other tasks.

Correction — Place Operations in Critical Section

One possible correction is to place these operations in the same critical section:

• var=1; in task1
• local_var=var; in task2

When task1 enters its critical section, the other tasks cannot enter their critical sections
until task1 leaves its critical section. Therefore, the two operations cannot execute
concurrently.

To implement the critical section, reuse the already existing critical section in task3.
Place the two operations between calls to begin_critical_section and
end_critical_section.

 Data race including atomic operations

3-241

#include<stdio.h>

int var;

void begin_critical_section();
void end_critical_section();

void task1(void) {
 begin_critical_section();
 var = 1;
 end_critical_section();
}

void task2(void) {
 int local_var;
 begin_critical_section();
 local_var = var;
 end_critical_section();
 printf("%d", local_var);
}

void task3(void) {
 begin_critical_section();
 /* Operations in task3 */
 end_critical_section();
}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks task1 and task2 temporally exclusive.
Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive
tasks (-temporal-
exclusions-file)

task1 task2

On the command-line, use the following:

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

3 Defects

3-242

where the file C:\exclusions_file.txt has the following line:

task1 task2

Check Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: DATA_RACE_ALL
Impact: Medium
CWE ID: 366, 413

See Also
Configure multitasking manually | Critical section details (-critical-
section-begin -critical-section-end) | Data race | Data race through
standard library function call | Deadlock | Destruction of locked mutex
| Disabling all interrupts (-routine-disable-interrupts -routine-
enable-interrupts) | Double lock | Double unlock | Find defects (-
checkers) | Missing lock | Missing unlock | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Define Atomic Operations in Multitasking Code”

Introduced in R2014b

 Data race including atomic operations

3-243

https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/413.html

Data race through standard library function
call
Multiple tasks make unprotected calls to thread-unsafe standard library function

Description
Data race through standard library function call occurs when:

1 Multiple tasks call the same standard library function.

For instance, multiple tasks call the strerror function.
2 The calls are not protected using a common protection.

For instance, the calls are not protected by the same critical section.

Functions flagged by this defect are not guaranteed to be reentrant. A function is
reentrant if it can be interrupted and safely called again before its previous invocation
completes execution. If a function is not reentrant, multiple tasks calling the function
without protection can cause concurrency issues. For the list of functions that are
flagged, see CON33-C: Avoid race conditions when using library functions.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Configuring Polyspace Multitasking Analysis Manually”.

Risk
The functions flagged by this defect are nonreentrant because their implementations can
use global or static variables. When multiple tasks call the function without protection,
the function call from one task can interfere with the call from another task. The two
invocations of the function can concurrently access the global or static variables and
cause unpredictable results.

The calls can also cause more serious security vulnerabilities, such as abnormal
termination, denial-of-service attack, and data integrity violations.

3 Defects

3-244

https://www.securecoding.cert.org/confluence/x/xIEzAg

Fix
To fix this defect, do one of the following:

• Use a reentrant version of the standard library function if it exists.

For instance, instead of strerror(), use strerror_r() or strerror_s(). For
alternatives to functions flagged by this defect, see the documentation for CON33-C.

• Protect the function calls using common critical sections or temporal exclusion.

See Critical section details (-critical-section-begin -critical-
section-end) and Temporally exclusive tasks (-temporal-exclusions-
file).

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access
Protections column shows existing protections on the calls. To see the function call

sequence leading to the conflicts, click the icon. For an example, see below.

Examples

Unprotected Call to Standard Library Function from Multiple
Tasks

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);

 Data race through standard library function call

3-245

https://www.securecoding.cert.org/confluence/x/xIEzAg

 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure
multitasking manually
Tasks (-entry-points) task1

task2

task3
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3

3 Defects

3-246

 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks, task1, task2 and task3, call the function func. func calls
the nonreentrant standard library function, strerror.

Though task3 calls func inside a critical section, other tasks do not use the same critical
section. Operations in the critical section of task3 are not mutually exclusive with
operations in other tasks.

These three tasks are calling a nonreentrant standard library function without common
protection. In your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point
to the standard library function call. You also see that the call starting from task3 is in a
critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

 Data race through standard library function call

3-247

Correction — Use Reentrant Version of Standard Library Function

One possible correction is to use a reentrant version of the standard library function
strerror. You can use the POSIX version strerror_r which has the same functionality
but also guarantees thread-safety.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);
enum { BUFFERSIZE = 64 };

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char errmsg[BUFFERSIZE];
 if (strerror_r(errno, errmsg, BUFFERSIZE) != 0) {
 /* Handle error */
 }
 printf("Could not get the file position: %s\n", errmsg);
 }

3 Defects

3-248

}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

Correction — Place Function Call in Critical Section

One possible correction is to place the call to strerror in critical section. You can
implement the critical section in multiple ways.

For instance, you can place the call to the intermediate function func in the same critical
section in the three tasks. When task1 enters its critical section, the other tasks cannot
enter their critical sections until task1 leaves its critical section. The calls to func and
therefore the calls to strerror from the three tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call func between calls to
begin_critical_section and end_critical_section.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {
 fpos_t pos;

 Data race through standard library function call

3-249

 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 begin_critical_section();
 func(fptr1);
 end_critical_section();
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 begin_critical_section();
 func(fptr2);
 end_critical_section();
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive
tasks (-temporal-
exclusions-file)

task1 task2 task3

On the command-line, you can use the following:

3 Defects

3-250

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2 task3

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DATA_RACE_STD_LIB
Impact: High
CWE ID: 366, 413

See Also
Configure multitasking manually | Critical section details (-critical-
section-begin -critical-section-end) | Data race | Data race including
atomic operations | Destruction of locked mutex | Double lock | Double
unlock | Find defects (-checkers) | Missing lock | Missing unlock | Tasks
(-entry-points) | Temporally exclusive tasks (-temporal-exclusions-
file)

Topics
“Analyze Multitasking Programs in Polyspace”
“Protections for Shared Variables in Multitasking Code”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

 Data race through standard library function call

3-251

https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/413.html

Code deactivated by constant false condition
Code segment deactivated by #if 0 directive or if(0) condition

Description
Code deactivated by constant false condition occurs when a block of code is
deactivated using a #if 0 directive or if(0) condition.

Risk
A #if 0 directive or if(0) condition is used to temporarily deactivate segments of code.
If your production code contains these directives, it means that the deactivation has not
been lifted before shipping the code.

Fix
If the segment of code is present for debugging purposes only, remove the segment from
production code. If the deactivation occurred by accident, remove the #if 0 and #endif
statements.

Often, a segment of code is deactivated for specific conditions, for instance, a specific
operating system. Use macros with the #if directive to indicate these conditions instead
of deactivating the code completely with a #if 0 directive. For instance, GCC provides
macros to detect the Windows operating system:

#ifdef _WIN32
 //Code deactivated for all operating systems
 //Other than 32-bit Windows
#endif

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

3 Defects

3-252

Examples

Code Deactivated by Constant False Condition Error
#include<stdio.h>
int Trim_Value(int* Arr,int Size,int Cutoff)
{
 int Count=0;

 for(int i=0;i < Size;i++){
 if(Arr[i]>Cutoff){
 Arr[i]=Cutoff;
 Count++;
 }
 }

 #if 0
 /* Defect: Code Segment Deactivated */

 if(Count==0){
 printf("Values less than cutoff.");
 }
 #endif

 return Count;
}

In the preceding code, the printf statement is placed within a #if #endif directive.
The software treats the portion within the directive as code comments and not compiled.

Correction — Change #if 0 to #if 1

Unless you intended to deactivate the printf statement, one possible correction is to
reactivate the block of code in the #if #endif directive. To reactivate the block, change
#if 0 to #if 1.

#include<stdio.h>
int Trim_Value(int* Arr,int Size,int Cutoff)
{
 int Count=0;

 for(int i=0;i < Size;i++)
 {

 Code deactivated by constant false condition

3-253

 if(Arr[i]>Cutoff)
 {
 Arr[i]=Cutoff;
 Count++;
 }
 }

 /* Fix: Replace #if 0 by #if 1 */
 #if 1
 if(Count==0)
 {
 printf("Values less than cutoff.");
 }
 #endif

 return Count;
}

Check Information
Group: Data flow
Language: C | C++
Default: off
Command-Line Syntax: DEACTIVATED_CODE
Impact: Low

See Also
Dead code | Find defects (-checkers) | Unreachable code | Useless if

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-254

Dead code
Code does not execute

Description
Dead code occurs when a block of code cannot be reached because of a condition that is
always true or false. This defect excludes:

• Code deactivated by constant false condition, which checks for directives
with compile-time constants such as #if 0 or if(0).

• Unreachable code, which checks for code after a control escape such as goto,
break, or return.

• Useless if, which checks for if statements that are always true.

Risk
Dead code wastes development time, memory and execution cycles. Developers have to
maintain code that is not being executed. Instructions that are not executed still have to
be stored and cached.

Dead code often represents legacy code that is no longer used. Cleaning up dead code
periodically reduces future maintenance.

Fix
The fix depends on the root cause of the defect. For instance, the root cause can be an
error condition that is checked twice on the same execution path, making the second
check redundant and the corresponding block dead code.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

 Dead code

3-255

If you see dead code from use of functions such as isinf and isnan, enable an analysis
mode that takes into account non-finite values. See Consider non finite floats (-
allow-non-finite-floats).

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Dead Code from if-Statement
#include <stdio.h>

int Return_From_Table(int ch){

 int table[5];

 /* Create a table */
 for(int i=0;i<=4;i++){
 table[i]=i^2+i+1;
 }

 if(table[ch]>100){ /* Defect: Condition always false */
 return 0;
 }
 return table[ch];
}

The maximum value in the array table is 4^2+4+1=21, so the test expression
table[ch]>100 always evaluates to false. The return 0 in the if statement is not
executed.

Correction — Remove Dead Code

One possible correction is to remove the if condition from the code.

#include <stdio.h>

int Return_From_Table(int ch){

 int table[5];

3 Defects

3-256

 /* Create a table */
 for(int i=0;i<=4;i++){
 table[i]=i^2+i+1;
 }

 return table[ch];
}

Dead Code for if with Enumerated Type
typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS))
 card = UNKNOWN_SUIT;

 if (card > 7) {
 do_something(card);
 }
}

The type suit is enumerated with five options. However, the conditional expression card
> 7 always evaluates to false because card can be at most 5. The content in the if
statement is not executed.

Correction — Change Condition

One possible correction is to change the if-condition in the code. In this correction, the 7
is changed to HEART to relate directly to the type of card.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS))
 card = UNKNOWN_SUIT;

 Dead code

3-257

 if (card > HEARTS) {
 do_something(card);
 }
}

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: DEAD_CODE
Impact: Low
CWE ID: 561

See Also
Code deactivated by constant false condition | Find defects (-
checkers) | Unreachable code | Useless if

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-258

https://cwe.mitre.org/data/definitions/561.html

Deadlock
Call sequence to lock functions cause two tasks to block each other

Description
Deadlock occurs when multiple tasks are stuck in their critical sections (CS) because:

• Each CS waits for another CS to end.
• The critical sections (CS) form a closed cycle. For example:

• CS #1 waits for CS #2 to end, and CS #2 waits for CS #1 to end.
• CS #1 waits for CS #2 to end, CS #2 waits for CS #3 to end and CS #3 waits for

CS #1 to end.

Polyspace expects critical sections of code to follow a specific format. A critical section
lies between a call to a lock function and a call to an unlock function. When a task
my_task calls a lock function my_lock, other tasks calling my_lock must wait until
my_task calls the corresponding unlock function. Both lock and unlock functions must
have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Risk
Each task waits for a critical section in another task to end and is unable to proceed. The
program can freeze indefinitely.

Fix
The fix depends on the root cause of the defect. You can try to break the cyclic order
between the tasks in one of these ways:

• Write down all critical sections involved in the deadlock in a certain sequence.
Whenever you call the lock functions of the critical sections within a task, respect the
order in that sequence. See an example below.

 Deadlock

3-259

• If one of the critical sections involved in a deadlock occurs in an interrupt, try to
disable all interrupts during critical sections in all tasks. See Disabling all
interrupts (-routine-disable-interrupts -routine-enable-
interrupts).

Reviewing this defect is an opportunity to check if all operations in your critical section
are really meant to be executed as an atomic block. It is a good practice to keep critical
sections at a bare minimum.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Deadlock with Two Tasks

void task1(void);
void task2(void);

int var;
void perform_task_cycle(void) {
 var++;
}

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }

3 Defects

3-260

}

void task2() {
 while(1) {
 begin_critical_section_2();
 begin_critical_section_1();
 perform_task_cycle();
 end_critical_section_1();
 end_critical_section_2();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure
multitasking
manually
Tasks (-entry-
points)

task1

task2
Critical section
details (-
critical-
section-begin -
critical-
section-end)

Starting routine Ending routine
begin_critical_section_1 end_critical_section_1
begin_critical_section_2 end_critical_section_2

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls begin_critical_section_1.
2 task2 calls begin_critical_section_2.
3 task1 reaches the instruction begin_critical_section_2();. Since task2 has

already called begin_critical_section_2, task1 waits for task2 to call
end_critical_section_2.

4 task2 reaches the instruction begin_critical_section_1();. Since task1 has
already called begin_critical_section_1, task2 waits for task1 to call
end_critical_section_1.

 Deadlock

3-261

Correction-Follow Same Locking Sequence in Both Tasks

One possible correction is to follow the same sequence of calls to lock and unlock
functions in both task1 and task2.

void task1(void);
void task2(void);
void perform_task_cycle(void);

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

Deadlock with More Than Two Tasks

int var;

3 Defects

3-262

void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {
 while(1) {
 lock3();
 lock1();
 performTaskCycle();
 unlock1();
 unlock3();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

 Deadlock

3-263

Option Specification
Configure multitasking
manually
Entry points task1

task2

task3
Critical section details Starting routine Ending routine

lock1 unlock1
lock2 unlock2
lock3 unlock3

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls lock1.
2 task2 calls lock2.
3 task3 calls lock3.
4 task1 reaches the instruction lock2();. Since task2 has already called lock2,

task1 waits for call to unlock2.
5 task2 reaches the instruction lock3();. Since task3 has already called lock3,

task2 waits for call to unlock3.
6 task3 reaches the instruction lock1();. Since task1 has already called lock1,

task3 waits for call to unlock1.

Correction — Break Cyclic Order

To break the cyclic order between critical sections, note every lock function in your code
in a certain sequence, for example:

1 lock1
2 lock2
3 lock3

If you use more than one lock function in a task, use them in the order in which they
appear in the sequence. For example, you can use lock1 followed by lock2 but not
lock2 followed by lock1.

3 Defects

3-264

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {
 while(1) {
 lock1();
 lock3();
 performTaskCycle();
 unlock3();
 unlock1();

 Deadlock

3-265

 }
}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DEADLOCK
Impact: High
CWE ID: 833

See Also
Configure multitasking manually | Critical section details (-critical-
section-begin -critical-section-end) | Data race | Data race including
atomic operations | Data race through standard library function call |
Destruction of locked mutex | Double lock | Double unlock | Find defects
(-checkers) | Missing lock | Missing unlock | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Analyze Multitasking Programs in Polyspace”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2014b

3 Defects

3-266

https://cwe.mitre.org/data/definitions/833.html

Declaration mismatch
Mismatch between function or variable declarations

Description
Declaration mismatch occurs when a function or variable declaration does not match
other instances of the function or variable.

Risk
When a mismatch occurs between two variable declarations in different compilation units,
a typical linker follows an algorithm to pick one declaration for the variable. If you expect
a variable declaration that is different from the one chosen by the linker, you can see
unexpected results when the variable is used.

A similar issue can occur with mismatch in function declarations.

Fix
The fix depends on the type of declaration mismatch. If both declarations indeed refer to
the same object, use the same declaration. If the declarations refer to different objects,
change the names of the one of the variables. If you change a variable name, remember to
make the change in all places that use the variable.

Sometimes, declaration mismatches can occur because the declarations are affected by
previous preprocessing directives. For instance, a declaration occurs in a macro, and the
macro is defined on one inclusion path but undefined in another. These declaration
mismatches can be tricky to debug. Identify the divergence between the two inclusion
paths and fix the conflicting macro definitions.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 Declaration mismatch

3-267

Examples

Inconsistent Declarations in Two Files
file1.c

int foo(void) {
 return 1;
}

file2.c

double foo(void);

int bar(void) {
 return (int)foo();
}

In this example, file1.c declares foo() as returning an integer. In file2.c, foo() is
declared as returning a double. This difference raises a defect on the second instance of
foo in file2.

Correction — Align the Function Return Values

One possible correction is to change the function declarations so that they match. In this
example, by changing the declaration of foo in file2.c to match file1.c, the defect is fixed.

file1.c

int foo(void) {
 return 1;
}

file2.c

int foo(void);

int bar(void) {
 return foo();
}

3 Defects

3-268

Inconsistent Structure Alignment
test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

In this example, a declaration mismatch defect is raised on square in square.h because
Polyspace infers that square in square.h does not have the same alignment as square in
test2.c. This error occurs because the #pragma pack(1) statement in circle.h declares
specific alignment. In test2.c, circle.h is included before square.h. Therefore, the
#pragma pack(1) statement from circle.h is not reset to the default alignment after the
aCircle structure. Because of this omission, test2.c infers that the aSquare square
structure also has an alignment of 1 byte.

Correction — Close Packing Statements

One possible correction is to reset the structure alignment after the aCircle struct
declaration. For the GNU or Microsoft Visual compilers, fix the defect by adding a
#pragma pack() statement at the end of circle.h.

 Declaration mismatch

3-269

test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

#pragma pack()

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

Other compilers require different #pragma pack syntax. For your syntax, see the
documentation for your compiler.

Correction — Use the Ignore pragma pack directives Option

One possible correction is to add the Ignore pragma pack directives option to your
Bug Finder analysis. If you want the structure alignment to change for each structure,
and you do not want to see this Declaration mismatch defect, use this correction.

1 On the Configuration pane, select the Advanced Settings pane.
2 In the Other box, enter -ignore-pragma-pack.
3 Rerun your analysis.

The Declaration mismatch defect is resolved.

Check Information
Group: Programming
Language: C | C++

3 Defects

3-270

Default: On
Command-Line Syntax: DECL_MISMATCH
Impact: High
CWE ID: 685, 686

See Also
Find defects (-checkers) | Ignore pragma pack directives (-ignore-
pragma-pack)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Declaration mismatch

3-271

https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/686.html

Delete of void pointer
delete operates on a void* pointer pointing to an object

Description
Delete of void pointer occurs when the delete operator operates on a void* pointer.

Risk
Deleting a void* pointer is undefined according to the C++ Standard.

If the object is of type MyClass and the delete operator operates on a void* pointer
pointing to the object, the MyClass destructor is not called.

If the destructor contains cleanup operations such as release of resources or decreasing a
counter value, the operations do not take place.

Fix
Cast the void* pointer to the appropriate type. Perform the delete operation on the
result of the cast.

For instance, if the void* pointer points to a MyClass object, cast the pointer to
MyClass*.

Examples

Delete of void* Pointer
#include <iostream>

class MyClass {
public:
 explicit MyClass(int i):m_i(i) {}
 ~MyClass() {

3 Defects

3-272

 std::cout << "Delete MyClass(" << m_i << ")" << std::endl;
 }
private:
 int m_i;
};

void my_delete(void* ptr) {
 delete ptr;
}

int main() {
 MyClass* pt = new MyClass(0);
 my_delete(pt);
 return 0;
}

In this example, the function my_delete is designed to perform the delete operation on
any type. However, in the function body, the delete operation acts on a void* pointer,
ptr. Therefore, when you call my_delete with an argument of type MyClass, the
MyClass destructor is not called.

Correction — Cast void* Pointer to MyClass*

One possible solution is to use a function template instead of a function for my_delete.

#include <iostream>

class MyClass {
public:
 explicit MyClass(int i):m_i(i) {}
 ~MyClass() {
 std::cout << "Delete MyClass(" << m_i << ")" << std::endl;
 }
private:
 int m_i;
};

template<typename T> void safe_delete(T*& ptr) {
 delete ptr;
 ptr = NULL;
}

 Delete of void pointer

3-273

int main() {
 MyClass* pt = new MyClass(0);
 safe_delete(pt);
 return 0;
}

Result Information
Group: Good practice
Language: C++
Default: Off
Command-Line Syntax: DELETE_OF_VOID_PTR
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-274

Destruction of locked mutex
Task tries to destroy a mutex in the locked state

Description
Destruction of locked mutex occurs when a task destroys a mutex after it is locked
(and before it is unlocked). The locking and destruction can happen in the same task or
different tasks.

Risk
A mutex is locked to protect shared variables from concurrent access. If a mutex is
destroyed in the locked state, the protection does not apply.

Fix
To fix this defect, destroy the mutex only after you unlock it. It is a good design practice
to:

• Initialize a mutex before creating the threads where you use the mutex.
• Destroy a mutex after joining the threads that you created.

On the Result Details pane, you see two events, the locking and destruction of the
mutex, and the tasks that initiated the events. To navigate to the corresponding line in
your source code, click the event.

Examples

Locking and Destruction in Different Tasks

#include <pthread.h>

 Destruction of locked mutex

3-275

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
 pthread_mutex_unlock (&lock3);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

In this example, after task t0 locks the mutex lock3, task t1 can destroy it. The
destruction occurs if the following events happen in sequence:

1 t0 acquires lock3.
2 t0 releases lock2.
3 t0 releases lock1.
4 t1 acquires the lock lock1 released by t0.
5 t1 acquires the lock lock2 released by t0.
6 t1 destroys lock3.

For simplicity, this example uses a mix of automatic and manual concurrency detection.
The tasks t0 and t1 are manually specified as entry points by using the option Tasks (-
entry-points). The critical sections are implemented through primitives
pthread_mutex_lock and pthread_mutex_unlock that the software detects
automatically. In practice, for entry point specification (thread creation), you will use
primitives such as pthread_create. The next example shows how the defect can appear
when you use pthread_create.

3 Defects

3-276

Correction — Place Lock-Unlock Pair Together in Same Critical Section as
Destruction

The locking and destruction of lock3 occurs inside the critical section imposed by lock1
and lock2, but the unlocking occurs outside. One possible correction is to place the lock-
unlock pair in the same critical section as the destruction of the mutex. Use one of these
critical sections:

• Critical section imposed by lock1 alone.
• Critical section imposed by lock1 and lock2.

In this corrected code, the lock-unlock pair and the destruction is placed in the critical
section imposed by lock1 and lock2. When t0 acquires lock1 and lock2, t1 has to
wait for their release before it executes the instruction pthread_mutex_destroy
(&lock3);. Therefore, t1 cannot destroy mutex lock3 in the locked state.

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 pthread_mutex_destroy (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);

 Destruction of locked mutex

3-277

}

Locking and Destruction in Start Routine of Thread
#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_destroy(&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Thread that initializes mutex */

3 Defects

3-278

 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use mutex for atomic operation*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 pthread_exit(NULL);
}

In this example, four threads are created. The threads are assigned different actions.

• The first thread callThd[0] initializes the mutex lock.
• The second and third threads, callThd[1] and callThd[2], perform an atomic

operation protected by the mutex lock.
• The fourth thread callThd[3] destroys the mutex lock.

The threads can interrupt each other. Therefore, immediately after the second or third
thread locks the mutex, the fourth thread can destroy it.

Correction — Initialize and Destroy Mutex Outside Start Routine

One possible correction is to initialize and destroy the mutex in the main function outside
the start routine of the threads. The threads perform only the atomic operation. You need
two fewer threads because the mutex initialization and destruction threads are not
required.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 2
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;

 Destruction of locked mutex

3-279

void atomic_operation(void);

void *do_work(void *arg) {
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize mutex */
 pthread_mutex_init(&lock, NULL);

 for(i=0; i<NUMTHREADS; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy mutex */
 pthread_mutex_destroy(&lock);

 pthread_exit(NULL);
}

Correction — Use A Second Mutex To Protect Lock-Unlock Pair and Destruction

Another possible correction is to use a second mutex and protect the lock-unlock pair
from the destruction. This corrected code uses the mutex lock2 to achieve this

3 Defects

3-280

protection. The second mutex is initialized in the main function outside the start routine
of the threads.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
pthread_mutex_t lock2;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy(&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */

 Destruction of locked mutex

3-281

 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize second mutex */
 pthread_mutex_init(&lock2, NULL);

 /* Thread that initializes first mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use first mutex for atomic operation */
 /* The threads use second mutex to protect first from destruction in locked state*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys first mutex */
 /* The thread uses the second mutex to prevent destruction of locked mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy second mutex */
 pthread_mutex_destroy(&lock2);

 pthread_exit(NULL);
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: DESTROY_LOCKED
Impact: Medium
CWE ID: 667, 826

3 Defects

3-282

https://cwe.mitre.org/data/definitions/667.html
https://cwe.mitre.org/data/definitions/826.html

See Also
Configure multitasking manually | Data race | Data race including
atomic operations | Data race through standard library function call |
Deadlock | Double lock | Double unlock | Find defects (-checkers) |
Missing lock | Missing unlock | Target processor type (-target) | Tasks
(-entry-points)

Topics
“Analyze Multitasking Programs in Polyspace”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

 Destruction of locked mutex

3-283

Deallocation of previously deallocated
pointer
Memory freed more than once without allocation

Description
Deallocation of previously deallocated pointer occurs when a block of memory is
freed more than once using the free function without an intermediate allocation.

Risk
When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points
to a memory location on the heap. When you use the free function on this pointer, the
associated block of memory is freed for reallocation. Trying to free this block of memory
can result in a segmentation fault.

Fix
The fix depends on the root cause of the defect. See if you intended to allocate a memory
block to the pointer between the first deallocation and the second. Otherwise, remove the
second free statement.

As a good practice, after you free a memory block, assign the corresponding pointer to
NULL. Before freeing pointers, check them for NULL values and handle the error. In this
way, you are protected against freeing an already freed block.

Examples

Deallocation of Previously Deallocated Pointer Error
#include <stdlib.h>

void allocate_and_free(void)

3 Defects

3-284

{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 free (pi);
 /* Defect: pi has already been freed */
}

The first free statement releases the block of memory that pi refers to. The second free
statement on pi releases a block of memory that has been freed already.

Correction — Remove Duplicate Deallocation

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 /* Fix: remove second deallocation */
 }

Check Information
Group: Dynamic memory
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_DEALLOCATION
Impact: High
CWE ID: 415, 825

See Also
Find defects (-checkers) | Use of previously freed pointer

 Deallocation of previously deallocated pointer

3-285

https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/825.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-286

Join or detach of a joined or detached thread
Thread that was previously joined or detached is joined or detached again

Description
Join or detach of a joined or detached thread occurs when:

• You try to join a thread that was previously joined or detached.
• You try to detach a thread that was previously joined or detached.

The Result Details pane describes if the thread was previously joined or detached and
also shows previous related events.

For instance, a thread joined with thrd_join is then detached with thrd_detach:

thrd_t id;
...
thrd_join(id, NULL);
thrd_detach(id);

Note that a thread is considered as joined only if a previous thread joining is successful.
For instance, the thread is not considered as joined in the if branch here:

thrd_t t;
...
if (thrd_success != thrd_join(t, 0)) {
 /* Thread not considered joined */
}

The analysis cannot detect cases where a joined thread detaches itself using, for instance,
the thrd_current() function.

Risk
The C11 standard (clauses 7.26.5.3 and 7.26.5.6) states that a thread shall not be joined
or detached once it was previously joined or detached. Violating these clauses of the
standard results in undefined behavior.

 Join or detach of a joined or detached thread

3-287

Fix
Avoid joining a thread that was already joined or detached previously. Avoid detaching a
thread that was already joined or detached.

Examples

Joining a Thread Followed by Detaching the Thread

#include <stddef.h>
#include <threads.h>
#include <stdlib.h>

extern int thread_func(void *arg);

int main (void)
{
 thrd_t t;

 if (thrd_success != thrd_create (&t, thread_func, NULL)) {
 /* Handle error */
 return 0;
 }

 if (thrd_success != thrd_join (t, 0)) {
 /* Handle error */
 return 0;
 }

 if (thrd_success != thrd_detach (t)) {
 /* Handle error */
 return 0;
 }

 return 0;
}

In this example, the use of thrd_detach on a thread that was previously joined with
thrd_join leads to undefined behavior.

3 Defects

3-288

To avoid compilation errors when running Bug Finder on this example, specify the C11
standard with the option C standard version (-c-version).

Correction – Avoid Detaching a Joined Thread

Remove the prior thrd_join or the subsequent thrd_detach statement. In this
corrected version, the thrd_detach statement is removed.

#include <stddef.h>
#include <threads.h>
#include <stdlib.h>

extern int thread_func(void *arg);

int main (void)
{
 thrd_t t;

 if (thrd_success != thrd_create (&t, thread_func, NULL)) {
 /* Handle error */
 return 0;
 }

 if (thrd_success != thrd_join (t, 0)) {
 /* Handle error */
 return 0;
 }

 return 0;
}

Joining Thread Created in Detached State
#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;

 Join or detach of a joined or detached thread

3-289

 pthread_attr_t attr;

 if(thread_success != pthread_attr_init(&attr)) {
 return 0;
 }

 if(thread_success != pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED)) {
 return 0;
 }

 if(thread_success != pthread_create(&id, &attr, thread_func, NULL)) {
 return 0;
 }

 if(thread_success != pthread_join(id, NULL)) {
 return 0;
 }

 return 0;
}

In this example, the thread attribute is assigned the state PTHREAD_CREATE_DETACHED.
A thread created using this attribute is then joined.

Correction – Create Threads as Joinable

One possible correction is to create a thread with thread attribute assigned to the state
PTHREAD_CREATE_JOINABLE and then join the thread.

#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_attr_t attr;

 if(thread_success != pthread_attr_init(&attr)) {
 return 0;
 }

 if(thread_success != pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE)) {

3 Defects

3-290

 return 0;
 }

 if(thread_success != pthread_create(&id, &attr, thread_func, NULL)) {
 return 0;
 }

 if(thread_success != pthread_join(id, NULL)) {
 return 0;
 }

 return 0;
}

Check Information
Group: Concurrency
Language: C
Default: Off
Command-Line Syntax: DOUBLE_JOIN_OR_DETACH
Impact: Medium

See Also
Missing or double initialization of thread attribute | Use of
undefined thread ID

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019b

 Join or detach of a joined or detached thread

3-291

Double lock
Lock function is called twice in a task without an intermediate call to unlock function

Description
Double lock occurs when:

• A task calls a lock function my_lock.
• The task calls my_lock again before calling the corresponding unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task task1 calls a lock function lock, other tasks calling lock
must wait until task calls the corresponding unlock function. Polyspace requires that
both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Risk
A call to a lock function begins a critical section so that other tasks have to wait to enter
the same critical section. If the same lock function is called again within the critical
section, the task blocks itself.

Fix
The fix depends on the root cause of the defect. A double lock defect often indicates a
coding error. Perhaps you omitted the call to an unlock function to end a previous critical
section and started the next critical section. Perhaps you wanted to use a different lock
function for the second critical section.

Identify each critical section of code, that is, the section that you want to be executed as
an atomic block. Call a lock function at the beginning of the section. Within the critical
section, make sure that you do not call the lock function again. At the end of the section,
call the unlock function that corresponds to the lock function.

3 Defects

3-292

See examples of fixes below. To avoid the issue, you can follow the practice of calling the
lock and unlock functions in the same module at the same level of abstraction. For
instance, in this example, func calls the lock and unlock function at the same level but
func2 does not.

void func() {
 my_lock();
 {
 ...
 }
 my_unlock();
}

void func2() {
 {
 my_lock();
 ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples
Double Lock

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 lock();
 global_var += 1;

 Double lock

3-293

 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Value
Configure
multitasking manually
Tasks (-entry-points) task1

task2
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
lock unlock

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin lock:cs1
 -critical-section-end unlock:cs1

task1 enters a critical section through the call lock();. task1 calls lock again before
it leaves the critical section through the call unlock();.

Correction — Remove First Lock

If you want the first global_var+=1; to be outside the critical section, one possible
correction is to remove the first call to lock. However, if other tasks are using
global_var, this code can produce a Data race error.

3 Defects

3-294

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 global_var += 1;
 lock();
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

Correction — Remove Second Lock

If you want the first global_var+=1; to be inside the critical section, one possible
correction is to remove the second call to lock.

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;

 Double lock

3-295

 unlock();
}

Correction — Add Another Unlock

If you want the second global_var+=1; to be inside a critical section, another possible
correction is to add another call to unlock.

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 unlock();
 lock();
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

Double Lock with Function Call

int global_var;

void lock(void);
void unlock(void);

void performOperation(void) {

3 Defects

3-296

 lock();
 global_var++;
}

void task1(void)
{
 lock();
 global_var += 1;
 performOperation();
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure
multitasking manually
Tasks (-entry-points) task1

task2
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
lock unlock

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin lock:cs1
 -critical-section-end unlock:cs1

task1 enters a critical section through the call lock();. task1 calls the function
performOperation. In performOperation, lock is called again even though task1
has not left the critical section through the call unlock();.

 Double lock

3-297

In the result details for the defect, you see the sequence of instructions leading to the
defect. For instance, you see that following the first entry into the critical section, the
execution path:

• Enters function performOperation.
• Inside performOperation, attempts to enter the same critical section once again.

You can click each event to navigate to the corresponding line in the source code.

Correction — Remove Second Lock

One possible correction is to remove the call to lock in task1.

int global_var;

void lock(void);
void unlock(void);

void performOperation(void) {
 global_var++;
}

void task1(void)
{
 lock();
 global_var += 1;
 performOperation();
 unlock();

3 Defects

3-298

}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_LOCK
Impact: High
CWE ID: 764

See Also
Configure multitasking manually | Critical section details (-critical-
section-begin -critical-section-end) | Data race | Data race including
atomic operations | Data race through standard library function call |
Deadlock | Destruction of locked mutex | Double unlock | Find defects (-
checkers) | Missing lock | Missing unlock | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Analyze Multitasking Programs in Polyspace”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2014b

 Double lock

3-299

https://cwe.mitre.org/data/definitions/764.html

Closing a previously closed resource
Function closes a previously closed stream

Description
Closing a previously closed resource occurs when a function attempts to close a
stream that was closed earlier in your code and not reopened later.

Risk
The standard states that the value of a FILE* pointer is indeterminate after you close the
stream associated with it. Performing the close operation on the FILE* pointer again can
cause unwanted behavior.

Fix
Remove the redundant close operation.

Examples

Closing Previously Closed Resource
#include <stdio.h>

void func(char* data) {
 FILE* fp = fopen("file.txt", "w");
 if(fp!=NULL) {
 if(data)
 fputc(*data,fp);
 else
 fclose(fp);
 }
 fclose(fp);
}

3 Defects

3-300

In this example, if fp is not NULL and data is NULL, the fclose operation occurs on fp
twice in succession.

Correction — Remove Close Operation

One possible correction is to remove the last fclose operation. To avoid a resource leak,
you must also place an fclose operation in the if(data) block.

#include <stdio.h>

void func(char* data) {
 FILE* fp = fopen("file.txt", "w");
 if(fp!=NULL) {
 if(data) {
 fputc(*data,fp);
 fclose(fp);
 }
 else
 fclose(fp);
 }
}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_RESOURCE_CLOSE
Impact: High
CWE ID: 672, 826, 910

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Closing a previously closed resource

3-301

https://cwe.mitre.org/data/definitions/672.html
https://cwe.mitre.org/data/definitions/826.html
https://cwe.mitre.org/data/definitions/910.html

Opening previously opened resource
Opening an already opened file

Description
Opening previously opened resource checks for file opening functions that are
opening an already opened file.

Risk
If you open a resource multiple times, you can encounter:

• A race condition when accessing the file.
• Undefined or unexpected behavior for that file.
• Portability issues when you run your program on different targets.

Fix
Once a resource is open, close the resource before reopening.

Examples

File Reopened With New Permissions
#include <stdio.h>
const char* logfile = "my_file.log";

void doubleresourceopen()
{
 FILE* fpa = fopen(logfile, "w");
 if (fpa == NULL) {
 return;
 }
 (void)fprintf(fpa, "Writing");

3 Defects

3-302

 FILE* fpb = fopen(logfile, "r");
 (void)fclose(fpa);
 (void)fclose(fpb);
}

In this example, a logfile is opened in the first line of this function with write
privileges. Halfway through the function, the logfile is opened again with read
privileges.

Correction — Close Before Reopening

One possible correction is to close the file before reopening the file with different
privileges.

#include <stdio.h>
const char* logfile = "my_file.log";

void doubleresourceopen()
{
 FILE* fpa = fopen(logfile, "w");
 if (fpa == NULL) {
 return;
 }
 (void)fprintf(fpa, "Writing");
 (void)fclose(fpa);
 FILE* fpb = fopen(logfile, "r");
 (void)fclose(fpb);
}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_RESOURCE_OPEN
Impact: Medium
CWE ID: 362, 413, 675

See Also
Find defects (-checkers)

 Opening previously opened resource

3-303

https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/413.html
https://cwe.mitre.org/data/definitions/675.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

3 Defects

3-304

Double unlock
Unlock function is called twice in a task without an intermediate call to lock function

Description
Double unlock occurs when:

• A task calls a lock function my_lock.
• The task calls the corresponding unlock function my_unlock.
• The task calls my_unlock again. The task does not call my_lock a second time

between the two calls to my_unlock.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task task1 calls a lock function my_lock, other tasks calling
my_lock must wait until task1 calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Risk
A double unlock defect can indicate a coding error. Perhaps you wanted to call a different
unlock function to end a different critical section. Perhaps you called the unlock function
prematurely the first time and only the second call indicates the end of the critical
section.

Fix
The fix depends on the root cause of the defect.

Identify each critical section of code, that is, the section that you want to be executed as
an atomic block. Call a lock function at the beginning of the section. Only at the end of
the section, call the unlock function that corresponds to the lock function. Remove any
other redundant call to the unlock function.

 Double unlock

3-305

See examples of fixes below. To avoid the issue, you can follow the practice of calling the
lock and unlock functions in the same module at the same level of abstraction. For
instance, in this example, func calls the lock and unlock function at the same level but
func2 does not.

void func() {
 my_lock();
 {
 ...
 }
 my_unlock();
}

void func2() {
 {
 my_lock();
 ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples
Double Unlock

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 global_var += 1;

3 Defects

3-306

 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Value
Configure
multitasking manually
Tasks (-entry-points) task1

task2
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
BEGIN_CRITICAL_SECTIO
N

END_CRITICAL_SECTION

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin BEGIN_CRITICAL_SECTION:cs1
 -critical-section-end END_CRITICAL_SECTION:cs1

task1 enters a critical section through the call BEGIN_CRITICAL_SECTION();. task1
leaves the critical section through the call END_CRITICAL_SECTION();. task1 calls
END_CRITICAL_SECTION again without an intermediate call to
BEGIN_CRITICAL_SECTION.

Correction — Remove Second Unlock

If you want the second global_var+=1; to be outside the critical section, one possible
correction is to remove the second call to END_CRITICAL_SECTION. However, if other
tasks are using global_var, this code can produce a Data race error.

 Double unlock

3-307

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 global_var += 1;
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

Correction — Remove First Unlock

If you want the second global_var+=1; to be inside the critical section, one possible
correction is to remove the first call to END_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();

3 Defects

3-308

 global_var += 1;
 END_CRITICAL_SECTION();
}

Correction — Add Another Lock

If you want the second global_var+=1; to be inside a critical section, another possible
correction is to add another call to BEGIN_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_UNLOCK
Impact: High
CWE ID: 765

 Double unlock

3-309

https://cwe.mitre.org/data/definitions/765.html

See Also
Configure multitasking manually | Critical section details (-critical-
section-begin -critical-section-end) | Data race | Data race including
atomic operations | Data race through standard library function call |
Deadlock | Destruction of locked mutex | Double lock | Find defects (-
checkers) | Missing lock | Missing unlock | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Analyze Multitasking Programs in Polyspace”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2014b

3 Defects

3-310

Base class destructor not virtual
Class cannot behave polymorphically for deletion of derived class objects

Description
Base class destructor not virtual occurs when a class has virtual functions but not a
virtual destructor.

Risk
The presence of virtual functions indicates that the class is intended for use as a base
class. However, if the class does not have a virtual destructor, it cannot behave
polymorphically for deletion of derived class objects.

If a pointer to this class refers to a derived class object, and you use the pointer to delete
the object, only the base class destructor is called. Additional resources allocated in the
derived class are not released and can cause a resource leak.

Fix
One possible fix is to always use a virtual destructor in a class that contains virtual
functions.

Examples
Base Class Destructor Not Virtual
class Base {
 public:
 Base(): _b(0) {};
 virtual void update() {_b += 1;};
 private:
 int _b;
};

 Base class destructor not virtual

3-311

class Derived: public Base {
 public:
 Derived(): _d(0) {};
 ~Derived() {_d = 0;};
 virtual void update() {_d += 1;};
 private:
 int _d;
};

In this example, the class Base does not have a virtual destructor. Therefore, if a
Base* pointer points to a Derived object that is allocated memory dynamically, and the
delete operation is performed on that Base* pointer, the Base destructor is called. The
memory allocated for the additional member _d is not released.

The defect appears on the base class definition. Following are some tips for navigating in
the source code:

• To find classes derived from the base class, right-click the base class name and select
Search For All References. Browse through each search result to find derived class
definitions.

• To find if you are using a pointer or reference to a base class to point to a derived class
object, right-click the base class name and select Search For All References. Browse
through search results that start with Base* or Base& to locate pointers or references
to the base class. You can then see if you are using a pointer or reference to point to a
derived class object.

Correction — Make Base Class Destructor Virtual

One possible correction is to declare a virtual destructor for the class Base.

class Base {
 public:
 Base(): _b(0) {};
 virtual ~Base() {_b = 0;};
 virtual void update() {_b += 1;};
 private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(): _d(0) {};
 ~Derived() {_d = 0;};

3 Defects

3-312

 virtual void update() {_d += 1;};
 private:
 int _d;
};

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: DTOR_NOT_VIRTUAL
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

External Websites
CERT C++ OOP52-CPP

Introduced in R2015b

 Base class destructor not virtual

3-313

https://www.securecoding.cert.org/confluence/x/UQBO

Misuse of errno
errno incorrectly checked for error conditions

Description
Misuse of errno occurs when you check errno for error conditions in situations where
checking errno does not guarantee the absence of errors. In some cases, checking
errno can lead to false positives.

For instance, you check errno following calls to the functions:

• fopen: If you follow the ISO Standard, the function might not set errno on errors.
• atof: If you follow the ISO Standard, the function does not set errno.
• signal: The errno value indicates an error only if the function returns the SIG_ERR

error indicator.

Risk
The ISO C Standard does not enforce that these functions set errno on errors. Whether
the functions set errno or not is implementation-dependent.

To detect errors, if you check errno alone, the validity of this check also becomes
implementation-dependent.

In some cases, the errno value indicates an error only if the function returns a specific
error indicator. If you check errno before checking the function return value, you can see
false positives.

Fix
For information on how to detect errors, see the documentation for that specific function.

Typically, the functions return an out-of-band error indicator to indicate errors. For
instance:

3 Defects

3-314

• fopen returns a null pointer if an error occurs.
• signal returns the SIG_ERR error indicator and sets errno to a positive value.

Check errno only after you have checked the function return value.

Examples

Incorrectly Checking for errno After fopen Call
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 errno = 0;
 fileptr = fopen(temp_filename, "w+b");
 if (errno != 0) {
 if (fileptr != NULL) {
 (void)fclose(fileptr);
 }
 /* Handle error */
 fatal_error();
 }
 return fileptr;
}

In this example, errno is the first variable that is checked after a call to fopen. You
might expect that fopen changes errno to a nonzero value if an error occurs. If you run
this code with an implementation of fopen that does not set errno on errors, you might
miss an error condition. In this situation, fopen can return a null pointer that escapes
detection.

Correction — Check Return Value of fopen After Call

One possible correction is to only check the return value of fopen for a null pointer.

 Misuse of errno

3-315

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 fileptr = fopen(temp_filename, "w+b");
 if (fileptr == NULL) {
 fatal_error();
 }
 return fileptr;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: ERRNO_MISUSE
Impact: High
CWE ID: 703

See Also
Errno not checked | Errno not reset | Find defects (-checkers) | Returned
value of a sensitive function not checked | Unsafe conversion from
string to numerical value

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

3 Defects

3-316

https://cwe.mitre.org/data/definitions/703.html

Errno not checked
errno is not checked for error conditions following function call

Description
Errno not checked occurs when you call a function that sets errno to indicate error
conditions, but do not check errno after the call. For these functions, checking errno is
the only reliable way to determine if an error occurred.

Functions that set errno on errors include:

• fgetwc, strtol, and wcstol.

For a comprehensive list of functions, see documentation about errno.
• POSIX errno-setting functions such as encrypt and setkey.

Risk
To see if the function call completed without errors, check errno for error values.

The return values of these errno-setting functions do not indicate errors. The return
value can be one of the following:

• void
• Even if an error occurs, the return value can be the same as the value from a

successful call. Such return values are called in-band error indicators.

You can determine if an error occurred only by checking errno.

For instance, strtol converts a string to a long integer and returns the integer. If the
result of conversion overflows, the function returns LONG_MAX and sets errno to ERANGE.
However, the function can also return LONG_MAX from a successful conversion. Only by
checking errno can you distinguish between an error and a successful conversion.

Fix
Before calling the function, set errno to zero.

 Errno not checked

3-317

https://www.securecoding.cert.org/confluence/x/KwBl

After the function call, to see if an error occurred, compare errno to zero. Alternatively,
compare errno to known error indicator values. For instance, strtol sets errno to
ERANGE to indicate errors.

The error message in the Polyspace result shows the error indicator value that you can
compare to.

Examples
errno Not Checked After Call to strtol
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 long val = strtol(str, &endptr, base);
 printf("Return value of strtol() = %ld\n", val);
}

You are using the return value of strtol without checking errno.

Correction — Check errno After Call

Before calling strtol, set errno to zero . After a call to strtol, check the return value
for LONG_MIN or LONG_MAX and errno for ERANGE.

#include<stdlib.h>
#include<stdio.h>
#include<errno.h>
#include<limits.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

3 Defects

3-318

 str = argv[1];
 base = 10;

 errno = 0;
 long val = strtol(str, &endptr, base);
 if((val == LONG_MIN || val == LONG_MAX) && errno == ERANGE) {
 printf("strtol error");
 exit(EXIT_FAILURE);
 }
 printf("Return value of strtol() = %ld\n", val);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: ERRNO_NOT_CHECKED
Impact: Medium
CWE ID: 253, 391

See Also
Errno not reset | Find defects (-checkers) | Misuse of errno | Returned
value of a sensitive function not checked

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

 Errno not checked

3-319

https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/391.html

Exception caught by value
catch statement accepts an object by value

Description
Exception caught by value occurs when a catch statement accepts an object by value.

Risk
If a throw statement passes an object and the corresponding catch statement accepts
the exception by value, the object is copied to the catch statement parameter. This copy
can lead to unexpected behavior such as:

• Object slicing, if the throw statement passes a derived class object.
• Undefined behavior of the exception, if the copy fails.

Fix
Catch the exception by reference or by pointer. Catching an exception by reference is
recommended.

Examples

Standard Exception Caught by Value
#include <exception>

extern void print_str(const char* p);
extern void throw_exception();

void func() {
 try {
 throw_exception();
 }

3 Defects

3-320

 catch(std::exception exc) {
 print_str(exc.what());
 }
}

In this example, the catch statement takes a std::exception object by value. Catching
an exception by value causes copying of the object. It can cause undefined behavior of the
exception if the copy fails.

Correction: Catch Exception by Reference

One possible solution is to catch the exception by reference.

#include <exception>

extern void print_str(const char* p);
extern void throw_exception();

void corrected_excpcaughtbyvalue() {
 try {
 throw_exception();
 }
 catch(std::exception& exc) {
 print_str(exc.what());
 }
}

Derived Class Exception Caught by Value
#include <exception>
#include <string>
#include <typeinfo>
#include <iostream>

// Class declarations
class BaseExc {
public:
 explicit BaseExc();
 virtual ~BaseExc() {};
protected:
 BaseExc(const std::string& type);
private:
 std::string _id;

 Exception caught by value

3-321

};

class IOExc: public BaseExc {
public:
 explicit IOExc();
};

//Class method declarations
BaseExc::BaseExc():_id(typeid(this).name()) {
}
BaseExc::BaseExc(const std::string& type): _id(type) {
}
IOExc::IOExc(): BaseExc(typeid(this).name()) {
}

int input(void);

int main(void) {
 int rnd = input();
 try {
 if (rnd==0) {
 throw IOExc();
 } else {
 throw BaseExc();
 }
 }

 catch(BaseExc exc) {
 std::cout << "Intercept BaseExc" << std::endl;
 }
 return 0;
}

In this example, the catch statement takes a BaseExc object by value. Catching
exceptions by value causes copying of the object. The copying can cause:

• Undefined behavior of the exception if it fails.
• Object slicing if an exception of the derived class IOExc is caught.

Correction — Catch Exceptions by Reference

One possible correction is to catch exceptions by reference.

3 Defects

3-322

#include <exception>
#include <string>
#include <typeinfo>
#include <iostream>

// Class declarations
class BaseExc {
public:
 explicit BaseExc();
 virtual ~BaseExc() {};
protected:
 BaseExc(const std::string& type);
private:
 std::string _id;
};

class IOExc: public BaseExc {
public:
 explicit IOExc();
};

//Class method declarations
BaseExc::BaseExc():_id(typeid(this).name()) {
}
BaseExc::BaseExc(const std::string& type): _id(type) {
}
IOExc::IOExc(): BaseExc(typeid(this).name()) {
}

int input(void);

int main(void) {
 int rnd = input();
 try {
 if (rnd==0) {
 throw IOExc();
 } else {
 throw BaseExc();
 }
 }

 catch(BaseExc& exc) {

 Exception caught by value

3-323

 std::cout << "Intercept BaseExc" << std::endl;
 }
 return 0;
}

Result Information
Group: Programming
Language: C++
Default: On
Command-Line Syntax: EXCP_CAUGHT_BY_VALUE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-324

Exception handler hidden by previous
handler
catch statement is not reached because of an earlier catch statement for the same
exception

Description
Exception handler hidden by previous handler occurs when a catch statement is not
reached because a previous catch statement handles the exception.

For instance, a catch statement accepts an object of a class my_exception and a later
catch statement accepts one of the following:

• An object of the my_exception class.
• An object of a class derived from the my_exception class.

Risk
Because the catch statement is not reached, it is effectively dead code.

Fix
One possible fix is to remove the redundant catch statement.

Another possible fix is to reverse the order of catch statements. Place the catch
statement that accepts the derived class exception before the catch statement that
accepts the base class exception.

Examples
catch Statement Hidden by Previous Statement
#include <new>

 Exception handler hidden by previous handler

3-325

extern void print_str(const char* p);
extern void throw_exception();

void func() {
 try {
 throw_exception();
 }
 catch(std::exception& exc) {
 print_str(exc.what());
 }

 catch(std::bad_alloc& exc) {
 print_str(exc.what());
 }
}

In this example, the second catch statement accepts a std::bad_alloc object.
Because the std::bad_alloc class is derived from a std::exception class, the
second catch statement is hidden by the previous catch statement that accepts a
std::exception object.

The defect appears on the parameter type of the catch statement. To find which catch
statement hides the current catch statement:

1 On the Source pane, right-click the keyword catch and select Search For
"catch"in Current Source File.

2 On the Search pane, click each search result, proceeding backwards from the
current catch statement. Continue until you find the catch statement that hides the
catch statement with the defect.

Correction — Reorder catch Statement

One possible correction is to place the catch statement with the derived class parameter
first.

#include <new>

extern void print_str(const char* p);
extern void throw_exception();

void corrected_excphandlerhidden() {
 try {
 throw_exception();

3 Defects

3-326

 }

 catch(std::bad_alloc& exc) {
 print_str(exc.what());
 }
 catch(std::exception& exc) {
 print_str(exc.what());
 }
}

Result Information
Group: Programming
Language: C++
Default: On
Command-Line Syntax: EXCP_HANDLER_HIDDEN
Impact: Medium
CWE ID: 755

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Exception handler hidden by previous handler

3-327

https://cwe.mitre.org/data/definitions/755.html

Abnormal termination of exit handler
Exit handler function interrupts the normal execution of a program

Description
Abnormal termination of exit handler looks for registered exit handlers. Exit handlers
are registered with specific functions such as atexit, (WinAPI) _onexit, or
at_quick_exit(). If the exit handler calls a function that interrupts the program’s
expected termination sequence, Polyspace raises a defect. Some functions that can cause
abnormal exits are exit, abort, longjmp, or (WinAPI) _onexit.

Risk
If your exit handler terminates your program, you can have undefined behavior. Abnormal
program termination means other exit handlers are not invoked. These additional exit
handlers may do additional clean up or other required termination steps.

Fix
In inside exit handlers, remove calls to functions that prevent the exit handler from
terminating normally.

Examples

Exit Handler With Call to exit
#include <stdlib.h>

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;
}

3 Defects

3-328

void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 exit(0);
 }
 return;
}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() performs additional cleanup */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

In this example, demo_install_exitabnormalhandler registers two exit handlers,
demo_exit1 and exitabnormalhandler. Exit handlers are invoked in the reverse
order of which they are registered. When the program ends, exitabnormalhandler
runs, then demo_exit1. However, exitabnormalhandler calls exit interrupting the
program exit process. Having this exit inside an exit handler causes undefined behavior
because the program is not finished cleaning up safely.

Correction — Remove exit from Exit Handler

One possible correction is to let your exit handlers terminate normally. For this example,
exit is removed from exitabnormalhandler, allowing the exit termination process to
complete as expected.

#include <stdlib.h>

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */

 Abnormal termination of exit handler

3-329

 return;
}
void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 /* Return normally */
 }
 return;
}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() continues clean up */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: EXIT_ABNORMAL_HANDLER
Impact: Medium
CWE ID: 705

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”

3 Defects

3-330

https://cwe.mitre.org/data/definitions/705.html

“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

 Abnormal termination of exit handler

3-331

File descriptor exposure to child process
Copied file descriptor used in multiple processes

Description
File descriptor exposure to child process occurs when a process is forked and the
child process uses file descriptors inherited from the parent process.

Risk
When you fork a child process, file descriptors are copied from the parent process, which
means that you can have concurrent operations on the same file. Use of the same file
descriptor in the parent and child processes can lead to race conditions that may not be
caught during standard debugging. If you do not properly manage the file descriptor
permissions and privileges, the file content is vulnerable to attacks targeting the child
process.

Fix
Check that the file has not been modified before forking the process. Close all inherited
file descriptors and reopen them with stricter permissions and privileges, such as read-
only permission.

Examples

File Descriptor Accessed from Forked Process
include <stdio.h>
include <stdlib.h>
include <string.h>
include <unistd.h>
include <fcntl.h>
include <sys/types.h>
include <sys/stat.h>

3 Defects

3-332

const char *test_file="/home/user/test.txt";

void func(void)
{
 char c;
 pid_t pid;
 /* create file descriptor in read and write mode */
 int fd = open(test_file, O_RDWR);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }
 /* fork process */
 pid = fork();
 if (pid == -1)
 {
 /* Handle error */
 abort();
 }
 else if (pid == 0)
 { /* Child process accesses file descriptor inherited
 from parent process */
 (void)read(fd, &c, 1);
 }
 else
 { /* Parent process access same file descriptor as
 child process */
 (void)read(fd, &c, 1);
 }
}

In this example, a file descriptor fd is created in read and write mode. The process is
then forked. The child process inherits and accesses fd with the same permissions as the
parent process. A race condition exists between the parent and child processes. The
contents of the file is vulnerable to attacks through the child process.

 File descriptor exposure to child process

3-333

Correction — Close and Reopen Inherited File Descriptor

After you create the file descriptor, check the file for tampering. Then, close the inherited
file descriptor in the child process and reopen it in read-only mode.

include <stdio.h>
include <stdlib.h>
include <string.h>
include <unistd.h>
include <fcntl.h>
include <sys/types.h>
include <sys/stat.h>

const char *test_file="/home/user/test.txt";

void func(void)
{
 char c;
 pid_t pid;

 /* Get the state of file for further file tampering checking */

 /* create file descriptor in read and write mode */
 int fd = open(test_file, O_RDWR);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }

 /* Be sure the file was not tampered with while opening */

 /* fork process */

 pid = fork();
 if (pid == -1)
 {
 /* Handle error */
 (void)close(fd);
 abort();
 }
 else if (pid == 0)
 { /* Close file descriptor in child process and repoen

3 Defects

3-334

 it in read only mode */

 (void)close(fd);
 fd = open(test_file, O_RDONLY);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }

 (void)read(fd, &c, 1);
 (void)close(fd);
 }
 else
 { /* Parent acceses original file descriptor */
 (void)read(fd, &c, 1);
 (void)close(fd);
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: FILE_EXPOSURE_TO_CHILD
Impact: Medium
CWE ID: 362

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

 File descriptor exposure to child process

3-335

https://cwe.mitre.org/data/definitions/362.html

Misuse of a FILE object
Use of copy of FILE object

Description
Misuse of a FILE object occurs when:

• You dereference a pointer to a FILE object, including indirect dereference by using
memcmp().

• You modify an entire FILE object or one of its components through its pointer.
• You take the address of FILE object that was not returned from a call to an fopen-

family function. No defect is raised if a macro defines the pointer as the address of a
built-in FILE object, such as #define ptr (&__stdout).

Risk
In some implementations, the address of the pointer to a FILE object used to control a
stream is significant. A pointer to a copy of a FILE object is interpreted differently than a
pointer to the original object, and can potentially result in operations on the wrong
stream. Therefore, the use of a copy of a FILE object can cause the software to stop
responding, which an attacker might exploit in denial-of-service attacks.

Fix
Do not make a copy of a FILE object. Do not use the address of a FILE object that was not
returned from a successful call to an fopen-family function.

Examples

Copy of FILE Object Used in fputs()
#include <stdio.h>
#include <unistd.h>

3 Defects

3-336

#include <stdlib.h>
#include <string.h>
#include <strings.h>

void fatal_error(void);

int func(void)
{
 /*'stdout' dereferenced and contents
 copied to 'my_stdout'. */
 FILE my_stdout = *stdout;

 /* Address of 'my_stdout' may not point to correct stream. */
 if (fputs("Hello, World!\n", &my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;
}

In this example, FILE object stdout is dereferenced and its contents are copied to
my_stdout. The contents of stdout might not be significant. fputs() is then called
with the address of my_stdout as an argument. Because no call to fopen() or a similar
function was made, the address of my_stdout might not point to the correct stream.

Correction — Copy the FILE Object Pointer

Declare my_stdout to point to the same address as stdout to ensure that you write to
the correct stream when you call fputs().

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>

void fatal_error(void);

int func(void)
{
 /* 'my_stdout' and 'stdout' point to the same object. */

 Misuse of a FILE object

3-337

 FILE *my_stdout = stdout;
 if (fputs("Hello, World!\n", my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: FILE_OBJECT_MISUSE
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

3 Defects

3-338

Incorrect syntax of flexible array member
size
Flexible array member defined with size zero or one

Description
Incorrect syntax of flexible array member size occurs when you do not use the
standard C syntax to define a structure with a flexible array member.

Since C99, you can define a flexible array member with an unspecified size. For instance,
desc is a flexible array member in this example:

struct record {
 size_t len;
 double desc[];
};

Prior to C99, you might have used compiler-specific methods to define flexible arrays. For
instance, you used arrays of size one or zero:

struct record {
 size_t len;
 double desc[0];
};

This usage is not compliant with the C standards following C99.

Risk
If you define flexible array members by using size zero or one, your implementation is
compiler-dependent. For compilers that do not recognize the syntax, an int array of size
one has buffer for one int variable. If you try to write beyond this buffer, you can run into
issues stemming from array access out of bounds.

If you use the standard C syntax to define a flexible array member, your implementation is
portable across all compilers conforming with the standard.

 Incorrect syntax of flexible array member size

3-339

Fix
To implement a flexible array member in a structure, define an array of unspecified size.
The structure must have one member besides the array and the array must be the last
member of the structure.

Examples

Flexible Array Member Defined with Size One
#include <stdlib.h>

struct flexArrayStruct {
 int num;
 int data[1];
};

unsigned int max_size = 100;

void func(unsigned int array_size) {
 if(array_size<= 0 || array_size > max_size)
 exit(1);
 /* Space is allocated for the struct */
 struct flexArrayStruct *structP
 = (struct flexArrayStruct *)
 malloc(sizeof(struct flexArrayStruct)
 + sizeof(int) * (array_size - 1));
 if (structP == NULL) {
 /* Handle malloc failure */
 exit(2);
 }

 structP->num = array_size;

 /*
 * Access data[] as if it had been allocated
 * as data[array_size].
 */
 for (unsigned int i = 0; i < array_size; ++i) {
 structP->data[i] = 1;
 }

3 Defects

3-340

 free(structP);
}

In this example, the flexible array member data is defined with a size value of one.
Compilers that do not recognize this syntax treat data as a size-one array. The statement
structP->data[i] = 1; can write to data beyond the first array member and cause
out of bounds array issues.

Correction — Use Standard C Syntax to Define Flexible Array

Define flexible array members with unspecified size.

#include <stdlib.h>

struct flexArrayStruct{
 int num;
 int data[];
};

unsigned int max_size = 100;

void func(unsigned int array_size) {
 if(array_size<=0 || array_size > max_size)
 exit(1);

 /* Allocate space for structure */
 struct flexArrayStruct *structP
 = (struct flexArrayStruct *)
 malloc(sizeof(struct flexArrayStruct)
 + sizeof(int) * array_size);

 if (structP == NULL) {
 /* Handle malloc failure */
 exit(2);
 }

 structP->num = array_size;

 /*
 * Access data[] as if it had been allocated
 * as data[array_size].
 */
 for (unsigned int i = 0; i < array_size; ++i) {

 Incorrect syntax of flexible array member size

3-341

 structP->data[i] = 1;
 }

 free(structP);
}

Result Information
Group: Good Practice
Language:C (checker disabled if the analysis runs on C90 code indicated by the option -
c-version c90)
Default: Off
Command-Line Syntax: FLEXIBLE_ARRAY_MEMBER_INCORRECT_SIZE
Impact: Low

See Also
Find defects (-checkers) | Hard-coded buffer size | Memory leak | Misuse
of structure with flexible array member | Pointer access out of bounds
| Unprotected dynamic memory allocation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

3 Defects

3-342

Misuse of structure with flexible array
member
Memory allocation ignores flexible array member

Description
Misuse of structure with flexible array member occurs when:

• You define an object with a flexible array member of unknown size at compilation time.
• You make an assignment between structures with a flexible array member without

using memcpy() or a similar function.
• You use a structure with a flexible array member as an argument to a function and

pass the argument by value.
• Your function returns a structure with a flexible array member.

A flexible array member has no array size specified and is the last element of a structure
with at least two named members.

Risk
If the size of the flexible array member is not defined, it is ignored when allocating
memory for the containing structure. Accessing such a structure has undefined behavior.

Fix
• Use malloc() or a similar function to allocate memory for a structure with a flexible

array member.
• Use memcpy() or a similar function to copy a structure with a flexible array member.
• Pass a structure with a flexible array member as a function argument by pointer.

 Misuse of structure with flexible array member

3-343

Examples

Structure Passed By Value to Function
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

struct example_struct
{
 size_t num;
 int data[];
};

extern void arg_by_value(struct example_struct s);

void func(void)
{
 struct example_struct *flex_struct;
 size_t i;
 size_t array_size = 4;
 /* Dynamically allocate memory for the struct */
 flex_struct = (struct example_struct *)
 malloc(sizeof(struct example_struct) + sizeof(int) * array_size);
 if (flex_struct == NULL)
 {
 /* Handle error */
 }
 /* Initialize structure */
 flex_struct->num = array_size;
 for (i = 0; i < array_size; ++i)
 {
 flex_struct->data[i] = 0;
 }
 /* Handle structure */

 /* Argument passed by value. 'data' not
 copied to passed value. */
 arg_by_value(*flex_struct);

3 Defects

3-344

 /* Free dynamically allocated memory */
 free(flex_struct);
}

In this example, flex_struct is passed by value as an argument to arg_by_value. As a
result, the flexible array member data is not copied to the passed argument.

Correction — Pass Structure by Pointer to Function

To ensure that all the members of the structure are copied to the passed argument, pass
flex_struct to arg_by_pointer by pointer.

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

struct example_struct
{
 size_t num;
 int data[];
};

extern void arg_by_pointer(struct example_struct *s);

void func(void)
{
 struct example_struct *flex_struct;
 size_t i;
 size_t array_size = 4;
 /* Dynamically allocate memory for the struct */
 flex_struct = (struct example_struct *)
 malloc(sizeof(struct example_struct) + sizeof(int) * array_size);
 if (flex_struct == NULL)
 {
 /* Handler error */
 }
 /* Initialize structure */
 flex_struct->num = array_size;
 for (i = 0; i < array_size; ++i)
 {

 Misuse of structure with flexible array member

3-345

 flex_struct->data[i] = 0;
 }
 /* Handle structure */

 /* Structure passed by pointer */
 arg_by_pointer(flex_struct);

 /* Free dynamically allocated memory */
 free(flex_struct);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: FLEXIBLE_ARRAY_MEMBER_STRUCT_MISUSE
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

3 Defects

3-346

Absorption of float operand
One addition or subtraction operand is absorbed by the other operand

Description
Absorption of float operand occurs when one operand of an addition or subtraction
operation is always negligibly small compared to the other operand. Therefore, the result
of the operation is always equal to the value of the larger operand, making the operation
redundant.

Risk
Redundant operations waste execution cycles of your processor.

The absorption of a float operand can indicate design issues elsewhere in the code. It is
possible that the developer expected a different range for one of the operands and did not
expect the redundancy of the operation. However, the operand range is different from
what the developer expects because of issues elsewhere in the code.

Fix
See if the operand ranges are what you expect. To see the ranges, place your cursor on
the operation.

• If the ranges are what you expect, justify why you have the redundant operation in
place. For instance, the code is only partially written and you anticipate other values
for one or both of the operands from future unwritten code.

If you cannot justify the redundant operation, remove it.
• If the ranges are not what you expect, in your code, trace back to see where the

ranges come from. To begin your traceback, search for instances of the operand in
your code. Browse through previous instances of the operand and determine where
the unexpected range originates.

To determine when one operand is negligible compared to the other operand, the defect
uses rules based on IEEE 754 standards. To fix the defect, instead of using the actual

 Absorption of float operand

3-347

rules, you can use this heuristic: the ratio of the larger to the smaller operand must be
less than 2p-1 at least for some values. Here, p is equal to 24 for 32-bit precision and 53
for 64-bit precision. To determine the precision, the defect uses your specification for
Target processor type (-target).

This defect appears only if one operand is always negligibly smaller than the other
operand. To see instances of subnormal operands or results, use the check Subnormal
Float in Polyspace Code Prover.

Examples

One Addition Operand Negligibly Smaller Than The Other
Operand
#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-30)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

float input_signal2(void) {
 float temp = get_signal();
 if(temp > 1.)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();

3 Defects

3-348

 float signal2 = input_signal2();
 float super_signal = signal1 + signal2;
 do_operation(super_signal);
}

In this example, the defect appears on the addition because the operand signal1 is in
the range (0,1e-30) but signal2 is greater than 1.

Correction — Remove Redundant Operation

One possible correction is to remove the redundant addition operation. In the following
corrected code, the operand signal2 and its associated code is also removed from
consideration.

#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-30)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 do_operation(signal1);
}

Correction — Verify Operand Range

Another possible correction is to see if the operand ranges are what you expect. For
instance, if one of the operand range is not supposed to be negligibly small, fix the issue
causing the small range. In the following corrected code, the range (0,1e-2) is imposed
on signal2 so that it is not always negligibly small as compared to signal1.

#include <stdlib.h>

float get_signal(void);

 Absorption of float operand

3-349

void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-2)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

float input_signal2(void) {
 float temp = get_signal();
 if(temp > 1.)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 float signal2 = input_signal2();
 float super_signal = signal1 + signal2;
 do_operation(super_signal);
}

Result Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_ABSORPTION
Impact: High
CWE ID: 189, 682, 873

See Also
Find defects (-checkers)

3 Defects

3-350

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

 Absorption of float operand

3-351

Float conversion overflow
Overflow when converting between floating point data types

Description
Float conversion overflow occurs when converting a floating point number to a smaller
floating point data type. If the variable does not have enough memory to represent the
original number, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk
Overflows can result in unpredictable values from computations. The result can be infinity
or the maximum finite value depending on the rounding mode used in the
implementation. If you use the result of an overflowing conversion in subsequent
computations and do not account for the overflow, you can see unexpected results.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variable being
converted acquires its current value You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using
right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

In general, avoid conversions to smaller floating point types.

3 Defects

3-352

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Converting from double to float
float convert(void) {

 double diam = 1e100;
 return (float)diam;
}

In the return statement, the variable diam of type double (64 bits) is converted to a
variable of type float (32 bits). However, the value 1^100 requires more than 32 bits to be
precisely represented.

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_CONV_OVFL
Impact: High
CWE ID: 189, 197, 681

See Also
Find defects (-checkers) | Integer conversion overflow | Sign change
integer conversion overflow | Unsigned integer conversion overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

 Float conversion overflow

3-353

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/197.html
https://cwe.mitre.org/data/definitions/681.html

Introduced in R2013b

3 Defects

3-354

Float overflow
Overflow from operation between floating points

Description
Float overflow occurs when an operation on floating point variables can result in values
that cannot be represented by the result data type. The data type of a variable determines
the number of bytes allocated for the variable storage and constrains the range of allowed
values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk
Overflows can result in unpredictable values from computations. The result can be infinity
or the maximum finite value depending on the rounding mode used in the
implementation. If you use the result of an overflowing computation in subsequent
computations and do not account for the overflow, you can see unexpected results.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
overflowing computation acquire their current values. You can implement the fix on any
event in the sequence. If the result details do not show the event history, you can trace
back using right-click options in the source code and see previous related events. See also
“Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code,
add comments to your result or code to avoid another review. See “Address Polyspace
Results Through Bug Fixes or Justifications”.

 Float overflow

3-355

Examples
Multiplication of Floats
#include <float.h>

float square(void) {

 float val = FLT_MAX;
 return val * val;
}

In the return statement, the variable val is multiplied by itself. The square of the
maximum float value cannot be represented by a float (the return type for this function)
because the value of val is the maximum float value.

Correction — Different Storage Type

One possible correction is to store the result of the operation in a larger data type. In this
example, by returning a double instead of a float, the overflow defect is fixed.

#include <float.h>

double square(void) {
 float val = FLT_MAX;

 return (double)val * (double)val;
}

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: FLOAT_OVFL
Impact: Low
CWE ID: 189, 682, 873

See Also
Find defects (-checkers) | Integer overflow | Unsigned integer overflow

3 Defects

3-356

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Float overflow

3-357

Invalid use of standard library floating point
routine
Wrong arguments to standard library function

Description
Invalid use of standard library floating point routine occurs when you use invalid
arguments with a floating point function from the standard library. This defect picks up:

• Rounding and absolute value routines

ceil, fabs, floor, fmod
• Fractions and division routines

fmod, modf
• Exponents and log routines

frexp, ldexp, sqrt, pow, exp, log, log10
• Trigonometry function routines

cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh, acosh,
asinh, atanh

Risk
Domain errors on standard library floating point functions result in implementation-
defined values. If you use the function return value in subsequent computations, you can
see unexpected results.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the function
argument acquires invalid values. You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using

3 Defects

3-358

right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

It is a good practice to handle for domain errors before using a standard library floating
point function. For instance, before calling the acos function, check if the argument is in
[-1.0, 1.0] and handle the error.

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code,
add comments to your result or code to avoid another review. See “Address Polyspace
Results Through Bug Fixes or Justifications”.

Examples

Arc Cosine Operation
#include <math.h>

double arccosine(void) {
 double degree = 5.0;
 return acos(degree);
}

The input value to acos must be in the interval [-1,1]. This input argument, degree, is
outside this range.

Correction — Change Input Argument

One possible correction is to change the input value to fit the specified range. In this
example, change the input value from degrees to radians to fix this defect.

#include <math.h>

double arccosine(void) {
 double degree = 5.0;
 double radian = degree * 3.14159 / 180.;
 return acos(radian);
}

 Invalid use of standard library floating point routine

3-359

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_STD_LIB
Impact: High
CWE ID: 227, 369, 682, 873

See Also
Find defects (-checkers) | Invalid use of standard library integer
routine | Invalid use of standard library memory routine | Invalid use
of standard library routine | Invalid use of standard library string
routine

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-360

https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html

Float division by zero
Dividing floating point number by zero

Description
Float division by zero occurs when the denominator of a division operation can be a
zero-valued floating point number.

Risk
A division by zero can result in a program crash.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the denominator
variable acquires a zero value. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

It is a good practice to check for zero values of a denominator before division and handle
the error. Instead of performing the division directly:

res = num/den;

use a library function that handles zero values of the denominator before performing the
division:

res = div(num, den);

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code,
add comments to your result or code to avoid another review. See “Address Polyspace
Results Through Bug Fixes or Justifications”.

 Float division by zero

3-361

Examples

Dividing a Floating Point Number by Zero
float fraction(float num)
{
 float denom = 0.0;
 float result = 0.0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

float fraction(float num)
{
 float denom = 0.0;
 float result = 0.0;

 if(((int)denom) != 0)
 result = num/denom;

 return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

float fraction(float num)
{
 float denom = 2.0;
 float result = 0.0;

 result = num/denom;

3 Defects

3-362

 return result;
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_ZERO_DIV
Impact: High
CWE ID: 189, 369

See Also
Find defects (-checkers) | Integer division by zero

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Float division by zero

3-363

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/369.html

Use of previously freed pointer
Memory accessed after deallocation

Description
Use of previously freed pointer occurs when you access a block of memory after
freeing the block using the free function.

Risk
When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points
to a memory location on the heap. When you use the free function on this pointer, the
associated block of memory is freed for reallocation. Trying to access this block of
memory can result in unpredictable behavior or even a segmentation fault.

Fix
The fix depends on the root cause of the defect. See if you intended to free the memory
later or allocate another memory block to the pointer before access.

As a good practice, after you free a memory block, assign the corresponding pointer to
NULL. Before dereferencing pointers, check them for NULL values and handle the error.
In this way, you are protected against accessing a freed block.

Examples

Use of Previously Freed Pointer Error
#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));

3 Defects

3-364

 if (pi == NULL) return 0;

 *pi = base_val;
 free(pi);

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore,
dereferencingpi after the free statement is not valid.

Correction — Free Pointer After Use

One possible correction is to free the pointer pi only after the last instance where it is
accessed.

#include <stdlib.h>

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

Check Information
Group: Dynamic memory
Language: C | C++
Default: On
Command-Line Syntax: FREED_PTR

 Use of previously freed pointer

3-365

Impact: High
CWE ID: 416, 825

See Also
Deallocation of previously deallocated pointer | Find defects (-
checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-366

https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/825.html

Unreliable cast of function pointer
Function pointer cast to another function pointer with different argument or return type

Description
Unreliable cast of function pointer occurs when a function pointer is cast to another
function pointer that has different argument or return type.

This defect applies only if the code language for the project is C.

Risk
If you cast a function pointer to another function pointer with different argument or
return type and then use the latter function pointer to call a function, the behavior is
undefined.

Fix
Avoid a cast between two function pointers with mismatch in argument or return types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Unreliable cast of function pointer error
#include <stdio.h>
#include <math.h>
#include <stdio.h>
#define PI 3.142

double Calculate_Sum(int (*fptr)(double))

 Unreliable cast of function pointer

3-367

{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 /* Defect: fp implicitly cast to int(*) (double) */

 printf("sum(sin): %f\n", sum);
 return 0;
}

The function pointer fp is declared as double (*)(double). However in passing it to
function Calculate_Sum, fp is implicitly cast to int (*)(double).

Correction — Avoid Function Pointer Cast

One possible correction is to check that the function pointer in the definition of
Calculate_Sum has the same argument and return type as fp. This step makes sure
that fp is not implicitly cast to a different argument or return type.

#include <stdio.h>
#include <math.h>
#include <stdio.h>
define PI 3.142

/*Fix: fptr has same argument and return type everywhere*/
double Calculate_Sum(double (*fptr)(double))
{
 double sum = 0.0;
 double y;

3 Defects

3-368

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 printf("sum(sin): %f\n", sum);

 return 0;
}

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: FUNC_CAST
Impact: Medium

See Also
Find defects (-checkers) | Unreliable cast of pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Unreliable cast of function pointer

3-369

Function pointer assigned with absolute
address
Constant expression is used as function address is vulnerable to code injection

Description
Function pointer assigned with absolute address looks for assignments to function
pointers. If the function pointer is assigned an absolute address, Bug Finder raises a
defect.

Bug Finder considers expressions with any combination of literal constants as an absolute
address. The one exception is when the value of the expression is zero.

Risk
Using a fixed address is not portable because it is possible the address is invalid on other
platforms.

An attacker can inject code at the absolute address, causing your program to execute
arbitrary, possibly malicious, code.

Fix
Do not use an absolute address with function pointers.

Examples

Function Pointer Address Assignment
extern int func0(int i, char c);
typedef int (*FuncPtr) (int, char);

FuncPtr funcptrabsoluteaddr() {

3 Defects

3-370

 return (FuncPtr)0x08040000;
}

In this example, the function returns a function pointer to the address 0x08040000. If an
attacker knows this absolute address, an attacker can compromise your program.

Correction — Function Address

One possible correction is to use the address of an existing function instead.

extern int func0(int i, char c);
typedef int (*FuncPtr) (int, char);

FuncPtr funcptrabsoluteaddr() {
 return &func0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: FUNC_PTR_ABSOLUTE_ADDR
Impact: Low
CWE ID: 587

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Function pointer assigned with absolute address

3-371

https://cwe.mitre.org/data/definitions/587.html

Hard-coded buffer size
Size of memory buffer is a numerical value instead of symbolic constant

Description
Hard-coded buffer size occurs when you use a numerical value instead of a symbolic
constant when declaring a memory buffer such as an array.

Risk
Hard-coded buffer size causes the following issues:

• Hard-coded buffer size increases the likelihood of mistakes and therefore maintenance
costs. If a policy change requires developers to change the buffer size, they must
change every occurrence of the buffer size in the code.

• Hard-constant constants can be exposed to attack if the code is disclosed.

Fix
Use a symbolic name instead of a hard-coded constant for buffer size. Symbolic names
include const-qualified variables, enum constants, or macros.

enum constants are recommended.

• Macros are replaced by their constant values after preprocessing. Therefore, they can
expose the loop boundary.

• enum constants are known at compilation time. Therefore, compilers can optimize the
loops more efficiently.

const-qualified variables are usually known at run time.

3 Defects

3-372

Examples

Hard-Coded Buffer Size
int table[100];

void read(int);

void func(void) {
 for (int i=0; i<100; i++)
 read(table[i]);
}

In this example, the size of the array table is hard-coded.

Correction — Use Symbolic Name

One possible correction is to replace the hard-coded size with a symbolic name.

const int MAX_1 = 100;
#define MAX_2 100
enum { MAX_3 = 100 };

int table_1[MAX_1];
int table_2[MAX_2];
int table_3[MAX_3];

void read(int);

void func(void) {
 for (int i=0; i < MAX_1; i++)
 read(table_1[i]);
 for (int i=0; i < MAX_2; i++)
 read(table_2[i]);
 for (int i=0; i < MAX_3; i++)
 read(table_3[i]);
}

Result Information
Group: Good practice
Language: C | C++

 Hard-coded buffer size

3-373

Default: Off
Command-Line Syntax: HARD_CODED_BUFFER_SIZE
Impact: Low
CWE ID: 547

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-374

https://cwe.mitre.org/data/definitions/547.html

Hard-coded loop boundary
Loop boundary is a numerical value instead of symbolic constant

Description
Hard-coded loop boundary occurs when you use a numerical value instead of symbolic
constant for the boundary of a for, while or do-while loop.

Risk
Hard-coded loop boundary causes the following issues:

• Hard-coded loop boundary makes the code vulnerable to denial of service attacks
when the loop involves time-consuming computation or resource allocation.

• Hard-coded loop boundary increases the likelihood of mistakes and maintenance costs.
If a policy change requires developers to change the loop boundary, they must change
every occurrence of the boundary in the code.

For instance, the loop boundary is 10000 and represents the maximum number of
client connections supported in a network server application. If the server supports
more clients, you must change all instances of the loop boundary in your code. Even if
the loop boundary occurs once, you have to search for a numerical value of 10000 in
your code. The numerical value can occur in places other than the loop boundary. You
must browse through those places before you find the loop boundary.

Fix
Use a symbolic name instead of a hard-coded constant for loop boundary. Symbolic names
include const-qualified variables, enum constants or macros.enum constants are
recommended because:

• Macros are replaced by their constant values after preprocessing. Therefore, they can
expose the buffer size.

• enum constants are known at compilation time. Therefore, compilers can allocate
storage for them more efficiently.

 Hard-coded loop boundary

3-375

const-qualified variables are usually known at run time.

Examples

Hard-Coded Loop Boundary
void performOperation(int);

void func(void) {
 for (int i=0; i<100; i++)
 performOperation(i);
}

In this example, the boundary of the for loop is hard-coded.

Correction — Use Symbolic Name

One possible correction is to replace the hard-coded loop boundary with a symbolic name.

const int MAX_1 = 100;
#define MAX_2 100
enum { MAX_3 = 100 };

void performOperation_1(int);
void performOperation_2(int);
void performOperation_3(int);

void func(void) {
 for (int i=0; i<MAX_1; i++)
 performOperation_1(i);
 for (int i=0; i<MAX_2; i++)
 performOperation_2(i);
 for (int i=0; i<MAX_3; i++)
 performOperation_3(i);
}

Result Information
Group: Good practice
Language: C | C++

3 Defects

3-376

Default: Off
Command-Line Syntax: HARD_CODED_LOOP_BOUNDARY
Impact: Low
CWE ID: 547

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Hard-coded loop boundary

3-377

https://cwe.mitre.org/data/definitions/547.html

Hard-coded object size used to manipulate
memory
Memory manipulation with hard-coded size instead of sizeof

Description
Hard-coded object size used to manipulate memory occurs on constants that are
memory size arguments for memory functions such as malloc or memset.

Risk
If you hard code object size, your code is not portable to architectures with different type
sizes. If the constant value is not the same as the object size, the buffer might or might
not overflow.

Fix
For the size argument of memory functions, use sizeof(object).

Examples

Assume 4-Byte Integer Pointers
#include <stddef.h>
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};
extern void fill_ints(int **matrix, size_t nb, size_t s);

void bug_hardcodedmemsize()
{
 size_t i, s;

3 Defects

3-378

 s = 4;
 int **matrix = (int **)calloc(SIZE20, s);
 if (matrix == NULL) {
 return; /* Indicate calloc() failure */
 }
 fill_ints(matrix, SIZE20, s);
 free(matrix);
}

In this example, the memory allocation function calloc is called with a memory size of 4.
The memory is allocated for an integer pointer, which can be a more or less than 4 bytes
depending on your target. If the integer pointer is not 4 bytes, your program can fail.

Correction — Use sizeof(int *)

When calling calloc, replace the hard-coded size with a call to sizeof. This change
makes your code more portable.

#include <stddef.h>
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};
extern void fill_ints(int **matrix, size_t nb, size_t s);

void corrected_hardcodedmemsize()
{
 size_t i, s;

 s = sizeof(int *);
 int **matrix = (int **)calloc(SIZE20, s);
 if (matrix == NULL) {
 return; /* Indicate calloc() failure */
 }
 fill_ints(matrix, SIZE20, s);
 free(matrix);
}

Result Information
Group: Good Practice

 Hard-coded object size used to manipulate memory

3-379

Language: C | C++
Default: Off
Command-Line Syntax: HARD_CODED_MEM_SIZE
Impact: Low
CWE ID: 805

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

3 Defects

3-380

https://cwe.mitre.org/data/definitions/805.html

Improper array initialization
Incorrect array initialization when using initializers

Description
Improper array initialization occurs when Polyspace Bug Finder considers that an
array initialization using initializers is incorrect.

This defect applies to normal and designated initializers. In C99, with designated
initializers, you can place the elements of an array initializer in any order and implicitly
initialize some array elements. The designated initializers use the array index to establish
correspondence between an array element and an array initializer element. For instance,
the statement int arr[6] = { [4] = 29, [2] = 15 } is equivalent to int arr[6]
= { 0, 0, 15, 0, 29, 0 }.

You can use initializers incorrectly in one of the following ways.

Issue Risk Possible Fix
In your initializer for a one-
dimensional array, you have
more elements than the
array size.

Unused array initializer
elements indicate a possible
coding error.

Increase the array size or
remove excess elements.

You place the braces
enclosing initializer values
incorrectly.

Because of the incorrect
placement of braces, some
array initializer elements
are not used.

Unused array initializer
elements indicate a possible
coding error.

Place braces correctly.

 Improper array initialization

3-381

Issue Risk Possible Fix
In your designated
initializer, you do not
initialize the first element of
the array explicitly.

The implicit initialization of
the first array element
indicates a possible coding
error. You possibly
overlooked the fact that
array indexing starts from 0.

Initialize all elements
explicitly.

In your designated
initializer, you initialize an
element twice.

The first initialization is
overridden.

The redundant first
initialization indicates a
possible coding error.

Remove the redundant
initialization.

You use designated and
nondesignated initializers in
the same initialization.

You or another reviewer of
your code cannot determine
the size of the array by
inspection.

Use either designated or
nondesignated initializers.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Incorrectly Placed Braces (C Only)

3 Defects

3-382

int arr[2][3]
= {{1, 2},
 {3, 4},
 {5, 6}
};

In this example, the array arr is initialized as {1,2,0,3,4,0}. Because the initializer
contains {5,6}, you might expect the array to be initialized {1,2,3,4,5,6}.

Correction — Place Braces Correctly

One possible correction is to place the braces correctly so that all elements are explicitly
initialized.

int a1[2][3]
= {{1, 2, 3},
 {4, 5, 6}
};

First Element Not Explicitly Initialized
int arr[5]
= {
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

In this example, arr[0] is not explicitly initialized. It is possible that the programmer did
not consider that the array indexing starts from 0.

Correction — Explicitly Initialize All Elements

One possible correction is to initialize all elements explicitly.

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [3] = 4,

 Improper array initialization

3-383

 [4] = 5
};

Element Initialized Twice
int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [2] = 4,
 [4] = 5
};

In this example, arr[2] is initialized twice. The first initialization is overridden. In this
case, because arr[3] was not explicitly initialized, it is possible that the programmer
intended to initialize arr[3] when arr[2] was initialized a second time.

Correction — Fix Redundant Initialization

One possible correction is to eliminate the redundant initialization.

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

Mix of Designated and Nondesignated Initializers
int arr[]
= {
 [0] = 1,
 [3] = 3,
 4,
 [5] = 5,
 6
 };

In this example, because a mix of designated and nondesignated initializers are used, it is
difficult to determine the size of arr by inspection.

3 Defects

3-384

Correction — Use Only Designated Initializers

One possible correction is to use only designated initializers for array initialization.

int arr[]
= {
 [0] = 1,
 [3] = 3,
 [4] = 4,
 [5] = 5,
 [6] = 6
};

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: IMPROPER_ARRAY_INIT
Impact: Medium
CWE ID: 665

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Improper array initialization

3-385

https://cwe.mitre.org/data/definitions/665.html

Inappropriate I/O operation on device files
Operation can result in security vulnerabilities or a system failure

Description
Inappropriate I/O operation on device files occurs when you do not check whether a
file name parameter refers to a device file before you pass it to these functions:

• fopen()
• fopen_s()
• freopen()
• remove()
• rename()
• CreateFile()
• CreateFileA()
• CreateFileW()
• _wfopen()
• _wfopen_s()

Device files are files in a file system that provide an interface to device drivers. You can
use these files to interact with devices.

Inappropriate I/O operation on device files does not raise a defect when:

• You use stat or lstat-family functions to check the file name parameter before
calling the previously listed functions.

• You use a string comparison function to compare the file name against a list of device
file names.

Risk
Operations appropriate only for regular files but performed on device files can result in
denial-of-service attacks, other security vulnerabilities, or system failures.

3 Defects

3-386

Fix
Before you perform an I/O operation on a file:

• Use stat(), lstat(), or an equivalent function to check whether the file name
parameter refers to a regular file.

• Use a string comparison function to compare the file name against a list of device file
names.

Examples

Using fopen() Without Checking file_name
#include <stdio.h>
#include <string.h>

#define SIZE1024 1024

FILE* func()
{

 FILE* f;
 const char file_name[SIZE1024] = "./tmp/file";

 if ((f = fopen(file_name, "w")) == NULL) {
 /*handle error */
 };
 /*operate on file */
}

In this example, func() operates on the file file_name without checking whether it is a
regular file. If file_name is a device file, attempts to access it can result in a system
failure.

Correction — Check File with lstat() Before Calling fopen()

One possible correction is to use lstat() and the S_ISREG macro to check whether the
file is a regular file. This solution contains a TOCTOU race condition that can allow an
attacker to modify the file after you check it but before the call to fopen(). To prevent this
vulnerability, ensure that file_name refers to a file in a secure folder.

 Inappropriate I/O operation on device files

3-387

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>

#define SIZE1024 1024

FILE* func()
{

 FILE* f;
 const char file_name[SIZE1024] = "./tmp/file";
 struct stat orig_st;
 if ((lstat(file_name, &orig_st) != 0) ||
 (!S_ISREG(orig_st.st_mode))) {
 exit(0);
 }
 if ((f = fopen(file_name, "w")) == NULL) {
 /*handle error */
 };
 /*operate on file */
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: INAPPROPRIATE_IO_ON_DEVICE
Impact: Medium
CWE ID: 67

See Also
File access between time of check and use (TOCTOU) | Find defects (-
checkers) | Opening previously opened resource | Resource leak | Returned
value of a sensitive function not checked | Vulnerable path
manipulation

Topics
“Interpret Polyspace Bug Finder Results”

3 Defects

3-388

https://cwe.mitre.org/data/definitions/67.html

“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

 Inappropriate I/O operation on device files

3-389

Conversion or deletion of incomplete class
pointer
You delete or cast to a pointer to an incomplete class

Description
Conversion or deletion of incomplete class pointer occurs when you delete or cast to
a pointer to an incomplete class. An incomplete class is one whose definition is not visible
at the point where the class is used.

For instance, the definition of class Body is not visible when the delete operator is
called on a pointer to Body:

class Handle {
 class Body *impl;
public:
 ~Handle() { delete impl; }
 // ...
};

Risk
When you delete a pointer to an incomplete class, it is not possible to call any nontrivial
destructor that the class might have. If the destructor performs cleanup activities such as
memory deallocation, these activities do not happen.

A similar problem happens, for instance, when you downcast to a pointer to an incomplete
class (downcasting is casting from a pointer to a base class to a pointer to a derived
class). At the point of downcasting, the relationship between the base and derived class is
not known. In particular, if the derived class inherits from multiple classes, at the point of
downcasting, this information is not available. The downcasting cannot make the
necessary adjustments for multiple inheritance and the resulting pointer cannot be
dereferenced.

A similar statement can be made for upcasting (casting from a pointer to derived class to
a pointer to a base class).

3 Defects

3-390

Fix
When you delete or downcast to a pointer to a class, make sure that the class definition is
visible.

Alternatively, you can perform one of these actions:

• Instead of a regular pointer, use the std::shared_ptr type to point to the
incomplete class.

• When downcasting, make sure that the result is valid. Write error-handling code for
invalid results.

Examples
Deletion of Pointer to Incomplete Class
class Handle {
 class Body *impl;
public:
 ~Handle() { delete impl; }
 // ...
};

In this example, the definition of class Body is not visible when the pointer to Body is
deleted.

Correction — Define Class Before Deletion

One possible correction is to make sure that the class definition is visible when a pointer
to the class is deleted.

class Handle {
 class Body *impl;
public:
 ~Handle();
 // ...
};

// Elsewhere
class Body { /* ... */ };

 Conversion or deletion of incomplete class pointer

3-391

Handle::~Handle() {
 delete impl;
}

Correction — Use std::shared_ptr

Another possible correction is to use the std::shared_ptr type instead of a regular
pointer.

#include <memory>

class Handle {
 std::shared_ptr<class Body> impl;
 public:
 Handle();
 ~Handle() {}
 // ...
};

Downcasting to Pointer to Incomplete Class
File1.h:

class Base {
protected:
 double var;
public:
 Base() : var(1.0) {}
 virtual void do_something();
 virtual ~Base();
};

File2.h:

void funcprint(class Derived *);
class Base *get_derived();

File1.cpp:

#include "File1.h"
#include "File2.h"

void getandprint() {
 Base *v = get_derived();

3 Defects

3-392

 funcprint(reinterpret_cast<class Derived *>(v));
}

File2.cpp:

#include "File2.h"
#include "File1.h"
#include <iostream>

class Base2 {
protected:
 short var2;
public:
 Base2() : var2(12) {}
};

class Derived : public Base2, public Base {
 float var_derived;
public:
 Derived() : Base2(), Base(), var_derived(1.2f) {}
 void do_something()
 {
 std::cout << "var_derived: "
 << var_derived << ", var : " << var
 << ", var2: " << var2 << std::endl;
 }
 };

void funcprint(Derived *d) {
 d->do_something();
}

Base *get_derived() {
 return new Derived;
}

In this example, the definition of class Derived is not visible in File1.cpp when a
Base* pointer to downcast to a Derived* pointer.

In File2.cpp, class Derived derives from two classes, Base and Base2. This
information about multiple inheritance is not available at the point of downcasting in
File1.cpp. The result of downcasting is passed to the function funcprint and
dereferenced in the body of funcprint. Because the downcasting was done with
incomplete information, the dereference can be invalid.

 Conversion or deletion of incomplete class pointer

3-393

Correction — Define Class Before Downcasting

One possible correction is to define the class Derived before downcasting a Base*
pointer to a Derived* pointer.

In this corrected example, the downcasting is done in File2.cpp in the body of
funcprint at a point where the definition of class Derived is visible. The downcasting
is not done in File1.cpp where the definition of Derived is not visible. The changes
from the previous incorrect example are highlighted.

File1.h:

class Base {
protected:
 double var;
public:
 Base() : var(1.0) {}
 virtual void do_something();
 virtual ~Base();
};

File2.h:

void funcprint(class Base *);
class Base *get_derived();

File1.cpp:

#include "File1.h"
#include "File2.h"

void getandprint() {
 Base *v = get_derived();
 funcprint(v);
}

File2.cpp:

#include "File2_corr.h"
#include "File1_corr.h"
#include <iostream>

class Base2 {
protected:
 short var2;

3 Defects

3-394

public:
 Base2() : var2(12) {}
};

class Derived : public Base2, public Base {
 float var_derived;

public:
 Derived() : Base2(), Base(), var_derived(1.2f) {}
 void do_something()
 {
 std::cout << "var_derived: "
 << var_derived << ", var : " << var
 << ", var2: " << var2 << std::endl;
 }
};

void funcprint(Base *d) {
 Derived *temp = dynamic_cast<Derived*>(d);
 if(temp) {
 d->do_something();
 }
 else {
 //Handle error
 }
}

Base *get_derived() {
 return new Derived;
}

Result Information
Group: Object Oriented
Language: C++
Default: On
Command-Line Syntax: INCOMPLETE_CLASS_PTR
Impact: Medium

 Conversion or deletion of incomplete class pointer

3-395

See Also
Delete of void pointer | Find defects (-checkers) | MISRA C++:2008 Rule
5-2-4 | MISRA C++:2008 Rule 5-2-7 | MISRA C++:2008 Rule 5-2-8

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

3 Defects

3-396

Use of indeterminate string
Use of buffer from fgets-family function

Description
Use of indeterminate string occurs when you do not check the validity of the buffer
returned from fgets-family functions. The checker raises a defect when such a buffer is
used as:

• An argument in standard functions that print or manipulate strings or wide strings.
• A return value.
• An argument in external functions with parameter type const char * or const

wchar_t *.

Risk
If an fgets-family function fails, the content of its output buffer is indeterminate. Use of
such a buffer has undefined behavior and can result in a program that stops working or
other security vulnerabilities.

Fix
Reset the output buffer of an fgets-family function to a known string value when the
function fails.

Examples

Output of fgets() Passed to External Function
#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

 Use of indeterminate string

3-397

#define SIZE20 20

extern void display_text(const char *txt);

void func(void) {
 char buf[SIZE20];

 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* 'buf' may contain an indeterminate string. */
 ;
 }
 /* 'buf passed to external function */
 display_text(buf);
}

In this example, the output buf is passed to the external function display_text(), but
its value is not reset if fgets() fails.

Correction — Reset fgets() Output on Failure

If fgets() fails, reset buf to a known value before you pass it to an external function.

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func1(void) {
 char buf[SIZE20];
 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* value of 'buf' reset after fgets() failure. */
 buf[0] = '\0';
 }
 /* 'buf' passed to external function */

3 Defects

3-398

 display_text(buf);
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: INDETERMINATE_STRING
Impact: Medium

See Also
Find defects (-checkers) | Invalid use of standard library string
routine | Returned value of a sensitive function not checked | Use of
dangerous standard function

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

 Use of indeterminate string

3-399

Inline constraint not respected
Modifiable static variable is modified in nonstatic inline function

Description
Inline constraint not respected occurs when you refer to a file scope modifiable static
variable or define a local modifiable static variable in a nonstatic inlined function. The
checker considers a variable as modifiable if it is not const-qualified.

For instance, var is a modifiable static variable defined in an inline function func.
g_step is a file scope modifiable static variable referred to in the same inlined function.

static int g_step;
inline void func (void) {
 static int var = 0;
 var += g_step;
}

Risk
When you modify a static variable in multiple function calls, you expect to modify the
same variable in each call. For instance, each time you call func, the same instance of
var1 is incremented but a separate instance of var2 is incremented.

void func(void) {
 static var1 = 0;
 var2 = 0;
 var1++;
 var2++;
}

If a function has an inlined and non-inlined definition (in separate files), when you call the
function, the C standard allows compilers to use either the inlined or the non-inlined form
(see ISO/IEC 9899:2011, sec. 6.7.4). If your compiler uses an inlined definition in one call
and the non-inlined definition in another, you are no longer modifying the same variable
in both calls. This behavior defies the expectations from a static variable.

3 Defects

3-400

Fix
Use one of these fixes:

• If you do not intend to modify the variable, declare it as const.

If you do not modify the variable, there is no question of unexpected modification.
• Make the variable non-static. Remove the static qualifier from the declaration.

If the variable is defined in the function, it becomes a regular local variable. If defined
at file scope, it becomes an extern variable. Make sure that this change in behavior is
what you intend.

• Make the function static. Add a static qualifier to the function definition.

If you make the function static, the file with the inlined definition always uses the
inlined definition when the function is called. Other files use another definition of the
function. The question of which function definition gets used is not left to the compiler.

Examples

Static Variable Use in Inlined and External Definition
/* file1. c : contains inline definition of get_random()*/

inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;

 Inline constraint not respected

3-401

 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

In this example, get_random() has an inline definition in file1.c and an external
definition in file2.c. When get_random is called in file1.c, compilers are free to
choose whether to use the inline or the external definition.

Depending on the definition used, you might or might not modify the version of m_z and
m_w in the inlined version of get_random(). This behavior contradicts the usual
expectations from a static variable. When you call get_random(), you expect to always
modify the same m_z and m_w.

Correction — Make Inlined Function Static

One possible correction is to make the inlined get_random() static. Irrespective of your
compiler, calls to get_random() in file1.c then use the inlined definition. Calls to
get_random() in other files use the external definition. This fix removes the ambiguity
about which definition is used and whether the static variables in that definition are
modified.

/* file1. c : contains inline definition of get_random()*/

static inline unsigned int get_random(void)
{

3 Defects

3-402

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: INLINE_CONSTRAINT_NOT_RESPECTED
Impact: Medium

 Inline constraint not respected

3-403

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

3 Defects

3-404

Integer constant overflow
Constant value falls outside range of integer data type

Description
Integer constant overflow occurs when you assign a compile-time constant to a signed
integer variable whose data type cannot accommodate the value. An n-bit signed integer
holds values in the range [-2n-1, 2n-1-1].

For instance, c is an 8-bit signed char variable that cannot hold the value 255.

signed char c = 255;

To determine the sizes of fundamental types, Bug Finder uses your specification for
Target processor type (-target).

Risk
The default behavior for constant overflows can vary between compilers and platforms.
Retaining constant overflows can reduce the portability of your code.

Even if your compilers wraps around overflowing constants with a warning, the wrap-
around behavior can be unintended and cause unexpected results.

Fix
Check if the constant value is what you intended. If the value is correct, use a different,
possibly wider, data type for the variable.

Examples

Overflowing Constant from Macro Expansion
#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

 Integer constant overflow

3-405

void main() {
 char c1 = MAX_UNSIGNED_CHAR;
 char c2 = MAX_SIGNED_CHAR+1;
}

In this example, the defect appears on the macros because at least one use of the macro
causes an overflow. To reproduce these defects, use a Target processor type (-
target) where char is signed by default.

Correction — Use Different Data Type

One possible correction is to use a different data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {
 unsigned char c1 = MAX_UNSIGNED_CHAR;
 unsigned char c2 = MAX_SIGNED_CHAR+1;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INT_CONSTANT_OVFL
Impact: Medium
CWE ID: 128, 189, 190, 191

See Also
Find defects (-checkers) | Integer conversion overflow | Integer
overflow | Sign change integer conversion overflow | Unsigned integer
constant overflow | Unsigned integer conversion overflow | Unsigned
integer overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

3 Defects

3-406

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html

Introduced in R2018b

 Integer constant overflow

3-407

Integer conversion overflow
Overflow when converting between integer types

Description
Integer conversion overflow occurs when converting an integer to a smaller integer
type. If the variable does not have enough bytes to represent the original value, the
conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk
Integer conversion overflows result in undefined behavior.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
overflowing computation acquire their current values. You can implement the fix on any
event in the sequence. If the result details do not show the event history, you can trace
back using right-click options in the source code and see previous related events. See also
“Interpret Polyspace Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

In general, avoid conversions to smaller integer types.

See examples of fixes below.

3 Defects

3-408

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Converting from int to char
char convert(void) {

 int num = 1000000;

 return (char)num;
}

In the return statement, the integer variable num is converted to a char. However, an 8-
bit or 16-bit character cannot represent 1000000 because it requires at least 20 bits. So
the conversion operation overflows.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the
entire number.

long convert(void) {

 int num = 1000000;

 return (long)num;
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: INT_CONV_OVFL
Impact: High
CWE ID: 128, 189, 190, 191, 192, 197

 Integer conversion overflow

3-409

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/197.html

See Also
Float conversion overflow | Unsigned integer conversion overflow | Sign
change integer conversion overflow | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-410

Integer overflow
Overflow from operation between integers

Description
Integer overflow occurs when an operation on integer variables can result in values that
cannot be represented by the result data type. The data type of a variable determines the
number of bytes allocated for the variable storage and constrains the range of allowed
values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk
Integer overflows on signed integers result in undefined behavior.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
overflowing computation acquire their current values. You can implement the fix on any
event in the sequence. If the result details do not show the event history, you can trace
back using right-click options in the source code and see previous related events. See also
“Interpret Polyspace Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

To avoid overflows in general, try one of these techniques:

• Keep integer variable values restricted to within half the range of signed integers.

 Integer overflow

3-411

• In operations that might overflow, check for conditions that can lead to the overflow
and implement wrap around or saturation behavior depending on how the result of the
operation is used. The result then becomes predictable and can be safely used in
subsequent computations.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Addition of Maximum Integer
#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value
of var is the maximum integer value, so an int cannot represent one plus the maximum
integer value.

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a
larger data type (Note that on a 32-bit machine, int and long has the same size). In this
example, on a 32-bit machine, by returning a long long instead of an int, the overflow
error is fixed.

#include <limits.h>

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;

3 Defects

3-412

 return lvar;
}

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INT_OVFL
Impact: Medium
CWE ID: 128, 189, 190, 191, 192

See Also
Find defects (-checkers) | Float overflow | Unsigned integer overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Integer overflow

3-413

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html

Integer precision exceeded
Operation using integer size instead of precision can cause undefined behavior

Description
Integer precision exceeded occurs when an integer expression uses the integer size in
an operation that exceeds the integer precision. On some architectures, the size of an
integer in memory can include sign and padding bits. On these architectures, the integer
size is larger than the precision which is just the number of bits that represent the value
of the integer.

Risk
Using the size of an integer in an operation on the integer precision can result in integer
overflow, wrap around, or unexpected results. For instance, an unsigned integer can be
stored in memory in 64 bits, but uses only 48 bits to represent its value. A 56 bits left-
shift operation on this integer is undefined behavior.

Assuming that the size of an integer is equal to its precision can also result in program
portability issues between different architectures.

Fix
Do not use the size of an integer instead of its precision. To determine the integer
precision, implement a precision computation routine or use a builtin function such as
__builtin_popcount().

Examples

Using Size of unsigned int for Left Shift Operation
#include <limits.h>

unsigned int func(unsigned int exp)

3 Defects

3-414

{
 if (exp >= sizeof(unsigned int) * CHAR_BIT) {
 /* Handle error */
 }
 return 1U << exp;
}

In this example, the function uses a left shift operation to return the value of 2 raised to
the power of exp. The operation shifts the bits of 1U by exp positions to the left. The if
statement ensures that the operation does not shift the bits by a number of positions exp
greater than the size of an unsigned int. However, if unsigned int contains padding
bits, the value returned by sizeof() is larger than the precision of unsigned int. As a
result, some values of exp might be too large, and the shift operation might be undefined
behavior.

Correction — Implement Function to Compute Precision of unsigned int

One possible correction is to implement a function popcount() that computes the
precision of unsigned int by counting the number of set bits.

#include <stddef.h>
#include <stdint.h>
#include <limits.h>

size_t popcount(uintmax_t);
#define PRECISION(umax_value) popcount(umax_value)

unsigned int func(unsigned int exp)
{
 if (exp >= PRECISION(UINT_MAX)) {
 /* Handle error */
 }
 return 1 << exp;
}

size_t popcount(uintmax_t num)
{
 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {

 Integer precision exceeded

3-415

 precision++;
 }
 num >>= 1;
 }
 return precision;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INT_PRECISION_EXCEEDED
Impact: Low
CWE ID: 190

See Also
Bitwise operation on negative value | Find defects (-checkers) |
Integer conversion overflow | Integer overflow | MISRA C:2012 Rule 10.1
| MISRA C:2012 Rule 10.2 | Possible invalid operation on boolean
operand | Shift of a negative value | Shift operation overflow | Unsigned
integer conversion overflow | Unsigned integer overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

3 Defects

3-416

https://cwe.mitre.org/data/definitions/190.html

Invalid use of standard library integer
routine
Wrong arguments to standard library function

Description
Invalid use of standard library integer routine occurs when you use invalid
arguments with an integer function from the standard library. This defect picks up:

• Character Conversion

toupper, tolower
• Character Checks

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit

• Integer Division

div, ldiv
• Absolute Values

abs, labs

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 Invalid use of standard library integer routine

3-417

Examples

Absolute Value of Large Negative
#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN;
 return abs(neg);
}

The input value to abs is INT_MIN. The absolute value of INT_MIN is INT_MAX+1. This
number cannot be represented by the type int.

Correction — Change Input Argument

One possible correction is to change the input value to fit returned data type. In this
example, change the input value to INT_MIN+1.

#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN+1;
 return abs(neg);
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: INT_STD_LIB
Impact: High
CWE ID: 227, 369, 682, 872

3 Defects

3-418

https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/872.html

See Also
Find defects (-checkers) | Invalid use of standard library floating
point routine | Invalid use of standard library memory routine |
Invalid use of standard library routine | Invalid use of standard
library string routine

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Invalid use of standard library integer routine

3-419

Precision loss in integer to float conversion
Least significant bits of integer lost during conversion to floating-point type

Description
Precision loss from integer to float conversion occurs when you cast an integer value
to a floating-point type that cannot represent the original integer value.

For instance, the long int value 1234567890L is too large for a variable of type
float .

Risk
If the floating-point type cannot represent the integer value, the behavior is undefined
(see C11 standard, 6.3.1.4, paragraph 2). For instance, least significant bits of the
variable value can be dropped leading to unexpected results.

Fix
Convert to a floating-point type that can represent the integer value.

For instance, if the float data type cannot represent the integer value, use the double
data type instead.

When writing a function that converts an integer to floating point type, before the
conversion, check if the integer value can be represented in the floating-point type. For
instance, DBL_MANT_DIG * log2(FLT_RADIX) represents the number of base-2 digits
in the type double. Before conversion to the type double, check if this number is
greater than or equal to the precision of the integer that you are converting. To determine
the precision of an integer num, use this code:

 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;
 }

3 Defects

3-420

 num >>= 1;
 }

Some implementations provide a builtin function to determine the precision of an integer.
For instance, GCC provides the function __builtin_popcount.

Examples

Conversion of Large Integer to Floating-Point Type
#include <stdio.h>

int main(void) {
 long int big = 1234567890L;
 float approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

In this example, the long int variable big is converted to float.

Correction — Use a Wider Floating-Point Type

One possible correction is to convert to the double data type instead of float.

#include <stdio.h>

int main(void) {
 long int big = 1234567890L;
 double approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INT_TO_FLOAT_PRECISION_LOSS

 Precision loss in integer to float conversion

3-421

Impact: Low
CWE ID: 189, 681, 704

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

3 Defects

3-422

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/681.html
https://cwe.mitre.org/data/definitions/704.html

Integer division by zero
Dividing integer number by zero

Description
Integer division by zero occurs when the denominator of a division or modulo operation
can be a zero-valued integer.

Risk
A division by zero can result in a program crash.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the denominator
variable acquires a zero value. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

It is a good practice to check for zero values of a denominator before division and handle
the error. Instead of performing the division directly:

res = num/den;

use a library function that handles zero values of the denominator before performing the
division:

res = div(num, den);

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 Integer division by zero

3-423

Examples

Dividing an Integer by Zero
int fraction(int num)
{
 int denom = 0;
 int result = 0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 if (denom != 0)
 result = num/denom;

 return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

int fraction(int num)
{
 int denom = 2;
 int result = 0;

 result = num/denom;

3 Defects

3-424

 return result;
}

Modulo Operation with Zero
int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % i;
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

In this example, Polyspace flags the modulo operation as a division by zero. Because
modulo is inherently a division operation, the divisor (right hand argument) cannot be
zero. The modulo operation uses the for loop index as the divisor. However, the for loop
starts at zero, which cannot be an iterator.

Correction — Check Divisor Before Operation

One possible correction is checking the divisor before the modulo operation. In this
example, see if the index i is zero before the modulo operation.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 if(i != 0)
 {
 arr[i] = input % i;
 }
 else
 {
 arr[i] = input;
 }
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

 Integer division by zero

3-425

Correction — Change Divisor

Another possible correction is changing the divisor to a nonzero integer. In this example,
add one to the index before the % operation to avoid dividing by zero.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % (i+1);
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: INT_ZERO_DIV
Impact: High
CWE ID: 189, 369

See Also
Find defects (-checkers) | Float division by zero

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-426

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/369.html

Environment pointer invalidated by previous
operation
Call to setenv or putenv family function modifies environment pointed to by pointer

Description
Environment pointer invalidated by previous operation occurs when you use the
third argument of main() in a hosted environment to access the environment after an
operation modifies the environment. In a hosted environment, many C implementations
support the nonstandard syntax:

main (int argc, char *argv[], char *envp[])

A call to a setenv or putenv family function modifies the environment pointed to by
*envp.

Risk
When you modify the environment through a call to a setenv or putenv family function,
the environment memory can potentially be reallocated. The hosted environment pointer
is not updated and might point to an incorrect location. A call to this pointer can return
unexpected results or cause an abnormal program termination.

Fix
Do not use the hosted environment pointer. Instead, use global external variable environ
in Linux, _environ or _wenviron in Windows, or their equivalent. When you modify the
environment, these variables are updated.

Examples
Access Environment Through Pointer envp
#include <stdio.h>
#include <stdlib.h>

 Environment pointer invalidated by previous operation

3-427

extern int check_arguments(int argc, char **argv, char **envp);
extern void use_envp(char **envp);

/* envp is from main function */
int func(char **envp)
{
 /* Call to setenv may cause environment
 *memory to be reallocated
 */
 if (setenv(("MY_NEW_VAR"),("new_value"),1) != 0)
 {
 /* Handle error */
 return -1;
 }
 /* envp not updated after call to setenv, and may
 *point to incorrect location.
 **/
 if (envp != ((void *)0)) {
 use_envp(envp);
/* No defect on second access to
*envp because defect already raised */
 }
 return 0;
}

void main(int argc, char **argv, char **envp)
{
 if (check_arguments(argc, argv, envp))
 {
 (void)func(envp);
 }
}

In this example, envp is accessed inside func() after a call to setenv that can
reallocate the environment memory. envp can point to an incorrect location because it is
not updated after setenv modifies the environment. No defect is raised when
use_envp() is called because the defect is already raised on the previous line of code.

Correction — Use Global External Variable environ

One possible correction is to access the environment by using a variable that is always
updated after a call to setenv. For instance, in the following code, the pointer envp is

3 Defects

3-428

still available from main(), but the environment is accessed in func() through the
global external variable environ.

#include <stdio.h>
#include <stdlib.h>
extern char **environ;

extern int check_arguments(int argc, char **argv, char **envp);
extern void use_envp(char **envp);

int func(void)
{
 if (setenv(("MY_NEW_VAR"), ("new_value"),1) != 0) {
 /* Handle error */
 return -1;
 }
 /* Use global external variable environ
 *which is always updated after a call to setenv */

 if (environ != NULL) {
 use_envp(environ);
 }
 return 0;
}

void main(int argc, char **argv, char **envp)
{
 if (check_arguments(argc, argv, envp))
 {
 (void)func();
 }
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: INVALID_ENV_POINTER
Impact: Medium
CWE ID: 825

 Environment pointer invalidated by previous operation

3-429

https://cwe.mitre.org/data/definitions/825.html

See Also
Find defects (-checkers) | Misuse of return value from nonreentrant
standard function | Modification of internal buffer returned from
nonreentrant standard function

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

3 Defects

3-430

Invalid file position
fsetpos() is invoked with a file position argument not obtained from fgetpos()

Description
Invalid file position occurs when the file position argument of fsetpos() uses a value
that is not obtained from fgetpos().

Risk
The function fgetpos(FILE *stream, fpos_t *pos) gets the current file position of
the stream. When you use any other value as the file position argument of fsetpos(FILE
*stream, const fpos_t *pos), you might access an unintended location in the
stream.

Fix
Use the value returned from a successful call to fgetpos() as the file position argument
of fsetpos().

Examples

memset() Sets File Position Argument
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */

 Invalid file position

3-431

 }
 /* Store initial position in variable 'offset' */
 (void)memset(&offset, 0, sizeof(offset));

 /* Read data from file */

 /* Return to the initial position. offset was not
 returned from a call to fgetpos() */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

In this example, fsetpos() uses offset as its file position argument. However, the
value of offset is set by memset(). The preceding code might access the wrong location
in the stream.

Correction — Use a File Position Returned From fgetpos()

Call fgetpos(), and if it returns successfully, use the position argument in your call to
fsetpos().

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */
 }
 /* Store initial position in variable 'offset'
 using fgetpos() */
 if (fgetpos(file, &offset) != 0)
 {
 /* Handle error */
 }

3 Defects

3-432

 /* Read data from file */

 /* Back to the initial position */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: INVALID_FILE_POS
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

 Invalid file position

3-433

Invalid assumptions about memory
organization
Address is computed by adding or subtracting from address of a variable

Description
Invalid assumptions about memory organization occurs when you compute the
address of a variable in the stack by adding or subtracting from the address of another
non-array variable.

Risk
When you compute the address of a variable in the stack by adding or subtracting from
the address of another variable, you assume a certain memory organization. If your
assumption is incorrect, accessing the computed address can be invalid.

Fix
Do not perform an access that relies on assumptions about memory organization.

Examples

Reliance on Memory Organization
void func(void) {
 int var1 = 0x00000011, var2;
 *(&var1 + 1) = 0;
}

In this example, the programmer relies on the assumption that &var1 + 1 provides the
address of var2. Therefore, an Invalid assumptions about memory organization
appears on the + operation. In addition, a Pointer access out of bounds error also
appears on the dereference.

3 Defects

3-434

Correction — Do Not Rely on Memory Organization

One possible correction is not perform direct computation on addresses to access
separately declared variables.

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: INVALID_MEMORY_ASSUMPTION
Impact: Medium
CWE ID: 188

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Invalid assumptions about memory organization

3-435

https://cwe.mitre.org/data/definitions/188.html

Possible invalid operation on boolean
operand
Operation can exceed precision of Boolean operand or result in arbitrary value

Description
Possible invalid operation on boolean operand occurs when you use a Boolean
operand in an arithmetic, relational, or bitwise operation and:

• The Boolean operand has a trap representation. The size of a Boolean type in memory
is at least one addressable unit (size of char). A Boolean type requires only one bit to
represent the value true (1) or false (0). The representation of a Boolean
operand in memory contains padding bits. The memory representation can result in
values that are not true or false, a trap representation.

• The result of the operation can exceed the precision of the Boolean operand.

For example, in this code snippet:

bool_v >> 2

• If the value of bool_v is true (1) or false (0), the bitwise shift exceeds the one-
bit precision of bool_v and always results in 0.

• If bool_v has a trap representation, the result of the operation is an arbitrary value.

Possible invalid operation on boolean operand raises no defect when:

• The operation does not result in a precision overflow. For instance, bitwise & or |
operations with 0x01 or 0x00.

• The Boolean operand cannot have a trap representation. For instance, a constant
expression that results in 0 or 1, or a comparison evaluated to true or false.

Risk
Arithmetic, relational, or bitwise operations on a Boolean operand can exceed the
operand precision and cause unexpected results when used as a Boolean value.
Operations on Boolean operands with trap representations can return arbitrary values.

3 Defects

3-436

Fix
Avoid performing operations on Boolean operands other than these operations:

• Assignment operation (=).
• Equality operations (== or !=).
• Logical operations (&&, ||, or !).

Examples

Possible Trap Representation of Boolean Operand
#include <stdio.h>
#include <stdbool.h>

#define BOOL _Bool

int arr[2] = {1, 2};

int func(BOOL b)
{
 return arr[b];
}

int main(void)
{
 BOOL b;
 char* ptr = (char*)&b;
 *ptr = 64;
 return func(b);
}

In this example, Boolean operand b is used as an array index in func for an array with
two elements. Depending on the compiler and optimization flags you use, the value b
might not be 0 or 1. For instance, in Linux Debian 8, if you use gcc version 4.9 with
optimization flag -O0, the value of b is 64, which causes a buffer overflow.

 Possible invalid operation on boolean operand

3-437

Correction — Use Only Last Significant Bit Value of Boolean Operand

One possible correction is to use a variable b0 of type unsigned int to get only the
value of the last significant bit of the Boolean operand. The value of this bit is in the range
[0..1], even if the Boolean operand has a trap representation.

#include <stdio.h>
#include <stdbool.h>

#define BOOL _Bool

int arr[2] = {1, 2};

int func(BOOL b)
{
 unsigned int b0 = (unsigned int)b;
 b0 &= 0x1;
 return arr[b0];
}

int main(void)
{
 BOOL b;
 char* ptr = (char*)&b;
 *ptr = 64;
 return func(b);
}

Note that a trap representation is often the result of an earlier issue in the code, such as:

• A non-initialized variable of bool type.
• A side effect that modifies any part of a bool type object using a lvalue expression.
• A read of a bool member from a union type with the last stored value of another type.

As such, it is best practice to respect boolean semantics even in C++ code.

<= Operation Uses Boolean Operands
#include <iostream>

template <typename T>
bool less_or_equal(const T& x, const T& y)
{
 std::cout << "INTEGER VERSION" << '\n';
 return x <= y;

3 Defects

3-438

}
bool b1 = true, b2 = false;
int i1 = 2, i2 = 3;

int main()
{
 std::cout << std::boolalpha;
 std::cout << "less_or_equal(" << b1 << ',' << b2 << ") = " << less_or_equal<bool>(b1, b2) << '\n';
 std::cout << "less_or_equal(" << i1 << ',' << i2 << ") = " << less_or_equal<int>(11, 12) << '\n';
 return 0;
}

In this example, function template less_or_equal evaluates whether variable x is less
than or equal to y. When you pass boolean types to this function, the <= operation might
result in an arbitrary value if the memory representation of the operands, including their
padding bits, is neither 1 nor 0.

Correction — Specialize Function Template for Boolean Types

One possible correction is to specialize the function template for boolean types. The
specialized function template uses a logical (||) operation to compare the boolean
operands.
#include <iostream>

template <typename T>
bool less_or_equal(const T& x, const T& y)
{
 std::cout << "INTEGER VERSION" << '\n';
 return x <= y;
}

template<>
bool less_or_equal<bool>(const bool& x, const bool& y)
{
 std::cout << "BOOLEAN VERSION" << '\n';
 return !x || y;
}

bool b1 = true, b2 = false;
int i1 = 2, i2 = 3;

int main()
{
 std::cout << std::boolalpha;
 std::cout << "less_or_equal(" << b1 << ',' << b2 << ") = " << less_or_equal<bool>(b1, b2) << '\n';
 std::cout << "less_or_equal(" << i1 << ',' << i2 << ") = " << less_or_equal<int>(11, 12) << '\n';
 return 0;
}

Result Information
Group: Numerical
Language: C | C++

 Possible invalid operation on boolean operand

3-439

Default: Off
Command-Line Syntax: INVALID_OPERATION_ON_BOOLEAN
Impact: Low
CWE ID: 190

See Also
Bitwise and arithmetic operation on the same data | Bitwise operation
on negative value | Find defects (-checkers) | Integer overflow | Integer
conversion overflow | Integer precision exceeded | MISRA C++:2008 Rule
4-5-2 | MISRA C:2004 Rule 12.6 | MISRA C:2012 Rule 10.1 | MISRA C:2012
Rule 12.2 | Shift of a negative value | Shift operation overflow |
Unsigned integer overflow | Unsigned integer conversion overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

3 Defects

3-440

https://cwe.mitre.org/data/definitions/190.html

Invalid va_list argument
Variable argument list used after invalidation with va_end or not initialized with
va_start or va_copy

Description
Invalid va_list argument occurs when you use a va_list variable as an argument to a
function in the vprintf group but:

• You do not initialize the variable previously using va_start or va_copy.
• You invalidate the variable previously using va_end and do not reinitialize it.

For instance, you call the function vsprintf as vsprintf (buffer,format, args).
However, before the function call, you do not initialize the va_list variable args using
either of the following:

• va_start(args, paramName). paramName is the last named argument of a
variable-argument function. For instance, for the function definition void func(int
n, char c, ...) {}, c is the last named argument.

• va_copy(args, anotherList). anotherList is another valid va_list variable.

Risk
The behavior of an uninitialized va_list argument is undefined. Calling a function with
an uninitialized va_list argument can cause stack overflows.

Fix
Before using a va_list variable as function argument, initialize it with va_start or
va_copy.

Clean up the variable using va_end only after all uses of the variable.

 Invalid va_list argument

3-441

Examples

va_list Variable Used Following Call to va_end
#include <stdarg.h>
#include <stdio.h>

int call_vfprintf(int line, const char *format, ...) {
 va_list ap;
 int r=0;

 va_start(ap, format);
 r = vfprintf(stderr, format, ap);
 va_end(ap);

 r += vfprintf(stderr, format, ap);
 return r;
}

In this example, the va_list variable ap is used in the vfprintf function, after the
va_end macro is called.

Correction — Call va_end After Using va_list Variable

One possible correction is to call va_end only after all uses of the va_list variable.

#include <stdarg.h>
#include <stdio.h>

int call_vfprintf(int line, const char *format, ...) {
 va_list ap;
 int r=0;

 va_start(ap, format);
 r = vfprintf(stderr, format, ap);
 r += vfprintf(stderr, format, ap);
 va_end(ap);

 return r;
}

3 Defects

3-442

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: INVALID_VA_LIST_ARG
Impact: High
CWE ID: 628

See Also
Find defects (-checkers) | Incorrect data type passed to va_arg

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Invalid va_list argument

3-443

https://cwe.mitre.org/data/definitions/628.html

Alternating input and output from a stream
without flush or positioning call
Undefined behavior for input or output stream operations

Description
Alternating input and output from a stream without flush or positioning call
occurs when:

• You do not perform a flush or function positioning call between an output operation
and a following input operation on a file stream in update mode.

• You do not perform a function positioning call between an input operation and a
following output operation on a file stream in update mode.

Risk
Alternating input and output operations on a stream without an intervening flush or
positioning call is undefined behavior.

Fix
Call fflush() or a file positioning function such as fseek() or fsetpos() between
output and input operations on an update stream.

Call a file positioning function between input and output operations on an update stream.

Examples

Read After Write Without Intervening Flush
#include <stdio.h>
#define SIZE20 20

3 Defects

3-444

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Read operation after write without
 intervening flush. */
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

In this example, the file demo.txt is opened for reading and appending. After the call to
fwrite(), a call to fread() without an intervening flush operation is undefined
behavior.

 Alternating input and output from a stream without flush or positioning call

3-445

Correction — Call fflush() Before the Read Operation

After writing data to the file, before calling fread(), perform a flush call.

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Buffer flush after write and before read */
 if (fflush(file) != 0)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;

3 Defects

3-446

 }
}

Result Information
Group:Programming
Language: C | C++
Default: On
Command-Line Syntax: IO_INTERLEAVING
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

 Alternating input and output from a stream without flush or positioning call

3-447

Lambda used as decltype or typeid operand
decltype or typeid is used on lambda expression

Description
Lambda used as decltype or typeid operand occurs when you use typeid or
decltype on a lambda expression.

Risk
According to the C++ Standard, the type of a lambda expression is a unique, unnamed
class type. Because the type is unique, another variable or expression cannot have the
same type. Use of decltype or typeid on a lambda expression indicates that you expect
a second variable or expression to have the same type as the operand lambda expression.
Using the type of a lambda expression in this way can lead to unexpected results.

Both decltype and typeid return the data type of their operands. Typically the
operators are used to:

• Assign a type to another variable. For instance:

decltype(var1) var2;

creates a variable var2 with the same type as var1.
• Compare the types of two variables. For instance:

(typeid(var1) == typeid(var2))

compares the types of var1 and var2.

These uses do not apply to a lambda expression, which has a unique type.

Fix
Avoid using the decltype or typeid operator on lambda expressions.

3 Defects

3-448

Examples

Use of typeid on Lambda Expressions
#include <cstdint>

 void func()
 {
 auto lambdaFirst = []() -> std::int8_t { return 1; };
 auto lambdaSecond = []() -> std::int8_t { return 1; };

 if (typeid(lambdaFirst) == typeid(lambdaSecond))
 {
 // ...
 }
 }

The use of typeid on lambda expressions can lead to unexpected results. The
comparison above is false even though lambdaFirst and lambdaSecond appear to have
the same body.

Correction – Assign Lambda Expression to Function Object Before Using typeid

One possible correction is to assign the lambda expression to a function object and then
use the typeid operator on the function objects for comparison.

#include <cstdint>
#include <functional>

 void func()
 {
 std::function<std::int8_t()> functionFirst = []() { return 1; };
 std::function<std::int8_t()> functionSecond = []() { return 1; };

 if (typeid(functionFirst) == typeid(functionSecond))
 {
 // ...
 }
 }

 Lambda used as decltype or typeid operand

3-449

Result Information
Group: Object Oriented
Language: C++
Default: On
Command-Line Syntax: LAMBDA_TYPE_MISUSE
Impact: High

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019b

3 Defects

3-450

Pointer or reference to stack variable
leaving scope
Pointer to local variable leaves the variable scope

Description
Pointer or reference to stack variable leaving scope occurs when a pointer or
reference to a local variable leaves the scope of the variable. For instance:

• A function returns a pointer to a local variable.
• A function performs the assignment globPtr = &locVar. globPtr is a global

pointer variable and locVar is a local variable.
• A function performs the assignment *paramPtr = &locVar. paramPtr is a function

parameter that is, for instance, an int** pointer and locVar is a local int variable.
• A C++ method performs the assignment memPtr = &locVar. memPtr is a pointer

data member of the class the method belongs to. locVar is a variable local to the
method.

• (C++11 and later) A function returns a lambda expression object that captures local
variables of the function by reference.

The defect also applies to memory allocated using the alloca function. The defect does
not apply to static, local variables.

Risk
Local variables are allocated an address on the stack. Once the scope of a local variable
ends, this address is available for reuse. Using this address to access the local variable
value outside the variable scope can cause unexpected behavior.

If a pointer to a local variable leaves the scope of the variable, Polyspace Bug Finder
highlights the defect. The defect appears even if you do not use the address stored in the
pointer. For maintainable code, it is a good practice to not allow the pointer to leave the
variable scope. Even if you do not use the address in the pointer now, someone else using
your function can use the address, causing undefined behavior.

 Pointer or reference to stack variable leaving scope

3-451

Fix
Do not allow a pointer or reference to a local variable to leave the variable scope.

Examples

Pointer to Local Variable Returned from Function
void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

In this example, func1 returns a pointer to local variable ret.

In main, ptr points to the address of the local variable. When ptr is accessed in func2,
the access is illegal because the scope of ret is limited to func1,

Pointer to Local Variable Escapes Through Lambda Expression
auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [&] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

3 Defects

3-452

In this example, the createAdder function defines a lambda expression adder that
captures the local variable addThis by reference. The scope of addThis is limited to the
createAdder function. When the object returned by createAdder is called, a reference
to the variable addThis is accessed outside its scope. When accessed in this way, the
value of addThis is undefined.

Correction – Capture Local Variables by Copy in Lambda Expression Instead of
Reference

If a function returns a lambda expression object, avoid capturing local variables by
reference in the lambda object. Capture the variables by copy instead.

Variables captured by copy have the same lifetime as the lambda object, but variables
captured by reference often have a smaller lifetime than the lambda object itself. When
the lambda object is used, these variables accessed outside scope have undefined values.

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [=] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: LOCAL_ADDR_ESCAPE
Impact: High
CWE ID: 562, 825

See Also
Find defects (-checkers)

 Pointer or reference to stack variable leaving scope

3-453

https://cwe.mitre.org/data/definitions/562.html
https://cwe.mitre.org/data/definitions/825.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-454

Predefined macro used as an object
You use standard library macros such as assert and errno as objects

Description
Predefined macro used as an object occurs when you use certain identifiers in a way
that requires an underlying object to be present. These identifiers are defined as macros.
The C Standard does not allow you to redefine them as objects. You use the identifiers in
such a way that macro expansion of the identifiers cannot occur.

For instance, you refer to an external variable errno:

extern int errno;

However, errno does not occur as a variable but a macro.

The defect applies to these macros: assert, errno, math_errhandling, setjmp,
va_arg, va_copy, va_end, and va_start. The checker looks for the defect only in
source files (not header files).

Risk
The C11 Standard (Sec. 7.1.4) allows you to redefine most macros as objects. To access
the object and not the macro in a source file, you do one of these:

• Redeclare the identifier as an external variable or function.
• For function-like macros, enclose the identifier name in parentheses.

If you try to use these strategies for macros that cannot be redefined as objects, an error
occurs.

Fix
Do not use the identifiers in such a way that a macro expansion is suppressed.

• Do not redeclare the identifiers as external variables or functions.

 Predefined macro used as an object

3-455

• For function-like macros, do not enclose the macro name in parentheses.

Examples

Use of assert as Function
#include<assert.h>
typedef void (*err_handler_func)(int);

extern void demo_handle_err(err_handler_func, int);

void func(int err_code) {
 extern void assert(int);
 demo_handle_err(&(assert), err_code);
}

In this example, the assert macro is redefined as an external function. When passed as
an argument to demo_handle_err, the identifier assert is enclosed in parentheses,
which suppresses use of the assert macro.

Correction — Use assert as Macro

One possible correction is to directly use the assert macro from assert.h. A different
implementation of the function demo_handle_err directly uses the assert macro
instead of taking the address of an assert function.

#include<assert.h>
void demo_handle_err(int err_code) {
 assert(err_code == 0);
}

void func(int err_code) {
 demo_handle_err(err_code);
}

Result Information
Group: Programming
Language: C | C++
Default: On

3 Defects

3-456

Command-Line Syntax: MACRO_USED_AS_OBJECT
Impact: Low

See Also
Find defects (-checkers) | MISRA C:2012 Rule 21.2

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Predefined macro used as an object

3-457

Memory leak
Memory allocated dynamically not freed

Description
Memory leak occurs when you do not free a block of memory allocated through malloc,
calloc, realloc, or new. If the memory is allocated in a function, the defect does not
occur if:

• Within the function, you free the memory using free or delete.
• The function returns the pointer assigned by malloc, calloc, realloc, or new.
• The function stores the pointer in a global variable or in a parameter.

Risk
Dynamic memory allocation functions such as malloc allocate memory on the heap. If
you do not release the memory after use, you reduce the amount of memory available for
another allocation. On embedded systems with limited memory, you might end up
exhausting available heap memory even during program execution.

Fix
Determine the scope where the dynamically allocated memory is accessed. Free the
memory block at the end of this scope.

To free a block of memory, use the free function on the pointer that was used during
memory allocation. For instance:

ptr = (int*)malloc(sizeof(int));
...
free(ptr);

It is a good practice to allocate and free memory in the same module at the same level of
abstraction. For instance, in this example, func allocates and frees memory at the same
level but func2 does not.

3 Defects

3-458

void func() {
 ptr = (int*)malloc(sizeof(int));
 {
 ...
 }
 free(ptr);
}

void func2() {
 {
 ptr = (int*)malloc(sizeof(int));
 ...
 }
 free(ptr);
}

See CERT-C Rule MEM00-C.

Examples

Dynamic Memory Not Released Before End of Function
#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }

 *pi = 42;
 /* Defect: pi is not freed */
}

In this example, pi is dynamically allocated by malloc. The function assign_memory
does not free the memory, nor does it return pi.

 Memory leak

3-459

https://wiki.sei.cmu.edu/confluence/x/FtYxBQ

Correction — Free Memory

One possible correction is to free the memory referenced by pi using the free function.
The free function must be called before the function assign_memory terminates

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }
 *pi = 42;

 /* Fix: Free the pointer pi*/
 free(pi);
}

Correction — Return Pointer from Dynamic Allocation

Another possible correction is to return the pointer pi. Returning pi allows the function
calling assign_memory to free the memory block using pi.

#include<stdlib.h>
#include<stdio.h>

int* assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return(pi);
 }
 *pi = 42;

 /* Fix: Return the pointer pi*/
 return(pi);
}

3 Defects

3-460

Memory Leak with New/Delete

#define NULL '\0'

void initialize_arr1(void)
{
 int *p_scalar = new int(5);
}

void initialize_arr2(void)
{
 int *p_array = new int[5];
}

In this example, the functions create two variables, p_scalar and p_array, using the
new keyword. However, the functions end without cleaning up the memory for these
pointers. Because the functions used new to create these variables, you must clean up
their memory by calling delete at the end of each function.

Correction — Add Delete

To correct this error, add a delete statement for every new initialization. If you used
brackets [] to instantiate a variable, you must call delete with brackets as well.

#define NULL '\0'

void initialize_arrs(void)
{
 int *p_scalar = new int(5);
 int *p_array = new int[5];

 delete p_scalar;
 p_scalar = NULL;

 delete[] p_array;
 p_scalar = NULL;
}

Check Information
Group: Dynamic memory

 Memory leak

3-461

Language: C | C++
Default: Off
Command-Line Syntax: MEM_LEAK
Impact: Medium
CWE ID: 401, 404

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-462

https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/404.html

Invalid use of standard library memory
routine
Standard library memory function called with invalid arguments

Description
Invalid use of standard library memory routine occurs when a memory library
function is called with invalid arguments. For instance, the memcpy function copies to an
array that cannot accommodate the number of bytes copied.

Risk
Use of a memory library function with invalid arguments can result in issues such as
buffer overflow.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples
Invalid Use of Standard Library Memory Routine Error
#include <string.h>
#include <stdio.h>

 Invalid use of standard library memory routine

3-463

char* Copy_First_Six_Letters(void)
 {
 char str1[10],str2[5];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

 return str2;
 }

The size of string str2 is 5, but six characters of string str1 are copied into str2 using
the memcpy function.

Correction — Call Function with Valid Arguments

One possible correction is to adjust the size of str2 so that it accommodates the
characters copied with the memcpy function.

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 /* Fix: Declare str2 with size 6 */
 char str1[10],str2[6];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 return str2;
 }

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: MEM_STD_LIB

3 Defects

3-464

Impact: High
CWE ID: 120, 227, 690

See Also
Find defects (-checkers) | Invalid use of standard library string
routine

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Invalid use of standard library memory routine

3-465

https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/690.html

Memory comparison of float-point values
Object representation of floating-point values can be different (same) for equal (not equal)
floating-point values

Description
Memory comparison of float-point values occurs when you compare the object
representation of floating-point values or the object representation of structures
containing floating-point members. When you use the functions memcmp, bcmp, or
wmemcmp to perform the bit pattern comparison, the defect is raised.

Risk
The object representation of floating-point values uses specific bit patterns to encode
those values. Floating-point values that are equal, for instance -0.0 and 0.0 in the IEC
60559 standard, can have different bit patterns in their object representation. Similarly,
floating-point values that are not equal can have the same bit pattern in their object
representation.

Fix
When you compare structures containing floating-point members, compare the structure
members individually.

To compare two floating-point values, use the == or != operators. If you follow a standard
that discourages the use of these operators, such as MISRA, ensure that the difference
between the floating-point values is within an acceptable range.

Examples
Using memcmp to Compare Structures with Floating-Point
Members
#include <string.h>

3 Defects

3-466

typedef struct {
 int i;
 float f;
} myStruct;

extern void initialize_Struct(myStruct *);

int func_cmp(myStruct *s1, myStruct *s2) {
/* Comparison between structures containing
* floating-point members */
 return memcmp
 ((const void *)s1, (const void *)s2, sizeof(myStruct));
}

void func(void) {
 myStruct s1, s2;
 initialize_Struct(&s1);
 initialize_Struct(&s2);
 (void)func_cmp(&s1, &s2);
}

In this example, func_cmp() calls memcmp() to compare the object representations of
structures s1 and s2. The comparison might be inaccurate because the structures
contain floating-point members.

Correction — Compare Structure Members Individually

One possible correction is to compare the structure members individually and to ensure
that the difference between the floating-point values is within an acceptable range
defined by ESP.

 #include <string.h>

typedef struct {
 int i;
 float f;
} myStruct;

extern void initialize_Struct(myStruct *);

#define ESP 0.00001

int func_cmp(myStruct *s1, myStruct *s2) {

 Memory comparison of float-point values

3-467

/*Structure members are compared individually */
 return ((s1->i == s2->i) &&
 (fabsf(s1->f - s2->f) <= ESP));
}

void func(void) {
 myStruct s1, s2;
 initialize_Struct(&s1);
 initialize_Struct(&s2);
 (void)func_cmp(&s1, &s2);
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MEMCMP_FLOAT
Impact: Low

See Also
Find defects (-checkers) | Floating point comparison with equality
operators | Memory comparison of padding data | Memory comparison of
strings

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

3 Defects

3-468

Memory comparison of padding data
memcmp compares data stored in structure padding

Description
Memory comparison of padding data occurs when you use the memcmp function to
compare two structures as a whole. In the process, you compare meaningless data stored
in the structure padding.

For instance:

struct structType {
 char member1;
 int member2;
 .
 .
};

structType var1;
structType var2;
.
.
if(memcmp(&var1,&var2,sizeof(var1)))
{...}

Risk
If members of a structure have different data types, your compiler introduces additional
padding for data alignment in memory. For an example of padding, see Higher
Estimate of Local Variable Size.

The content of these extra padding bytes is meaningless. The C Standard allows the
content of these bytes to be indeterminate, giving different compilers latitude to
implement their own padding. If you perform a byte-by-byte comparison of structures
with memcmp, you compare even the meaningless data stored in the padding. You might
reach the false conclusion that two data structures are not equal, even if their
corresponding members have the same value.

 Memory comparison of padding data

3-469

Fix
Instead of comparing two structures in one attempt, compare the structures member by
member.

For efficient code, write a function that does the comparison member by member. Use this
function for comparing two structures.

You can use memcmp for byte-by-byte comparison of structures only if you know that the
structures do not contain padding. Typically, to prevent padding, you use specific
attributes or pragmas such as #pragma pack. However, these attributes or pragmas are
not supported by all compilers and make your code implementation-dependent. If your
structures contain bit-fields, using these attributes or pragmas cannot prevent padding.

Examples

Structures Compared with memcmp
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{

 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {

3 Defects

3-470

 fatal_error();
 }

 if (0 == memcmp(left, right, sizeof(S_Padding)))
 {
 return 1;
 }
 else
 return 0;
}

In this example, memcmp compares byte-by-byte the two structures that left and right
point to. Even if the values stored in the structure members are the same, the comparison
can show an inequality if the meaningless values in the padding bytes are not the same.

Correction — Compare Structures Member by Member

One possible correction is to compare individual structure members.

Note You can compare entire arrays by using memcmp. All members of an array have the
same data type. Padding bytes are not required to store arrays.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{

 Memory comparison of padding data

3-471

 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 return ((left->c == right->c) &&
 (left->i == right->i) &&
 (left->bf1 == right->bf1) &&
 (left->bf2 == right->bf2) &&
 (memcmp(left->buffer, right->buffer, 20) == 0));
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: MEMCMP_PADDING_DATA
Impact: Medium
CWE ID: 188

See Also
Find defects (-checkers) | Memory comparison of strings

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

3 Defects

3-472

https://cwe.mitre.org/data/definitions/188.html

Memory comparison of strings
memcmp compares data stored in strings after the null terminator

Description
Memory comparison of strings occurs when:

• You compare two strings byte-by-byte with the memcmp function.
• The number of bytes compared is such that you compare meaningless data stored

after the null terminator.

For instance:

memcmp(string1, string2, sizeof(string1))

can compare bytes in the string after the null terminator.

Risk
The null terminator signifies the end of a string. Comparison of bytes after the null
terminator is meaningless. You might reach the false conclusion that two strings are not
equal, even if the bytes before the null terminator store the same value.

Fix
Use strcmp for string comparison. The function compares strings only up to the null
terminator.

If you use memcmp for a byte-by-byte comparison of two strings, avoid comparison of bytes
after the null terminator. Determine the number of bytes to compare by using the strlen
function.

 Memory comparison of strings

3-473

Examples

Strings Compared with memcmp
#include <stdio.h>
#include <string.h>

#define SIZE20 20

int func()
{
 char s1[SIZE20] = "abc";
 char s2[SIZE20] = "abc";

 return memcmp(s1, s2, sizeof(s1));
}

In this example, sizeof returns the length of the entire array s1, which is 20. However,
only the first three bytes of the string are relevant.

Even though s1 and s2 hold the same value, the comparison with memcmp can show a
false inequality.

Correction — Use strlen to Determine Number of Bytes to Compare

One possible correction is to determine the number of bytes to compare using the
strlen function. strlen returns the number of bytes before the null terminator (and
excluding the null terminator itself).

#include <stdio.h>
#include <string.h>

#define SIZE20 20

int func()
{
 char s1[SIZE20] = "abc";
 char s2[SIZE20] = "abc";

 return memcmp(s1, s2, strlen(s1));
}

3 Defects

3-474

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: MEMCMP_STRINGS
Impact: Medium
CWE ID: 188

See Also
Find defects (-checkers) | Memory comparison of padding data

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

 Memory comparison of strings

3-475

https://cwe.mitre.org/data/definitions/188.html

Use of memset with size argument zero
Size argument of function in memset family is zero

Description
Use of memset with size argument zero occurs when you call a function in the
memset family with size argument zero. Functions include memset, wmemset, bzero,
SecureZeroMemory, RtlSecureZeroMemory, and so on.

Risk
void *memset (void *ptr, int value, size_t num) fills the first num bytes of
the memory block that ptr points to with the specified value. A zero value of num
renders the call to memset redundant. The memory that ptr points to:

• Remains uninitialized, if not previously initialized.
• Is not cleared and can contain sensitive data, if previously initialized.

Fix
Determine if the zero size argument occurs because of a previous error in your code. Fix
the error.

Examples

Zero Size Argument of memset
#include <stdio.h>
#include <string.h>

void func (unsigned int size)
{
 char str[] = "Buffer to be filled.";
 memset (str,'-',size);

3 Defects

3-476

 puts (str);
}

void calling_func(void) {
 unsigned int buf_size=0;
 func(buf_size);
}

In this example, the argument size of memset is zero.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MEMSET_INVALID_SIZE
Impact: Medium
CWE ID: 665

See Also
Call to memset with unintended value | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Use of memset with size argument zero

3-477

https://cwe.mitre.org/data/definitions/665.html

Call to memset with unintended value
memset or wmemset used with possibly incorrect arguments

Description
Call to memset with unintended value occurs when Polyspace Bug Finder detects a
use of the memset or wmemset function with possibly incorrect arguments.

void *memset (void *ptr, int value, size_t num) fills the first num bytes of
the memory block that ptr points to with the specified value. If the argument value is
incorrect, the memory block is initialized with an unintended value.

The unintended initialization can occur in the following cases.

Issue Risk Possible Fix
The second argument is '0'
instead of 0 or '\0'.

The ASCII value of
character '0' is 48
(decimal), 0x30
(hexadecimal), 069 (octal)
but not 0 (or '\0') .

If you want to initialize with
'0', use one of the ASCII
values. Otherwise, use 0 or
'\0'.

The second and third
arguments are probably
reversed. For instance, the
third argument is a literal
and the second argument is
not a literal.

If the order is reversed, a
memory block of unintended
size is initialized with
incorrect arguments.

Reverse the order of the
arguments.

3 Defects

3-478

Issue Risk Possible Fix
The second argument
cannot be represented in a
byte.

If the second argument
cannot be represented in a
byte, and you expect each
byte of a memory block to
be filled with that argument,
the initialization does not
occur as intended.

Apply a bit mask to the
argument to produce a
wrapped or truncated result
that can be represented in a
byte. When you apply a bit
mask, make sure that it
produces an expected
result.

For instance, replace
memset(a, -13,
sizeof(a)) with
memset(a, (-13) &
0xFF, sizeof(a)).

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Value Cannot Be Represented in a Byte
#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];

 Call to memset with unintended value

3-479

 int c = -2;
 memset(buf, (char)c, sizeof(buf));
}

In this example, (char)c cannot be represented in a byte.

Correction — Apply Cast

One possible correction is to apply a cast so that the result can be represented in a byte.
However, check that the result of the cast is an acceptable initialization value.

#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, (unsigned char)c, sizeof(buf));
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MEMSET_INVALID_VALUE
Impact: Low
CWE ID: 665, 683

See Also
Find defects (-checkers) | Use of memset with size argument zero

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-480

https://cwe.mitre.org/data/definitions/665.html
https://cwe.mitre.org/data/definitions/683.html

Base class assignment operator not called
Copy assignment operator does not call copy assignment operators of base subobjects

Description
Base class assignment operator not called occurs when a derived class copy
assignment operator does not call the copy assignment operator of its base class.

Risk
If this defect occurs, unless you are initializing the base class data members explicitly in
the derived class assignment operator, the operator initializes the members implicitly by
using the default constructor of the base class. Therefore, it is possible that the base class
data members do not get assigned the right values.

If users of your class expect your assignment operator to perform a complete assignment
between two objects, they can face unintended consequences.

Fix
Call the base class copy assignment operator from the derived class copy assignment
operator.

Even if the base class data members are not private, and you explicitly initialize the
base class data members in the derived class copy assignment operator, replace this
explicit initialization with a call to the base class copy assignment operator. Otherwise,
determine why you retain the explicit initialization.

Examples

Base Class Copy Assignment Operator Not Called
class Base0 {
public:

 Base class assignment operator not called

3-481

 Base0();
 virtual ~Base0();
 Base0& operator=(const Base0&);
private:
 int _i;
};

class Base1 {
public:
 Base1();
 virtual ~Base1();
 Base1& operator=(const Base1&);
private:
 int _i;
};

class Derived: public Base0, Base1 {
public:
 Derived();
 ~Derived();
 Derived& operator=(const Derived& d) {
 if (&d == this) return *this;
 Base0::operator=(d);
 _j = d._j;
 return *this;
 }
private:
 int _j;
};

In this example, the class Derived is derived from two classes Base0 and Base1. In the
copy assignment operator of Derived, only the copy assignment operator of Base0 is
called. The copy assignment operator of Base1 is not called.

The defect appears on the copy assignment operator of the derived class. Following are
some tips for navigating in the source code:

• To find the derived class definition, right-click the derived class name and select Go To
Definition.

• To find the base class definition, first navigate to the derived class definition. In the
derived class definition, right-click the base class name and select Go To Definition.

3 Defects

3-482

• To find the definition of the base class copy assignment operator, first navigate to the
base class definition. In the base class definition, right-click the operator name and
select Go To Definition.

Correction — Call Base Class Copy Assignment Operator

If you want your copy assignment operator to perform a complete assignment, one
possible correction is to call the copy assignment operator of class Base1.

class Base0 {
public:
 Base0();
 virtual ~Base0();
 Base0& operator=(const Base0&);
private:
 int _i;
};

class Base1 {
public:
 Base1();
 virtual ~Base1();
 Base1& operator=(const Base1&);
private:
 int _i;
};

class Derived: public Base0, Base1 {
public:
 Derived();
 ~Derived();
 Derived& operator=(const Derived& d) {
 if (&d == this) return *this;
 Base0::operator=(d);
 Base1::operator=(d);
 _j = d._j;
 return *this;
 }
private:
 int _j;
};

 Base class assignment operator not called

3-483

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: MISSING_BASE_ASSIGN_OP_CALL
Impact: High

See Also
Copy constructor not called in initialization list | Find defects (-
checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-484

Missing byte reordering when transferring
data
Different endianness of host and network

Description
Missing byte reordering when transferring data occurs when you do not use a byte
ordering function:

• Before sending data to a network socket.
• After receiving data from a network socket.

Risk
Some system architectures implement little endian byte ordering (least significant byte
first), and other systems implement big endian (most significant byte first). If the
endianness of the sent data does not match the endianness of the receiving system, the
value returned when reading the data is incorrect.

Fix
After receiving data from a socket, use a byte ordering function such as ntohl(). Before
sending data to a socket, use a byte ordering function such as htonl() .

Examples

Data Transferred Without Byte Reordering
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>

 Missing byte reordering when transferring data

3-485

#include <arpa/inet.h>
#include <byteswap.h>
#include <unistd.h>
#include <string.h>

unsigned int func(int sock, int server)
{
 unsigned int num; /* assume int is 32-bits */
 if (server)
 {
 /* Server side */
 num = 0x17;
 /* Endianness of server host may not match endianness of network. */
 if (send(sock, (void *)&num, sizeof(num), 0) < (int)sizeof(num))
 {
 /* Handle error */
 }
 return 0;
 }
 else {
 /* Endianness of client host may not match endianness of network. */
 if (recv (sock, (void *)&num, sizeof(num), 0) < (int) sizeof(num))
 {
 /* Handle error */
 }

 /* Comparison may be inaccurate */
 if (num> 255)
 {
 return 255;
 }
 else
 {
 return num;
 }
 }
}

In this example, variable num is assigned hexadecimal value 0x17 and is sent over a
network to the client from the server. If the server host is little endian and the network is

3 Defects

3-486

big endian, num is transferred as 0x17000000. The client then reads an incorrect value
for num and compares it to a local numeric value.

Correction — Use Byte Ordering Function

Before sending num from the server host, use htonl() to convert from host to network
byte ordering. Similarly, before reading num on the client host, use ntohl() to convert
from network to host byte ordering.

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <byteswap.h>
#include <unistd.h>
#include <string.h>

unsigned int func(int sock, int server)
{
 unsigned int num; /* assume int is 32-bits */
 if (server)
 {
 /* Server side */
 num = 0x17;

 /* Convert to network byte order. */
 num = htonl(num);
 if (send(sock, (void *)&num, sizeof(num), 0) < (int)sizeof(num))
 {
 /* Handle error */
 }
 return 0;
 }
 else {
 if (recv (sock, (void *)&num, sizeof(num), 0) < (int) sizeof(num))
 {
 /* Handle error */
 }

 /* Convert to host byte order. */
 num = ntohl(num);
 if (num > 255)

 Missing byte reordering when transferring data

3-487

 {
 return 255;
 }
 else
 {
 return num;
 }
 }
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_BYTESWAP
Impact: Medium
CWE ID: 188, 198

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

3 Defects

3-488

https://cwe.mitre.org/data/definitions/188.html
https://cwe.mitre.org/data/definitions/198.html

Missing certification authority list
Certificate for authentication cannot be trusted

Description
Missing certification authority list occurs when you use a context to handle TLS/SSL
connections with these functions, but you do not load a certification authority (CA) list
into the context.

• SSL_connect
• SSL_accept
• SSL_do_handshake
• SSL_write
• SSL_read
• BIO_do_connect
• BIO_do_accept
• BIO_do_handshake

A CA is a trusted third party entity that issues digital certificates to other entities. The
certificate contains information about its owner. Server or clients use this information to
authenticate connections to the certificate owner.

The checker raises a defect if:

• For server authentication, the client has no CA list to determine whether the server
certificate is from a trusted source.

• For client authentication, the server has no CA list to determine whether the client
certificate is from a trusted source.

Risk
Without a CA list, you cannot determine if the certificate is issued by a trusted CA. The
entity that presents the certificate for authentication might not be the entity described in
the certificate. Your connection is vulnerable to man-in-the-middle (MITM) attacks.

 Missing certification authority list

3-489

Fix
Load a certification authority list into the context you create to handle TLS/SSL
connections.

Examples

Missing CA List When SSL_connect Initiates TLS/SSL
Handshake
#include <openssl/ssl.h>
#include <arpa/inet.h>

unsigned char* buf;

int OpenConnection(char* hostname, int port)
{
 /* Open the connection */
}

SSL_CTX* InitCTX(void)
{
 SSL_CTX* ctx;
 OpenSSL_add_all_algorithms();
 ctx = SSL_CTX_new(TLSv1_2_client_method());
 if (ctx == NULL) {
 /*handle errors */
 }
 return ctx;
}

void func()
{
 SSL_CTX* ctx;
 int server;
 SSL* ssl;
 char buf[1024];
 int bytes;
 char* hostname, *portnum;
 int ret;

3 Defects

3-490

 SSL_library_init();
 hostname = "localhost";
 portnum = "4433";

 ctx = InitCTX();
 server = OpenConnection(hostname, atoi(portnum));
 ssl = SSL_new(ctx);
 SSL_set_fd(ssl, server);
 ret = SSL_connect(ssl);
 if (SSL_get_error(ssl, ret) <= 0) {
 char* msg = "Hello???";
 printf("Connected with %s encryption\n", SSL_get_cipher(ssl));
 SSL_write(ssl, msg, strlen(msg));
 bytes = SSL_read(ssl, buf, sizeof(buf));
 buf[bytes] = 0;
 printf("Received: \"%s\"\n", buf);
 SSL_free(ssl);
 } else
 ERR_print_errors_fp(stderr);
 close(server);
 SSL_CTX_free(ctx);
}

In this example, a context ctx is initialized to handle TLS/SSL connections. When
SSL_connect initializes the TLS/SSL handshake with the server by using the SSL
structure ssl created from ctx, there is no CA list to check the validity of the server
certificate.

Correction — Before Initiating the TLS/SSL Handshake, Load a CA List into the
Context

One possible correction is to, before you initialize the SSL structure, specify a list of CA
certificates for the context ctx, for instance with SSL_CTX_load_verify_locations.

#include <openssl/ssl.h>
#include <arpa/inet.h>

unsigned char* buf;

int OpenConnection(char* hostname, int port)
{
 /* Open the connection */
}

 Missing certification authority list

3-491

SSL_CTX* InitCTX(void)
{
 SSL_CTX* ctx;
 OpenSSL_add_all_algorithms();
 ctx = SSL_CTX_new(TLSv1_2_client_method());
 if (ctx == NULL) {
 /*handle errors */
 }
 return ctx;
}

void LoadCA(SSL_CTX* ctx, char* CertFile, char* CertPath)
{
 if (SSL_CTX_load_verify_locations(ctx, CertFile, CertPath) <= 0) {
 /* handle errors */
 }
}

void func()
{
 SSL_CTX* ctx;
 int server;
 SSL* ssl;
 char buf[1024];
 int bytes;
 char* hostname, *portnum;
 int ret;

 SSL_library_init();
 hostname = "localhost";
 portnum = "4433";

 ctx = InitCTX();
 LoadCA(ctx, "cacert.pem", "ca/");
 server = OpenConnection(hostname, atoi(portnum));
 ssl = SSL_new(ctx);
 SSL_set_fd(ssl, server);
 ret = SSL_connect(ssl);
 if (SSL_get_error(ssl, ret) <= 0) {
 char* msg = "Hello???";
 printf("Connected with %s encryption\n", SSL_get_cipher(ssl));
 SSL_write(ssl, msg, strlen(msg));
 bytes = SSL_read(ssl, buf, sizeof(buf));
 buf[bytes] = 0;

3 Defects

3-492

 printf("Received: \"%s\"\n", buf);
 SSL_free(ssl);
 } else
 ERR_print_errors_fp(stderr);
 close(server);
 SSL_CTX_free(ctx);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_SSL_NO_CA
Impact: Medium
CWE ID: 310

See Also
Find defects (-checkers) | Missing X.509 certificate

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019b

 Missing certification authority list

3-493

https://cwe.mitre.org/data/definitions/310.html

Copy constructor not called in initialization
list
Copy constructor does not call copy constructors of some members or base classes

Description
Copy constructor not called in initialization list occurs when the copy constructor of
a class does not call the copy constructor of the following in its initialization list:

• One or more of its members.
• Its base classes when applicable.

The defect occurs even when a base class constructor is called instead of the base
class copy constructor.

Risk
The calls to the copy constructors can be done only from the initialization list. If the calls
are missing, it is possible that an object is only partially copied.

• If the copy constructor of a member is not called, it is possible that the member is not
copied.

• If the copy constructor of a base class is not called, it is possible that the base class
members are not copied.

Fix
If you want your copy constructor to perform a complete copy, call the copy constructor of
all members and all base classes in its initialization list.

3 Defects

3-494

Examples
Base Class Copy Constructor Not Called
class Base {
public:
 Base();
 Base(int);
 Base(const Base&);
 virtual ~Base();
private:
 int ib;
};

class Derived:public Base {
public:
 Derived();
 ~Derived();
 Derived(const Derived& d): Base(), i(d.i) { }
private:
 int i;
};

In this example, the copy constructor of class Derived calls the default constructor, but
not the copy constructor of class Base.

The defect appears on the : symbol in the copy constructor definition. Following are some
tips for navigating in the source code:

• To navigate to the class definition, right-click a member that is initialized in the
constructor. Select Go To Definition. In the class definition, you see the class
members, including those members whose copy constructors are not called.

• To navigate to a base class definition, first navigate to the derived class definition. In
the derived class definition, where the derived class inherits from a base class, right-
click the base class name and select Go To Definition.

Correction — Call Base Class Copy Constructor

One possible correction is to call the copy constructor of class Base from the initialization
list of the Derived class copy constructor.

class Base {
public:

 Copy constructor not called in initialization list

3-495

 Base();
 Base(int);
 Base(const Base&);
 virtual ~Base();
private:
 int ib;
};

class Derived:public Base {
public:
 Derived();
 ~Derived();
 Derived(const Derived& d): Base(d), i(d.i) { }
private:
 int i;
};

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: MISSING_COPY_CTOR_CALL
Impact: High

See Also
Base class assignment operator not called | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-496

Errno not reset
errno not reset before calling a function that sets errno

Description
Errno not reset occurs when you do not reset errno before calling a function that sets
errno to indicate error conditions. However, you check errno for those error conditions
after the function call.

Risk
The errno is not clean and can contain values from a previous call. Checking errno for
errors can give the false impression that an error occurred.

errno is set to zero at program startup but subsequently, errno is not reset by a C
standard library function. You must explicitly set errno to zero when required.

Fix
Before calling a function that sets errno to indicate error conditions, reset errno to zero
explicitly.

Examples

errno Not Reset Before Call to strtod
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{

 Errno not reset

3-497

 double f1;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

In this example, errno is not reset to 0 before the first call to strtod. Checking errno
for 0 later can lead to a false positive.

Correction — Reset errno Before Call

One possible correction is to reset errno to 0 before calling strtod.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 errno = 0;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }

3 Defects

3-498

 fatal_error();
 return 0.0;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: MISSING_ERRNO_RESET
Impact: High
CWE ID: 253, 456, 703

See Also
Errno not checked | Find defects (-checkers) | Misuse of errno | Returned
value of a sensitive function not checked

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

 Errno not reset

3-499

https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/703.html

Missing explicit keyword
Constructor missing the explicit specifier

Description
Missing explicit keyword occurs when the declaration of a constructor does not use
the explicit specifier. The explicit specifier prevents implicit conversion from a
variable of another type to the current class type.

The defect applies to:

• One-parameter constructors.
• Constructors where all but one parameters have default values.

For instance, MyClass::MyClass(float f, bool b=true){}.

Risk
If you do not declare a constructor explicit, compilers can perform unexpected and
often unintended type conversions to the class type using the constructor.

The implicit conversion can occur, for instance, when a function accepts a parameter of
the class type, but you call the function with an argument of a different type.

Fix
For better readability of your code and to prevent implicit conversions, in the constructor
declaration, place the explicit keyword before the constructor name.

If you want to convert from a variable of another type, explicitly call the class constructor
and pass the variable as argument.

3 Defects

3-500

Examples
Missing explicit Keyword
class MyClass {
public:
 MyClass(int val);
private:
 int val;
};

void func(MyClass);

void main() {
 MyClass MyClassObject(0);

 func(MyClassObject); // No conversion
 func(MyClass(0)); // Explicit conversion
 func(0); // Implicit conversion
}

In this example, the constructor of MyClass is not declared explicit. Therefore, the
call func(0) can perform an implicit conversion from int to MyClass.

Correction — Use explicit Keyword

One possible correction is to declare the constructor of MyClass as explicit. If an
operation in your code performs an implicit conversion, the compiler generates an error.
Therefore, using the explicit keyword, you detect unintended type conversions in the
compilation stage.

For instance, in function main below, if you add the statement func(0); that performs
implicit conversion, the code does not compile.

class MyClass {
public:
 explicit MyClass(int val);
private:
 int val;
};

void func(MyClass);

 Missing explicit keyword

3-501

void main() {
 MyClass MyClassObject(0);

 func(MyClassObject); // No conversion
 func(MyClass(0)); // Explicit conversion
}

Incorrect Argument Order Preventable Through explicit
Keyword
class Month {
 int val;
public:
 Month(int m): val(m) {}
 ~Month() {}
};

class Day {
 int val;
public:
 Day(int d): val(d) {}
 ~Day() {}
};

class Year {
 int val;
public:
 Year(int y): val(y) {}
 ~Year() {}
};

class Date {
 Month mm;
 Day dd;
 Year yyyy;
public:
 Date(const Month & m, const Day & d, const Year & y):mm(m), dd(d), yyyy(y) {}
};

void main() {
 Date(20,1,2000); //Implicit conversion, wrong argument order undetected
}

3 Defects

3-502

In this example, the constructors for classes Month, Day and Year do not have an
explicit keyword. They allow implicit conversion from int variables to Month, Day and
Year variables.

When you create a Date variable and use an incorrect argument order for the Date
constructor, because of the implicit conversion, your code compiles. You might not detect
that you have switched the month value and the day value.

Correction — Use explicit Keyword

If you use the explicit keyword for the constructors of classes Month, Day and Year,
you cannot call the Date constructor with an incorrect argument order.

• If you call the Date constructor with int variables, your code does not compile
because the explicit keyword prevents implicit conversion from int variables.

• If you call the Date constructor with the arguments explicitly converted to Month,
Day and Year, and have the wrong argument order, your code does not compile
because of the argument type mismatch.

class Month {
 int val;
public:
 explicit Month(int m): val(m) {}
 ~Month() {}
};

class Day {
 int val;
public:
 explicit Day(int d): val(d) {}
 ~Day() {}
};

class Year {
 int val;
public:
 explicit Year(int y): val(y) {}
 ~Year() {}
};

class Date {
 Month mm;
 Day dd;

 Missing explicit keyword

3-503

 Year yyyy;
public:
 Date(const Month & m, const Day & d, const Year & y):mm(m), dd(d), yyyy(y) {}
};

void main() {
 Date(Month(1),Day(20),Year(2000));
 // Date(20,1,2000); - Does not compile
 // Date(Day(20), Month(1), Year(2000)); - Does not compile
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: MISSING_EXPLICIT_KEYWORD
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-504

Missing reset of a freed pointer
Pointer free not followed by a reset statement to clear leftover data

Description
Missing reset of a freed pointer detects pointers that have been freed and not
reassigned another value. After freeing a pointer, the memory data is still accessible. To
clear this data, the pointer must also be set to NULL or another value.

Risk
Not resetting pointers can cause dangling pointers. Dangling pointers can cause:

• Freeing already freed memory.
• Reading from or writing to already freed memory.
• Hackers executing code stored in freed pointers or with vulnerable permissions.

Fix
After freeing a pointer, if it is not immediately assigned to another valid address, set the
pointer to NULL.

Examples

Free Without Reset
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};

void missingfreedptrreset()
{

 Missing reset of a freed pointer

3-505

 static char *str = NULL;

 if (str == NULL)
 str = (char *)malloc(SIZE20);

 if (str != NULL)
 free(str);
}

In this example, the pointer str is freed at the end of the program. The next call to
bug_missingfreedptrrese can fail because str is not NULL and the initialization to
NULL can be invalid.

Correction — Redefine free to Free and Reset

One possible correction is to customize free so that when you free a pointer, it is
automatically reset.

#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};

static void sanitize_free(void **p)
{
 if ((p != NULL) && (*p != NULL))
 {
 free(*p);
 *p = NULL;
 }
}

#define free(X) sanitize_free((void **)&X)

void missingfreedptrreset()
{
 static char *str = NULL;

 if (str == NULL)
 str = (char *)malloc(SIZE20);

 if (str != ((void *)0))
 {

3 Defects

3-506

 free(str);
 }
}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_FREED_PTR_RESET
Impact: Low
CWE ID: 415, 416, 825

See Also
Use of previously freed pointer | Invalid free of pointer | Find
defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

 Missing reset of a freed pointer

3-507

https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/825.html

Missing null in string array
String does not terminate with null character

Description
Missing null in string array occurs when a string does not have enough space to
terminate with a null character '\0'.

This defect applies only for projects in C.

Risk
A buffer overflow can occur if you copy a string to an array without assuming the implicit
null terminator.

Fix
If you initialize a character array with a literal, avoid specifying the array bounds.

char three[] = "THREE";

The compiler automatically allocates space for a null terminator. In the preceding
example, the compiler allocates sufficient space for five characters and a null terminator.

If the issue occurs after initialization, you might have to increase the size of the array by
one to account for the null terminator.

In certain circumstances, you might want to initialize the character array with a sequence
of characters instead of a string. In this situation, add comments to your result or code to
avoid another review. See “Address Polyspace Results Through Bug Fixes or
Justifications”.

3 Defects

3-508

Examples

Array size is too small
void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[5] = "THREE";
}

The character array three has a size of 5 and 5 characters 'T', 'H', 'R', 'E', and 'E'.
There is no room for the null character at the end because three is only five bytes large.

Correction — Increase Array Size

One possible correction is to change the array size to allow for the five characters plus a
null character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[6] = "THREE";
}

Correction — Change Initialization Method

One possible correction is to initialize the string by leaving the array size blank. This
initialization method allocates enough memory for the five characters and a terminating-
null character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[] = "THREE";
}

 Missing null in string array

3-509

Check Information
Group: Programming
Language: C
Default: On for handwritten code, off for generated code
Command-Line Syntax: MISSING_NULL_CHAR
Impact: Low
CWE ID: 170

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-510

https://cwe.mitre.org/data/definitions/170.html

Missing overload of allocation or
deallocation function
Only one function in an allocation-deallocation function pair is overloaded

Description
Missing overload of allocation or deallocation function occurs when you overload
operator new but do not overload the corresponding operator delete, or vice versa.

Risk
You typically overload operator new to perform some bookkeeping in addition to
allocating memory on the free store. Unless you overload the corresponding operator
delete, it is likely that you omitted some corresponding bookkeeping when deallocating
the memory.

The defect can also indicate a coding error. For instance, you overloaded the placement
form of operator new[]:

void *operator new[](std::size_t count, void *ptr);

but the non-placement form of operator delete[]:

void operator delete[](void *ptr);

instead of the placement form:

void operator delete[](void *ptr, void *p);

Fix
When overloading operator new, make sure that you overload the corresponding
operator delete in the same scope, and vice versa.

For instance, in a class, if you overload the placement form of operator new:

class MyClass {
 void* operator new (std::size_t count, void* ptr){

 Missing overload of allocation or deallocation function

3-511

 ...
 }
};

Make sure that you also overload the placement form of operator delete:

class MyClass {
 void operator delete (void* ptr, void* place){
 ...
 }
};

To find the operator delete corresponding to an operator new, see the reference
pages for operator new and operator delete.

Examples
Mismatch Between Overloaded operator new and operator
delete
#include <new>
#include <cstdlib>

int global_store;

void update_bookkeeping(void *allocated_ptr, bool alloc) {
 if(alloc)
 global_store++;
 else
 global_store--;
}

void *operator new(std::size_t size, const std::nothrow_t& tag);
void *operator new(std::size_t size, const std::nothrow_t& tag) {
 void *ptr = (void*)malloc(size);
 if (ptr != nullptr)
 update_bookkeeping(ptr, true);
 return ptr;
}

void operator delete[](void *ptr, const std::nothrow_t& tag);

3 Defects

3-512

https://en.cppreference.com/w/cpp/memory/new/operator_new
https://en.cppreference.com/w/cpp/memory/new/operator_delete

void operator delete[](void* ptr, const std::nothrow_t& tag) {
 update_bookkeeping(ptr, false);
 free(ptr);
}

In this example, the operators operator new and operator delete[] are overloaded
but there are no overloads of the corresponding operator delete and operator
new[] operators.

The overload of operator new calls a function update_bookkeeping to change the
value of a global variable global_store. If the default operator delete is called, this
global variable is unaffected, which might defy developer's expectations.

Correction — Overload the Correct Form of operator delete

If you want to overload operator new, overload the corresponding form of operator
delete in the same scope.

#include <new>
#include <cstdlib>

int global_store;

void update_bookkeeping(void *allocated_ptr, bool alloc) {
 if(alloc)
 global_store++;
 else
 global_store--;
}

void *operator new(std::size_t size, const std::nothrow_t& tag);
void *operator new(std::size_t size, const std::nothrow_t& tag) {
 void *ptr = (void*)malloc(size);
 if (ptr != nullptr)
 update_bookkeeping(ptr, true);
 return ptr;
}

void operator delete(void *ptr, const std::nothrow_t& tag);
void operator delete(void* ptr, const std::nothrow_t& tag) {
 update_bookkeeping(ptr, false);
 free(ptr);
}

 Missing overload of allocation or deallocation function

3-513

Result Information
Group: Good practice
Language: C++
Default: Off
Command-Line Syntax: MISSING_OVERLOAD_NEW_DELETE_PAIR
Impact: Low

See Also
Find defects (-checkers) | Invalid deletion of pointer | Invalid free
of pointer | Memory leak | Mismatched alloc/dealloc functions on
Windows

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019a

3 Defects

3-514

Missing hash algorithm
Context in EVP routine is initialized without a hash algorithm

Description
Missing hash algorithm occurs when you use a message digest context in these EVP
routines, but you initialize the context without specifying a hash algorithm.

• EVP_DigestFinal
• EVP_DigestSignFinal
• EVP_SignFinal
• EVP_VerifyFinal

Risk
Using a message digest context that was initialized without an algorithm to perform a
hashing operation might result in a run-time error. Even if the hashing operation is
successful, the resulting digest is not secure.

Fix
Specify a hash algorithm when you initial a message digest context that you use in an EVP
routine.

Examples

Context Used in EVP Routine After Context Cleanup

#include <openssl/evp.h>

void func(unsigned char* src, int len)

 Missing hash algorithm

3-515

{
 EVP_MD_CTX ctx;
 EVP_MD_CTX_init(&ctx);

 EVP_VerifyInit(&ctx, EVP_sha256());
 EVP_MD_CTX_cleanup(&ctx);
 EVP_VerifyUpdate(&ctx, src, len);
}

In this example, context ctx is initialized with secure hash algorithm SHA-256. But, ctx
is cleaned up before it is used by EVP_VerifyUpdate. The clean up of ctx frees up its
resources and reinitializes it without a hash algorithm. The hashing operation of
EVP_VerifyUpdate might result in a run-time error.

Correction — Clean Up Context Only After You No Longer Need It

One possible correction is to clean up the digest context only after you no longer need it.

#include <openssl/evp.h>

void func(unsigned char* src, int len)
{
 EVP_MD_CTX ctx;
 EVP_MD_CTX_init(&ctx);

 EVP_VerifyInit(&ctx, EVP_sha256());
 EVP_VerifyUpdate(&ctx, src, len);
 EVP_MD_CTX_cleanup(&ctx);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_MD_NO_ALGORITHM
Impact: Medium
CWE ID: 573

3 Defects

3-516

https://cwe.mitre.org/data/definitions/573.html

See Also
Find defects (-checkers) | Nonsecure hash algorithm

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019b

 Missing hash algorithm

3-517

Privilege drop not verified
Attacker can gain unintended elevated access to program

Description
Privilege drop not verified detects calls to functions that relinquish privileges. If you do
not verify that the privileges were dropped before the end of your function, a defect is
raised.

Risk
If privilege relinquishment fails, an attacker can regain elevated privileges and have more
access to your program than intended. This security hole can cause unexpected behavior
in your code if left open.

Fix
Before the end of scope, verify that the privileges that you dropped were actually
dropped.

Examples

Drop Privileges Within a Function
#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()
extern int need_more_privileges;

void missingprivilegedropcheck()
{
 /* Code intended to run with elevated privileges */

3 Defects

3-518

 /* Temporarily drop elevated privileges */
 if (seteuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */

 if (need_more_privileges) {
 /* Restore elevated privileges */
 if (seteuid(0) != 0) {
 /* Handle error */
 fatal_error();
 }
 /* Code intended to run with elevated privileges */
 }

 /* ... */

 /* Permanently drop elevated privileges */
 if (setuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */
}

In this example, privileges are elevated and dropped to run code with the intended
privilege level. When privileges are dropped, the privilege level before exiting the
function body is not verified. A malicious attacker can regain their elevated privileges.

Correction — Verify Privilege Drop

One possible correction is to use setuid to verify that the privileges were dropped.

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()
extern int need_more_privileges;

 Privilege drop not verified

3-519

void missingprivilegedropcheck()
{
 /* Store the privileged ID for later verification */
 uid_t privid = geteuid();

 /* Code intended to run with elevated privileges */

 /* Temporarily drop elevated privileges */
 if (seteuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */

 if (need_more_privileges) {
 /* Restore elevated Privileges */
 if (seteuid(privid) != 0) {
 /* Handle error */
 fatal_error();
 }
 /* Code intended to run with elevated privileges */
 }

 /* ... */

 /* Restore privileges if needed */
 if (geteuid() != privid) {
 if (seteuid(privid) != 0) {
 /* Handle error */
 fatal_error();
 }
 }

 /* Permanently drop privileges */
 if (setuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 if (setuid(0) != -1) {
 /* Privileges can be restored, handle error */
 fatal_error();
 }

3 Defects

3-520

 /* Code intended to run with lower privileges; */
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_PRIVILEGE_DROP_CHECK
Impact: High
CWE ID: 250, 273

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

 Privilege drop not verified

3-521

https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/273.html

Missing return statement
Function does not return value though return type is not void

Description
Missing return statement occurs when a function does not return a value along at least
one execution path. If the return type of the function is void, this error does not occur.

Risk
If a function has a non-void return value in its signature, it is expected to return a value.
The return value of this function can be used in later computations. If the execution of the
function body goes through a path where a return statement is missing, the function
return value is indeterminate. Computations with this return value can lead to
unpredictable results.

Fix
In most cases, you can fix this defect by placing the return statement at the end of the
function body.

Alternatively, you can identify which execution paths through the function body do not
have a return statement and add a return statement on those paths. Often the result
details show a sequence of events that indicate this execution path. You can add a
return statement at an appropriate point in the path. If the result details do not show
the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

3 Defects

3-522

Examples

Missing or invalid return statement error
int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }
 }
/* Defect: No return value if n is not 0*/

If n is equal to 0, the code does not enter the if statement. Therefore, the function
AddSquares does not return a value if n is 0.

Correction — Place Return Statement on Every Execution Path

One possible correction is to return a value in every branch of the if...else statement.

 int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }

 /*Fix: Place a return statement on branches of if-else */
 else

 Missing return statement

3-523

 return 0;
 }

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: MISSING_RETURN
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-524

Self assignment not tested in operator
Copy assignment operator does not test for self-assignment

Description
Self assignment not tested in operator occurs when you do not test if the argument to
the copy assignment operator of an object is the object itself.

Risk
Self-assignment causes unnecessary copying. Though it is unlikely that you assign an
object to itself, because of aliasing, you or users of your class cannot always detect a self-
assignment.

Self-assignment can cause subtle errors if a data member is a pointer and you allocate
memory dynamically to the pointer. In your copy assignment operator, you typically
perform these steps:

1 Deallocate the memory originally associated with the pointer.

delete ptr;
2 Allocate new memory to the pointer. Initialize the new memory location with contents

obtained from the operator argument.

 ptr = new ptrType(*(opArgument.ptr));

If the argument to the operator, opArgument, is the object itself, after your first step, the
pointer data member in the operator argument, opArgument.ptr, is not associated with
a memory location. *opArgument.ptr contains unpredictable values. Therefore, in the
second step, you initialize the new memory location with unpredictable values.

Fix
Test for self-assignment in the copy assignment operator of your class. Only after the test,
perform the assignments in the copy assignment operator.

 Self assignment not tested in operator

3-525

Examples
Missing Test for Self-Assignment
class MyClass1 { };
class MyClass2 {
public:
 MyClass2() : p_(new MyClass1()) { }
 MyClass2(const MyClass2& f) : p_(new MyClass1(*f.p_)) { }
 ~MyClass2() {
 delete p_;
 }
 MyClass2& operator= (const MyClass2& f)
 {
 delete p_;
 p_ = new MyClass1(*f.p_);
 return *this;
 }
private:
 MyClass1* p_;
};

In this example, the copy assignment operator in MyClass2 does not test for self-
assignment. If the parameter f is the current object, after the statement delete p_, the
memory allocated to pointer f.p_ is also deallocated. Therefore, the statement p_ =
new MyClass1(*f.p_) initializes the memory location that p_ points to with
unpredictable values.

Correction — Test for Self-Assignment

One possible correction is to test for self-assignment in the copy assignment operator.

class MyClass1 { };
class MyClass2 {
public:
 MyClass2() : p_(new MyClass1()) { }
 MyClass2(const MyClass2& f) : p_(new MyClass1(*f.p_)) { }
 ~MyClass2() {
 delete p_;
 }
 MyClass2& operator= (const MyClass2& f)
 {
 if(&f != this) {

3 Defects

3-526

 delete p_;
 p_ = new MyClass1(*f.p_);
 }
 return *this;
 }
private:
 MyClass1* p_;
};

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: MISSING_SELF_ASSIGN_TEST
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Self assignment not tested in operator

3-527

Missing break of switch case
No comments at the end of switch case without a break statement

Description
Missing break of switch case looks for switch cases that do not end in a break
statement. If the case does not have a code comment after it, Polyspace assumes the
missing break is not intentional and raises a defect.

Risk
Switch cases without break statements fall through to the next switch case. If this fall-
through is not intended, the switch case can unintentionally execute code and end the
switch with unexpected results.

Fix
If you do not want a break for the highlighted switch case, add a comment to your code to
document why this case falls through to the next case. This comment removes the defect
from your results and makes your code more maintainable.

If you forgot the break, add it before the end of the switch case.

Examples
Switch Without Break Statements
enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z } widget_type;

extern void demo_do_something_for_WE_W(void);
extern void demo_do_something_for_WE_X(void);
extern void demo_report_error(void);

void bug_missingswitchbreak(enum WidgetEnum wt)
{

3 Defects

3-528

 /*
 In this non-compliant code example, the case where widget_type is WE_W lacks a
 break statement. Consequently, statements that should be executed only when
 widget_type is WE_X are executed even when widget_type is WE_W.
 */
 switch (wt)
 {
 case WE_W:
 demo_do_something_for_WE_W();
 case WE_X:
 demo_do_something_for_WE_X();
 default:
 /* Handle error condition */
 demo_report_error();
 }
}

In this example, there are two cases without break statements. When wt is WE_W, the
statements for WE_W, WE_X, and the default case execute because the program falls
through the two cases without a break. No defect is raised on the default case or last
case because it does not need a break statement.

Correction — Add a Comment or break

To fix this example, either add a comment to mark and document the acceptable fall-
through or add a break statement to avoid fall-through. In this example, case WE_W is
supposed to fall through, so a comment is added to explicitly state this action. For the
second case, a break statement is added to avoid falling through to the default case.

enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z } widget_type;

extern void demo_do_something_for_WE_W(void);
extern void demo_do_something_for_WE_X(void);
extern void demo_report_error(void);

void corrected_missingswitchbreak(enum WidgetEnum wt)
{
 switch (wt)
 {
 case WE_W:
 demo_do_something_for_WE_W();
 /* fall through to WE_X*/
 case WE_X:
 demo_do_something_for_WE_X();

 Missing break of switch case

3-529

 break;
 default:
 /* Handle error condition */
 demo_report_error();
 }
}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_SWITCH_BREAK
Impact: Low
CWE ID: 484

See Also
Missing case for switch condition | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

3 Defects

3-530

https://cwe.mitre.org/data/definitions/484.html

Missing case for switch condition
switch variable not covered by cases and default case is missing

Description
Missing case for switch condition occurs when the switch variable can take values
that are not covered by a case statement.

Note Bug Finder only raises a defect if the switch variable is not full range.

Risk
If the switch variable takes a value that is not covered by a case statement, your
program can have unintended behavior.

A switch-statement that makes a security decision is particularly vulnerable when all
possible values are not explicitly handled. An attacker can use this situation to deviate the
normal execution flow.

Fix
It is good practice to use a default statement as a catch-all for values that are not
covered by a case statement. Even if the switch variable takes an unintended value, the
resulting behavior can be anticipated.

Examples

Missing Default Condition
#include <stdio.h>
#include <string.h>

typedef enum E

 Missing case for switch condition

3-531

{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {
 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 }

 printf("Welcome!\n");
 return r;
}

In this example, the enum parameter User can take a value UNKNOWN that is not covered
by a case statement.

Correction — Add a Default Condition

One possible correction is to add a default condition for possible values that are not
covered by a case statement.

#include <stdio.h>
#include <string.h>

3 Defects

3-532

typedef enum E
{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {
 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 break;
 default:
 printf("Invalid login credentials!\n");
 }

 printf("Welcome!\n");
 return r;
}

Result Information
Group: Security

 Missing case for switch condition

3-533

Language: C | C++
Default: Off
Command-Line Syntax: MISSING_SWITCH_CASE
Impact: Low
CWE ID: 478

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-534

https://cwe.mitre.org/data/definitions/478.html

Missing virtual inheritance
A base class is inherited virtually and nonvirtually in the same hierarchy

Description
Missing virtual inheritance occurs when:

• A class is derived from multiple base classes, and some of those base classes are
themselves derived from a common base class.

For instance, a class Final is derived from two classes, Intermediate_left and
Intermediate_right. Both Intermediate_left and Intermediate_right are
derived from a common class, Base.

• At least one of the inheritances from the common base class is virtual and at least
one is not virtual.

For instance, the inheritance of Intermediate_right from Base is virtual. The
inheritance of Intermediate_left from Base is not virtual.

Risk
If this defect appears, multiple copies of the base class data members appear in the final
derived class object. To access the correct copy of the base class data member, you have
to qualify the member and method name appropriately in the final derived class. The
development is error-prone.

For instance, when the defect occurs, two copies of the base class data members appear
in an object of class Final. If you do not qualify method names appropriately in the class
Final, you can assign a value to a Base data member but not retrieve the same value.

• You assign the value using a Base method accessed through Intermediate_left.
Therefore, you assign the value to one copy of the Base member.

• You retrieve the value using a Base method accessed through Intermediate_right.
Therefore, you retrieve a different copy of the Base member.

 Missing virtual inheritance

3-535

Fix
Declare all the intermediate inheritances as virtual when a class is derived from
multiple base classes that are themselves derived from a common base class.

If you indeed want multiple copies of the Base data members as represented in the
intermediate derived classes, use aggregation instead of inheritance. For instance,
declare two objects of class Intermediate_left and Intermediate_right in the
Final class.

Examples

Missing Virtual Inheritance
#include <stdio.h>
class Base {
public:
 explicit Base(int i): m_b(i) {};
 virtual ~Base() {};
 virtual int get() const {
 return m_b;
 }
 virtual void set(int b) {
 m_b = b;
 }
private:
 int m_b;
};

class Intermediate_left: virtual public Base {
public:
 Intermediate_left():Base(0), m_d1(0) {};
private:
 int m_d1;
};

class Intermediate_right: public Base {
public:
 Intermediate_right():Base(0), m_d2(0) {};
private:
 int m_d2;

3 Defects

3-536

};

class Final: public Intermediate_left, Intermediate_right {
public:
 Final(): Base(0), Intermediate_left(), Intermediate_right() {};
 int get() const {
 return Intermediate_left::get();
 }
 void set(int b) {
 Intermediate_right::set(b);
 }
 int get2() const {
 return Intermediate_right::get();
 }
};

int main(int argc, char* argv[]) {
 Final d;
 int val = 12;
 d.set(val);
 int res = d.get();
 printf("d.get=%d\n",res); // Result: d.get=0
 printf("d.get2=%d\n",d.get2()); // Result: d.get2=12
 return res;
}

In this example, Final is derived from both Intermediate_left and
Intermediate_right. Intermediate_left is derived from Base in a non-virtual
manner and Intermediate_right is derived from Base in a virtual manner.
Therefore, two copies of the base class and the data member m_b are present in the final
derived class,

Both derived classes Intermediate_left and Intermediate_right do not override
the Base class methods get and set. However, Final overrides both methods. In the
overridden get method, it calls Base::get through Intermediate_left. In the
overridden set method, it calls Base::set through Intermediate_right.

Following the statement d.set(val), Intermediate_right’s copy of m_b is set to 12.
However, Intermediate_left’s copy of m_b is still zero. Therefore, when you call
d.get(), you obtain a value zero.

Using the printf statements, you can see that you retrieve a value that is different from
the value that you set.

 Missing virtual inheritance

3-537

The defect appears in the final derived class definition and on the name of the class that
are derived virtually from the common base class. Following are some tips for navigating
in the source code:

• To find the definition of a class, on the Source pane, right-click the class name and
select Go To Definition.

• To navigate up the class hierarchy, first navigate to the intermediate class definition.
In the intermediate class definition, right-click a base class name and select Go To
Definition.

Correction — Make Both Inheritances Virtual

One possible correction is to declare both the inheritances from Base as virtual.

Even though the overridden get and set methods in Final still call Base::get and
Base::set through different classes, only one copy of m_b exists in Final.

#include <stdio.h>
class Base {
public:
 explicit Base(int i): m_b(i) {};
 virtual ~Base() {};
 virtual int get() const {
 return m_b;
 }
 virtual void set(int b) {
 m_b = b;
 }
private:
 int m_b;
};

class Intermediate_left: virtual public Base {
public:
 Intermediate_left():Base(0), m_d1(0) {};
private:
 int m_d1;
};

class Intermediate_right: virtual public Base {
public:
 Intermediate_right():Base(0), m_d2(0) {};
private:
 int m_d2;

3 Defects

3-538

};

class Final: public Intermediate_left, Intermediate_right {
public:
 Final(): Base(0), Intermediate_left(), Intermediate_right() {};
 int get() const {
 return Intermediate_left::get();
 }
 void set(int b) {
 Intermediate_right::set(b);
 }
 int get2() const {
 return Intermediate_right::get();
 }
};

int main(int argc, char* argv[]) {
 Final d;
 int val = 12;
 d.set(val);
 int res = d.get();
 printf("d.get=%d\n",res); // Result: d.get=12
 printf("d.get2=%d\n",d.get2()); // Result: d.get2=12
 return res;
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: MISSING_VIRTUAL_INHERITANCE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

 Missing virtual inheritance

3-539

Introduced in R2015b

3 Defects

3-540

Line with more than one statement
Multiple statements on a line

Description
Before preprocessing starts, Line with more than one statement checks for additional
text after the semicolon (;) on a line. A defect is not raised for comments, for-loop
definitions, braces, or backslashes.

Risk
Use of one statement per line improves readability of the code. Since most statements in
your code appear on a new line, use of multiple statements per line in a few cases within
this arrangement can make code review difficult.

Fix
Write one statement per line.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Single-Line Initialization
int multi_init(void){
_ int abc = 4; int efg = 0; //defect

 return abc*efg;
}

In this example, abc and efg are initialized on the second line of the function as separate
statements.

 Line with more than one statement

3-541

Correction — Comma-Separated Initialization

One possible correction is to use a comma instead of a semicolon to declare multiple
variables on the same line.

int multi_init(void){
 int a = 4, b = 0;

 return a*b;
}

Correction — New Line for Each Initialization

One possible correction is to separate each initialization. By putting the initialization of b
on the next line, the code longer raises a defect.

int multi_init(void){
 int a = 4;
 int b = 0;

 return a*b;
}

Single-Line Loops
int multi_loop(void){
 int a, b = 0;
 int index = 1;
 int tab[9] = {1,1,2,3,5,8,13,21};

 for(a=0; a < 3; a++) {b+=a;} // no defect

_ for(b=0; b < 3; b++) {a+=b; index=b;} //defect

_ while (index < 7) {index++; tab[index] = index * index;} //defect
 return a*b;
}

In this example, there are three loops coded on single lines, each with multiple
semicolons.

• The first for loop has multiple semicolons. Polyspace does not raise a defect for
multiple statements within a for loop declaration.

3 Defects

3-542

• Polyspace does raise a defect on the second for loop because there are multiple
statements after the for loop declaration.

• The while loop also has multiple statements after the loop declaration. Polyspace
raises a defect on this line.

Correction — New Line for Each Loop Statement

One possible correction is to use a new line for each statement after the loop declaration.

int multi_loop(void){
 int a, b = 0;
 int index = 1;
 int tab[9] = {1,1,2,3,5,8,13,21};

 for(a=0; a < 3; a++) {b+=a;}

 for(b=0; b < 3; b++){
 a+=b;
 index=b;
 }

 while (index < 7){
 index++;
 tab[index] = index * index;
 }
 return a*b;
}

Single-line Conditionals
int multi_if(void){

 int a, b = 1;
 if(a == 0) { a++;} // no defect
_ else if(b == 1) {b++; a *= b;} //defect
}

In this example, there are two conditional statements an: if and an else if. The if line
does not raise a defect because only one statement follows the condition. The else if
statement does raise a defect because two statements follow the condition.

Correction — New Lines for Multi-Statement Conditionals

One possible correction is to use a new line for conditions with multiple statements.

 Line with more than one statement

3-543

int multi_if(void){
 int a, b = 1;

 if(a == 0) a++;
 else if(b == 1){
 b++;
 a *= b;
 }
}

Check Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: MORE_THAN_ONE_STATEMENT
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-544

Ambiguous declaration syntax
Declaration syntax can be interpreted as object declaration or part of function declaration

Description
Ambiguous declaration syntax occurs when it is not clear from a declaration whether
an object declaration or function/parameter declaration is intended. The ambiguity is
often referred to as most vexing parse.

For instance, these declarations are ambiguous:

• ResourceType aResource();

It is not immediately clear if aResource is a function returning a variable of type
ResourceType or an object of type ResourceType.

• TimeKeeper aTimeKeeper(Timer());

It is not immediately clear if aTimeKeeper is an object constructed with an unnamed
object of type Timer or a function with an unnamed function pointer type as
parameter. The function pointer refers to a function with no argument and return type
Timer.

Risk
In case of an ambiguous declaration, the C++ Standard chooses a specific interpretation
of the syntax. For instance:

• ResourceType aResource();

is interpreted as a declaration of a function aResource.
• TimeKeeper aTimeKeeper(Timer());

is interpreted as a declaration of a function aTimeKeeper with an unnamed
parameter of function pointer type.

If you or another developer or code reviewer expects a different interpretation, the
results can be unexpected.

 Ambiguous declaration syntax

3-545

For instance, later you might face a compilation error that is difficult to understand. Since
the default interpretation indicates a function declaration, if you use the function as an
object, compilers might report a compilation error. The compilation error indicates that a
conversion from a function to an object is being attempted without a suitable constructor.

Fix
Make the declaration unambiguous. For instance, fix these ambiguous declarations as
follows:

• ResourceType aResource();

Object declaration:

If the declaration refers to an object initialized with the default constructor, rewrite it
as:

ResourceType aResource;

prior to C++11, or as:

ResourceType aResource{};

after C++11.

Function declaration:

If the declaration refers to a function, use a typedef for the function.

typedef ResourceType(*resourceFunctionType)();
resourceFunctionType aResource;

• TimeKeeper aTimeKeeper(Timer());

Object declaration:

If the declaration refers to an object aTimeKeeper initialized with an unnamed object
of class Timer, add an extra pair of parenthesis:

TimeKeeper aTimeKeeper((Timer()));

prior to C++11, or use braces:

TimeKeeper aTimeKeeper{Timer{}};

3 Defects

3-546

after C++11.

Function declaration:

If the declaration refers to a function aTimeKeeper with a unnamed parameter of
function pointer type, use a named parameter instead.

typedef Timer(*timerType)();
TimeKeeper aTimeKeeper(timerType aTimer);

Examples

Function or Object Declaration
class ResourceType {
 int aMember;
 public:
 int getMember();
};

void getResource() {
 ResourceType aResource();
}

In this example, aResource might be used as an object but the declaration syntax
indicates a function declaration.

Correction — Use {} for Object Declaration

One possible correction (after C++11) is to use braces for object declaration.

class ResourceType {
 int aMember;
 public:
 int getMember();
};

void getResource() {
 ResourceType aResource{};
}

 Ambiguous declaration syntax

3-547

Unnamed Object or Unnamed Function Parameter Declaration
class MemberType {};

class ResourceType {
 MemberType aMember;
 public:
 ResourceType(MemberType m) {aMember = m;}
 int getMember();
};

void getResource() {
 ResourceType aResource(MemberType());
}

In this example, aResource might be used as an object initialized with an unnamed
object of type MemberType but the declaration syntax indicates a function with an
unnamed parameter of function pointer type. The function pointer points to a function
with no arguments and type MemberType.

Correction — Use {} for Object Declaration

One possible correction (after C++11) is to use braces for object declaration.

class MemberType {};

class ResourceType {
 MemberType aMember;
 public:
 ResourceType(MemberType m) {aMember = m;}
 int getMember();
};

void getResource {
 ResourceType aResource{MemberType()};
}

Unnamed Object or Named Function Parameter Declaration
class Integer {
 int aMember;
 public:
 Integer(int d) {aMember = d;}

3 Defects

3-548

 int getMember();
};

int aInt = 0;
Integer aInteger(Integer(aInt));

In this example, aInteger might be an object constructed with an unnamed object
Integer(aInt) (an object of class Integer which itself is constructed using the
variable aInt). However, the declaration syntax indicates that aInteger is a function
with a named parameter aInt of type Integer (the superfluous parenthesis is ignored).

Correction — Use of {} for Object Declaration

One possible correction (after C++11) is to use {} for object declaration.

class Integer {
 int aMember;
 public:
 Integer(int d) {aMember = d;}
 int getMember();
};

int aInt = 0;
Integer aInteger{Integer{aInt}};

Correction — Remove Superfluous Parenthesis for Named Parameter Declaration

If aInteger is a function with a named parameter aInt, remove the superfluous ()
around aInt.

class Integer {
 int aMember;
 public:
 Integer(int d) {aMember = d;}
 int getMember();
};

Integer aInteger(Integer aInt);

Result Information
Group: Good practice
Language: C++

 Ambiguous declaration syntax

3-549

Default: Off
Command-Line Syntax: MOST_VEXING_PARSE
Impact: Low

See Also
Find defects (-checkers) | Improper array initialization | Non-
initialized variable | Variable shadowing | Write without a further
read

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019a

3 Defects

3-550

Misuse of narrow or wide character string
Narrow (wide) character string passed to wide (narrow) string function

Description
Misuse of narrow or wide character string occurs when you pass a narrow character
string to a wide string function, or a wide character string to a narrow string function.

Misuse of narrow or wide character string raises no defect on operating systems
where narrow and wide character strings have the same size.

Risk
Using a narrow character string with a wide string function, or vice versa, can result in
unexpected or undefined behavior.

If you pass a wide character string to a narrow string function, you can encounter these
issues:

• Data truncation. If the string contains null bytes, a copy operation using strncpy()
can terminate early.

• Incorrect string length. strlen() returns the number of characters of a string up to
the first null byte. A wide string can have additional characters after its first null byte.

If you pass a narrow character string to a wide string function, you can encounter this
issue:

• Buffer overflow. In a copy operation using wcsncpy(), the destination string might
have insufficient memory to store the result of the copy.

Fix
Use the narrow string functions with narrow character strings. Use the wide string
functions with wide character strings.

 Misuse of narrow or wide character string

3-551

Examples

Passing Wide Character Strings to strncpy()
#include <string.h>
#include <wchar.h>

void func(void)
{
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 strncpy(wide_str2, wide_str1, 10);
}

In this example, strncpy() copies 10 wide characters from wide_strt1 to wide_str2.
If wide_str1 contains null bytes, the copy operation can end prematurely and truncate
the wide character string.

Correction — Use wcsncpy() to Copy Wide Character Strings

One possible correction is to use wcsncpy() to copy wide_str1 to wide_str2.

#include <string.h>
#include <wchar.h>

void func(void)
{
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 wcsncpy(wide_str2, wide_str1, 10);
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: NARROW_WIDE_STR_MISUSE
Impact: High
CWE ID: 135

3 Defects

3-552

https://cwe.mitre.org/data/definitions/135.html

See Also
Array access out of bounds | Destination buffer overflow in string
manipulation | Find defects (-checkers) | Invalid use of standard
library routine | Invalid use of standard library string routine |
Pointer access out of bounds | Unreliable cast of function pointer |
Wrong allocated object size for cast

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

 Misuse of narrow or wide character string

3-553

Member not initialized in constructor
Constructor does not initialize some members of a class

Description
Non-initialized member occurs when a class constructor has at least one execution
path on which it does not initialize some data members of the class.

The defect does not appear in the following cases:

• Empty constructors.
• The non-initialized member is not used in the code.

Risk
The members that the constructor does not initialize can have unintended values when
you read them later.

Initializing all members in the constructor makes it easier to use your class. If you call a
separate method to initialize your members and then read them, you can avoid
uninitialized values. However, someone else using your class can read a class member
before calling your initialization method. Because a constructor is called when you create
an object of the class, if you initialize all members in the constructor, they cannot have
uninitialized values later on.

Fix
The best practice is to initialize all members in your constructor, preferably in an
initialization list.

3 Defects

3-554

Examples

Non-Initialized Member
class MyClass {
public:
 explicit MyClass(int);
private:
 int _i;
 char _c;
};

MyClass::MyClass(int flag) {
 if(flag == 0) {
 _i = 0;
 _c = 'a';
 }
 else {
 _i = 1;
 }
}

In this example, if flag is not 0, the member _c is not initialized.

The defect appears on the closing brace of the constructor. Following are some tips for
navigating in the source code:

• On the Result Details pane, see which members are not initialized.
• To navigate to the class definition, right-click a member that is initialized in the

constructor. Select Go To Definition. In the class definition, you can see all the
members, including those members that are not initialized in the constructor.

Correction — Initialize All Members on All Execution Paths

One possible correction is to initialize all members of the class MyClass for all values of
flag.

class MyClass {
public:
 explicit MyClass(int);
private:
 int _i;

 Member not initialized in constructor

3-555

 char _c;
};

MyClass::MyClass(int flag) {
 if(flag == 0) {
 _i = 0;
 _c = 'a';
 }
 else {
 _i = 1;
 _c = 'b';
 }
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: NON_INIT_MEMBER
Impact: Medium
CWE ID: 456, 457, 908

See Also
Copy constructor not called in initialization list | Find defects (-
checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-556

https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/908.html

Non-initialized pointer
Pointer not initialized before dereference

Description
Non-initialized pointer occurs when a pointer is not assigned an address before
dereference.

Risk
Unless a pointer is explicitly assigned an address, it points to an unpredictable location.

Fix
The fix depends on the root cause of the defect. For instance, you assigned an address to
the pointer but the assignment is unreachable.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below. It is a good practice to initialize a pointer to NULL when
declaring the pointer.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Non-initialized pointer error
#include <stdlib.h>

 Non-initialized pointer

3-557

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }

 *pi = j;
 /* Defect: Writing to uninitialized pointer */

 return pi;
}

If prev is not NULL, the pointer pi is not assigned an address. However, pi is
dereferenced on every execution paths, irrespective of whether prev is NULL or not.

Correction — Initialize Pointer on Every Execution Path

One possible correction is to assign an address to pi when prev is not NULL.

#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }
 /* Fix: Initialize pi in branches of if statement */
 else
 pi = prev;

 *pi = j;

 return pi;
}

3 Defects

3-558

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: NON_INIT_PTR
Impact: High
CWE ID: 456, 457, 824, 908

See Also
Find defects (-checkers) | Non-initialized variable

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Non-initialized pointer

3-559

https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/824.html
https://cwe.mitre.org/data/definitions/908.html

Missing salt for hashing operation
Hashed data is vulnerable to rainbow table attack

Description
Missing salt for hashing operation occurs when you use a digest context in these
functions, but you hash data into the context only once or you use a null salt in all
subsequent hashing operations. A salt is random data that you use to improve the security
of a hashing operation. The hashing operation takes the salt as an input to produce a
more secure hashed value.

• EVP_DigestFinal
• EVP_DigestSignUpdate
• EVP_DigestVerifyUpdate
• SHA*_Final family of functions

Missing salt for hashing operation raises no defect if no information is available about
the context. For instance, if the context is passed as an argument to the function that calls
the hashing operation or if the context is declared outside the scope of the function. For
example, no defect is raised in this code snippet.

EVP_MD_CTX ctx_global;

void foo(EVP_MD_CTX* ctx) {
//ctx passed as argument of func()
 EVP_DigestFinal(ctx, out_buf, &out_len); //no defect
}

void bar() {
// ctx_global declared outside of bar()
 EVP_DigestFinal(&ctx_glob, out_buf, &out_len); //no defect
}

3 Defects

3-560

Risk
Hashing the same data without a salt results in the same hashed value. For instance, if
you hash user passwords and two users have the same passwords, the hashed passwords
are identical. The hashing is then vulnerable to precomputed rainbow attacks.

Fix
Provide a salt when you hash data.

Examples

Data Hashed Into Context Only Once
#include <openssl/evp.h>

unsigned char* out_buf;
unsigned int out_len;

void func()
{
 const char* src = "toto";
 EVP_MD_CTX ctx;

 EVP_DigestInit(&ctx, EVP_sha256());
 EVP_DigestUpdate(&ctx, src, strlen(src));
 EVP_DigestFinal(&ctx, out_buf, &out_len);
 EVP_cleanup();
}

In this example, context ctx is initialized with secure hashing algorithm SHA-256, then
EVP_DigestUpdate hashes src into ctx. Because EVP_DigestUpdate is called only
once, no salt can be provided to improve the security of the hashing operation. The digest
value that EVP_DigestFinal retrieves is then vulnerable to precomputed rainbow
attacks.

Correction — Hash Salt Into Context After Initial Data Hash

One possible correction is to hash a salt into the context ctx after the first hashing
operation. The resulting digest value that EVP_DigestFinal retrieves is more secure.

 Missing salt for hashing operation

3-561

#include <openssl/evp.h>

#define BUFF_SIZE_32 32

unsigned char* out_buf;
unsigned int out_len;

void func()
{
 const char* src = "toto";
 const char* salt;

 RAND_bytes((unsigned char*)salt, BUFF_SIZE_32);
 EVP_MD_CTX ctx;

 EVP_DigestInit(&ctx, EVP_sha256());
 EVP_DigestUpdate(&ctx, src, strlen(src));
 EVP_DigestUpdate(&ctx, salt, BUFF_SIZE_32);
 EVP_DigestFinal(&ctx, out_buf, &out_len);
 EVP_cleanup();
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_MD_NO_SALT
Impact: Medium
CWE ID: 759

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019b

3 Defects

3-562

https://cwe.mitre.org/data/definitions/759.html

Pointer to non-initialized value converted to
const pointer
Pointer to constant assigned address that does not contain a value

Description
Pointer to non initialized value converted to const pointer occurs when a pointer to
a constant (const int*, const char*, etc.) is assigned an address that does not yet
contain a value.

Risk
A pointer to a constant stores a value that must not be changed later in the program. If
you assign the address of a non-initialized variable to the pointer, it now points to an
address with garbage values for the remainder of the program.

Fix
Initialize a variable before assigning its address to a pointer to a constant.

Examples

Pointer to non initialized value converted to const pointer
error
#include<stdio.h>

void Display_Parity()
 {
 int num,parity;
 const int* num_ptr = #
 /* Defect: Address &num does not store a value */

 Pointer to non-initialized value converted to const pointer

3-563

 printf("Enter a number\n:");
 scanf("%d",&num);

 parity=((*num_ptr)%2);
 if(parity==0)
 printf("The number is even.");
 else
 printf("The number is odd.");

 }

num_ptr is declared as a pointer to a constant. However the variable num does not
contain a value when num_ptr is assigned the address &num.

Correction — Store Value in Address Before Assignment to Pointer

One possible correction is to obtain the value of num from the user before &num is
assigned to num_ptr.

#include<stdio.h>

void Display_Parity()
 {
 int num,parity;
 const int* num_ptr;

 printf("Enter a number\n:");
 scanf("%d",&num);

 /* Fix: Assign &num to pointer after it receives a value */
 num_ptr=#
 parity=((*num_ptr)%2);
 if(parity==0)
 printf("The number is even.");
 else
 printf("The number is odd.");
 }

The scanf statement stores a value in &num. Once the value is stored, it is legitimate to
assign &num to num_ptr.

3 Defects

3-564

Check Information
Group: Data flow
Language: C | C++
Default: Off
Command-Line Syntax: NON_INIT_PTR_CONV
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Pointer to non-initialized value converted to const pointer

3-565

Non-initialized variable
Variable not initialized before use

Description
Non-initialized variable occurs when a variable is not initialized before its value is read.

Risk
Unless a variable is explicitly initialized, the variable value is unpredictable. You cannot
rely on the variable having a specific value.

Fix
The fix depends on the root cause of the defect. For instance, you assigned a value to the
variable but the assignment is unreachable or you assigned a value to the variable in one
of two branches of a conditional statement. Fix the unreachable code or missing
assignment.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below. It is a good practice to initialize a variable at declaration.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples
Non-initialized variable error
int get_sensor_value(void)
{

3 Defects

3-566

 extern int getsensor(void);
 int command;
 int val;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 /* Defect: val does not have a value if command is not 2 */
}

If command is not 2, the variable val is unassigned. In this case, the return value of
function get_sensor_value is undetermined.

Correction — Initialize During Declaration

One possible correction is to initialize val during declaration so that the initialization is
not bypassed on some execution paths.

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 /* Fix: Initialize val */
 int val=0;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 }

val is assigned an initial value of 0. When command is not equal to 2, the function
get_sensor_value returns this value.

 Non-initialized variable

3-567

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: NON_INIT_VAR
Impact: High
CWE ID: 456, 457, 908

See Also
Find defects (-checkers) | Non-initialized pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-568

https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/908.html

Missing X.509 certificate
Server or client cannot be authenticated

Description
Missing X.509 certificate occurs when you use a context to handle TLS/SSL
connections with these functions, but you do not load an X.509 certificate into the
context.

• SSL_accept
• SSL_connect
• SSL_do_handshake
• SSL_write
• SSL_read
• BIO_do_accept
• BIO_do_connect
• BIO_do_handshake

An X.509 certificate is a digital certificate that is issued to an entity. It contains
information that identifies the entity. The certificate is used to authenticate connections to
the entity identified in the certificate.

The checker raises a defect if:

• For a server authentication, no certificate is loaded before handling a connection.
• For a client authentication, the client attempts to connect to a server a second time

after getting an SSL_ERROR_WANT_X509_LOOKUP error on the first connection
attempt.

Risk
When you do not load an X.509 certificate into the context to handle TLS/SSL
connections, the connection is not secure and is vulnerable to man-in-the-middle (MITM)
attacks.

 Missing X.509 certificate

3-569

Fix
Load an X.509 certificate into the context you create to handle TLS/SSL connections.

Examples
SSL Structure Created From Context with Missing Certificate
#include <openssl/ssl.h>
#include <sys/socket.h>
#include <arpa/inet.h>

unsigned char* buf;
int len;

SSL_CTX* InitServerCTX(void)
{
 SSL_CTX* ctx;
 OpenSSL_add_all_algorithms();
 ctx = SSL_CTX_new(SSLv23_server_method());
 SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3 | SSL_OP_NO_TLSv1);
 if (ctx == NULL) {
 /*handle errors */
 }
 return ctx;
}

int OpenListener(int port)
{
 /* Create server socket */
}

void func()
{
 SSL_CTX* ctx;
 int server, port;
 int ret;
 SSL_library_init();

 ctx = InitServerCTX();
 server = OpenListener(port);
 while (1) {
 struct sockaddr_in addr;
 socklen_t len = sizeof(addr);
 SSL* ssl;

 int client = accept(server, (struct sockaddr*)&addr, &len);
 printf("Connection: %s:%d\n", inet_ntoa(addr.sin_addr), ntohs(addr.sin_port));
 ssl = SSL_new(ctx);
 SSL_set_fd(ssl, client);
 ret = SSL_accept(ssl);
 if (SSL_get_error(ssl, ret) <= 0)
 /* Serve connection */;
 else
 SSL_free(ssl);
 }

3 Defects

3-570

 close(server);
 SSL_CTX_free(ctx);
}

In this example, InitServerCTX() initializes context ctx for TLS/SSL connections, but
no certificate is loaded into ctx. When SSL_accept checks the TLS/SLL handshake for
the SSL structure created from ctx, there is no certificate available to authenticate the
server.

Correction — Before Creating a SSL Structure, Load Certificate Into Context

One possible correction is to, before you create a SSL structure, load a certificate into the
context you create for TLS/SSL connections, for instance with
SSL_CTX_use_certificate_file.
#include <openssl/ssl.h>
#include <sys/socket.h>
#include <arpa/inet.h>

unsigned char* buf;
int len;

SSL_CTX* InitServerCTX(void)
{
 SSL_CTX* ctx;
 OpenSSL_add_all_algorithms();
 ctx = SSL_CTX_new(SSLv23_server_method());
 SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3 | SSL_OP_NO_TLSv1);
 if (ctx == NULL) {
 /*handle errors */
 }
 return ctx;
}

void LoadCertificates(SSL_CTX* ctx, char* CertFile, char* KeyFile)
{
 if (SSL_CTX_use_certificate_file(ctx, CertFile, SSL_FILETYPE_PEM) <= 0) {
 /* Handle errors */
 }
}

int OpenListener(int port)
{
 /* Create server socket */
}

void func()
{
 SSL_CTX* ctx;
 int server, port;
 int ret;
 SSL_library_init();

 ctx = InitServerCTX();
 LoadCertificates(ctx, "mycert.pem", "mycert.pem");
 server = OpenListener(port);
 while (1) {
 struct sockaddr_in addr;

 Missing X.509 certificate

3-571

 socklen_t len = sizeof(addr);
 SSL* ssl;

 int client = accept(server, (struct sockaddr*)&addr, &len);
 printf("Connection: %s:%d\n", inet_ntoa(addr.sin_addr), ntohs(addr.sin_port));
 ssl = SSL_new(ctx);
 SSL_set_fd(ssl, client);
 ret = SSL_accept(ssl);
 if (SSL_get_error(ssl, ret) <= 0)
 /* Serve connection */;
 else
 SSL_free(ssl);
 }
 close(server);
 SSL_CTX_free(ctx);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_SSL_NO_CERTIFICATE
Impact: Medium
CWE ID: 310

See Also
Find defects (-checkers) | Missing certification authority list

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019b

3 Defects

3-572

https://cwe.mitre.org/data/definitions/310.html

Variable length array with nonpositive size
Size of variable-length array is zero or negative

Description
Variable length array with non-positive size occurs when size of a variable-length
array is zero or negative.

Risk
If the size of a variable-length array is zero or negative, unexpected behavior can occur,
such as stack overflow.

Fix
When you declare a variable-length array as a local variable in a function:

• If you use a function parameter as the array size, check that the parameter is positive.
• If you use the result of a computation on a function parameter as the array size, check

that the result is positive.

You can place a test for positive value either before the function call or the array
declaration in the function body.

Examples

Nonpositive Array Size
int input(void);

void add_scalar(int n, int m) {
 int r=0;
 int arr[m][n];
 for (int i=0; i<m; i++) {

 Variable length array with nonpositive size

3-573

 for (int j=0; j<n; j++) {
 arr[i][j] = input();
 r += arr[i][j];
 }
 }
}

void main() {
 add_scalar(2,2);
 add_scalar(-1,2);
 add_scalar(2,0);
}

In this example, the second and third calls to add_scalar result in a negative and zero
size of arr.

Correction — Make Array Size Positive

One possible correction is fix or remove calls that result in a nonpositive array size.

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: NON_POSITIVE_VLA_SIZE
Impact: High
CWE ID: 687

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-574

https://cwe.mitre.org/data/definitions/687.html

Misuse of return value from nonreentrant
standard function
Pointer to static buffer from previous call is used despite a subsequent call that modifies
the buffer

Description
Misuse of return value from nonreentrant standard function occurs when these
events happen in this sequence:

1 You point to the buffer returned from a nonreentrant standard function such as
getenv or setlocale.

user = getenv("USER");
2 You call that nonreentrant standard function again.

user2 = getenv("USER2");
3 You use or dereference the pointer from the first step expecting the buffer to remain

unmodified since that step. In the meantime, the call in the second step has modified
the buffer.

For instance:

var=*user;

In some cases, the defect might appear even if you do not call the getenv function a
second time but simply return the pointer. For instance:

char* func() {
 user=getenv("USER");
 .
 .
 return user;
}

For information on which functions are covered by this defect, see documentation on
nonreentrant standard functions.

 Misuse of return value from nonreentrant standard function

3-575

https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions
https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions

Risk
The C Standard allows nonreentrant functions such as getenv to return a pointer to a
static buffer. Because the buffer is static, a second call to getenv modifies the buffer. If
you continue to use the pointer returned from the first call past the second call, you can
see unexpected results. The buffer that it points to no longer has values from the first call.

The defect appears even if you do not call getenv a second time but simply return the
pointer. The reason is that someone calling your function might use the returned pointer
after a second call to getenv. By returning the pointer from your call to getenv, you
make your function unsafe to use.

The same rationale is true for other nonreentrant functions covered by this defect.

Fix
After the first call to getenv, make a copy of the buffer that the returned pointer points
to. After the second call to getenv, use this copy. Even if the second call modifies the
buffer, your copy is untouched.

Examples
Return from getenv Used After Second Call to getenv
#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME"); /* First call */
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');

 if (user_name_from_home != NULL) {
 user = getenv("USER"); /* Second call */
 if ((user != NULL) &&
 (strcmp(user, user_name_from_home) == 0))

3 Defects

3-576

 {
 result = 1;
 }
 }
 }
 return result;
}

In this example, the pointer user_name_from_home is derived from the pointer home.
home points to the buffer returned from the first call to getenv. Therefore,
user_name_from_home points to a location in the same buffer.

After the second call to getenv, the buffer is modified. If you continue to use
user_name_from_home, you can get unexpected results.

Correction — Make Copy of Buffer Before Second Call

If you want to access the buffer from the first call to getenv past the second call, make a
copy of the buffer after the first call. One possible correction is to use the strdup
function to make the copy.

#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME");
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');
 if (user_name_from_home != NULL) {
 /* Make copy before second call */
 char *saved_user_name_from_home = strdup(user_name_from_home);
 if (saved_user_name_from_home != NULL) {
 user = getenv("USER");
 if ((user != NULL) &&
 (strcmp(user, saved_user_name_from_home) == 0))
 {
 result = 1;
 }
 free(saved_user_name_from_home);
 }

 Misuse of return value from nonreentrant standard function

3-577

 }
 }
 return result;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: NON_REENTRANT_STD_RETURN
Impact: High

See Also
Find defects (-checkers) | Modification of internal buffer returned
from nonreentrant standard function | Use of obsolete standard
function

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

3 Defects

3-578

Use of non-secure temporary file
Temporary generated file name not secure

Description
Use of non-secure temporary file looks for temporary file routines that are not secure.

Risk
If an attacker guesses the file name generated by a standard temporary file routine, the
attacker can:

• Cause a race condition when you generate the file name.
• Precreate a file of the same name, filled with malicious content. If your program reads

the file, the attacker’s file can inject the malicious code.
• Create a symbolic link to a file storing sensitive data. When your program writes to the

temporary file, the sensitive data is deleted.

Fix
To create temporary files, use a more secure standard temporary file routine, such as
mkstemp from POSIX.1-2001.

Also, when creating temporary files with routines that allow flags, such as mkostemp, use
the exclusion flag O_EXCL to avoid race conditions.

Examples

Temp File Created With tempnam
#define _BSD_SOURCE
#define _XOPEN_SOURCE
#define _GNU_SOURCE

 Use of non-secure temporary file

3-579

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int test_temp()
{
 char tpl[] = "abcXXXXXX";
 char suff_tpl[] = "abcXXXXXXsuff";
 char *filename = NULL;
 int fd;

 filename = tempnam("/var/tmp", "foo_");

 if (filename != NULL)
 {
 printf("generated tmp name (%s) in (%s:%s:%s)\n",
 filename, getenv("TMPDIR") ? getenv("TMPDIR") : "$TMPDIR",
 "/var/tmp", P_tmpdir);

 fd = open(filename, O_CREAT, S_IRWXU|S_IRUSR);
 if (fd != -1)
 {
 close(fd);
 unlink(filename);
 return 1;
 }
 }
 return 0;
}

In this example, Bug Finder flags open because it tries to use an unsecure temporary file.
The file is opened without exclusive privileges. An attacker can access the file causing
various risks on page 3-579.

Correction — Add O_EXCL Flag

One possible correction is to add the O_EXCL flag when you open the temporary file.

#define _BSD_SOURCE
#define _XOPEN_SOURCE
#define _GNU_SOURCE

3 Defects

3-580

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int test_temp()
{
 char tpl[] = "abcXXXXXX";
 char suff_tpl[] = "abcXXXXXXsuff";
 char *filename = NULL;
 int fd;

 filename = tempnam("/var/tmp", "foo_");

 if (filename != NULL)
 {
 printf("generated tmp name (%s) in (%s:%s:%s)\n",
 filename, getenv("TMPDIR") ? getenv("TMPDIR") : "$TMPDIR",
 "/var/tmp", P_tmpdir);

 fd = open(filename, O_CREAT|O_EXCL, S_IRWXU|S_IRUSR);
 if (fd != -1)
 {
 close(fd);
 unlink(filename);
 return 1;
 }
 }
 return 0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: NON_SECURE_TEMP_FILE
Impact: High
CWE ID: 377, 922

 Use of non-secure temporary file

3-581

https://cwe.mitre.org/data/definitions/377.html
https://cwe.mitre.org/data/definitions/922.html

See Also
Data race | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-582

Null pointer
NULL pointer dereferenced

Description
Null pointer occurs when you use a pointer with a value of NULL as if it points to a valid
memory location.

Risk
Dereferencing a null pointer is undefined behavior. In most implementations, the
dereference can cause your program to crash.

Fix
Check a pointer for NULL before dereference.

If the issue occurs despite an earlier check for NULL, look for intermediate events
between the check and the subsequent dereference. Often the result details show a
sequence of events that led to the defect. You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using
right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

See examples of fixes below.

Examples

Null pointer error
#include <stdlib.h>

int FindMax(int *arr, int Size)
{

 Null pointer

3-583

 int* p=NULL;

 *p=arr[0];
 /* Defect: Null pointer dereference */

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

The pointer p is initialized with value of NULL. However, when the value arr[0] is
written to *p, p is assumed to point to a valid memory location.

Correction — Assign Address to Null Pointer Before Dereference

One possible correction is to initialize p with a valid memory address before dereference.

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 /* Fix: Assign address to null pointer */
 int* p=&arr[0];

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: NULL_PTR

3 Defects

3-584

Impact: High
CWE ID: 476, 690

See Also
Arithmetic operation with NULL pointer | Find defects (-checkers) |
Non-initialized pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Null pointer

3-585

https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/690.html

Arithmetic operation with NULL pointer
Arithmetic operation performed on NULL pointer

Description
Arithmetic operation with NULL pointer occurs when an arithmetic operation
involves a pointer whose value is NULL.

Risk
Performing pointer arithmetic on a null pointer and dereferencing the resulting pointer is
undefined behavior. In most implementations, the dereference can cause your program to
crash.

Fix
Check a pointer for NULL before arithmetic operations on the pointer.

If the issue occurs despite an earlier check for NULL, look for intermediate events
between the check and the subsequent dereference. Often the result details show a
sequence of events that led to the defect. You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using
right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

See examples of fixes below.

Examples

Arithmetic Operation with NULL Pointer Error
#include<stdlib.h>

int Check_Next_Value(int *loc, int val)

3 Defects

3-586

 {
 int *ptr = loc, found = 0;

 if (ptr==NULL)
 {
 ptr++;
 /* Defect: NULL pointer shifted */

 if (*ptr==val) found=1;
 }

 return(found);
 }

When ptr is a NULL pointer, the code enters the if statement body. Therefore, a NULL
pointer is shifted in the statement ptr++.

Correction — Avoid NULL Pointer Arithmetic

One possible correction is to perform the arithmetic operation when ptr is not NULL.

#include<stdlib.h>

int Check_Next_Value(int *loc, int val)
 {
 int *ptr = loc, found = 0;

 /* Fix: Perform operation when ptr is not NULL */
 if (ptr!=NULL)
 {
 ptr++;

 if (*ptr==val) found=1;
 }

 return(found);
 }

Check Information
Group: Static memory
Language: C | C++
Default: Off

 Arithmetic operation with NULL pointer

3-587

Command-Line Syntax: NULL_PTR_ARITH
Impact: Low

See Also
Find defects (-checkers) | Null pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-588

Wrong allocated object size for cast
Allocated memory does not match destination pointer

Description
Wrong allocated object size for cast occurs during pointer conversion when the
pointer’s address is misaligned. If a pointer is converted to a different pointer type, the
size of the allocated memory must be a multiple of the size of the destination pointer.

Risk
Dereferencing a misaligned pointer has undefined behavior and can cause your program
to crash.

Fix
Suppose you convert a pointer ptr1 to ptr2. If ptr1 points to a buffer of N bytes and
ptr2 is a type * pointer where sizeof(type) is n bytes, make sure that N is an
integer multiple of n.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Dynamic Allocation of Pointers
#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(13);
 long *dest;

 Wrong allocated object size for cast

3-589

 dest = (long*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to a long*. The
dynamically allocated memory of ptr, 13 bytes, is not a multiple of the size of dest, 4
bytes. This misalignment causes the Wrong allocated object size for cast defect.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the allocated memory to 12 instead of 13.

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(12);
 long *dest;

 dest = (long*)ptr;
}

Static Allocation of Pointers
void static_non_align(void){
 char arr[13], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to an int* in line
6. ptr has a memory size of 13 bytes because the array arr has a size of 13 bytes. The
size of dest is 4 bytes, which is not a multiple of 13. This misalignment causes the
Wrong allocated object size for cast defect.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the size of the array arr to a multiple of 4.

void static_non_align(void){
 char arr[12], *ptr;

3 Defects

3-590

 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr;
}

Allocation with a Function
#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(13); //defect
 dest2 = (char*)my_alloc(13); //not a defect
}

In this example, the software raises a defect on the conversion of the pointer returned by
my_alloc(13) to an int* in line 11. my_alloc(13) returns a pointer with a
dynamically allocated size of 13 bytes. The size of dest1 is 4 bytes, which is not a divisor
of 13. This misalignment causes the Wrong allocated object size for cast defect. In line
12, the same function call, my_alloc(13), does not call a defect for the conversion to
dest2 because the size of char*, 1 byte, a divisor of 13.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the argument for my_alloc to a multiple of
4.

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;

 Wrong allocated object size for cast

3-591

}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(12);
 dest2 = (char*)my_alloc(13);
}

Check Information
Group: Static Memory
Language: C | C++
Default: Off
Command-Line Syntax: OBJECT_SIZE_MISMATCH
Impact: High
CWE ID: 704

See Also
Find defects (-checkers) | Unreliable cast of pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-592

https://cwe.mitre.org/data/definitions/704.html

Object slicing
Derived class object passed by value to function with base class parameter

Description
Object slicing occurs when you pass a derived class object by value to a function, but
the function expects a base class object as parameter.

Risk
If you pass a derived class object by value to a function, you expect the derived class copy
constructor to be called. If the function expects a base class object as parameter:

1 The base class copy constructor is called.
2 In the function body, the parameter is considered as a base class object.

In C++, virtual methods of a class are resolved at run time according to the actual type
of the object. Because of object slicing, an incorrect implementation of a virtual
method can be called. For instance, the base class contains a virtual method and the
derived class contains an implementation of that method. When you call the virtual
method from the function body, the base class method is called, even though you pass a
derived class object to the function.

Fix
One possible fix is to pass the object by reference or pointer. Passing by reference or
pointer does not cause invocation of copy constructors. If you do not want the object to be
modified, use a const qualifier with your function parameter.

Another possible fix is to overload the function with another function that accepts the
derived class object as parameter.

 Object slicing

3-593

Examples

Function Call Causing Object Slicing
#include <iostream>

class Base {
public:
 explicit Base(int b) {
 _b = b;
 }
 virtual ~Base() {}
 virtual int update() const;
protected:
 int _b;
};

class Derived: public Base {
public:
 explicit Derived(int b):Base(b) {}
 int update() const;
};

//Class methods definition

int Base::update() const {
 return (_b + 1);
}

int Derived::update() const {
 return (_b -1);
}

//Other function definitions
void funcPassByValue(const Base bObj) {
 std::cout << "Updated _b=" << bObj.update() << std::endl;
}

int main() {
 Derived dObj(0);
 funcPassByValue(dObj); //Function call slices object

3 Defects

3-594

 return 0;
 }

In this example, the call funcPassByValue(dObj) results in the output Updated _b=1
instead of the expected Updated _b=-1. Because funcPassByValue expects a Base
object parameter, it calls the Base class copy constructor.

Therefore, even though you pass the Derived object dObj, the function
funcPassByValue treats its parameter b as a Base object. It calls Base::update()
instead of Derived::update().

Correction — Pass Object by Reference or Pointer

One possible correction is to pass the Derived object dObj by reference or by pointer. In
the following, corrected example, funcPassByReference and funcPassByPointer
have the same objective as funcPassByValue in the preceding example. However,
funcPassByReference expects a reference to a Base object and funcPassByPointer
expects a pointer to a Base object.

Passing the Derived object d by a pointer or by reference does not slice the object. The
calls funcPassByReference(dObj) and funcPassByPointer(&dObj) produce the
expected result Updated _b=-1.

#include <iostream>

class Base {
public:
 explicit Base(int b) {
 _b = b;
 }
 virtual ~Base() {}
 virtual int update() const;
protected:
 int _b;
};

class Derived: public Base {
public:
 explicit Derived(int b):Base(b) {}
 int update() const;
};

//Class methods definition

 Object slicing

3-595

int Base::update() const {
 return (_b + 1);
}

int Derived::update() const {
 return (_b -1);
}

//Other function definitions
void funcPassByReference(const Base& bRef) {
 std::cout << "Updated _b=" << bRef.update() << std::endl;
}

void funcPassByPointer(const Base* bPtr) {
 std::cout << "Updated _b=" << bPtr->update() << std::endl;
}

int main() {
 Derived dObj(0);
 funcPassByReference(dObj); //Function call does not slice object
 funcPassByPointer(&dObj); //Function call does not slice object
 return 0;
 }

Note If you pass by value, because a copy of the object is made, the original object is not
modified. Passing by reference or by pointer makes the object vulnerable to modification.
If you are concerned about your original object being modified, add a const qualifier to
your function parameter, as in the preceding example.

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: OBJECT_SLICING
Impact: High

3 Defects

3-596

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Object slicing

3-597

Use of obsolete standard function
Obsolete routines can cause security vulnerabilities and portability issues

Description
Use of obsolete standard function detects calls to standard function routines that are
considered legacy, removed, deprecated, or obsolete by C/C++ coding standards.

Obsolete Function Standards Risk Replacement
Function

asctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

asctime_r Deprecated in POSIX.1-2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

bcmp Deprecated in 4.3BSD

Marked as legacy in
POSIX.1-2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcmp

bcopy Deprecated in 4.3BSD

Marked as legacy in
POSIX.1-2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcpy or
memmove

brk and sbrk Marked as legacy in SUSv2 and
POSIX.1-2001.

 malloc

bsd_signal Removed in POSIX.1-2008 sigaction
bzero Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

 memset

ctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

3 Defects

3-598

Obsolete Function Standards Risk Replacement
Function

ctime_r Deprecated in POSIX.1-2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

cuserid Removed in POSIX.1-2001. Not reentrant. Precise
functionality not
standardized causing
portability issues.

getpwuid

ecvt and fcvt Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008

Not reentrant snprintf

ecvt_r and fcvt_r Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008

 snprintf

ftime Removed in POSIX.1-2008 time,
gettimeofday,
clock_gettime

gamma, gammaf,
gammal

Function not specified in any
standard because of historical
variations

Portability issues. tgamma, lgamma

gcvt Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 snprintf

getcontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

getdtablesize BSD API function not included
in POSIX.1-2001

Portability issues. sysconf(_SC_OP
EN_MAX)

gethostbyaddr Removed in POSIX.1-2008 Not reentrant getaddrinfo
gethostbyname Removed in POSIX.1-2008 Not reentrant getnameinfo
getpagesize BSD API function not included

in POSIX.1-2001
Portability issues. sysconf(_SC_PA

GESIZE)
getpass Removed in POSIX.1-2001. Not reentrant. getpwuid
getw Not present in POSIX.1-2001. fread

 Use of obsolete standard function

3-599

Obsolete Function Standards Risk Replacement
Function

getwd Marked legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 getcwd

index Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 strchr

makecontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

memalign Appears in SunOS 4.1.3. Not in
4.4 BSD or POSIX.1-2001

 posix_memalign

mktemp Removed in POSIX.1-2008. Generated names are
predictable and can
cause a race condition.

mkstemp removes
race risk

pthread_attr_
getstackaddr and
pthread_attr_
setstackaddr

 Ambiguities in the
specification of the
stackaddr attribute
cause portability
issues

pthread_attr_
getstack and
pthread_attr_
setstack

putw Not present in POSIX.1-2001. Portability issues. fwrite
qecvt and qfcvt Marked as legacy in

POSIX.1-2001, removed in
POSIX.1-2008

 snprintf

qecvt_r and
qfcvt_r

Marked as legacy in
POSIX.1-2001, removed in
POSIX.1-2008

 snprintf

rand_r Marked as obsolete in
POSIX.1-2008

re_comp BSD API function Portability issues regcomp
re_exes BSD API function Portability issues regexec
rindex Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

 strrchr

3 Defects

3-600

Obsolete Function Standards Risk Replacement
Function

scalb Removed in POSIX.1-2008 scalbln,
scalblnf, or
scalblnl

sigblock 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigmask 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigsetmask 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigstack Interface is obsolete and not
implemented on most
platforms.

Portability issues. sigaltstack

sigvec 4.3BSD signal API whose origin
is unclear

 sigaction

swapcontext Removed in POSIX.1-2008 Portability issues. Use POSIX threads.
tmpnam and
tmpnam_r

Marked as obsolete in
POSIX.1-2008.

This function
generates a different
string each time it is
called, up to
TMP_MAX times. If it
is called more than
TMP_MAX times, the
behavior is
implementation-
defined.

mkstemp, tmpfile

ttyslot Removed in POSIX.1-2001.
ualarm Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

Errors are under-
specified

setitimer or
POSIX
timer_create

usleep Removed in POSIX.1-2008. nanosleep
utime SVr4, POSIX.1-2001.

POSIX.1-2008 marks as
obsolete.

 Use of obsolete standard function

3-601

Obsolete Function Standards Risk Replacement
Function

valloc Marked as obsolete in 4.3BSD.

Marked as legacy in SUSv2.

Removed from POSIX.1-2001

 posix_memalign

vfork Removed from POSIX.1-2008 Under-specified in
previous standards.

fork

wcswcs This function was not included
in the final ISO/IEC 9899:1990/
Amendment 1:1995 (E).

 wcsstr

WinExec WinAPI provides this function
only for 16-bit Windows
compatibility.

 CreateProcess

LoadModule WinAPI provides this function
only for 16-bit Windows
compatibility.

 CreateProcess

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

3 Defects

3-602

Examples

Printing Out Time
#include <stdio.h>
#include <time.h>

void timecheck_bad(int argc, char *argv[])
{
 time_t ticks;

 ticks = time(NULL);
 printf("%.24s\r\n", ctime(&ticks));
}

In this example, the function ctime formats the current time and prints it out. However,
ctime was removed after C99 because it does not work on multithreaded programs.

Correction — Different Time Function

One possible correction is to use strftime instead because this function uses a set
buffer size.

#include <stdio.h>
#include <string.h>
#include <time.h>

void timecheck_good(int argc, char *argv[])
{
 char outBuff[1025];
 time_t ticks;
 struct tm * timeinfo;

 memset(outBuff, 0, sizeof(outBuff));

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime(outBuff,sizeof(outBuff),"%I:%M%p.",timeinfo);
 fprintf(stdout, outBuff);
}

 Use of obsolete standard function

3-603

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: OBSOLETE_STD_FUNC
Impact: Low
CWE ID: 474, 477

See Also
Use of dangerous standard function | Unsafe standard function | Invalid
use of standard library string routine | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-604

https://cwe.mitre.org/data/definitions/474.html
https://cwe.mitre.org/data/definitions/477.html

Incorrect use of offsetof in C++
Incorrect arguments to offsetof macro causes undefined behavior

Description
Incorrect use of offsetof in C++ occurs when you pass arguments to the offsetof
macro for which the behavior of the macro is not defined.

The offsetof macro:

offsetof(classType, aMember)

returns the offset in bytes of the data member aMember from the beginning of an object
of type classType. For use in offsetof, classType and aMember have certain
restrictions:

• classType must be a standard layout class.

For instance, it must not have virtual member functions. For more information on
the requirements for a standard layout class, see C++ named requirements:
StandardLayoutType.

• aMember must not be static.
• aMember must not be a member function.

The checker flags uses of the offsetof macro where the arguments violate one or more
of these restrictions.

Risk
Violating the restrictions on the arguments of the offsetof macro leads to undefined
behavior.

Fix
Use the offsetof macro only on nonstatic data members of a standard layout class.

 Incorrect use of offsetof in C++

3-605

https://en.cppreference.com/w/cpp/named_req/StandardLayoutType
https://en.cppreference.com/w/cpp/named_req/StandardLayoutType

The result details state which restriction on the offsetof macro is violated. Fix the
violation.

Examples

Use of offsetof Macro with Nonstandard Layout Class
#include <cstddef>

class myClass {
 int privateData;
 public:
 int publicData;
};

void func() {
 size_t off = offsetof(myClass, publicData);
 // ...
}

In this example, the class myClass has two data members with different access control,
one private and the other public. Therefore, the class does not satisfy the requirements of
a standard layout class and cannot be used with the offsetof macro.

Correction — Use Uniform Access Control for All Data Members

If the use of offsetof is important for the application, make sure that the first argument
is a class with a standard layout. For instance, see if you can work around the need for a
public data member.

#include <cstddef>

class myClass {
 int privateData;
 int publicData;
 public:
 int getpublicData(void) { return publicData;}
};

void func() {
 size_t off = offsetof(myClass, publicData);

3 Defects

3-606

 // ...
}

Result Information
Group: Programming
Language: C++
Default: On
Command-Line Syntax: OFFSETOF_MISUSE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019a

 Incorrect use of offsetof in C++

3-607

Possibly unintended evaluation of
expression because of operator precedence
rules
Operator precedence rules cause unexpected evaluation order in arithmetic expression

Description
Possibly unintended evaluation of expression because of operator precedence
rules occurs when an arithmetic expression result is possibly unintended because
operator precedence rules dictate an evaluation order that you do not expect.

The defect highlights expressions of the form x op_1 y op_2 z. Here, op_1 and op_2
are operator combinations that commonly induce this error. For instance, x == y | z.

The checker does not flag all operator combinations. For instance, x == y || z is not
flagged because you most likely intended to perform a logical OR between x == y and z.
Specifically, the checker flags these combinations:

• && and ||: For instance, x || y && z or x && y || z.
• Assignment and bitwise operations: For instance, x = y | z.
• Assignment and comparison operations: For instance, x = y != z or x = y > z.
• Comparison operations: For instance, x > y > z (except when one of the

comparisons is an equality x == y > z).
• Shift and numerical operation: For instance, x << y + 2.
• Pointer dereference and arithmetic: For instance, *p++.

Risk
The defect can cause the following issues:

• If you or another code reviewer reviews the code, the intended order of evaluation is
not immediately clear.

• It is possible that the result of the evaluation does not meet your expectations. For
instance:

3 Defects

3-608

• In the operation *p++, it is possible that you expect the dereferenced value to be
incremented. However, the pointer p is incremented before the dereference.

• In the operation (x == y | z), it is possible that you expect x to be compared
with y | z. However, the == operation happens before the | operation.

Fix
See if the order of evaluation is what you intend. If not, apply parentheses to implement
the evaluation order that you want.

For better readability of your code, it is good practice to apply parenthesis to implement
an evaluation order even when operator precedence rules impose that order.

Examples

Expressions with Possibly Unintended Evaluation Order
int test(int a, int b, int c) {
 return(a & b == c);
}

In this example, the == operation happens first, followed by the & operation. If you
intended the reverse order of operations, the result is not what you expect.

Correction — Parenthesis For Intended Order

One possible correction is to apply parenthesis to implement the intended evaluation
order.

int test(int a, int b, int c) {
 return((a & b) == c);
}

Result Information
Group: Programming
Language: C | C++
Default: On

 Possibly unintended evaluation of expression because of operator precedence rules

3-609

Command-Line Syntax: OPERATOR_PRECEDENCE
Impact: High
CWE ID: 783

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

External Websites
C++ Operator Precedence

Introduced in R2015b

3 Defects

3-610

https://cwe.mitre.org/data/definitions/783.html
http://en.cppreference.com/w/cpp/language/operator_precedence

Invalid use of standard library routine
Wrong arguments to standard library function

Description
Invalid use of standard library routine occurs when you use invalid arguments with a
function from the standard library. This defect picks up errors related to other functions
not covered by float, integer, memory, or string standard library routines.

Risk
Invalid arguments to a standard library function result in undefined behavior.

Fix
The fix depends on the root cause of the defect. For instance, the argument to a printf
function can be NULL because a pointer was initialized with NULL and the initialization
value was not overwritten along a specific execution path.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Calling printf Without a String
#include <stdio.h>
#include <stdlib.h>

void print_null(void) {

 printf(NULL);
}

 Invalid use of standard library routine

3-611

The function printf takes only string input arguments or format specifiers. In this
function, the input value is NULL, which is not a valid string.

Correction — Use Compatible Input Arguments

One possible correction is to change the input arguments to fit the requirements of the
standard library routine. In this example, the input argument was changed to a character.

#include <stdio.h>

void print_null(void) {
 char zero_val = '0';
 printf((const char*)zero_val);
}

Check Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: OTHER_STD_LIB
Impact: High
CWE ID: 227, 690

See Also
Find defects (-checkers) | Invalid use of standard library floating
point routine | Invalid use of standard library integer routine |
Invalid use of standard library memory routine | Invalid use of
standard library string routine

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-612

https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/690.html

Array access out of bounds
Array index outside bounds during array access

Description
Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.

Risk
Accessing an array outside its bounds is undefined behavior. You can read an
unpredictable value or try to access a location that is not allowed and encounter a
segmentation fault.

Fix
The fix depends on the root cause of the defect. For instance, you accessed an array
inside a loop and one of these situations happened:

• The upper bound of the loop is too large.
• You used an array index that is the same as the loop index instead of being one less

than the loop index.

To fix the issue, you have to modify the loop bound or the array index.

Another reason why an array index can exceed array bounds is a prior conversion from
signed to unsigned integers. The conversion can result in a wrap around of the index
value, eventually causing the array index to exceed the array bounds.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

 Array access out of bounds

3-613

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples
Array Access Out of Bounds Error
#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of
[0,1,2,...,9]. The variable i has a value 10 when it comes out of the for-loop.
Therefore, the printf statement attempts to access fib[10] through i.

Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)

3 Defects

3-614

 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: OUT_BOUND_ARRAY
Impact: High
CWE ID: 119, 131, 466

See Also
Find defects (-checkers) | Pointer access out of bounds

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Array access out of bounds

3-615

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/466.html

Pointer access out of bounds
Pointer dereferenced outside its bounds

Description
Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer.
You cannot access memory beyond that block using the pointer.

Risk
Dereferencing a pointer outside its bounds is undefined behavior. You can read an
unpredictable value or try to access a location that is not allowed and encounter a
segmentation fault.

Fix
The fix depends on the root cause of the defect. For instance, you dereferenced a pointer
inside a loop and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the

pointer increment.

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

3 Defects

3-616

Examples

Pointer access out of bounds error
int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int).
In the for-loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points
outside the memory block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

 Pointer access out of bounds

3-617

After the last increment, even though ptr points outside the memory block assigned to it,
it is not dereferenced more.

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: OUT_BOUND_PTR
Impact: High
CWE ID: 119, 131, 188, 466, 823

See Also
Array access out of bounds | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-618

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/188.html
https://cwe.mitre.org/data/definitions/466.html
https://cwe.mitre.org/data/definitions/823.html

Overlapping assignment
Memory overlap between left and right sides of an assignment

Description
Overlapping assignment occurs when there is a memory overlap between the left and
right sides of an assignment. For instance, a variable is assigned to itself or one member
of a union is assigned to another.

Risk
If the left and right sides of an assignment have memory overlap, the behavior is either
redundant or undefined. For instance:

• Self-assignment such as x=(int)(long)x; is redundant unless x is volatile-
qualified.

• Assignment of one union member to another causes undefined behavior.

For instance, in the following code:

• The result of the assignment u1.a = u1.b is undefined because u1.b is not
initialized.

• The result of the assignment u2.b = u2.a depends on the alignment and
endianness of the implementation. It is not defined by C standards.

union {
 char a;
 int b;
}u1={'a'}, u2={'a'}; //'u1.a' and 'u2.a' are initialized

u1.a = u1.b;
u2.b = u2.a;

Fix
Avoid assignment between two variables that have overlapping memory.

 Overlapping assignment

3-619

Examples

Assignment of Union Members
#include <string.h>

union Data {
 int i;
 float f;
};

int main() {
 union Data data;
 data.i = 0;
 data.f = data.i;

 return 0;
}

In this example, the variables data.i and data.f are part of the same union and are
stored in the same location. Therefore, part of their memory storage overlaps.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: OVERLAPPING_ASSIGN
Impact: Low
CWE ID: 665

See Also
Copy of overlapping memory | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

3 Defects

3-620

https://cwe.mitre.org/data/definitions/665.html

Introduced in R2015b

 Overlapping assignment

3-621

Copy of overlapping memory
Source and destination arguments of a copy function have overlapping memory

Description
Copy of overlapping memory occurs when there is a memory overlap between the
source and destination argument of a copy function such as memcpy or strcpy. For
instance, the source and destination arguments of strcpy are pointers to different
elements in the same string.

Risk
If there is memory overlap between the source and destination arguments of copy
functions, according to C standards, the behavior is undefined.

Fix
Determine if the memory overlap is what you want. If so, find an alternative function. For
instance:

• If you are using memcpy to copy values from one memory location to another, use
memmove instead of memcpy.

• If you are using strcpy to copy one string to another, use memmove instead of
strcpy, as follows:

s = strlen(source);
memmove(destination, source, s + 1);

strlen determines the string length without the null terminator. Therefore, you must
move s+1 bytes instead of s bytes.

3 Defects

3-622

Examples

Overlapping Copy
#include <string.h>

char str[] = {"ABCDEFGH"};

void my_copy() {
 strcpy(&str[0],(const char*)&str[2]);
}

In this example, because the source and destination argument are pointers to the same
string str, there is memory overlap between their allowed buffers.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: OVERLAPPING_COPY
Impact: Medium
CWE ID: 475, 628, 687

See Also
Find defects (-checkers) | Overlapping assignment

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Copy of overlapping memory

3-623

https://cwe.mitre.org/data/definitions/475.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/687.html

Information leak via structure padding
Padding bytes can contain sensitive information

Description
Information leak via structure padding occurs when you do not initialize the padding
data of a structure or union before passing it across a trust boundary. A compiler adds
padding bytes to the structure or union to ensure a proper memory alignment of its
members. The bit-fields of the storage units can also have padding bits.

Information leak via structure padding raises a defect when:

• You call an untrusted function with structure or union pointer type argument
containing uninitialized padding data.

All external functions are considered untrusted.
• You copy or assign a structure or union containing uninitialized padding data to an

untrusted object.

All external structure or union objects, the output parameters of all externally linked
functions, and the return pointer of all external functions are considered untrusted
objects.

Risk
The padding bytes of the passed structure or union might contain sensitive information
that an untrusted source can access.

Fix
• Prevent the addition of padding bytes for memory alignment by using the pack

pragma or attribute supported by your compiler.
• Explicitly declare and initialize padding bytes as fields within the structure or union.
• Explicitly declare and initialize bit-fields corresponding to padding bits, even if you use

the pack pragma or attribute supported by your compiler.

3 Defects

3-624

Examples

Structure with Padding Bytes Passed to External Function
#include <stddef.h>
#include <stdlib.h>
#include <string.h>

typedef struct s_padding
{
 /* Padding bytes may be introduced between
 * 'char c' and 'int i'
 */
 char c;
 int i;

/*Padding bits may be introduced around the bit-fields
* even if you use "#pragma pack" (Windows) or
* __attribute__((__packed__)) (GNU)*/

 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* External function */
extern void copy_object(void *out, void *in, size_t s);

void func(void *out_buffer)
{
/*Padding bytes not initialized*/

 S_Padding s = {'A', 10, 1, 3, {}};
/*Structure passed to external function*/

 copy_object((void *)out_buffer, (void *)&s, sizeof(s));
}

void main(void)
{
 S_Padding s1;

 Information leak via structure padding

3-625

 func(&s1);
}

In this example, structure s1 can have padding bytes between the char c and int i
members. The bit-fields of the storage units of the structure can also contain padding bits.
The content of the padding bytes and bits is accessible to an untrusted source when s1 is
passed to func.

Correction — Use pack Pragma to Prevent Padding Bytes

One possible correction in Microsoft Visual Studiois to use #pragma pack() to prevent
padding bytes between the structure members. To prevent padding bits in the bit-fields of
s1, explicitly declare and initialize the bit-fields even if you use #pragma pack().

 #include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>

#define CHAR_BIT 8

#pragma pack(push, 1)

typedef struct s_padding
{
/*No Padding bytes when you use "#pragma pack" (Windows) or
* __attribute__((__packed__)) (GNU)*/
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
/* Padding bits explicitely declared */
 unsigned int bf_filler : sizeof(unsigned) * CHAR_BIT - 3;
 unsigned char buffer[20];
}

 S_Padding;

#pragma pack(pop)

/* External function */
extern void copy_object(void *out, void *in, size_t s);

3 Defects

3-626

void func(void *out_buffer)
{
 S_Padding s = {'A', 10, 1, 3, 0 /* padding bits */, {}};
 copy_object((void *)out_buffer, (void *)&s, sizeof(s));
}

void main(void)
{
 S_Padding s1;
 func(&s1);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: PADDING_INFO_LEAK
Impact: Low

See Also
Find defects (-checkers) | Invalid assumptions about memory
organization | Large pass-by-value argument | Memory comparison of
padding data | Sensitive heap memory not cleared before release |
Uncleared sensitive data in stack | Use of memset with size argument
zero

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Information leak via structure padding

3-627

Partial override of overloaded virtual
functions
Class overrides fraction of inherited virtual functions with a given name

Description
Partial override of overloaded virtual functions occurs when:

• A base class has multiple virtual methods with the same name but different
signatures (overloading).

• A class derived from the base class overrides at least one of those virtual methods,
but not all of them.

Risk
The virtual methods that the derived class does not override are hidden. You cannot
call those methods using an object of the derived class.

Fix
See if the overloads in the base class are required. If they are needed, possible solutions
include:

• In your derived class, if you override one virtual method, override all virtual
methods from the base class with the same name as that method.

• Otherwise, add the line using Base_class_name::method_name to the derived
class declaration. In this way, you can call the base class methods using an object of
the derived class.

3 Defects

3-628

Examples

Partial Override
class Base {
public:
 explicit Base(int b);
 virtual ~Base() {};
 virtual void set() {
 _b = (int)0;
 };
 virtual void set(short i) {
 _b = (int)i;
 };
 virtual void set(int i) {
 _b = (int)i;
 };
 virtual void set(long i) {
 _b = (int)i;
 };
 virtual void set(float i) {
 _b = (int)i;
 };
 virtual void set(double i) {
 _b = (int)i;
 };
private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(int b, int d): Base(b), _d(d) {};
 void set(int i) { Base::set(i); _d = (int)i; };
 private:
 int _d;
};

In this example, the class Derived overrides the function set that takes an int
argument. It does not override other functions that have the same name set but take
arguments of other types.

 Partial override of overloaded virtual functions

3-629

The defect appears on the derived class name in the derived class definition. To find
which base class method is overridden:

1 Navigate to the base class definition. On the Source pane, right-click the base class
name and select Go To Definition.

2 In the base class definition, identify the method that has the same name and
signature as a derived class method name.

Correction — Unhide Base Class Method

One possible correction is add the line using Base::set to the Derived class
declaration.

class Base {
public:
 explicit Base(int b);
 virtual ~Base() {};
 virtual void set() {
 _b = (int)0;
 };
 virtual void set(short i) {
 _b = (int)i;
 };
 virtual void set(int i) {
 _b = (int)i;
 };
 virtual void set(long i) {
 _b = (int)i;
 };
 virtual void set(float i) {
 _b = (int)i;
 };
 virtual void set(double i) {
 _b = (int)i;
 };
private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(int b, int d): Base(b), _d(d) {};
 using Base::set;
 void set(int i) { Base::set(i); _d = (int)i; };

3 Defects

3-630

 private:
 int _d;
};

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: PARTIAL_OVERRIDE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Partial override of overloaded virtual functions

3-631

Partially accessed array
Array partly read or written before end of scope

Description
Partially accessed array occurs when an array is partially read or written before the
end of array scope. For arrays local to a function, the end of scope occurs when the
function ends.

Risk
A partially accessed array often indicates an omission in coding. For instance, when
sorting an array using a loop, you used a number of loop iterations such that one array
element is never read. The implementation can result in an array that is not fully sorted.

Fix
The fix depends on the root cause of the defect. For instance, if the root cause is a loop
with an incorrect number of iterations, change the loop bound or add a step after the loop
to access the unread or unwritten elements.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Partially accessed array error

int Calc_Sum(void)
{
 int tab[5]={0,1,2,3,4},sum=0;

3 Defects

3-632

 /* Defect: tab[4] is not read */

 for (int i=0; i<4;i++) sum+=tab[i];

 return(sum);

 }

The array tab is only partially read before end of function Calc_Sum. While calculating
sum, tab[4] is not included.

Correction — Access Every Array Element

One possible correction is to read every element in the array tab.

int Calc_Sum(void)
{
 int tab[5]={0,1,2,3,4},sum=0;

 /* Fix: Include tab[4] in calculating sum */
 for (int i=0; i<5;i++) sum+=tab[i];

 return(sum);

 }

Check Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: PARTIALLY_ACCESSED_ARRAY
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”

 Partially accessed array

3-633

“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-634

Operator new not overloaded for possibly
overaligned class
Allocated storage might be smaller than object alignment requirement

Description
Operator new not overloaded for possibly overaligned class occurs when you do not
adequately overload operator new/new[] and you use this operator to create an object
with an alignment requirement specified with alignas. The checker raises a defect for
these versions of throwing and non-throwing operator new/new[].

• void* operator new(std::size_t size)
• void* operator new(std::size_t size, const std::nothrow_t&)
• void* operator new[](std::size_t size)
• void* operator new[](std::size_t size, const std::nothrow_t&)

The use of alignas indicates that you do not expect the default operator new/new[] to
satisfy the alignment requirement or the object, and that the object is possibly over
aligned. A type is over aligned if you use alignas to make the alignment requirement of
the type larger than std::max_align_t. For instance, foo is over aligned in this code
snippet because its alignment requirement is 32 bytes, but std::max_align_t has an
alignment of 16 bytes in most implementations.

struct alignas(32) foo {
 char elems[32];
}

Operator new not overloaded for possibly overaligned class raises no defect if you
do not overload the operator new/new[] and you use version C++17 or later of the
Standard. The default operator new/new[] in C++17 or later supports over alignment by
passing the alignment requirement as an argument of type std::align_val_t, for
instance void* operator new(std::size_t size, std::align_val_t
alignment).

 Operator new not overloaded for possibly overaligned class

3-635

Risk
The default operator new/new[] allocates storage with the alignment requirement of
std::align_val_t at most. If you do not overload the operator when you create an
object with over aligned type, the resulting object may be misaligned. Accessing this
object might cause illegal access errors or abnormal program terminations.

Fix
If you use version C++14 or earlier of the Standard, pass the alignment requirement of
over aligned types to the operator new/new[] by overloading the operator.

Examples

Allocated Memory Is Smaller Than Alignment Requirement of
Type foo
#include <new>
#include <cstdlib>
#include <iostream>

struct alignas(64) foo {
 char elems[32];
};

foo* func()
{
 foo* bar = 0x0;
 try {
 bar = new foo ;
 } catch (...) { return nullptr; }
 delete bar;
}

In this example, structure foo is declared with an alignment requirement of 32 bytes.
When you use the default operator new to create object bar, the allocated memory for
bar is smaller than the alignment requirement of type foo and bar might be misaligned.

Correction — Define Overloaded Operator new to Handle Alignment Requirement
of Type foo

One possible correction, if you use C11 stdlib.h or POSIX-C malloc.h, is to define an
overloaded operator new that uses aligned_alloc() or posix_memalign() or to
obtain storage with the correct alignment.

3 Defects

3-636

#include <new>
#include <cstdlib>
#include <iostream>

struct alignas(64) foo {
 char elems[32];
 static void* operator new (size_t nbytes)
 {
 if (void* p =
 ::aligned_alloc(alignof(foo), nbytes)) {
 return p;
 }
 throw std::bad_alloc();
 }
 static void operator delete(void *p) {
 free(p);
 }
};

foo* func()
{
 foo* bar = 0x0;
 try {
 bar = new foo ;
 } catch (...) { return nullptr; }
 delete bar;
}

Result Information
Group: Object Oriented
Language: C++
Default: On
Command-Line Syntax: MISSING_OVERLOAD_NEW_FOR_ALIGNED_OBJ
Impact: Medium

See Also
Find defects (-checkers) | Missing overload of allocation or
deallocation function

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019b

 Operator new not overloaded for possibly overaligned class

3-637

Large pass-by-value argument
Large argument passed by value between functions

Description
Large pass-by-value argument occurs when a large input argument or return value is
passed between functions by its value.

Risk
Copy by value creates a copy of the argument in the function body. If the argument is
large, its copy uses up a substantial part of the stack space available to the function. The
copy can also increase the execution time significantly.

Special considerations for return values: In C code, when a function returns by value, the
return value is copied to the caller. Therefore, this defect appears on functions that have
large return values. In C++ code, if a function return value is of class type, under certain
conditions, the standard allows compilers to avoid copying the return value (C++98:
Section 12.8, Item 15; C++11: Section 12.8, Item 31). Most compilers do not perform a
copy in such cases. This behavior is called return value optimization. In such cases,
Polyspace Bug Finder does not produce this defect if a large object is returned by value.

Fix
For variables larger than 64 bytes, pass the value by pointer or by reference. For
structured variables, you can also refactor the variable type so that only some of the
members are copied.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

3 Defects

3-638

Examples

Large Function Argument
typedef struct s_userid {
 char name[2];
 int idnumber[100];
} userid;

char username(userid first) {
 return first.name[0];
}

The large structure, userid, is passed to the function username. Because userid is
larger than 64 bytes, this function produces a large pass-by-value defect.

Correction — Pass By Reference

One possible correction is to pass the argument by reference instead of by value. In this
corrected example, the pointer to a userid structure is passed instead of the actual
structure.

typedef struct s_userid {
 char name[2];
 int idnumber[100];
} userid;

char username(userid *first) {
 return (*first).name[0];
}

Large Function Return Value
#include <stdlib.h>

#define initialSize 4
#define idSize 100

typedef struct {
 char initials[initialSize];
 int id[idSize];
} userId;

 Large pass-by-value argument

3-639

userId* getAddress(void);
assignValues(char*, int*);

userId username(void) {
 userId * newId = getAddress();
 assignValues((*newId).initials, (*newId).id);
 return *newId;
}

In this example, the function username returns a large structure *newId by value. When
a function calls username, the value in *newId is copied to the caller.

Correction — Pass By Reference

One possible correction is to return the large structure by reference. In this corrected
example, the pointer to structure newId is returned from the function username.

#include <stdlib.h>

#define initialSize 4
#define idSize 100

typedef struct {
 char initials[initialSize];
 int id[idSize];
} userId;

userId* getAddress(void);
assignValues(char*, int*);

userId * username(void) {
 userId * newId = getAddress();
 assignValues((*newId).initials, (*newId).id);
 return newId;
}

Check Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: PASS_BY_VALUE

3 Defects

3-640

Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Large pass-by-value argument

3-641

Use of path manipulation function without
maximum sized buffer checking
Destination buffer of getwd or realpath is smaller than PATH_MAX bytes

Description
Use of path manipulation function without maximum-sized buffer checking occurs
when the destination argument of a path manipulation function such as realpath or
getwd has a buffer size less than PATH_MAX bytes.

Risk
A buffer smaller than PATH_MAX bytes can overflow but you cannot test the function
return value to determine if an overflow occurred. If an overflow occurs, following the
function call, the content of the buffer is undefined.

For instance, char *getwd(char *buf) copies an absolute path name of the current
folder to its argument. If the length of the absolute path name is greater than PATH_MAX
bytes, getwd returns NULL and the content of *buf is undefined. You can test the return
value of getwd for NULL to see if the function call succeeded.

However, if the allowed buffer for buf is less than PATH_MAX bytes, a failure can occur
for a smaller absolute path name. In this case, getwd does not return NULL even though a
failure occurred. Therefore, the allowed buffer for buf must be PATH_MAX bytes long.

Fix
Possible fixes are:

• Use a buffer size of PATH_MAX bytes. If you obtain the buffer from an unknown source,
before using the buffer as argument of getwd or realpath function, make sure that
the size is less than PATH_MAX bytes.

• Use a path manipulation function that allows you to specify a buffer size.

3 Defects

3-642

For instance, if you are using getwd to get the absolute path name of the current
folder, use char *getcwd(char *buf, size_t size); instead. The additional
argument size allows you to specify a size greater than or equal to PATH_MAX.

• Allow the function to allocate additional memory dynamically, if possible.

For instance, char *realpath(const char *path, char *resolved_path);
dynamically allocates memory if resolved_path is NULL. However, you have to
deallocate this memory later using the free function.

Examples

Possible Buffer Overflow in Use of getwd Function
#include <unistd.h>
#include <linux/limits.h>
#include <stdio.h>

void func(void) {
 char buf[PATH_MAX];
 if (getwd(buf+1)!= NULL) {
 printf("cwd is %s\n", buf);
 }
}

In this example, although the array buf has PATH_MAX bytes, the argument of getwd is
buf + 1, whose allowed buffer is less than PATH_MAX bytes.

Correction — Use Array of Size PATH_MAX Bytes

One possible correction is to use an array argument with size equal to PATH_MAX bytes.

#include <unistd.h>
#include <linux/limits.h>
#include <stdio.h>

void func(void) {
 char buf[PATH_MAX];
 if (getwd(buf)!= NULL) {
 printf("cwd is %s\n", buf);
 }
}

 Use of path manipulation function without maximum sized buffer checking

3-643

Result Information
Group: Static memory
Language: C | C++
Default: Off
Command-Line Syntax: PATH_BUFFER_OVERFLOW
Impact: High
CWE ID: 785

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-644

https://cwe.mitre.org/data/definitions/785.html

Vulnerable path manipulation
Path argument with /../, /abs/path/, or other unsecure elements

Description
Vulnerable path manipulation detects relative or absolute path traversals. If the path
traversal contains a tainted source, or you use the path to open/create files, Bug Finder
raises a defect.

Risk
Relative path elements, such as ".." can resolve to locations outside the intended folder.
Absolute path elements, such as "/abs/path" can also resolve to locations outside the
intended folder.

An attacker can use these types of path traversal elements to traverse to the rest of the
file system and access other files or folders.

Fix
Avoid vulnerable path traversal elements such as /../ and /abs/path/. Use fixed file
names and locations wherever possible.

Examples
Relative Path Traversal
include <stdio.h>
include <string.h>
include <wchar.h>
include <sys/types.h>
include <sys/stat.h>
include <fcntl.h>
include <unistd.h>
include <stdlib.h>

 Vulnerable path manipulation

3-645

define BASEPATH "/tmp/"
define FILENAME_MAX 512

static void Relative_Path_Traversal(void)
{
 char * data;
 char data_buf[FILENAME_MAX] = BASEPATH;
 char sub_buf[FILENAME_MAX];

 if (fgets(sub_buf, FILENAME_MAX, stdin) == NULL) exit (1);
 data = data_buf;
 strcat(data, sub_buf);

 FILE *file = NULL;
 file = fopen(data, "wb+");
 if (file != NULL) fclose(file);
}

int path_call(void){
 Relative_Path_Traversal();
}

This example opens a file from "/tmp/", but uses a relative path to the file. An external
user can manipulate this relative path when fopen opens the file.

Correction — Use Fixed File Name

One possible correction is to use a fixed file name instead of a relative path. This example
uses file.txt.

include <stdio.h>
include <string.h>
include <wchar.h>
include <sys/types.h>
include <sys/stat.h>
include <fcntl.h>
include <unistd.h>
include <stdlib.h>
define BASEPATH "/tmp/"
define FILENAME_MAX 512

static void Relative_Path_Traversal(void)
{
 char * data;
 char data_buf[FILENAME_MAX] = BASEPATH;

3 Defects

3-646

 data = data_buf;

 /* FIX: Use a fixed file name */
 strcat(data, "file.txt");
 FILE *file = NULL;
 file = fopen(data, "wb+");
 if (file != NULL) fclose(file);
}

int path_call(void){
 Relative_Path_Traversal();
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: PATH_TRAVERSAL
Impact: Low
CWE ID: 22, 23, 36

See Also
Use of path manipulation function without maximum sized buffer
checking | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Vulnerable path manipulation

3-647

https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/36.html

Preprocessor directive in macro argument
You use a preprocessor directive in the argument to a function-like macro

Description
Preprocessor directive in macro argument occurs when you use a preprocessor
directive in the argument to a function-like macro or a function that might be
implemented as a function-like macro.

For instance, a #ifdef statement occurs in the argument to a memcpy function. The
memcpy function might be implemented as a macro.

memcpy(dest, src,
 #ifdef PLATFORM1
 12
 #else
 24
 #endif
);

The checker flags similar usage in printf and assert, which can also be implemented
as macros.

Risk
During preprocessing, a function-like macro call is replaced by the macro body and the
parameters are replaced by the arguments to the macro call (argument substitution).
Suppose a macro min() is defined as follows.

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

When you call min(1,2), it is replaced by the body ((X) < (Y) ? (X) : (Y)). X and
Y are replaced by 1 and 2.

According to the C11 Standard (Sec. 6.10.3), if the list of arguments to a function-like
macro itself has preprocessing directives, the argument substitution during
preprocessing is undefined.

3 Defects

3-648

Fix
To ensure that the argument substitution happens in an unambiguous manner, use the
preprocessor directives outside the function-like macro.

For instance, to execute memcpy with different arguments based on a #ifdef directive,
call memcpy multiple times within the #ifdef directive branches.

#ifdef PLATFORM1
 memcpy(dest, src, 12);
#else
 memcpy(dest, src, 24);
#endif

Examples
Directives in Function-Like Macros
#include <stdio.h>

#define print(A) printf(#A)

void func(void) {
 print(
#ifdef SW
 "Message 1"
#else
 "Message 2"
#endif
);
}

In this example, the preprocessor directives #ifdef and #endif occur in the argument
to the function-like macro print().

Correction — Use Directives Outside Macro

One possible correction is to use the function-like macro multiple times in the branches of
the #ifdef directive.

#include <stdio.h>

 Preprocessor directive in macro argument

3-649

#define print(A) printf(#A)

void func(void) {
#ifdef SW
 print("Message 1");
#else
 print("Message 2");
#endif
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: PRE_DIRECTIVE_MACRO_ARG
Impact: Low

See Also
Find defects (-checkers) | MISRA C:2012 Rule 20.6

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

3 Defects

3-650

Universal character name from token
concatenation
You create a universal character name by joining tokens with ## operator

Description
Universal character name from token concatenation occurs when two preprocessing
tokens joined with a ## operator create a universal character name. A universal character
name begins with \u or \U followed by hexadecimal digits. It represents a character not
found in the basic character set.

For instance, you form the character \u0401 by joining two tokens:

#define assign(uc1, uc2, val) uc1##uc2 = val
...
assign(\u04, 01, 4);

Risk
The C11 Standard (Sec. 5.1.1.2) states that if a universal character name is formed by
token concatenation, the behavior is undefined.

Fix
Use the universal character name directly instead of producing it through token
concatenation.

Examples

Universal Character Name from Token Concatenation
#define assign(uc1, uc2, val) uc1##uc2 = val

int func(void) {

 Universal character name from token concatenation

3-651

 int \u0401 = 0;
 assign(\u04, 01, 4);
 return \u0401;
}

In this example, the assign macro, when expanded, joins the two tokens \u04 and 01 to
form the universal character name \u0401.

Correction — Use Universal Character Name Directly

One possible correction is to use the universal character name \u0401 directly. The
correction redefines the assign macro so that it does not join tokens.

#define assign(ucn, val) ucn = val

int func(void) {
 int \u0401 = 0;
 assign(\u0401, 4);
 return \u0401;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: PRE_UCNAME_JOIN_TOKENS
Impact: Low

See Also
Find defects (-checkers) | MISRA C:2012 Rule 20.10

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

3 Defects

3-652

Unreliable cast of pointer
Pointer implicitly cast to different data type

Description
Unreliable cast of pointer occurs when a pointer is implicitly cast to a data type
different from its declaration type. Such an implicit casting can take place, for instance,
when a pointer to data type char is assigned the address of an integer.

This defect applies only if the code language for the project is C.

Risk
Casting a pointer to data type different from its declaration type can result in issues such
as buffer overflow. If the cast is implicit, it can indicate a coding error.

Fix
Avoid implicit cast of a pointer to a data type different from its declaration type.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Unreliable cast of pointer error
 #include <string.h>

 void Copy_Integer_To_String()
 {
 int src[]={1,2,3,4,5,6,7,8,9,10};
 char buffer[]="Buffer_Text";

 Unreliable cast of pointer

3-653

 strcpy(buffer,src);
 /* Defect: Implicit cast of (int*) to (char*) */
 }

src is declared as an int* pointer. The strcpy statement, while copying to buffer,
implicitly casts src to char*.

Correction — Avoid Pointer Cast

One possible correction is to declare the pointer src with the same data type as buffer.

 #include <string.h>
 void Copy_Integer_To_String()
 {
 /* Fix: Declare src with same type as buffer */
 char *src[10]={"1","2","3","4","5","6","7","8","9","10"};
 char *buffer[10];

 for(int i=0;i<10;i++)
 buffer[i]="Buffer_Text";

 for(int i=0;i<10;i++)
 buffer[i]= src[i];
 }

Check Information
Group: Static memory
Language: C
Default: On
Command-Line Syntax: PTR_CAST
Impact: Medium
CWE ID: 135, 704, 843

See Also
Find defects (-checkers) | Unreliable cast of function pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

3 Defects

3-654

https://cwe.mitre.org/data/definitions/135.html
https://cwe.mitre.org/data/definitions/704.html
https://cwe.mitre.org/data/definitions/843.html

Introduced in R2013b

 Unreliable cast of pointer

3-655

Wrong type used in sizeof
sizeof argument does not match pointed type

Description
Wrong type used in sizeof occurs when both of the following conditions hold:

• You assign the address of a block of memory to a pointer, or transfer data between two
blocks of memory. The assignment or copy uses the sizeof operator.

For instance, you initialize a pointer using malloc(sizeof(type)) or copy data
between two addresses using memcpy(destination_ptr, source_ptr,
sizeof(type)).

• You use an incorrect type as argument of the sizeof operator. You use the pointer
type instead of the type that the pointer points to.

For instance, to initialize a type* pointer, you use malloc(sizeof(type*)) instead
of malloc(sizeof(type)).

Risk
Irrespective of what type stands for, the expression sizeof(type*) always returns a
fixed size. The size returned is the pointer size on your platform in bytes. The appearance
of sizeof(type*) often indicates an unintended usage. The error can cause allocation
of a memory block that is much smaller than what you need and lead to weaknesses such
as buffer overflows.

For instance, assume that structType is a structure with ten int variables. If you
initialize a structType* pointer using malloc(sizeof(structType*)) on a 32-bit
platform, the pointer is assigned a memory block of four bytes. However, to be allocated
completely for one structType variable, the structType* pointer must point to a
memory block of sizeof(structType) = 10 * sizeof(int) bytes. The required
size is much greater than the actual allocated size of four bytes.

3 Defects

3-656

Fix
To initialize a type* pointer, replace sizeof(type*) in your pointer initialization
expression with sizeof(type).

Examples

Allocate a Char Array With sizeof
#include <stdlib.h>

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char*) * 5);
 free(str);

}

In this example, memory is allocated for the character pointer str using a malloc of five
char pointers. However, str is a pointer to a character, not a pointer to a character
pointer. Therefore the sizeof argument, char*, is incorrect.

Correction — Match Pointer Type to sizeof Argument

One possible correction is to match the argument to the pointer type. In this example,
str is a character pointer, therefore the argument must also be a character.

#include <stdlib.h>

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char) * 5);
 free(str);

}

 Wrong type used in sizeof

3-657

Check Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: PTR_SIZEOF_MISMATCH
Impact: High
CWE ID: 467

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-658

https://cwe.mitre.org/data/definitions/467.html

Subtraction or comparison between pointers
to different arrays
Subtraction or comparison between pointers causes undefined behavior

Description
Subtraction or comparison between pointers to different arrays occurs when you
subtract or compare pointers that are null or that point to elements in different arrays.
The relational operators for the comparison are >, <, >=, and <=.

Risk
When you subtract two pointers to elements in the same array, the result is the difference
between the subscripts of the two array elements. Similarly, when you compare two
pointers to array elements, the result is the positions of the pointers relative to each
other. If the pointers are null or point to different arrays, a subtraction or comparison
operation is undefined. If you use the subtraction result as a buffer index, it can cause a
buffer overflow.

Fix
Before you subtract or use relational operators to compare pointers to array elements,
check that they are non-null and that they point to the same array.

Examples

Subtraction Between Pointers to Elements in Different Arrays
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

 Subtraction or comparison between pointers to different arrays

3-659

size_t func(void)
{
 int nums[SIZE20];
 int end;
 int *next_num_ptr = nums;
 size_t free_elements;
 /* Increment next_num_ptr as array fills */

 /* Subtraction operation is undefined unless array nums
 is adjacent to variable end in memory. */
 free_elements = &end - next_num_ptr;
 return free_elements;
}

In this example, the array nums is incrementally filled. Pointer subtraction is then used to
determine how many free elements remain. Unless end points to a memory location one
past the last element of nums, the subtraction operation is undefined.

Correction — Subtract Pointers to the Same Array

Subtract the pointer to the last element that was filled from the pointer to the last
element in the array.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

size_t func(void)
{
 int nums[SIZE20];
 int *next_num_ptr = nums;
 size_t free_elements;
 /* Increment next_num_ptr as array fills */

 /* Subtraction operation involves pointers to the same array. */
 free_elements = &(nums[SIZE20 - 1]) - next_num_ptr;

 return free_elements + 1;
}

3 Defects

3-660

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: PTR_TO_DIFF_ARRAY
Impact: High
CWE ID: 469

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

 Subtraction or comparison between pointers to different arrays

3-661

https://cwe.mitre.org/data/definitions/469.html

Use of automatic variable as putenv-family
function argument
putenv-family function argument not accessible outside its scope

Description
Use of automatic variable as putenv-family function argument occurs when the
argument of a putenv-family function is a local variable with automatic duration.

Risk
The function putenv(char *string) inserts a pointer to its supplied argument into the
environment array, instead of making a copy of the argument. If the argument is an
automatic variable, its memory can be overwritten after the function containing the
putenv() call returns. A subsequent call to getenv() from another function returns the
address of an out-of-scope variable that cannot be dereferenced legally. This out-of-scope
variable can cause environment variables to take on unexpected values, cause the
program to stop responding, or allow arbitrary code execution vulnerabilities.

Fix
Use setenv()/unsetenv() to set and unset environment variables. Alternatively, use
putenv-family function arguments with dynamically allocated memory, or, if your
application has no reentrancy requirements, arguments with static duration. For example,
a single thread execution with no recursion or interrupts does not require reentrancy. It
cannot be called (reentered) during its execution.

Examples

Automatic Variable as Argument of putenv()
#include <stdio.h>
#include <stdlib.h>

3 Defects

3-662

#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 char env[SIZE1024];
 int retval = sprintf(env, "TEST=%s", var ? "1" : "0");
 if (retval <= 0) {
 /* Handle error */
 }
 /* Environment variable TEST is set using putenv().
 The argument passed to putenv is an automatic variable. */
 retval = putenv(env);
 if (retval != 0) {
 /* Handle error */
 }
}

In this example, sprintf() stores the character string TEST=var in env. The value of
the environment variable TEST is then set to var by using putenv(). Because env is an
automatic variable, the value of TEST can change once func() returns.

Correction — Use static Variable for Argument of putenv()

Declare env as a static-duration variable. The memory location of env is not overwritten
for the duration of the program, even after func() returns.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024
void func(int var)
{
 /* static duration variable */
 static char env[SIZE1024];
 int retval = sprintf(env,"TEST=%s", var ? "1" : "0");
 if (retval <= 0) {
 /* Handle error */
 }

 /* Environment variable TEST is set using putenv() */

 Use of automatic variable as putenv-family function argument

3-663

 retval=putenv(env);
 if (retval != 0) {
 /* Handle error */
 }
}

Correction — Use setenv() to Set Environment Variable Value

To set the value of TEST to var, use setenv().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 /* Environment variable TEST is set using setenv() */
 int retval = setenv("TEST", var ? "1" : "0", 1);

 if (retval != 0) {
 /* Handle error */
 }
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: PUTENV_AUTO_VAR
Impact: High
CWE ID: 562, 686, 825

See Also
Find defects (-checkers) | Pointer or reference to stack variable
leaving scope

Topics
“Interpret Polyspace Bug Finder Results”

3 Defects

3-664

https://cwe.mitre.org/data/definitions/562.html
https://cwe.mitre.org/data/definitions/686.html
https://cwe.mitre.org/data/definitions/825.html

“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

 Use of automatic variable as putenv-family function argument

3-665

Qualifier removed in conversion
Variable qualifier is lost during conversion

Description
Qualifier removed in conversion occurs during a pointer conversion when one pointer
has a qualifier and the other does not. For example, when converting from a const int*
to an int*, the conversion removes the const qualifier.

This defect applies only for projects in C.

Risk
Qualifiers such as const or volatile in a pointer declaration:

const int* ptr;

imply that the underlying object is const or volatile. These qualifiers act as
instructions to the compiler. For instance, a const object is not supposed to be modified
in the code and a volatile object is not supposed to be optimized away by the compiler.

If a second pointer points to the same object but does not use the same qualifier, the
qualifier on the first pointer is no longer valid. For instance, if a const int* pointer and
an int* pointer point to the same object, you can modify the object through the second
pointer and violate the contract implied by the const qualifier in the first pointer.

Fix
If you intend to convert from one pointer to another, declare both pointers with the same
qualifiers.

3 Defects

3-666

Examples

Cast of Character Pointers
void implicit_cast(void) {
 const char cc, *pcc = &cc;
 char * quo;

 quo = &cc;
 quo = pcc;

 read(quo);
}

During the assignment to the character q, the variables, cc and pcc, are converted from
const char to char. The const qualifier is removed during the conversion causing a
defect.

Correction — Add Qualifiers

One possible correction is to add the same qualifiers to the new variables. In this
example, changing q to a const char fixes the defect.

void implicit_cast(void) {
 const char cc, *pcc = &cc;
 const char * quo;

 quo = &cc;
 quo = pcc;

 read(quo);
}

Correction — Remove Qualifiers

One possible correction is to remove the qualifiers in the converted variable. In this
example, removing the const qualifier from the cc and pcc initialization fixes the defect.

void implicit_basic_cast(void) {
 char cc, *pcc = &cc;
 char * quo;

 quo = &cc;

 Qualifier removed in conversion

3-667

 quo = pcc;

 read(quo);
}

Check Information
Group: Programming
Language: C
Default: Off
Command-Line Syntax: QUALIFIER_MISMATCH
Impact: Low
CWE ID: 704

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-668

https://cwe.mitre.org/data/definitions/704.html

Deterministic random output from constant
seed
Seeding routine uses a constant seed making the output deterministic

Description
Deterministic random output from constant seed detects random standard functions
that when given a constant seed, have deterministic output.

Risk
When some random functions, such as srand, srandom, and initstate, have constant
seeds, the results produce the same output every time that your program is run. A hacker
can disrupt your program if they know how your program behaves.

Fix
Use a different random standard function or use a nonconstant seed.

Some standard random routines are inherently cryptographically weak on page 3-931,
and should not be used for security purposes.

Examples

Random Number Generator Initialization
#include <stdlib.h>

void random_num(void)
{
 srand(12345U);
 /* ... */
}

 Deterministic random output from constant seed

3-669

This example initializes a random number generator using srand with a constant seed.
The random number generation is deterministic, making this function cryptographically
weak.

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define _CRT_RAND_S
#include <stdlib.h>
#include <stdio.h>

unsigned int random_num_time(void)
{

 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RAND_SEED_CONSTANT
Impact: Medium
CWE ID: 330, 336

3 Defects

3-670

https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/336.html

See Also
Predictable random output from predictable seed | Unsafe standard
encryption function | Vulnerable pseudo-random number generator | Find
defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Deterministic random output from constant seed

3-671

Predictable random output from predictable
seed
Seeding routine uses a predictable seed making the output predictable

Description
Predictable random output from predictable seed looks for random standard
functions that use a nonconstant but predictable seed. Examples of predictable seed
generators are time, gettimeofday, and getpid.

Risk
When you use predictable seed values for random number generation, your random
numbers are also predictable. A hacker can disrupt your program if they know how your
program behaves.

Fix
You can use a different function to generate less predictable seeds.

You can also use a different random number generator that does not require a seed. For
example, the Windows API function rand_s seeds itself by default. It uses information
from the entire system, for example, system time, thread ids, system counter, and memory
clusters. This information is more random and a user cannot access this information.

Some standard random routines are inherently cryptographically weak on page 3-931,
and should not be used for security purposes.

Examples
Seed as an Argument
#include <stdlib.h>
#include <time.h>

3 Defects

3-672

void seed_rng(int seed)
{
 srand(seed);
}

int generate_num(void)
{
 seed_rng(time(NULL) + 3);
 /* ... */
}

This example uses srand to start the random number generator with seed as the seed.
However, seed is predictable because the function time generates it. So, an attacker can
predict the random numbers generated by srand.

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define _CRT_RAND_S

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int generate_num(void)
{
 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

 Predictable random output from predictable seed

3-673

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RAND_SEED_PREDICTABLE
Impact: Medium
CWE ID: 330, 337

See Also
Deterministic random output from constant seed | Unsafe standard
encryption function | Vulnerable pseudo-random number generator | Find
defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-674

https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/337.html

Writing to read-only resource
File initially opened as read only is modified

Description
Writing to read-only resource occurs when you attempt to write to a file that you have
opened earlier in read-only mode.

For instance, you open a file using fopen with the access mode argument r. You write to
that file with a function in the fprintf family.

Risk
Writing to a read-only file causes undefined behavior.

Fix
If you want to write to the file, open the file in a mode that is suitable for writing.

Examples

Writing to Read-Only File
#include <stdio.h>

void func(void) {
 FILE* fp ;

 fp = fopen("file.txt", "r");
 fprintf(fp, "Some data");
 fclose(fp);
}

 Writing to read-only resource

3-675

In this example, the file file.txt is opened in read-only mode. When the FILE pointer
associated with file.txt is used as an argument of fprintf, a Writing to read-only
resource defect occurs.

Correction — Open File as Writable

One possible correction is to use the access specifier "a" instead of "r". file.txt is
now open for output at the end of the file.

#include <stdio.h>

void func(void) {
 FILE* fp ;

 fp = fopen("file.txt", "a");
 fprintf(fp, "Some data");
 fclose(fp);
}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: READ_ONLY_RESOURCE_WRITE
Impact: High

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-676

Misuse of readlink()
Third argument of readlink does not leave space for null terminator in buffer

Description
Misuse of readlink() occurs when you pass a buffer size argument to readlink() that
does not leave space for a null terminator in the buffer.

For instance:

ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf));

The third argument is exactly equal to the size of the second argument. For large enough
symbolic links, this use of readlink() does not leave space to enter a null terminator.

Risk
The readlink() function copies the content of a symbolic link (first argument) to a
buffer (second argument). However, the function does not append a null terminator to the
copied content. After using readlink(), you must explicitly add a null terminator to the
buffer.

If you fill the entire buffer when using readlink, you do not leave space for this null
terminator.

Fix
When using the readlink() function, make sure that the third argument is one less than
the buffer size.

Then, append a null terminator to the buffer. To determine where to add the null
terminator, check the return value of readlink(). If the return value is -1, an error has
occurred. Otherwise, the return value is the number of characters (bytes) copied.

 Misuse of readlink()

3-677

Examples

Incorrect Size Argument of readlink
#include <unistd.h>

#define SIZE1024 1024

extern void display_path(const char *);

void func() {
 char buf[SIZE1024];
 ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf));
 if (len > 0) {
 buf[len - 1] = '\0';
 }
 display_path(buf);
}

In this example, the third argument of readlink is exactly the size of the buffer (second
argument). If the first argument is long enough, this use of readlink does not leave
space for the null terminator.

Also, if no characters are copied, the return value of readlink is 0. The following
statement leads to a buffer underflow when len is 0.

buf[len - 1] = '\0';

Correction — Make Sure Size Argument is One Less Than Buffer Size

One possible correction is to make sure that the third argument of readlink is one less
than size of the second argument.

The following corrected code also accounts for readlink returning 0.

#include <stdlib.h>
#include <unistd.h>

#define fatal_error() abort()
#define SIZE1024 1024

extern void display_path(const char *);

3 Defects

3-678

void func() {
 char buf[SIZE1024];
 ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf) - 1);
 if (len != -1) {
 buf[len] = '\0';
 display_path(buf);
 }
 else {
 /* Handle error */
 fatal_error();
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: READLINK_MISUSE
Impact: Medium
CWE ID: 170

See Also
Array access out of bounds | File access between time of check and use
(TOCTOU) | Find defects (-checkers) | Invalid use of standard library
string routine | Pointer access out of bounds | Returned value of a
sensitive function not checked

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017a

 Misuse of readlink()

3-679

https://cwe.mitre.org/data/definitions/170.html

Execution of a binary from a relative path
can be controlled by an external actor
Command with relative path is vulnerable to malicious attack

Description
Execution of a binary from a relative path can be controlled by an external actor
detects calls to an external command. If the call uses a relative path or no path to call the
external command, Bug Finder flags the call as a defect.

This defect also finds results that the Execution of externally controlled command
defect checker finds.

Risk
By using a relative path or no path to call an external command, your program uses an
unsafe search process to find the command. An attacker can control the search process
and replace the intended command with a command of their own.

Fix
When you call an external command, specify the full path.

Examples

Call Command with Relative Path
define _GNU_SOURCE
include <sys/types.h>
include <sys/socket.h>
include <unistd.h>
include <stdio.h>
include <stdlib.h>
include <wchar.h>

3 Defects

3-680

include <string.h>
define MAX_BUFFER 100

void rel_path()
{
 char * data;
 char data_buf[MAX_BUFFER] = "";
 data = data_buf;

 strcpy(data, "ls -la");
 FILE *pipe;
 pipe = popen(data, "wb");
 if (pipe != NULL) pclose(pipe);
}

In this example, Bug Finder flags popen because it tries to call ls -la using a relative
path. An attacker can manipulate the command to use a malicious version.

Correction — Use Full Path

One possible correction is to use the full path when calling the command.

define _GNU_SOURCE
include <sys/types.h>
include <sys/socket.h>
include <unistd.h>
include <stdio.h>
include <stdlib.h>
include <wchar.h>
include <string.h>
define MAX_BUFFER 100

void rel_path()
{
 char * data;
 char data_buf[MAX_BUFFER] = "";
 data = data_buf;

 strcpy(data, "/usr/bin/ls -la");
 FILE *pipe;
 pipe = popen(data, "wb");
 if (pipe != NULL) pclose(pipe);
}

 Execution of a binary from a relative path can be controlled by an external actor

3-681

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RELATIVE_PATH_CMD
Impact: Medium
CWE ID: 114, 427

See Also
Load of library from a relative path can be controlled by an
external actor | Vulnerable path manipulation | Execution of externally
controlled command | Command executed from externally controlled path |
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-682

https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/427.html

Load of library from a relative path can be
controlled by an external actor
Library loaded with relative path is vulnerable to malicious attacks

Description
Load of library from a relative path can be controlled by an external actor detects
library loading routines that load an external library. If you load the library using a
relative path or no path, Bug Finder flags the loading routine as a defect.

Risk
By using a relative path or no path to load an external library, your program uses an
unsafe search process to find the library. An attacker can control the search process and
replace the intended library with a library of their own.

Fix
When you load an external library, specify the full path.

Examples

Open Library with Library Name
#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void relative_path()
{
 dlopen("liberty.dll",RTLD_LAZY);
}

 Load of library from a relative path can be controlled by an external actor

3-683

In this example, dlopen opens the liberty library by calling only the name of the
library. However, this call to the library uses a relative path to find the library, which is
unsafe.

Correction — Use Full Path to Library

One possible correction is to use the full path to the library when you load it into your
program.

#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void relative_path()
{
 dlopen("/home/my_libs/library/liberty.dll",RTLD_LAZY);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RELATIVE_PATH_LIB
Impact: Medium
CWE ID: 114, 427

See Also
Execution of a binary from a relative path can be controlled by an
external actor | Vulnerable path manipulation | Library loaded from
externally controlled path | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

3 Defects

3-684

https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/427.html

Introduced in R2015b

 Load of library from a relative path can be controlled by an external actor

3-685

Resource leak
File stream not closed before FILE pointer scope ends or pointer is reassigned

Description
Resource leak occurs when you open a file stream by using a FILE pointer but do not
close it before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk
If you do not release file handles explicitly as soon as possible, a failure can occur due to
exhaustion of resources.

Fix
Close a FILE pointer before the end of its scope, or before you assign the pointer to
another stream.

Examples

FILE Pointer Not Released Before End of Scope
#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");

3 Defects

3-686

 fclose (fp1);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is
explicitly dissociated from the file stream of data1.txt, it is used to access another file
data2.txt.

Correction — Release FILE Pointer

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");
 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: RESOURCE_LEAK
Impact: High
CWE ID: 772

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

 Resource leak

3-687

https://cwe.mitre.org/data/definitions/772.html

Introduced in R2015b

3 Defects

3-688

Returned value of a sensitive function not
checked
Sensitive functions called without checking for unexpected return values and errors

Description
Returned value of a sensitive function not checked occurs when you call sensitive
standard functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or
vulnerable tasks:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

Risk
If you do not check the return value of functions that perform sensitive or critical
sensitive tasks, your program can behave unexpectedly. Errors from these functions can

 Returned value of a sensitive function not checked

3-689

propagate throughout the program causing incorrect output, security vulnerabilities, and
possibly system failures.

Fix
Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to
void. Polyspace does not raise this defect for sensitive functions cast to void. This
resolution is not accepted for critical sensitive functions because they perform more
vulnerable tasks.

Examples

Sensitive Function Return Ignored
#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 pthread_attr_init(&attr);
}

This example shows a call to the sensitive function pthread_attr_init. The return
value of pthread_attr_init is ignored, causing a defect.

Correction — Cast Function to (void)

One possible correction is to cast the function to void. This fix informs Polyspace and any
reviewers that you are explicitly ignoring the return value of the sensitive function.

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 (void)pthread_attr_init(&attr);
}

3 Defects

3-690

Correction — Test Return Value

One possible correction is to test the return value of pthread_attr_init to check for
errors.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

void initialize() {
 pthread_attr_t attr;
 int result;

 result = pthread_attr_init(&attr);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Critical Function Return Ignored
#include <pthread.h>
extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0));
 pthread_join(thread_id, &res);
}

In this example, two critical functions are called: pthread_create and pthread_join.
The return value of the pthread_create is ignored by casting to void, but because
pthread_create is a critical function (not just a sensitive function), Polyspace does not
ignore this Return value of a sensitive function not checked defect. The other critical
function, pthread_join, returns value that is ignored implicitly. pthread_join uses
the return value of pthread_create, which was not checked.

 Returned value of a sensitive function not checked

3-691

Correction — Test the Return Value of Critical Functions

The correction for this defect is to check the return value of these critical functions to
verify the function performed as expected.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RETURN_NOT_CHECKED
Impact: High
CWE ID: 252, 253, 690, 754

See Also
Find defects (-checkers)

3 Defects

3-692

https://cwe.mitre.org/data/definitions/252.html
https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/754.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

 Returned value of a sensitive function not checked

3-693

*this not returned in copy assignment
operator
operator= method does not return a pointer to the current object

Description
*this not returned from copy assignment operator occurs when assignment
operators such as operator= and operator+= do not return a reference to *this,
where this is a pointer to the current object. If the operator= method does not return
*this, it means that a=b or a.operator=(b) is not returning the assignee a following
the assignment.

For instance:

• The operator returns its parameter instead of a reference to the current object.

That is, the operator has a form MyClass & operator=(const MyClass & rhs)
{ ... return rhs; } instead of MyClass & operator=(const MyClass &
rhs) { ... return *this; }.

• The operator returns by value and not reference.

That is, the operator has a form MyClass operator=(const MyClass & rhs)
{ ... return *this; } instead of MyClass & operator=(const MyClass &
rhs) { ... return *this; }.

Risk
Users typically expect object assignments to behave like assignments between built-in
types and expect an assignment to return the assignee. For instance, a right-associative
chained assignment a=b=c requires that b=c return the assignee b following the
assignment. If your assignment operator behaves differently, users of your class can face
unexpected consequences.

The unexpected consequences occur when the assignment is part of another statement.
For instance:

3 Defects

3-694

• If the operator= returns its parameter instead of a reference to the current object,
the assignment a=b returns b instead of a. If the operator= performs a partial
assignment of data members, following an assignment a=b, the data members of a and
b are different. If you or another user of your class read the data members of the
return value and expect the data members of a, you might have unexpected results.
For an example, see “Return Value of operator= Same as Argument” on page 3-695.

• If the operator= method returns *this by value and not reference, a copy of *this
is returned. If you expect to modify the result of the assignment using a statement
such as (a=b).modifyValue(), you modify a copy of a instead of a itself.

Fix
Return *this from your assignment operators.

Examples
Return Value of operator= Same as Argument
class MyClass {
 public:
 MyClass(bool b, int i): m_b(b), m_i(i) {}
 const MyClass& operator=(const MyClass& obj) {
 if (&obj!=this) {
 /* Note: Only m_i is copied. m_b retains its original value. */
 m_i = obj.m_i;
 }
 return obj;
 }
 bool isOk() const { return m_b;}
 int getI() const { return m_i;}
 private:
 bool m_b;
 int m_i;
};

void main() {
 MyClass r0(true, 0), r1(false, 1);
 /* Object calling isOk is r0 and the if block executes. */
 if ((r1 = r0).isOk()) {
 /* Do something */

 *this not returned in copy assignment operator

3-695

 }
}

In this example, the operator operator= returns its current argument instead of a
reference to *this.

Therefore, in main, the assignment r1 = r0 returns r0 and not r1. Because the
operator= does not copy the data member m_b, the value of r0.m_b and r1.m_b are
different. The following unexpected behavior occurs.

What You Might Expect What Actually Happens
• The statement (r1 = r0).isOk()

returns r1.m_b which has value false
• The if block does not execute.

• The statement (r1 = r0).isOk()
returns r0.m_b which has value true

• The if block executes.

Correction — Return *this

One possible correction is to return *this from operator=.

class MyClass {
 public:
 MyClass(bool b, int i): m_b(b), m_i(i) {}
 const MyClass& operator=(const MyClass& obj) {
 if (&obj!=this) {
 /* Note: Only m_i is copied. m_b retains its original value. */
 m_i = obj.m_i;
 }
 return *this;
 }
 bool isOk() const { return m_b;}
 int getI() const { return m_i;}
 private:
 bool m_b;
 int m_i;
};

void main() {
 MyClass r0(true, 0), r1(false, 1);
 /* Object calling isOk is r0 and the if block executes. */
 if ((r1 = r0).isOk()) {
 /* Do something */

3 Defects

3-696

 }
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: RETURN_NOT_REF_TO_THIS
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 *this not returned in copy assignment operator

3-697

Sensitive data printed out
Function prints sensitive data

Description
Sensitive data printed out detects print functions, such as stdout or stderr, that
print sensitive information.

The checker considers the following as sensitive information:

• Return values of password manipulation functions such as getpw, getpwnam or
getpwuid.

• Input values of functions such as the Windows-specific function LogonUser.

Risk
Printing sensitive information, such as passwords or user information, allows an attacker
additional access to the information.

Fix
One fix for this defect is to not print out sensitive information.

If you are saving your logfile to an external file, set the file permissions so that attackers
cannot access the logfile information.

Examples

Printing Passwords
#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>

3 Defects

3-698

#include <unistd.h>

extern void verify_null(const char* buf);
void bug_sensitivedataprint(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 puts("Name\n");
 puts(pwd.pw_name);
 puts("PassWord\n");
 puts(pwd.pw_passwd);
 memset(buf, 0, sizeof(buf));
 verify_null(buf);
}

In this example, Bug Finder flags puts for printing out the password pwd.pw_passwd.

Correction — Obfuscate the Password

One possible correction is to obfuscate the password information so that the information
is not visible.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

extern void verify_null(const char* buf);

void sensitivedataprint(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 puts("Name\n");
 puts(pwd.pw_name);
 puts("PassWord\n");
 puts("XXXXXXXX\n");
 memset(buf, 0, sizeof(buf));
 verify_null(buf);
}

 Sensitive data printed out

3-699

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: SENSITIVE_DATA_PRINT
Impact: Medium
CWE ID: 532, 534, 535

See Also
Sensitive heap memory not cleared before release | Uncleared sensitive
data in stack | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-700

https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/534.html
https://cwe.mitre.org/data/definitions/535.html

Sensitive heap memory not cleared before
release
Sensitive data not cleared or released by memory routine

Description
Sensitive heap memory not cleared before release detects dynamically allocated
memory containing sensitive data. If you do not clear the sensitive data when you free the
memory, Bug Finder raises a defect on the free function.

Risk
If the memory zone is reallocated, an attacker can still inspect the sensitive data in the
old memory zone.

Fix
Before calling free, clear out the sensitive data using memset or SecureZeroMemory.

Examples

Sensitive Buffer Freed, Not Cleared
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);

 Sensitive heap memory not cleared before release

3-701

 free(buf);
}

In this example, the function uses a buffer of passwords and frees the memory before the
end of the function. However, the data in the memory is not cleared by using the free
command.

Correction — Nullify Data

One possible correction is to write over the data to clear out the sensitive information.
This example uses memset to write over the data with zeros.

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0;i<(sizeof(arr)/sizeof(arr[0]));i++) assert(arr[i]==0)

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);

 if (buf) {
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
 free(buf);
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: SENSITIVE_HEAP_NOT_CLEARED
Impact: Medium
CWE ID: 244, 312, 316

3 Defects

3-702

https://cwe.mitre.org/data/definitions/244.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/316.html

See Also
Uncleared sensitive data in stack | Sensitive data printed out | Find
defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Sensitive heap memory not cleared before release

3-703

Uncleared sensitive data in stack
Variable in stack is not cleared and contains sensitive data

Description
Uncleared sensitive data in stack detects static memory containing sensitive data. If
you do not clear the sensitive data from your stack before exiting the function or
program, Bug Finder raises a defect on the last curly brace.

Risk
Leaving sensitive information in your stack, such as passwords or user information,
allows an attacker additional access to the information after your program has ended.

Fix
Before exiting a function or program, clear out the memory zones that contain sensitive
data by using memset or SecureZeroMemory.

Examples

Static Buffer of Password Information
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

void bug_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
}

3 Defects

3-704

In this example, a static buffer is filled with password information. The program frees the
stack memory at the end of the program. However, the data is still accessible from the
memory.

Correction — Clear Memory

One possible correction is to write over the memory before exiting the function. This
example uses memset to clear the data from the buffer memory.

#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0;i<(sizeof(arr)/sizeof(arr[0]));i++) assert(arr[i]==0)

void corrected_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: SENSITIVE_STACK_NOT_CLEARED
Impact: Medium
CWE ID: 226, 312, 316

See Also
Sensitive heap memory not cleared before release | Sensitive data
printed out | Find defects (-checkers)

 Uncleared sensitive data in stack

3-705

https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/316.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-706

Use of setjmp/longjmp
setjmp and longjmp cause deviation from normal control flow

Description
Use of setjmp/longjmp occurs when you use a combination of setjmp and longjmp or
sigsetjmp and siglongjmp to deviate from normal control flow and perform non-local
jumps in your code.

Risk
Using setjmp and longjmp, or sigsetjmp and siglongjmp has the following risks:

• Nonlocal jumps are vulnerable to attacks that exploit common errors such as buffer
overflows. Attackers can redirect the control flow and potentially execute arbitrary
code.

• Resources such as dynamically allocated memory and open files might not be closed,
causing resource leaks.

• If you use setjmp and longjmp in combination with a signal handler, unexpected
control flow can occur. POSIX does not specify whether setjmp saves the signal mask.

• Using setjmp and longjmp or sigsetjmp and siglongjmp makes your program
difficult to understand and maintain.

Fix
Perform nonlocal jumps in your code using setjmp/longjmp or sigsetjmp/
siglongjmp only in contexts where such jumps can be performed securely. Alternatively,
use POSIX threads if possible.

In C++, to simulate throwing and catching exceptions, use standard idioms such as
throw expressions and catch statements.

 Use of setjmp/longjmp

3-707

Examples

Use of setjmp and longjmp
#include <setjmp.h>
#include <signal.h>

extern int update(int);
extern void print_int(int);

static jmp_buf env;
void sighandler(int signum) {
 longjmp(env, signum);
}
void func_main(int i) {
 signal(SIGINT, sighandler);
 if (setjmp(env)==0) {
 while(1) {
 /* Main loop of program, iterates until SIGINT signal catch */
 i = update(i);
 }
 } else {
 /* Managing longjmp return */
 i = -update(i);
 }

 print_int(i);
 return;
}

In this example, the initial return value of setjmp is 0. The update function is called in
an infinite while loop until the user interrupts it through a signal.

In the signal handling function, the longjmp statement causes a jump back to main and
the return value of setjmp is now 1. Therefore, the else branch is executed.

Correction — Use Alternative to setjmp and longjmp

To emulate the same behavior more securely, use a volatile global variable instead of a
combination of setjmp and longjmp.

#include <setjmp.h>
#include <signal.h>

3 Defects

3-708

extern int update(int);
extern void print_int(int);

volatile sig_atomic_t eflag = 0;

void sighandler(int signum) {
 eflag = signum; /* Fix: using global variable */
}

void func_main(int i) {
 /* Fix: Better design to avoid use of setjmp/longjmp */
 signal(SIGINT, sighandler);
 while(!eflag) { /* Fix: using global variable */
 /* Main loop of program, iterates until eflag is changed */
 i = update(i);
 }

 print_int(i);
 return;
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: SETJMP_LONGJMP_USE
Impact: Low
CWE ID: 691

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

External Websites
Linux man page for setjmp

 Use of setjmp/longjmp

3-709

https://cwe.mitre.org/data/definitions/691.html
http://man7.org/linux/man-pages/man3/setjmp.3.html

Introduced in R2015b

3 Defects

3-710

Shift of a negative value
Shift operator on negative value

Description
Shift of a negative value occurs when a bit-wise shift is used on a variable that can
have negative values.

Risk
Shifts on negative values overwrite the sign bit that identifies a number as negative. The
shift operation can result in unexpected values.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variable being
shifted acquires negative values. You can implement the fix on any event in the sequence.
If the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

To fix the defect, check for negative values before the bit-wise shift operation and perform
appropriate error handling.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples
Shifting a negative variable
int shifting(int val)
{

 Shift of a negative value

3-711

 int res = -1;
 return res << val;
}

In the return statement, the variable res is shifted a certain number of bits to the left.
However, because res is negative, the shift might overwrite the sign bit.

Correction — Change the Data Type

One possible correction is to change the data type of the shifted variable to unsigned.
This correction eliminates the sign bit, so left shifting does not change the sign of the
variable.

int shifting(int val)
{
 unsigned int res = -1;
 return res << val;
}

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: SHIFT_NEG
Impact: Low
CWE ID: 189

See Also
Find defects (-checkers) | Shift operation overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-712

https://cwe.mitre.org/data/definitions/189.html

Shift operation overflow
Overflow from shifting operation

Description
Shift operation overflow occurs when a shift operation can result in values that cannot
be represented by the result data type. The data type of a variable determines the number
of bytes allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk
Shift operation overflows can result in undefined behavior.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
shift operation acquire their current values. You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using
right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the shift operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 Shift operation overflow

3-713

Examples
Left Shift of Integer
int left_shift(void) {

 int foo = 33;
 return 1 << foo;
}

In the return statement of this function, bit-wise shift operation is performed shifting 1
foo bits to the left. However, an int has only 32 bits, so the range of the shift must be
between 0 and 31. Therefore, this shift operation causes an overflow.

Correction — Different storage type

One possible correction is to store the shift operation result in a larger data type. In this
example, by returning a long long instead of an int, the overflow defect is fixed.

long long left_shift(void) {

 int foo = 33;
 return 1LL << foo;
}

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: SHIFT_OVFL
Impact: Low
CWE ID: 189, 190

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”

3 Defects

3-714

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html

“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Shift operation overflow

3-715

Side effect of expression ignored
sizeof, _Alignof, or _Generic operates on expression with side effect

Description
Side effect of expression ignored occurs when the sizeof, _Alignof, or _Generic
operator operates on an expression with a side effect. When evaluated, an expression with
side effect modifies at least one of the variables in the expression.

For instance, the defect checker does not flag sizeof(n+1) because n+1 does not
modify n. The checker flags sizeof(n++) because n++ is intended to modify n.

The check also applies to the C++ operator alignof and its C extensions, __alignof__
and __typeof__.

Risk
The expression in a _Alignof or _Generic operator is not evaluated. The expression in
a sizeof operator is evaluated only if it is required for calculating the size of a variable-
length array, for instance, sizeof(a[n++]).

When an expression with a side effect is not evaluated, the variable modification from the
side effect does not happen. If you rely on the modification, you can see unexpected
results.

Fix
Evaluate the expression with a side effect in a separate statement, and then use the result
in a sizeof, _Alignof, or _Generic operator.

For instance, instead of:

a = sizeof(n++);

perform the operation in two steps:

n++;
a = sizeof(n);

3 Defects

3-716

The checker considers a function call as an expression with a side effect. Even if the
function does not have side effects now, it might have side effects on later additions. The
code is more maintainable if you call the function outside the sizeof operator.

Examples

Increment Operator in sizeof
#include <stdio.h>

void func(void) {
 unsigned int a = 1U;
 unsigned int b = (unsigned int)sizeof(++a);
 printf ("%u, %u\n", a, b);
}

In this example, sizeof operates on ++a, which is intended to modify a. Because the
expression is not evaluated, the modification does not happen. The printf statement
shows that a still has the value 1.

Correction — Perform Increment Outside sizeof

One possible correction is to perform the increment first, and then provide the result to
the sizeof operator.

#include <stdio.h>

void func(void) {
 unsigned int a = 1U;
 ++a;
 unsigned int b = (unsigned int)sizeof (a);
 printf ("%u, %u\n", a, b);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIDE_EFFECT_IGNORED

 Side effect of expression ignored

3-717

Impact: Low

See Also
Find defects (-checkers) | MISRA C:2012 Rule 13.6

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

3 Defects

3-718

Side effect in arguments to unsafe macro
Macro contains arguments that can be evaluated multiple times or not evaluated

Description
Side effect in arguments to unsafe macro occurs when you call an unsafe macro with
an expression that has a side effect.

• Unsafe macro: When expanded, an unsafe macro evaluates its arguments multiple
times or does not evaluate its argument at all.

For instance, the ABS macro evaluates its argument x twice.

#define ABS(x) (((x) < 0) ? -(x) : (x))

• Side effect: When evaluated, an expression with a side effect modifies at least one of
the variables in the expression.

For instance, ++n modifies n, but n+1 does not modify n.

The checker does not consider side effects in nested macros. The checker also does
not consider function calls or volatile variable access as side effects.

Risk
If you call an unsafe macro with an expression that has a side effect, the expression is
evaluated multiple times or not evaluated at all. The side effect can occur multiple times
or not occur at all, causing unexpected behavior.

For instance, in the call MACRO(++n), you expect only one increment of the variable n. If
MACRO is an unsafe macro, the increment happens more than once or does not happen at
all.

The checker flags expressions with side effects in the assert macro because the assert
macro is disabled in non-debug mode. To compile in non-debug mode, you define the
NDEBUG macro during compilation. For instance, in GCC, you use the flag -DNDEBUG.

 Side effect in arguments to unsafe macro

3-719

Fix
Evaluate the expression with a side effect in a separate statement, and then use the result
as a macro argument.

For instance, instead of:

MACRO(++n);

perform the operation in two steps:

++n;
MACRO(n);

Alternatively, use an inline function instead of a macro. Pass the expression with side
effect as argument to the inline function.

The checker considers modifications of a local variable defined only in the block scope of
a macro body as a side effect. This defect cannot happen since the variable is visible only
in the macro body. If you see a defect of this kind, ignore the defect.

Examples

Macro Argument with Side Effects
#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 int m = ABS(++n);

 /* ... */
}

In this example, the ABS macro evaluates its argument twice. The second evaluation can
result in an unintended increment.

Correction — Separate Evaluation of Expression from Macro Usage

One possible correction is to first perform the increment, and then pass the result to the
macro.

3 Defects

3-720

#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 ++n;
 int m = ABS(n);

 /* ... */
}

Correction — Evaluate Expression in Inline Function

Another possible correction is to evaluate the expression in an inline function.

static inline int iabs(int x) {
 return (((x) < 0) ? -(x) : (x));
}

void func(int n) {
 /* Validate that n is within the desired range */

int m = iabs(++n);

 /* ... */
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: SIDE_EFFECT_IN_UNSAFE_MACRO_ARG
Impact: Medium

See Also
Find defects (-checkers) | MISRA C:2012 Rule 13.2 | MISRA C:2012 Rule
13.3 | MISRA C:2012 Rule 13.4 | Side effect of expression ignored |
Stream argument with possibly unintended side effects

Topics
“Interpret Polyspace Bug Finder Results”

 Side effect in arguments to unsafe macro

3-721

“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

3 Defects

3-722

Function called from signal handler not
asynchronous-safe
Call to interrupted function causes undefined program behavior

Description
Function called from signal handler not asynchronous-safe occurs when a signal
handler calls a function that is not asynchronous-safe according to the POSIX standard.
An asynchronous-safe function can be interrupted at any point in its execution, then
called again without causing an inconsistent state. It can also correctly handle global data
that might be in an inconsistent state.

If a signal handler calls another function that calls an asynchronous-unsafe function, the
defect appears on the function call in the signal handler. The defect traceback shows the
full path from the signal handler to the asynchronous-unsafe function.

Risk
When a signal handler is invoked, the execution of the program is interrupted. After the
handler is finished, program execution resumes at the point of interruption. If a function
is executing at the time of the interruption, calling it from within the signal handler is
undefined behavior, unless it is asynchronous-safe.

Fix
The POSIX standard defines these functions as asynchronous-safe. You can call these
functions from a signal handler.

_exit() getpgrp() setsockopt()
_Exit() getpid() setuid()
abort() getppid() shutdown()
accept() getsockname() sigaction()
access() getsockopt() sigaddset()

 Function called from signal handler not asynchronous-safe

3-723

aio_error() getuid() sigdelset()
aio_return() kill() sigemptyset()
aio_suspend() link() sigfillset()
alarm() linkat() sigismember()
bind() listen() signal()
cfgetispeed() lseek() sigpause()
cfgetospeed() lstat() sigpending()
cfsetispeed() mkdir() sigprocmask()
cfsetospeed() mkdirat() sigqueue()
chdir() mkfifo() sigset()
chmod() mkfifoat() sigsuspend()
chown() mknod() sleep()
clock_gettime() mknodat() sockatmark()
close() open() socket()
connect() openat() socketpair()
creat() pathconf() stat()
dup() pause() symlink()
dup2() pipe() symlinkat()
execl() poll() sysconf()
execle() posix_trace_event() tcdrain()
execv() pselect() tcflow()
execve() pthread_kill() tcflush()
faccessat() pthread_self() tcgetattr()
fchdir() pthread_sigmask() tcgetpgrp()
fchmod() quick_exit() tcsendbreak()
fchmodat() raise() tcsetattr()
fchown() read() tcsetpgrp()
fchownat() readlink() time()
fcntl() readlinkat() timer_getoverrun()

3 Defects

3-724

fdatasync() recv() timer_gettime()
fexecve() recvfrom() timer_settime()
fork() recvmsg() times()
fpathconf() rename() umask()
fstat() renameat() uname()
fstatat() rmdir() unlink()
fsync() select() unlinkat()
ftruncate() sem_post() utime()
futimens() send() utimensat()
getegid() sendmsg() utimes()
geteuid() sendto() wait()
getgid() setgid() waitpid()
getgroups() setpgid() write()
getpeername() setsid()

Functions not in the previous table are not asynchronous-safe, and should not be called
from a signal hander.

Examples
Call to printf() Inside Signal Handler
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)

 Function called from signal handler not asynchronous-safe

3-725

{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler(int signum)
{
 /* Call function printf() that is not
 asynchronous-safe */
 printf("signal %d received.", signum);
 e_flag = 1;
}

int main(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, sizeof(char));
 if (info == NULL)
 {
 /* Handle Error */
 }
 while (!e_flag)
 {
 /* Main loop program code */
 display_info(info);
 /* More program code */
 }
 free(info);
 info = NULL;
 return 0;
}

In this example, sig_handler calls printf() when catching a signal. If the handler
catches another signal while printf() is executing, the behavior of the program is
undefined.

3 Defects

3-726

Correction — Set Flag Only in Signal Handler

Use your signal handler to set only the value of a flag. e_flag is of type volatile
sig_atomic_t. sig_handler can safely access it asynchronously.

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)
{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler1(int signum)
{
 int s0 = signum;
 e_flag = 1;
}

int func(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler1) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, 1);
 if (info == NULL)
 {
 /* Handle error */
 }
 while (!e_flag)

 Function called from signal handler not asynchronous-safe

3-727

 {
 /* Main loop program code */
 display_info(info);
 /* More program code */
 }
 free(info);
 info = NULL;
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: SIG_HANDLER_ASYNC_UNSAFE
Impact: Medium
CWE ID: 364, 387, 413, 479, 663, 828

See Also
Find defects (-checkers) | Function called from signal handler not
asynchronous-safe (strict) | Return from computational exception
signal handler | Shared data access within signal handler | Signal call
from within signal handler

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

3 Defects

3-728

https://cwe.mitre.org/data/definitions/364.html
https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/413.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/828.html

Function called from signal handler not
asynchronous-safe (strict)
Call to interrupted function causes undefined program behavior

Description
Function called from signal handler not asynchronous-safe (strict) occurs when a
signal handler calls a function that is not asynchronous-safe according to the C standard.
An asynchronous-safe function can be interrupted at any point in its execution, then
called again without causing an inconsistent state. It can also correctly handle global data
that might be in an inconsistent state.

When you select the checker Function called from signal handler not asynchronous-
safe, the checker detects calls to functions that are not asynchronous-safe according to
the POSIX standard. Function called from signal handler not asynchronous-safe
(strict) does not raise a defect for these cases. Function called from signal handler
not asynchronous-safe (strict) raises a defect for functions that are asynchronous-safe
according to the POSIX standard but not according to the C standard.

If a signal handler calls another function that calls an asynchronous-unsafe function, the
defect appears on the function call in the signal handler. The defect traceback shows the
full path from the signal handler to the asynchronous-unsafe function.

Risk
When a signal handler is invoked, the execution of the program is interrupted. After the
handler is finished, program execution resumes at the point of interruption. If a function
is executing at the time of the interruption, calling it from within the signal handler is
undefined behavior, unless it is asynchronous-safe.

Fix
The C standard defines the following functions as asynchronous-safe. You can call these
functions from a signal handler:

 Function called from signal handler not asynchronous-safe (strict)

3-729

• abort()
• _Exit()
• quick_exit()
• signal()

Examples
Call to raise() Inside Signal Handler
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */
}

void sig_handler(int signum)
{
 int s0 = signum;
 /* Call raise() */
 if (raise(SIGTERM) != 0) {
 /* Handle error */
 }
}

int finc(void)
{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

3 Defects

3-730

 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

In this example, sig_handler calls raise() when catching a signal. If the handler
catches another signal while raise() is executing, the behavior of the program is
undefined.

Correction — Remove Call to raise() in Signal Handler

According to the C standard, the only functions that you can safely call from a signal
handler are abort(), _Exit(), quick_exit(), and signal().

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */
}
void sig_handler(int signum)
{
 int s0 = signum;

}

int func(void)
{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)

 Function called from signal handler not asynchronous-safe (strict)

3-731

 {
 /* Handle error */
 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: SIG_HANDLER_ASYNC_UNSAFE_STRICT
Impact: Medium
CWE ID: 364, 387, 413, 479, 663, 828

See Also
Find defects (-checkers) | Function called from signal handler not
asynchronous-safe | Shared data access within signal handler | Signal
call from within signal handler

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

3 Defects

3-732

https://cwe.mitre.org/data/definitions/364.html
https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/413.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/828.html

Signal call from within signal handler
Nonpersistent signal handler calling signal() in Windows system causes race condition

Description
Signal call from within signal handler occurs when you call signal() from a
nonpersistent signal handler on a Windows platform.

Risk
A nonpersistent signal handler is reset after catching a signal. The handler does not catch
subsequent signals unless the handler is reestablished by calling signal(). A
nonpersistent signal handler on a Windows platform is reset to SIG_DFL. If another signal
interrupts the execution of the handler, that signal can cause a race condition between
SIG_DFL and the existing signal handler. A call to signal() can also result in an infinite
loop inside the handler.

Fix
Do not call signal() from a signal handler on Windows platforms.

Examples
signal() Called from Signal Handler
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)

 Signal call from within signal handler

3-733

{
 int s0 = signum;
 e_flag = 1;

 /* Call signal() to reestablish sig_handler
 upon receiving SIG_ERR. */

 if (signal(s0, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
}

void func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
 /* more code */
}

In this example, the definition of sig_handler() includes a call to signal() when the
handler catches SIG_ERR. On Windows platforms, signal handlers are nonpersistent. This
code can result in a race condition.

Correction — Do Not Call signal() from Signal Handler

If your code requires the use of a persistent signal handler on a Windows platform, use a
persistent signal handler after performing a thorough risk analysis.

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)

3 Defects

3-734

{
 int s0 = signum;
 e_flag = 1;
 /* No call to signal() */
}

int main(void)
{

 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIG_HANDLER_CALLING_SIGNAL
Impact: Medium
CWE ID: 387, 474

See Also
Find defects (-checkers) | Function called from signal handler not
asynchronous-safe | Return from computational exception signal handler
| Shared data access within signal handler

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

 Signal call from within signal handler

3-735

https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/474.html

Return from computational exception signal
handler
Undefined behavior when signal handler returns normally from program error

Description
Return from computational exception signal handler occurs when a signal handler
returns after catching a computational exception signal SIGFPE, SIGILL, or SIGSEGV.

Risk
A signal handler that returns normally from a computational exception is undefined
behavior. Even if the handler attempts to fix the error that triggered the signal, the
program can behave unexpectedly.

Fix
Check the validity of the values of your variables before the computation to avoid using a
signal handler to catch exceptions. If you cannot avoid a handler to catch computation
exception signals, call abort(), quick_exit(), or _Exit() in the handler to stop the
program.

Examples
Signal Handler Return from Division by Zero
#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */

3 Defects

3-736

void sig_handler(int s)
{
 int s0 = s;
 if (denom == 0)
 {
 denom = 1;
 }
 /* Normal return from computation exception
 signal */
 return;
}

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

In this example, sig_handler is declared to handle a division by zero computation error.
The handler changes the value of denom if it is zero and returns, which is undefined
behavior.

Correction — Call abort() to Terminate Program

After catching a computational exception, call abort() from sig_handler to exit the
program without further error.

#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero

 Return from computational exception signal handler

3-737

computation error. */

void sig_handler(int s)
{
 int s0 = s;
 /* call to abort() to exit the program */
 abort();
}

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIG_HANDLER_COMP_EXCP_RETURN
Impact: Low
CWE ID: 387

See Also
Find defects (-checkers) | Function called from signal handler not
asynchronous-safe | Function called from signal handler not
asynchronous-safe (strict) | Signal call from within signal handler

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

3 Defects

3-738

https://cwe.mitre.org/data/definitions/387.html

Introduced in R2017b

 Return from computational exception signal handler

3-739

Misuse of errno in a signal handler
You read errno after calling an errno-setting function in a signal handler

Description
Misuse of errno in a signal handler occurs when you call one of these functions in a
signal handler:

• signal: You call the signal function in a signal handler and then read the value of
errno.

For instance, the signal handler function handler calls signal and then calls
perror, which reads errno.

void handler(int signum) {
 pfv old_handler = signal(signum, SIG_DFL);
 if (old_handler == SIG_ERR) {
 perror("SIGINT handler");
 }
}

• errno-setting POSIX function: You call an errno-setting POSIX function in a signal
handler but do not restore errno when returning from the signal handler.

For instance, the signal handler function handler calls waitpid, which changes
errno, but does not restore errno before returning.

void handler(int signum) {
 int rc = waitpid(-1, NULL, WNOHANG);
 if (ECHILD != errno) {
 }
}

Risk
In each case that the checker flags, you risk relying on an indeterminate value of errno.

3 Defects

3-740

• signal: If the call to signal in a signal handler fails, the value of errno is
indeterminate (see C11 Standard, Sec. 7.14.1.1). If you rely on a specific value of
errno, you can see unexpected results.

• errno-setting POSIX function: An errno-setting function sets errno on failure. If you
read errno after a signal handler is called and the signal handler itself calls an
errno-setting function, you can see unexpected results.

Fix
Avoid situations where you risk relying on an indeterminate value of errno.

• signal: After calling the signal function in a signal handler, do not read errno or
use a function that reads errno.

• errno-setting POSIX function: Before calling an errno-setting function in a signal
handler, save errno to a temporary variable. Restore errno from this variable before
returning from the signal handler.

Examples

Reading errno After signal Call in Signal Handler
#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

#define fatal_error() abort()

void handler(int signum) {
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 perror("SIGINT handler");
 }
}

int func(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 fatal_error();
 }
 /* Program code */

 Misuse of errno in a signal handler

3-741

 if (raise(SIGINT) != 0) {
 /* Handle error */
 fatal_error();
 }
 return 0;
}

In this example, the function handler is called to handle the SIGINT signal. In the body
of handler, the signal function is called. Following this call, the value of errno is
indeterminate. The checker raises a defect when the perror function is called because
perror relies on the value of errno.

Correction — Avoid Reading errno After signal Call

One possible correction is to not read errno after calling the signal function in a signal
handler. The corrected code here calls the abort function via the fatal_error macro
instead of the perror function.

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

#define fatal_error() abort()

void handler(int signum) {
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 fatal_error();
 }
}

int func(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 fatal_error();
 }
 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 fatal_error();
 }
 return 0;
}

3 Defects

3-742

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIG_HANDLER_ERRNO_MISUSE
Impact: Medium

See Also
Errno not checked | Errno not reset | Find defects (-checkers) | Function
called from signal handler not asynchronous-safe

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Misuse of errno in a signal handler

3-743

Shared data access within signal handler
Access or modification of shared data causes inconsistent state

Description
Shared data access within signal handler occurs when you access or modify a shared
object inside a signal handler.

Risk
When you define a signal handler function to access or modify a shared object, the
handler accesses or modifies the shared object when it receives a signal. If another
function is already accessing the shared object, that function causes a race condition and
can leave the data in an inconsistent state.

Fix
To access or modify shared objects inside a signal handler, check that the objects are lock-
free atomic, or, if they are integers, declare them as volatile sig_atomic_t.

Examples

int Variable Access in Signal Handler
#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* declare global variable. */
int e_flag;

void sig_handler(int signum)
{
 /* Signal handler accesses variable that is not
 of type volatile sig_atomic_t. */

3 Defects

3-744

 e_flag = signum;
}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

In this example, sig_handler accesses e_flag, a variable of type int. A concurrent
access by another function can leave e_flag in an inconsistent state.

Correction — Declare Variable of Type volatile sig_atomic_t

Before you access a shared variable from a signal handler, declare the variable with type
volatile sig_atomic_t instead of int. You can safely access variables of this type
asynchronously.

#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* Declare variable of type volatile sig_atomic_t. */
volatile sig_atomic_t e_flag;
void sig_handler(int signum)
{
 /* Use variable of proper type inside signal handler. */
 e_flag = signum;

}

 Shared data access within signal handler

3-745

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIG_HANDLER_SHARED_OBJECT
Impact: Medium
CWE ID: 364, 413

See Also
Find defects (-checkers) | Function called from signal handler not
asynchronous-safe | Signal call from within signal handler

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

3 Defects

3-746

https://cwe.mitre.org/data/definitions/364.html
https://cwe.mitre.org/data/definitions/413.html

Sign change integer conversion overflow
Overflow when converting between signed and unsigned integers

Description
Sign change integer conversion overflow occurs when converting an unsigned integer
to a signed integer. If the variable does not have enough bytes to represent both the
original constant and the sign bit, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Convert from unsigned char to char
char sign_change(void) {
 unsigned char count = 255;

 return (char)count;
}

 Sign change integer conversion overflow

3-747

In the return statement, the unsigned character variable count is converted to a signed
character. However, char has 8 bits, 1 for the sign of the constant and 7 to represent the
number. The conversion operation overflows because 255 uses 8 bits.

Correction — Change conversion types

One possible correction is using a larger integer type. By using an int, there are enough
bits to represent the sign and the number value.

int sign_change(void) {
 unsigned char count = 255;

 return (int)count;
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: SIGN_CHANGE
Impact: Medium
CWE ID: 192, 194, 195, 196

See Also
Find defects (-checkers) | Float conversion overflow | Integer
conversion overflow | Unsigned integer conversion overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-748

https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html
https://cwe.mitre.org/data/definitions/196.html

Signal call in multithreaded program
Program with multiple threads uses signal function

Description
Signal call in multithreaded program occurs when you use the signal() function in
a program with multiple threads.

Risk
According to the C11 standard (Section 7.14.1.1), use of the signal() function in a
multithreaded program is undefined behavior.

Fix
Depending on your intent, use other ways to perform an asynchronous action on a specific
thread.

Examples

Use of signal() Function to Terminate Loop in Thread
#include <signal.h>
#include <stddef.h>
#include <threads.h>

volatile sig_atomic_t flag = 0;

void handler(int signum) {
 flag = 1;
}

/* Runs until user sends SIGUSR1 */
int func(void *data) {
 while (!flag) {

 Signal call in multithreaded program

3-749

 /* ... */
 }
 return 0;
}

int main(void) {
 signal(SIGINT, handler); /* Undefined behavior */
 thrd_t tid;

 if (thrd_success != thrd_create(&tid, func, NULL)) {
 /* Handle error */
 }
 /* ... */
 return 0;
}

In this example, the signal function is used to terminate a while loop in the thread
created with thrd_create.

Correction — Use atomic_bool Variable to Terminate Loop

One possible correction is to use an atomic_bool variable that multiple threads can
access. In the corrected example, the child thread evaluates this variable before every
loop iteration. After completing the program, you can modify this variable so that the
child thread exits the loop.

#include <stdatomic.h>
#include <stdbool.h>
#include <stddef.h>
#include <threads.h>

atomic_bool flag = ATOMIC_VAR_INIT(false);

int func(void *data) {
 while (!flag) {
 /* ... */
 }
 return 0;
}

int main(void) {
 thrd_t tid;

3 Defects

3-750

 if (thrd_success != thrd_create(&tid, func, NULL)) {
 /* Handle error */
 }
 /* ... */
 /* Set flag when done */
 flag = true;

 return 0;
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: SIGNAL_USE_IN_MULTITHREADED_PROGRAM
Impact: Low

See Also
Find defects (-checkers) | Function called from signal handler not
asynchronous-safe | MISRA C:2012 Rule 21.5 | Signal call from within
signal handler

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

 Signal call in multithreaded program

3-751

Possible misuse of sizeof
Use of sizeof operator can cause unintended results

Description
Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly
unintended results from the use of sizeof operator. For instance:

• You use the sizeof operator on an array parameter name, expecting the array size.
However, the array parameter name by itself is a pointer. The sizeof operator
returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However,
the operator returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect
because you used the sizeof operator earlier with possibly incorrect expectations.
For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an
incorrect use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the not the
number of wide characters but a size in bytes obtained by using the sizeof
operator. For instance, you use wcsncpy(destination, source,
sizeof(destination) - 1) instead of wcsncpy(destination, source,
(sizeof(desintation)/sizeof(wchar_t)) - 1).

Risk
Incorrect use of the sizeof operator can cause the following issues:

• If you expect the sizeof operator to return array size and use the return value to
constrain a loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is
smaller than what you require. Insufficient buffer can lead to resultant weaknesses
such as buffer overflows.

3 Defects

3-752

• If you use the return value of sizeof operator incorrectly in a function call, the
function does not behave as you expect.

Fix
Possible fixes are:

• Do not use the sizeof operator on an array parameter name or array element to
determine array size.

The best practice is to pass the array size as a separate function parameter and use
that parameter in the function body.

• Use the sizeof operator carefully to determine the number argument of functions
such as strncmp or wcsncpy. For instance, for wide string functions such as
wcsncpy, use the number of wide characters as argument instead of the number of
bytes.

Examples

sizeof Used Incorrectly to Determine Array Size
#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {
 a[i] = i + 1;
 }
}

In this example, sizeof(a) returns the size of the pointer a and not the array size.

Correction — Determine Array Size in Another Way

One possible correction is to use another means to determine the array size.

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {

 Possible misuse of sizeof

3-753

 int i;

 for (i = 0; i < MAX_SIZE; i++) {
 a[i] = i + 1;
 }
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIZEOF_MISUSE
Impact: High
CWE ID: 467

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

External Websites
Linux man page for strncmp
Linux man page for wcsncpy

Introduced in R2015b

3 Defects

3-754

https://cwe.mitre.org/data/definitions/467.html
http://man7.org/linux/man-pages/man3/strcmp.3.html
http://man7.org/linux/man-pages/man3/strcmp.3.html

Function that can spuriously fail not
wrapped in loop
Loop checks failure condition after possible spurious failure

Description
Function that can spuriously fail not wrapped in loop occurs when the following
atomic compare and exchange functions that can fail spuriously are called from outside a
loop.

• C atomic functions:

• atomic_compare_exchange_weak()
• atomic_compare_exchange_weak_explicit()

• C++ atomic functions:

• std::atomic<T>::compare_exchange_weak(T* expected, T desired)
• std::atomic<T>::compare_exchange_weak_explicit(T* expected, T

desired, std::memory_order succ, std::memory_order fail)
• std::atomic_compare_exchange_weak(std::atomic<T>* obj, T*

expected, T desired)
• std::atomic_compare_exchange_weak_explicit(volatile

std::atomic<T>* obj, T* expected, T desired, std::memory_order
succ, std::memory_order fail)

The functions compare the memory contents of the object representations pointed to by
obj and expected. The comparison can spuriously return false even if the memory
contents are equal. This spurious failure makes the functions faster on some platforms.

Risk
An atomic compare and exchange function that spuriously fails can cause unexpected
results and unexpected control flow.

 Function that can spuriously fail not wrapped in loop

3-755

Fix
Wrap atomic compare and exchange functions that can spuriously fail in a loop. The loop
checks the failure condition after a possible spurious failure.

Examples

atomic_compare_exchange_weak() Not Wrapped in Loop
#include <stdatomic.h>

extern void reset_count(void);
atomic_int count = ATOMIC_VAR_INIT(0);

void increment_count(void)
{
 int old_count = atomic_load(&count);
 int new_count;
 new_count = old_count + 1;
 if (!atomic_compare_exchange_weak(&count, &old_count, new_count))
 reset_count();

}

In this example, increment_count() uses atomic_compare_exchange_weak() to
compare count and old_count. If the counts are equal, count is incremented to
new_count. If they are not equal, the count is reset. When
atomic_compare_exchange_weak() fails spuriously, the count is reset unnecessarily.

Correction — Wrap atomic_compare_exchange_weak() in a while Loop

One possible correction is to wrap the call to atomic_compare_exchange_weak() in a
while loop. The loop checks the failure condition after a possible spurious failure.

#include <stdatomic.h>

extern void reset_count(void);
atomic_int count = ATOMIC_VAR_INIT(0);

void increment_count(void)
{

3 Defects

3-756

 int old_count = atomic_load(&count);
 int new_count;
 new_count = old_count + 1;

 do {
 reset_count();

 } while (!atomic_compare_exchange_weak(&count, &old_count, new_count));

}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: SPURIOUS_FAILURE_NOT_WRAPPED_IN_LOOP
Impact: Low

See Also
Find defects (-checkers) | Function that can spuriously wake up not
wrapped in loop | Returned value of a sensitive function not checked

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

 Function that can spuriously fail not wrapped in loop

3-757

Function that can spuriously wake up not
wrapped in loop
Loop checks wake-up condition after possible spurious wake-up

Description
Function that can spuriously wake up not wrapped in loop occurs when the
following wait-on-condition functions are called from outside a loop:

• C functions:

• cnd_wait()
• cnd_timedwait()

• POSIX functions:

• pthread_cond_wait()
• pthread_cond_timedwait()

• C++ std::condition_variable and std::condition_variable_any class
member functions:

• wait()
• wait_until()
• wait_for()

Wait-on-condition functions pause the execution of the calling thread when a specified
condition is met. The thread wakes up and resumes once another thread notifies it with
cnd_broadcast() or an equivalent function. The wake-up notification can be spurious
or malicious.

Risk
If a thread receives a spurious wake-up notification and the condition of the wait-on-
condition function is not checked, the thread can wake up prematurely. The wake-up can
cause unexpected control flow, indefinite blocking of other threads, or denial of service.

3 Defects

3-758

Fix
Wrap wait-on-condition functions that can wake up spuriously in a loop. The loop checks
the wake-up condition after a possible spurious wake-up notification.

Examples
cnd_wait() Not Wrapped in Loop
#include <stdio.h>
#include <stddef.h>
#include <threads.h>

#define THRESHOLD 100

static mtx_t lock;
static cnd_t cond;

void func(int input)
{
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }
 /* test condition to pause thread */
 if (input > THRESHOLD) {
 if (thrd_success != cnd_wait(&cond, &lock)) {
 /* Handle error */
 }
 }
 /* Proceed if condition to pause does not hold */

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }
}

In this example, the thread uses cnd_wait() to pause execution when input is greater
than THRESHOLD. The paused thread can resume if another thread uses
cnd_broadcast(), which notifies all the threads. This notification causes the thread to
wake up even if the pause condition is still true.

 Function that can spuriously wake up not wrapped in loop

3-759

Correction — Wrap cnd_wait() in a while Loop

One possible correction is to wrap cnd_wait() in a while loop. The loop checks the
pause condition after the thread receives a possible spurious wake-up notification.

#include <stdio.h>
#include <stddef.h>
#include <threads.h>

#define THRESHOLD 100

static mtx_t lock;
static cnd_t cond;

void func(int input)
{
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }
 /* test condition to pause thread */
 while (input > THRESHOLD) {
 if (thrd_success != cnd_wait(&cond, &lock)) {
 /* Handle error */
 }
 }
 /* Proceed if condition to pause does not hold */

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: SPURIOUS_WAKEUP_NOT_WRAPPED_IN_LOOP
Impact: Low

3 Defects

3-760

See Also
Find defects (-checkers) | Function that can spuriously fail not
wrapped in loop | Returned value of a sensitive function not checked

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

 Function that can spuriously wake up not wrapped in loop

3-761

Standard function call with incorrect
arguments
Argument to a standard function does not meet requirements for use in the function

Description
Standard function call with incorrect arguments occurs when the arguments to
certain standard functions do not meet the requirements for their use in the functions.

For instance, the arguments to these functions can be invalid in the following ways.

Function Type Situation Risk Fix
String manipulation
functions such as
strlen and strcpy

The pointer
arguments do not
point to a NULL-
terminated string.

The behavior of the
function is
undefined.

Pass a NULL-
terminated string to
string manipulation
functions.

File handling
functions in stdio.h
such as fputc and
fread

The FILE* pointer
argument can have
the value NULL.

The behavior of the
function is
undefined.

Test the FILE*
pointer for NULL
before using it as
function argument.

File handling
functions in
unistd.h such as
lseek and read

The file descriptor
argument can be -1.

The behavior of the
function is
undefined.

Most
implementations of
the open function
return a file
descriptor value of
-1. In addition, they
set errno to indicate
that an error has
occurred when
opening a file.

Test the return value
of the open function
for -1 before using it
as argument for
read or lseek.

If the return value is
-1, check the value of
errno to see which
error has occurred.

3 Defects

3-762

Function Type Situation Risk Fix
The file descriptor
argument represents
a closed file
descriptor.

The behavior of the
function is
undefined.

Close the file
descriptor only after
you have completely
finished using it.
Alternatively, reopen
the file descriptor
before using it as
function argument.

Directory name
generation functions
such as mkdtemp and
mkstemps

The last six
characters of the
string template are
not XXXXXX.

The function
replaces the last six
characters with a
string that makes the
file name unique. If
the last six
characters are not
XXXXXX, the function
cannot generate a
unique enough
directory name.

Test if the last six
characters of a string
are XXXXXX before
using the string as
function argument.

Functions related to
environment
variables such as
getenv and setenv

The string argument
is "".

The behavior is
implementation-
defined.

Test the string
argument for ""
before using it as
getenv or setenv
argument.

The string argument
terminates with an
equal sign, =. For
instance, "C="
instead of "C".

The behavior is
implementation-
defined.

Do not terminate the
string argument with
=.

String handling
functions such as
strtok and strstr

• strtok: The
delimiter
argument is "".

• strstr: The
search string
argument is "".

Some
implementations do
not handle these
edge cases.

Test the string for ""
before using it as
function argument.

 Standard function call with incorrect arguments

3-763

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples
NULL Pointer Passed as strnlen Argument
#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

int func() {
 char* s = NULL;
 return strnlen(s, SIZE20);
}

In this example, a NULL pointer is passed as strnlen argument instead of a NULL-
terminated string.

Before running analysis on the code, specify a GNU compiler. See Compiler (-
compiler).

Correction — Pass NULL-terminated String

Pass a NULL-terminated string as the first argument of strnlen.

#include <string.h>
#include <stdlib.h>

3 Defects

3-764

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

int func() {
 char* s = "";
 return strnlen(s, SIZE20);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: STD_FUNC_ARG_MISMATCH
Impact: Medium
CWE ID: 628, 685, 686, 687, 690, 910

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Standard function call with incorrect arguments

3-765

https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/686.html
https://cwe.mitre.org/data/definitions/687.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/910.html

Buffer overflow from incorrect string format
specifier
String format specifier causes buffer argument of standard library functions to overflow

Description
Buffer overflow from incorrect string format specifier occurs when the format
specifier argument for functions such as sscanf leads to an overflow or underflow in the
memory buffer argument.

Risk
If the format specifier specifies a precision that is greater than the memory buffer size, an
overflow occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix
Use a format specifier that is compatible with the memory buffer size.

Examples

Memory Buffer Overflow
#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c
causes a buffer overflow.

3 Defects

3-766

Correction — Use Smaller Precision in Format Specifier

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: STR_FORMAT_BUFFER_OVERFLOW
Impact: High
CWE ID: 124, 125, 126, 127

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Buffer overflow from incorrect string format specifier

3-767

https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html

Invalid use of standard library string routine
Standard library string function called with invalid arguments

Description
Invalid use of standard library string routine occurs when a string library function is
called with invalid arguments.

Risk
The risk depends on the type of invalid arguments. For instance, using the strcpy
function with a source argument larger than the destination argument can result in buffer
overflows.

Fix
The fix depends on the standard library function involved in the defect. In some cases,
you can constrain the function arguments before the function call. For instance, if the
strcpy function:

char * strcpy(char * destination, const char* source)

tries to copy too many bytes into the destination argument compared to the available
buffer, constrain the source argument before the call to strcpy. In some cases, you can
use an alternative function to avoid the error. For instance, instead of strcpy, you can
use strncpy to control the number of bytes copied. See also “Interpret Polyspace Bug
Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

3 Defects

3-768

Examples

Invalid Use of Standard Library String Routine Error
 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

 Invalid use of standard library string routine

3-769

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: STR_STD_LIB
Impact: High
CWE ID: 120, 227, 690

See Also
Find defects (-checkers) | Invalid use of standard library memory
routine

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-770

https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/690.html

Stream argument with possibly unintended
side effects
Stream argument side effects occur more than once

Description
Stream argument with possibly unintended side effects occurs when you call
getc(), putc(), getwc(), or putwc() with a stream argument that has side effects.

Stream argument with possibly unintended side effects considers the following as
stream side effects:

• Any assignment of a variable of a stream, such as FILE *, or any assignment of a
variable of a deeper stream type, such as an array of FILE *.

• Any call to a function that manipulates a stream or a deeper stream type.

The number of defects raised corresponds to the number of side effects detected. When a
stream argument is evaluated multiple times in a function implemented as a macro, a
defect is raised for each evaluation that has a side effect.

A defect is also raised on functions that are not implemented as macros but that can be
implemented as macros on another operating system.

Risk
If the function is implemented as an unsafe macro, the stream argument can be evaluated
more than once, and the stream side effect happens multiple times. For instance, a stream
argument calling fopen() might open the same file multiple times, which is unspecified
behavior.

Fix
To ensure that the side effect of a stream happens only once, use a separate statement for
the stream argument.

 Stream argument with possibly unintended side effects

3-771

Examples

Stream Argument of getc() Has Side Effect fopen()
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

#define fatal_error() abort()

const char* myfile = "my_file.log";

void func(void)
{
 int c;
 FILE* fptr;
 /* getc() has stream argument fptr with
 * 2 side effects: call to fopen(), and assignment
 * of fptr
 */
 c = getc(fptr = fopen(myfile, "r"));
 if (c == EOF) {
 /* Handle error */
 (void)fclose(fptr);
 fatal_error();
 }
 if (fclose(fptr) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

void main(void)
{
 func();

}

In this example, getc() is called with stream argument fptr. The stream argument has
two side effects: the call to fopen() and the assignment of fptr. If getc() is
implemented as an unsafe macro, the side effects happen multiple times.

3 Defects

3-772

Correction — Use Separate Statement for fopen()

One possible correction is to use a separate statement for fopen(). The call to fopen()
and the assignment of fptr happen in this statement so there are no side effects when
you pass fptr to getc().

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

#define fatal_error() abort()

const char* myfile = "my_file.log";

void func(void)
{
 int c;
 FILE* fptr;

 /* Separate statement for fopen()
 * before call to getc()
 */
 fptr = fopen(myfile, "r");
 if (fptr == NULL) {
 /* Handle error */
 fatal_error();
 }
 c = getc(fptr);
 if (c == EOF) {
 /* Handle error */
 (void)fclose(fptr);
 fatal_error();
 }
 if (fclose(fptr) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

void main(void)
{
 func();

 Stream argument with possibly unintended side effects

3-773

}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: STREAM_WITH_SIDE_EFFECT
Impact: Low

See Also
Find defects (-checkers) | Opening previously opened resource |
Returned value of a sensitive function not checked | Standard function
call with incorrect arguments

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

3 Defects

3-774

Format string specifiers and arguments
mismatch
String specifiers do not match corresponding arguments

Description
Format string specifiers and arguments mismatch occurs when the format specifiers
in the formatted output functions such as printf do not match their corresponding
arguments. For example, an argument of type unsigned long must have a format
specification of %lu.

Risk
Mismatch between format specifiers and the corresponding arguments result in
undefined behavior.

Fix
Make sure that the format specifiers match the corresponding arguments. For instance, in
this example, the %d specifier does not match the string argument message and the %s
specifier does not match the integer argument err_number.

 const char *message = "License not available";
 int err_number = ;-4
 printf("Error: %d (error type %s)\n", message, err_number);

Switching the two format specifiers fixes the issue. See the specifications for the printf
function for more information about format specifiers.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 Format string specifiers and arguments mismatch

3-775

https://en.cppreference.com/w/cpp/io/c/fprintf
https://en.cppreference.com/w/cpp/io/c/fprintf

Examples

Printing a Float
#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the
unsigned integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert
fst to an integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", (int)fst);
}

3 Defects

3-776

Check Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: STRING_FORMAT
Impact: Low
CWE ID: 683, 685, 686

See Also
Find defects (-checkers) | Invalid use of standard library string
routine

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

External Websites
Standard library output functions

Introduced in R2013b

 Format string specifiers and arguments mismatch

3-777

https://cwe.mitre.org/data/definitions/683.html
https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/686.html
http://en.cppreference.com/w/cpp/io/c/fprintf

Destination buffer overflow in string
manipulation
Function writes to buffer at offset greater than buffer size

Description
Destination buffer overflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at an offset greater
than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char*
format), you use a constant string format of greater size than buffer.

Risk
Buffer overflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer overflow also introduces the risk of code injection.

Fix
One possible solution is to use alternative functions to constrain the number of characters
written. For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or
sprintf_s instead to enforce length control. Alternatively, use asprintf to
automatically allocate the memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string,
use vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s
instead to enforce length control.

Another possible solution is to increase the buffer size.

3 Defects

3-778

Examples

Buffer Overflow in sprintf Use
#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater
size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: STRLIB_BUFFER_OVERFLOW
Impact: High
CWE ID: 121, 125, 135, 251, 787

 Destination buffer overflow in string manipulation

3-779

https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/135.html
https://cwe.mitre.org/data/definitions/251.html
https://cwe.mitre.org/data/definitions/787.html

See Also
Destination buffer underflow in string manipulation | Find defects (-
checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-780

Destination buffer underflow in string
manipulation
Function writes to buffer at a negative offset from beginning of buffer

Description
Destination buffer underflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at a negative offset
from the beginning of the buffer.

For instance, for the function sprintf(char* buffer, const char* format), you
obtain the buffer from an operation buffer = (char*)arr; ... buffer +=
offset;. arr is an array and offset is a negative value.

Risk
Buffer underflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer underflow also introduces the risk of code injection.

Fix
If the destination buffer argument results from pointer arithmetic, see if you are
decrementing a pointer. Fix the pointer decrement by modifying either the original value
before decrement or the decrement value.

Examples

Buffer Underflow in sprintf Use
#include <stdio.h>
#define offset -2

void func(void) {

 Destination buffer underflow in string manipulation

3-781

 char buffer[20];
 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);
}

In this example, &buffer[offset] is at a negative offset from the memory allocated to
buffer.

Correction — Change Pointer Decrementer

One possible correction is to change the value of offset.

#include <stdio.h>
#define offset 2

void func(void) {
 char buffer[20];
 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: STRLIB_BUFFER_UNDERFLOW
Impact: High
CWE ID: 124, 786, 787

See Also
Destination buffer overflow in string manipulation | Find defects (-
checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

3 Defects

3-782

https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html

Introduced in R2015b

 Destination buffer underflow in string manipulation

3-783

Array access with tainted index
Array index from unsecure source possibly outside array bounds

Description
Array access with tainted index detects reading or writing to an array by using a
tainted index that has not been validated.

Risk
The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write operation create to problems in your
program.

Fix
Before using the index to access the array, validate the index value to make sure that it is
inside the array range.

Examples

Use Index to Return Buffer Value
#define SIZE100 100
extern int tab[SIZE100];

3 Defects

3-784

int taintedarrayindex(int num) {
 return tab[num];
}

In this example, the index num accesses the array tab. The function does not check to see
if num is inside the range of tab.

Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex(int num) {
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -9999;
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_ARRAY_INDEX
Impact: Medium
CWE ID: 121, 124, 125, 129

See Also
Loop bounded with tainted value | Pointer dereference with tainted
offset | Tainted size of variable length array | Find defects (-
checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

 Array access with tainted index

3-785

https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/129.html

Introduced in R2015b

3 Defects

3-786

Use of externally controlled environment
variable
Value of environment variable from an unsecure source

Description
Use of externally controlled environment variable checks for functions that add or
change environment variables, such as putenv and setenv. If the new environment
variable value is from an unsecure source, Polyspace raises a defect on the function or
function pointer.

Risk
If the environment variable is tainted, an attacker can control your system settings. This
control can disrupt an application or service in potentially malicious ways.

Fix
Before using the new environment variable, check its value to avoid giving control to
external users.

Examples

Set Path in Environment
#define _XOPEN_SOURCE
#define _GNU_SOURCE
#include "stdlib.h"

void taintedenvvariable(char* path)
{
 putenv(path);
}

 Use of externally controlled environment variable

3-787

In this example, putenv changes an environment variable. The path path has not been
checked to make sure that it is the intended path.

Correction — Sanitize Path

One possible correction is to sanitize the path, checking that it matches what you expect.

#define _XOPEN_SOURCE
#define _GNU_SOURCE
#define SIZE128 128
#include "stdlib.h"
#include "string.h"

/* Function to sanitize a string */
int sanitize_str(char* str, size_t n) {
 int res = 0;

 if (str && n > 0 && n < SIZE128) {
 /* string is not NULL, with size between 1 and max */
 str[n-1] = '\0'; /* Add a null char at end of string */
 /* Tainted pointer detected above, used as "firewall" */
 res = 1;
 }
 return res;
}

void taintedenvvariable(char* path, size_t n)
{
 if (sanitize_str(path, n))
 {
 unsigned int n2 = strlen("PATH=")+strnlen(path, n);
 char *env_path = (char *)malloc(n2+1);
 if (env_path)
 {
 strcpy(env_path, "PATH=");
 strncat(env_path, path, n2);
 putenv(env_path);
 }
 }
}

3 Defects

3-788

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_ENV_VARIABLE
Impact: Medium
CWE ID: 15

See Also
Execution of externally controlled command | Host change using
externally controlled elements | Command executed from externally
controlled path | Library loaded from externally controlled path | Find
defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Use of externally controlled environment variable

3-789

https://cwe.mitre.org/data/definitions/15.html

Execution of externally controlled command
Command argument from an unsecure source vulnerable to operating system command
injection

Description
Execution of externally controlled command checks for commands that are fully or
partially constructed from externally controlled input.

Risk
Attackers can use the externally controlled input as operating system commands, or
arguments to the application. An attacker could read or modify sensitive data can be read
or modified, execute unintended code, or gain access to other aspects of the program.

Fix
Validate the inputs to allow only intended input values. For example, create a whitelist of
acceptable inputs and compare the input against this list.

Examples

Call Argument Command
#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"

enum {

3 Defects

3-790

 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void taintedexternalcmd(char* usercmd)
{
 char cmd[SIZE128] = "/usr/bin/cat ";
 strcat(cmd, usercmd);
 system(cmd);
}

This example function calls a command from a user argument without checking the
command variable.

Correction — Use a Predefined Command

One possible correction is to use a switch statement to run a predefined command,
using the user input as the switch variable.

#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
enum { CMD0 = 1, CMD1, CMD2 };

void taintedexternalcmd(int usercmd)
{
 char cmd[SIZE128] = "/usr/bin/cat ";

 switch(usercmd) {
 case CMD0:
 strcat(cmd, "*.c");
 break;

 Execution of externally controlled command

3-791

 case CMD1:
 strcat(cmd, "*.h");
 break;
 case CMD2:
 strcat(cmd, "*.cpp");
 break;
 default:
 strcat(cmd, "*.c");
 }
 system(cmd);
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_EXTERNAL_CMD
Impact: Medium
CWE ID: 77, 78, 88, 114

See Also
Use of externally controlled environment variable | Host change using
externally controlled elements | Command executed from externally
controlled path | Library loaded from externally controlled path |
Execution of a binary from a relative path can be controlled by an
external actor | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-792

https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/114.html

Host change using externally controlled
elements
Changing host ID from an unsecure source

Description
Host change using externally controlled elements detects uncontrolled arguments in
calls to routines that change the host ID, such as sethostid (Linux) or
SetComputerName (Windows).

Risk
The tainted host ID value can allow external control of system settings. This control can
disrupt services, cause unexpected application behavior, or cause other malicious
intrusions.

Fix
Use caution when changing or editing the host ID. Do not allow user-provided values to
control sensitive data.

Examples

Change Host ID from Function Argument
#include <unistd.h>

void bug_taintedhostid(long userhid) {
 sethostid(userhid);
}

This example sets a new host ID using the argument passed to the function. Before using
the host ID, check the value passed in.

 Host change using externally controlled elements

3-793

Correction — Predefined Host ID

One possible correction is to change the host ID to a predefined ID. This example uses the
host argument as a switch variable to choose between the different, predefined host IDs.

#include <unistd.h>

extern long called_taintedhostid_sanitize(long);
enum { HI0 = 1, HI1, HI2, HI3 };

void taintedhostid(int host) {

 long hid = 0;
 switch(host) {
 case HI0:
 hid = 0x7f0100;
 break;
 case HI1:
 hid = 0x7f0101;
 break;
 case HI2:
 hid = 0x7f0102;
 break;
 case HI3:
 hid = 0x7f0103;
 break;
 default:
 /* do nothing */
 break;
 }
 if (hid > 0) {
 sethostid(hid);
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_HOSTID
Impact: Medium
CWE ID: 15

3 Defects

3-794

https://cwe.mitre.org/data/definitions/15.html

See Also
Execution of externally controlled command | Use of externally
controlled environment variable | Host change using externally
controlled elements | Command executed from externally controlled path
| Library loaded from externally controlled path | Find defects (-
checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Host change using externally controlled elements

3-795

Tainted division operand
Operands of division operation (/) come from an unsecure source

Description
Tainted division operand detects division operations where one or both of the integer
operands is from an unsecure source.

Risk
• If the numerator is the minimum possible value and the denominator is -1, your

division operation overflows because the result cannot be represented by the current
variable size.

• If the denominator is zero, your division operation fails possibly causing your program
to crash.

These risks can be used to execute arbitrary code. This code is usually outside the scope
of a program's implicit security policy.

Fix
Before performing the division, validate the values of the operands. Check for
denominators of 0 or -1, and numerators of the minimum integer value.

Examples
Division of Function Arguments
extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = usernum/userden;
 print_int(r);
 return r;
}

3 Defects

3-796

This example function divides two argument variables, then prints and returns the result.
The argument values are unknown and can cause division by zero or integer overflow.

Correction — Check Values

One possible correction is to check the values of the numerator and denominator before
performing the division.

#include "limits.h"

extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = 0;
 if (userden!=0 && !(usernum=INT_MIN && userden==-1)) {
 r = usernum/userden;
 }
 print_int(r);
 return r;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_INT_DIVISION
Impact: Low
CWE ID: 189, 190, 369

See Also
Integer division by zero | Float division by zero | Tainted modulo
operand | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Tainted division operand

3-797

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/369.html

Tainted modulo operand
Operands of remainder operation (%) come from an unsecure source

Description
Tainted modulo operand checks the operands of remainder % operations. Bug Finder
flags modulo operations with one or more tainted operands.

Risk
• If the second remainder operand is zero, your remainder operation fails, causing your

program to crash.
• If the second remainder operand is -1, your remainder operation can overflow if the

remainder operation is implemented based on the division operation that can overflow.
• If one of the operands is negative, the operation result is uncertain. For C89, the

modulo operation is not standardized, so the result from negative operands is
implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in
general.

Fix
Before performing the modulo operation, validate the values of the operands. Check the
second operand for values of 0 and -1. Check both operands for negative values.

Examples
Modulo with Function Arguments
extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 128%userden;

3 Defects

3-798

 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using an input argument.
The argument is not checked before calculating the remainder for values that can crash
the program, such as 0 and -1.

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the
modulo operation. In this corrected example, the modulo operation continues only if the
second operand is greater than zero.

extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_INT_MOD
Impact: Low
CWE ID: 369, 682

See Also
Integer division by zero | Tainted division operand | Find defects (-
checkers)

Topics
“Interpret Polyspace Bug Finder Results”

 Tainted modulo operand

3-799

https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/682.html

“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-800

Loop bounded with tainted value
Loop controlled by a value from an unsecure source

Description
Loop bounded with tainted value detects loops that are bounded by values from an
unsecure source.

Risk
A tainted value can cause over looping or infinite loops. Attackers can use this
vulnerability to crash your program or cause other unintended behavior.

Fix
Before starting the loop, validate unknown boundary and iterator values.

Examples

Loop Boundary From Input Argument
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(int count) {
 int res = 0;
 for (int i=0 ; i < count; ++i) {
 res += i;
 }
 return res;
}

 Loop bounded with tainted value

3-801

In this example, the function uses the input argument to loop count times. count could
be any number because the value is not checked before starting the for-loop.

Correction — Check Loop Control

One possible correction is to check the value of the variable controlling the loop before
starting the for-loop. This example checks if count is greater than zero and less than the
maximum size.

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(int count) {
 int res = 0;

 if (count>0 && count<SIZE128) {
 for (int i=0 ; i<count ; ++i) {
 res += i;
 }
 }
 return res;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_LOOP_BOUNDARY
Impact: Medium
CWE ID: 606

See Also
Array access with tainted index | Pointer dereference with tainted
offset | Find defects (-checkers)

3 Defects

3-802

https://cwe.mitre.org/data/definitions/606.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Loop bounded with tainted value

3-803

Memory allocation with tainted size
Size argument to memory function is from an unsecure source

Description
Memory allocation with tainted size checks memory allocation functions, such as
calloc or malloc, for size arguments from unsecured sources.

Risk
Uncontrolled memory allocation can cause your program to request too much system
memory. This consequence can lead to a crash due to an out-of-memory condition, or
assigning too many resources.

Fix
Before allocating memory, check the value of your arguments to check that they do not
exceed the bounds.

Examples

Allocate Memory Using Input Argument

#include "stdlib.h"

int* bug_taintedmemoryallocsize(size_t size) {
 int* p = (int*)malloc(size);
 return p;
}

In this example, malloc allocates size amount of memory for the pointer p. size is an
outside variable, so could be any size value. If the size is larger than the amount of
memory you have available, your program could crash.

3 Defects

3-804

Correction — Check Size of Memory to be Allocated

One possible correction is to check the size of the memory that you want to allocate
before performing the malloc operation. This example checks to see if the size is positive
and less than the maximum size.

#include "stdlib.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int* corrected_taintedmemoryallocsize(int size) {
 int* p = NULL;
 if (size>0 && size<SIZE128) { /* Fix: Check entry range before use */
 p = (int*)malloc((unsigned int)size);
 }
 return p;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_MEMORY_ALLOC_SIZE
Impact: Medium
CWE ID: 128, 131, 789

See Also
Unprotected dynamic memory allocation | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

 Memory allocation with tainted size

3-805

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/789.html

Introduced in R2015b

3 Defects

3-806

Command executed from externally
controlled path
Path argument from an unsecure source

Description
Command executed from externally controlled path checks the path of commands
that the application controls. If the path of a command is from or constructed from
external sources, Bug Finder flags the command function.

Risk
An attacker can:

• Change the command that the program executes, possibly to a command that only the
attack can control.

• Change the environment in which the command executes, by which the attacker
controls what the command means and does.

Fix
Before calling the command, validate the path to make sure that it is the intended
location.

Examples

Executing Path from Environment Variable
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {

 Command executed from externally controlled path

3-807

 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void bug_taintedpathcmd() {
 char cmd[SIZE128] = "";
 char* userpath = getenv("MYAPP_PATH");

 strncpy(cmd, userpath, SIZE100);
 strcat(cmd, "/ls *");
 /* Launching command */
 system(cmd);
}

This example obtains a path from an environment variable MYAPP_PATH. system runs a
command from that path without checking the value of the path. If the path is not the
intended path, your program executes in the wrong location.

Correction — Use Trusted Path

One possible correction is to use a list of allowed paths to match against the environment
variable path.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

/* Function to sanitize a string */
int sanitize_str(char* s, size_t n) {
 int res = 0;
 /* String is ok if */
 if (s && n>0 && n<SIZE128) {
 /* - string is not null */
 /* - string has a positive and limited size */
 s[n-1] = '\0'; /* Add a security \0 char at end of string */
 /* Tainted pointer detected above, used as "firewall" */
 res = 1;

3 Defects

3-808

 }
 return res;
}

/* Authorized path ids */
enum { PATH0=1, PATH1, PATH2 };

void taintedpathcmd() {
 char cmd[SIZE128] = "";

 char* userpathid = getenv("MYAPP_PATH_ID");
 if (sanitize_str(userpathid, SIZE100)) {
 int pathid = atoi(userpathid);

 char path[SIZE128] = "";
 switch(pathid) {
 case PATH0:
 strcpy(path, "/usr/local/my_app0");
 break;
 case PATH1:
 strcpy(path, "/usr/local/my_app1");
 break;
 case PATH2:
 strcpy(path, "/usr/local/my_app2");
 break;
 default:
 /* do nothing */
 break;
 }
 if (strlen(path)>0) {
 strncpy(cmd, path, SIZE100);
 strcat(cmd, "/ls *");
 system(cmd);
 }
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off

 Command executed from externally controlled path

3-809

Command-Line Syntax: TAINTED_PATH_CMD
Impact: Medium
CWE ID: 114, 426

See Also
Execution of externally controlled command | Use of externally
controlled environment variable | Host change using externally
controlled elements | Library loaded from externally controlled path |
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-810

https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/426.html

Library loaded from externally controlled
path
Using a library argument from an externally controlled path

Description
Library loaded from externally controlled path looks for libraries loaded from fixed or
controlled paths. If unintended actors can control one or more locations on this fixed
path, Bug Finder raises a defect.

Risk
If an attacker knows or controls the path that you use to load a library, the attacker can
change:

• The library that the program loads, replacing the intended library and commands.
• The environment in which the library executes, giving unintended permissions and

capabilities to the attacker.

Fix
When possible, use hard-coded or fully qualified path names to load libraries. It is
possible the hard-coded paths do not work on other systems. Use a centralized location
for hard-coded paths, so that you can easily modify the path within the source code.

Another solution is to use functions that require explicit paths. For example, system()
does not require a full path because it can use the PATH environment variable. However,
execl() and execv() do require the full path.

 Library loaded from externally controlled path

3-811

Examples
Call Custom Library
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void* taintedpathlib() {
 void* libhandle = NULL;
 char lib[SIZE128] = "";
 char* userpath = getenv("LD_LIBRARY_PATH");
 strncpy(lib, userpath, SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, 0x00001);
 return libhandle;
}

This example loads the library libX.so from an environment variable
LD_LIBRARY_PATH. An attacker can change the library path in this environment variable.
The actual library you load could be a different library from the one that you intend.

Correction — Change and Check Path

One possible correction is to change how you get the library path and check the path of
the library before opening the library. This example receives the path as an input
argument. Then the path is checked to make sure the library is not under /usr/.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

3 Defects

3-812

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

/* Function to sanitize a string */
int sanitize_str(char* s, size_t n) {
 /* strlen is used here as a kind of firewall for tainted string errors */
 int res = (strlen(s) > 0 && strlen(s) < n);
 return res;
}
void* taintedpathlib(char* userpath) {
 void* libhandle = NULL;
 if (sanitize_str(userpath, SIZE128)) {
 char lib[SIZE128] = "";

 if (strncmp(userpath, "/usr", 4)!=0) {
 strncpy(lib, userpath, SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, RTLD_LAZY);
 }
 }
 return libhandle;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PATH_LIB
Impact: Medium
CWE ID: 114, 426

See Also
Execution of externally controlled command | Use of externally
controlled environment variable | Command executed from externally
controlled path | Find defects (-checkers)

 Library loaded from externally controlled path

3-813

https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/426.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-814

Use of tainted pointer
Pointer from an unsecure source may be NULL or point to unknown memory

Description
Use of tainted pointer defect is raised when:

• Tainted NULL pointer — the pointer is not validated against NULL.
• Tainted size pointer — the size of the memory zone that a pointer points to is not

validated.

Note On a single pointer, your code can have instances of Use of tainted pointer,
Pointer dereference with tainted offset, and Tainted NULL or non-null-terminated
string. Bug Finder raises only the first tainted pointer defect that it finds.

Risk
An attacker can give your program a pointer that points to unexpected memory locations.
If the pointer is dereferenced to write, the attacker can:

• Modify the state variables of a critical program.
• Cause your program to crash.
• Execute unwanted code.

If the pointer is dereferenced to read, the attacker can:

• Read sensitive data.
• Cause your program to crash.
• Modify a program variable to an unexpected value.

Fix
Avoid use of pointers from external sources.

 Use of tainted pointer

3-815

Alternatively, if you trust the external source, sanitize the pointer before dereference. In a
separate sanitization function:

• Check that the pointer is not NULL.
• Check the size of the memory location (if possible). This second check validates

whether the size of the data the pointer points to matches the size your program
expects.

The defect still appears in the body of the sanitization function. However, if you use a
sanitization function, instead of several occurrences, the defect appears only once. You
can justify the defect and hide it in later reviews by using code annotations. See “Address
Polyspace Results Through Bug Fixes or Justifications”.

Examples
Function That Dereferences an External Pointer
void taintedptr(int* p, int i) {
 *p = i;
}

In this example, the pointer *p is passed as an argument, and the value is changed. The
pointer can be null or point to unknown memory, which can be vulnerable.

Correction — Avoid Use of External Pointers

One possible correction is to avoid pointers from external sources.

int *taintedptr(int i) {
 /* Use heap memory allocated in the application */
 int *p = (int *)malloc(sizeof (int));
 if (p != NULL) { /* Check for success */
 *p = i;
 }
return p;
}

Correction — Check Pointer

Another possible correction is to sanitize the pointer before using it. This example uses a
second function to check if the pointer is null and can be dereferenced.

3 Defects

3-816

#include <stdlib.h>

int* sanitize_ptr(int* p) {
 int* res = NULL;
 if (p && *p) { /* Tainted pointer detected here, used as "firewall" */
 /* Pointer is not null and dereference ok */
 res = p;
 }
 return res;
}
void taintedptr(int* p, int i) {
 p = sanitize_ptr(p);
 if (p) {
 *p = i;
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PTR
Impact: Low
CWE ID: 690, 822

See Also
Pointer dereference with tainted offset | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Use of tainted pointer

3-817

https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/822.html

Pointer dereference with tainted offset
Offset is from an unsecure source and dereference may be out of bounds

Description
Pointer dereference with tainted offset detects pointer dereferencing, either reading
or writing, using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array
access with tainted index.

Risk
The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write to compromise your program.

Fix
Validate the index before you use the variable to access the pointer. Check to make sure
that the variable is inside the valid range and does not overflow.

Examples
Dereference Pointer Array
#include <stdlib.h>

3 Defects

3-818

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[i];
 free(pint);
 }
 return c;
}

In this example, the function initializes an integer pointer pint. The pointer is
dereferenced using the input index i. The value of i could be outside the pointer range,
causing an out-of-range error.

Correction — Check Index Before Dereference

One possible correction is to validate the value of the index. If the index is inside the valid
range, continue with the pointer dereferencing.

#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (i>0 && i<SIZE10) {

 Pointer dereference with tainted offset

3-819

 c = pint[i];
 }
 free(pint);
 }
 return c;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PTR_OFFSET
Impact: Low
CWE ID: 122, 124, 129, 823

See Also
Array access with tainted index | Use of tainted pointer | Find defects
(-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-820

https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/823.html

Tainted sign change conversion
Value from an unsecure source changes sign

Description
Tainted sign change conversion looks for values from unsecure sources that are
converted, implicitly or explicitly, from signed to unsigned values.

For example, functions that use size_t as arguments implicitly convert the argument to
an unsigned integer. Some functions that implicitly convert size_t are:

bcmp
memcpy
memmove
strncmp
strncpy
calloc
malloc
memalign

Risk
If you convert a small negative number to unsigned, the result is a large positive number.
The large positive number can create security vulnerabilities. For example, if you use the
unsigned value in:

• Memory size routines — causes allocating memory issues.
• String manipulation routines — causes buffer overflow.
• Loop boundaries — causes infinite loops.

Fix
To avoid converting unsigned negative values, check that the value being converted is
within an acceptable range. For example, if the value represents a size, validate that the
value is not negative and less than the maximum value size.

 Tainted sign change conversion

3-821

Examples
Set Memory Value with Size Argument
#include <stdlib.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void bug_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size<SIZE128) {
 memset(str, 'c', size);
 }
}

In this example, a char buffer is created and filled using memset. The size argument to
memset is an input argument to the function.

The call to memset implicitly converts size to unsigned integer. If size is a large
negative number, the absolute value could be too large to represent as an integer, causing
a buffer overflow.

Correction — Check Value of size

One possible correction is to check if size is inside the valid range. This correction
checks if size is greater than zero and less than the buffer size before calling memset.

#include <stdlib.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void corrected_taintedsignchange(int size) {
 char str[SIZE128] = "";

3 Defects

3-822

 if (size>0 && size<SIZE128) {
 memset(str, 'c', size);
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_SIGN_CHANGE
Impact: Medium
CWE ID: 128, 131, 192, 194, 195

See Also
Sign change integer conversion overflow | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Tainted sign change conversion

3-823

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html

Tainted NULL or non-null-terminated string
Argument is from an unsecure source and may be NULL or not NULL-terminated

Description
Tainted NULL or non-null-terminated string looks for strings from unsecure sources
that are being used in string manipulation routines that implicitly dereference the string
buffer. For example, strcpy or sprintf.

Tainted NULL or non-null-terminated string raises no defect for a string returned
from a call to scanf-family variadic functions. Similarly, no defect is raised when you
pass the string with a %s specifier to printf-family variadic functions.

Note If you reference a string using the form ptr[i], *ptr, or pointer arithmetic, Bug
Finder raises a Use of tainted pointer defect instead. The Tainted NULL or non-null-
terminated string defect is raised only when the pointer is used as a string.

Risk
If a string is from an unsecure source, it is possible that an attacker manipulated the
string or pointed the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the
program to crash. If the string is not null-terminated, the string routine might not know
when the string ends. This error can cause you to write out of bounds, causing a buffer
overflow.

Fix
Validate the string before you use it. Check that:

• The string is not NULL.
• The string is null-terminated
• The size of the string matches the expected size.

3 Defects

3-824

Examples
Getting String from Input Argument
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

In this example, the string str is concatenated with the argument userstr. The value of
userstr is unknown. If the size of userstr is greater than the space available, the
concatenation overflows.

Correction — Validate the Data

One possible correction is to check the size of userstr and make sure that the string is
null-terminated before using it in strncat. This example uses a helper function,
sansitize_str, to validate the string. The defects are concentrated in this function.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

 Tainted NULL or non-null-terminated string

3-825

int sanitize_str(char* s) {
 int res = 0;
 if (s && (strlen(s) > 0)) { // TAINTED_STRING only flagged here
 // - string is not null
 // - string has a positive and limited size
 // - TAINTED_STRING on strlen used as a firewall
 res = 1;
 }
 return res;
}

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

Correction — Validate the Data

Another possible correction is to call function errorMsg and warningMsg with specific
strings.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));

3 Defects

3-826

 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

int manageSensorValue(int sensorValue) {
 int ret = sensorValue;
 if (sensorValue < 0) {
 errorMsg("sensor value should be positive");
 exit(1);
 } else if (sensorValue > 50) {
 warningMsg("sensor value greater than 50 (applying threshold)...");
 sensorValue = 50;
 }

 return sensorValue;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_STRING
Impact: Low
CWE ID: 120, 170, 476, 690, 822

See Also
Tainted string format | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

 Tainted NULL or non-null-terminated string

3-827

https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/170.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/822.html

Introduced in R2015b

3 Defects

3-828

Tainted string format
Input format argument is from an unsecure source

Description
Tainted string format detects string formatting with printf-style functions that
contain elements from unsecure sources.

Risk
If you use externally controlled elements to format a string, you can cause buffer overflow
or data-representation problems. An attacker can use these string formatting elements to
view the contents of a stack using %x or write to a stack using %n.

Fix
Pass a static string to format string functions. This fix ensures that an external actor
cannot control the string.

Another possible fix is to allow only the expected number of arguments. If possible, use
functions that do not support the vulnerable %n operator in format strings.

Examples
Get Elements from User Input
#include "stdio.h"

void taintedstringformat(char* userstr) {
 printf(userstr);
}

This example prints the input argument userstr. The string is unknown. If it contains
elements such as %, printf can interpret userstr as a string format instead of a string,
causing your program to crash.

 Tainted string format

3-829

Correction — Print as String

One possible correction is to print userstr explicitly as a string so that there is no
ambiguity.

#include "stdio.h"

void taintedstringformat(char* userstr) {
 printf("%.20s", userstr);
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_STRING_FORMAT
Impact: Low
CWE ID: 134

See Also
Tainted NULL or non-null-terminated string | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-830

https://cwe.mitre.org/data/definitions/134.html

Tainted size of variable length array
Size of the variable-length array (VLA) is from an unsecure source and may be zero,
negative, or too large

Description
Tainted size of variable length array detects variable length arrays (VLA) whose size is
from an unsecure source.

Risk
If an attacker changed the size of your VLA to an unexpected value, it can cause your
program to crash or behave unexpectedly.

If the size is non-positive, the behavior of the VLA is undefined. Your program does not
perform as expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.

Fix
Validate your VLA size to make sure that it is positive and less than a maximum value.

Examples

Input Argument Used as Size of VLA
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {

 Tainted size of variable length array

3-831

 int tabvla[size];
 int res = 0;
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 return res;
}

In this example, a variable length array size is based on an input argument. Because this
input argument value is not checked, the size may be negative or too large.

Correction — Check VLA Size

One possible correction is to check the size variable before creating the variable length
array. This example checks if the size is larger than 10 and less than 100, before creating
the VLA

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {
 int res = 0;
 if (size>SIZE10 && size<SIZE100) {
 int tabvla[size];
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 }
 return res;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_VLA_SIZE

3 Defects

3-832

Impact: Medium
CWE ID: 128, 131, 770, 789

See Also
Memory allocation with tainted size | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Tainted size of variable length array

3-833

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/789.html

Accessing object with temporary lifetime
Read or write operations on the object are undefined behavior

Description
Accessing object with temporary lifetime occurs when you attempt to read from or
write to an object with temporary lifetime that is returned by a function call. In a
structure or union returned by a function, and containing an array, the array members are
temporary objects. The lifetime of temporary objects ends:

• When the full expression or full declarator containing the call ends, as defined in the
C11 Standard.

• After the next sequence point, as defined in the C90 and C99 Standards. A sequence
point is a point in the execution of a program where all previous evaluations are
complete and no subsequent evaluation has started yet.

For C++ code, Accessing object with temporary lifetime raises a defect only when
you write to an object with a temporary lifetime.

If the temporary lifetime object is returned by address, no defect is raised.

Risk
Modifying objects with temporary lifetime is undefined behavior and can cause abnormal
program termination and portability issues.

Fix
Assign the object returned from the function call to a local variable. The content of the
temporary lifetime object is copied to the variable. You can now modify it safely.

3 Defects

3-834

Examples
Modifying Temporary Lifetime Object Returned by Function
Call
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

/* func_temp() returns a struct value containing
* an array with a temporary lifetime.
*/
int func(void) {

/*Writing to temporary lifetime object is
 undefined behavior
 */
 return ++(func_temp().a[0]);
}

void main(void) {
 (void)func();
}

In this example, func_temp() returns by value a structure with an array member a. This
member has temporary lifetime. Incrementing it is undefined behavior.

Correction — Assign Returned Value to Local Variable Before Writing

One possible correction is to assign the return of the call to func_temp() to a local
variable. The content of the temporary object a is copied to the variable, which you can
safely increment.

 Accessing object with temporary lifetime

3-835

 #include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

int func(void) {

/* Assign object returned by function call to
 *local variable
 */
 struct S_Array s = func_temp();

/* Local variable can safely be
 *incremented
 */
 ++(s.a[0]);
 return s.a[0];
}

void main(void) {
 (void)func();
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: TEMP_OBJECT_ACCESS
Impact: Low
CWE ID: 825

3 Defects

3-836

https://cwe.mitre.org/data/definitions/825.html

See Also
Find defects (-checkers) | Large pass-by-value argument | Misuse of
structure with flexible array member | Write without a further read

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Accessing object with temporary lifetime

3-837

Use of signal to kill thread
Uncaught signal kills entire process instead of specific thread

Description
Use of signal to kill thread occurs when you use an uncaught signal to kill a thread.
For instance, you use the POSIX function pthread_kill and send the signal SIGTERM to
kill a thread.

Risk
Sending a signal kills the entire process instead of just the thread that you intend to kill.

For instance, the pthread_kill specifications state that if the disposition of a signal is
to terminate, this action affects the entire process.

Fix
Use other mechanisms that are intended to kill specific threads.

For instance, use the POSIX function pthread_cancel to terminate a specific thread.

Examples

Use of pthread_kill to Terminate Threads
#include <signal.h>
#include <pthread.h>

void* func(void *foo) {
 /* Execution of thread */
}

int main(void) {
 int result;

3 Defects

3-838

http://man7.org/linux/man-pages/man3/pthread_kill.3.html

 pthread_t thread;

 if ((result = pthread_create(&thread, NULL, func, 0)) != 0) {
 }
 if ((result = pthread_kill(thread, SIGTERM)) != 0) {
 }

 /* This point is not reached because the process terminates in pthread_kill() */

 return 0;
}

In this example, the pthread_kill function sends the signal SIGTERM to kill a thread.
The signal kills the entire process instead of the thread previously created with
pthread_create.

Correction — Use pthread_cancel to Terminate Threads

One possible correction is to use the pthread_cancel function. The pthread_cancel
terminates a thread specified by its first argument at a specific cancellation point or
immediately, depending on the thread's cancellation type.

#include <signal.h>
#include <pthread.h>

void* func(void *foo) {
 /* Execution of thread */
}

int main(void) {
 int result;
 pthread_t thread;

 if ((result = pthread_create(&thread, NULL, func, 0)) != 0) {
 /* Handle Error */
 }
 if ((result = pthread_cancel(thread)) != 0) {
 /* Handle Error */
 }

 /* Continue executing */

 return 0;
}

 Use of signal to kill thread

3-839

See also:

• pthread_cancel for more information on cancellation types.
• Pthreads for functions that are allowed to be cancellation points.

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: THREAD_KILLED_WITH_SIGNAL
Impact: Low

See Also
Find defects (-checkers) | Signal call in multithreaded program

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

3 Defects

3-840

http://man7.org/linux/man-pages/man3/pthread_cancel.3.html
http://man7.org/linux/man-pages/man7/pthreads.7.html

Thread-specific memory leak
Dynamically allocated thread-specific memory not freed before end of thread

Description
Thread-specific memory leak occurs when you do not free thread-specific dynamically
allocated memory before the end of a thread.

To create thread-specific storage, you generally do these steps:

1 You create a key for thread-specific storage.
2 You create the threads.
3 In each thread, you allocate storage dynamically and then associate the key with this

storage.

After the association, you can read the stored data later using the key.
4 Before the end of the thread, you free the thread-specific memory using the key.

The checker flags execution paths in the thread where the last step is missing.

The checker works on these families of functions:

• tss_get and tss_set (C11)
• pthread_getspecific and pthread_setspecific (POSIX)

Risk
The data stored in the memory is available to other processes even after the threads end
(memory leak). Besides security vulnerabilities, memory leaks can shrink the amount of
available memory and reduce performance.

Fix
Free dynamically allocated memory before the end of a thread.

You can explicitly free dynamically allocated memory with functions such as free.

 Thread-specific memory leak

3-841

Alternatively, when you create a key, you can associate a destructor function with the key.
The destructor function is called with the key value as argument at the end of a thread. In
the body of the destructor function, you can free any memory associated with the key. If
you use this method, Bug Finder still flags a defect. Ignore this defect with appropriate
comments. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples
Memory Not Freed at End of Thread
#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int add_data(void) {
 int *data = (int *)malloc(2 * sizeof(int));
 if (data == NULL) {
 return -1; /* Report error */
 }
 data[0] = 0;
 data[1] = 1;

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

void print_data(void) {
 /* Get this thread's global data from key */
 int *data = tss_get(key);

 if (data != NULL) {
 /* Print data */
 }
}

int func(void *dummy) {

3 Defects

3-842

 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 return 0;
}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], func, NULL)) {
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

In this example, the start function of each thread func calls two functions:

• add_data: This function allocates storage dynamically and associates the storage
with a key using the tss_set function.

• print_data: This function reads the stored data using the tss_get function.

At the points where func returns, the dynamically allocated storage has not been freed.

Correction — Free Dynamically Allocated Memory Explicitly

One possible correction is to free dynamically allocated memory explicitly before leaving
the start function of a thread. See the highlighted change in the corrected version.

 Thread-specific memory leak

3-843

In this corrected version, a defect still appears on the return statement in the error
handling section of func. The defect cannot occur in practice because the error handling
section is entered only if dynamic memory allocation fails. Ignore this remaining defect
with appropriate comments. See “Address Polyspace Results Through Bug Fixes or
Justifications”.

#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int add_data(void) {
 int *data = (int *)malloc(2 * sizeof(int));
 if (data == NULL) {
 return -1; /* Report error */
 }
 data[0] = 0;
 data[1] = 1;

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

void print_data(void) {
 /* Get this thread's global data from key */
 int *data = tss_get(key);

 if (data != NULL) {
 /* Print data */
 }
}

int func(void *dummy) {
 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 free(tss_get(key));
 return 0;

3 Defects

3-844

}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], func, NULL)) {
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: THREAD_MEM_LEAK
Impact: Medium
CWE ID: 401, 404

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”

 Thread-specific memory leak

3-845

https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/404.html

“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

3 Defects

3-846

File access between time of check and use
(TOCTOU)
File or folder might change state due to access race

Description
File access between time of check and use (TOCTOU) detects race condition issues
between checking the existence of a file or folder, and using a file or folder.

Risk
An attacker can access and manipulate your file between your check for the file and your
use of a file. Symbolic links are particularly risky because an attacker can change where
your symbolic link points.

Fix
Before using a file, do not check its status. Instead, use the file and check the results
afterward.

Examples

Check File Before Using
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 if (access(log_path, W_OK)==0) {
 FILE* f = fopen(log_path, "w");
 if (f) {

 File access between time of check and use (TOCTOU)

3-847

 print_tofile(f);
 fclose(f);
 }
 }
}

In this example, before opening and using the file, the function checks if the file exists.
However, an attacker can change the file between the first and second lines of the
function.

Correction — Open Then Check

One possible correction is to open the file, and then check the existence and contents
afterward.

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 int fd = open(log_path, O_WRONLY);
 if (fd!=-1) {
 FILE *f = fdopen(fd, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: TOCTOU
Impact: Medium
CWE ID: 367

3 Defects

3-848

https://cwe.mitre.org/data/definitions/367.html

See Also
Data race | Bad file access mode or status | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 File access between time of check and use (TOCTOU)

3-849

Too many va_arg calls for current argument
list
Number of calls to va_arg exceeds number of arguments passed to variadic function

Description
Too many va_arg calls for current argument list occurs when the number of calls to
va_arg exceeds the number of arguments passed to the corresponding variadic function.
The analysis raises a defect only when the variadic function is called.

Too many va_arg calls for current argument list does not raise a defect when:

• The number of calls to va_arg inside the variadic function is indeterminate. For
example, if the calls are from an external source.

• The va_list used in va_arg is invalid.

Risk
When you call va_arg and there is no next argument available in va_list, the behavior
is undefined. The call to va_arg might corrupt data or return an unexpected result.

Fix
Ensure that you pass the correct number of arguments to the variadic function.

Examples

No Argument Available When Calling va_arg
#include <stdarg.h>
#include <stddef.h>
#include <math.h>

3 Defects

3-850

/* variadic function defined with
* one named argument 'count'
*/
int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {
/* No further argument available
* in va_list when calling va_arg
*/

 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100);

}

In this example, the named argument and only one variadic argument are passed to
variadic_func() when it is called inside func(). On the second call to va_arg, no
further variadic argument is available in ap and the behavior is undefined.

Correction — Pass Correct Number of Arguments to Variadic Function

One possible correction is to ensure that you pass the correct number of arguments to the
variadic function.

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/

 Too many va_arg calls for current argument list

3-851

int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {

/* The correct number of arguments is
* passed to va_list when variadic_func()
* is called inside func()
*/
 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100, 200);

}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: TOO_MANY_VA_ARG_CALLS
Impact: Medium
CWE ID: 685

See Also
Find defects (-checkers) | Incorrect data type passed to va_arg |
Invalid va_list argument

3 Defects

3-852

https://cwe.mitre.org/data/definitions/685.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Too many va_arg calls for current argument list

3-853

Typedef mismatch
Mismatch between typedef statements

Description
Typedef mismatch detects typedef statements with different underlying types for these
fundamental types:

• size_t
• ssize_t
• wchar_t
• ptrdiff_t

Risk
If you change the underlying type of size_t, ssize_t, wchar_t, or ptrdiff_t, you
have inconsistent definitions of the same type. Compilation units with different include
paths can potentially use different-sized types causing conflicts in your program.

For example, say that you define a function in one compilation unit that redefines size_t
as unsigned long. But in another compilation unit that uses the size_t definition from
<stddef.h>, you use the same function as an extern declaration. Your program will
encounter a mismatch between the function declaration and function definition.

Fix
Use consistent type definitions. For example:

• Remove custom type definitions for these fundamental types. Only use system
definitions.

• Use the same size for all compilation units. Move your typedef to a shared header
file.

3 Defects

3-854

Examples

Two Definitions of size_t
file1.c

typedef unsigned char size_t;

void func2()
{
 size_t var = 0;
 /*... more code ... */
}

file2.c

#include <stddef.h>

void func1()
{
 size_t var = 0;
 /*... more code ... */
}

In this example, Polyspace flags the definition of size_t in file1.c as a defect. This
definition is a typedef mismatch because another file in your project, file2.c, includes
stddef.h, which defines size_t as unsigned long.

Correction — Use System Definition

One possible correction is to use the system definition of size_t in stddef.h to avoid
conflicting type definitions.

file1.c

#include <stddef.h>

void func2()
{
 size_t var = 0;
 /*... more code ... */
}

 Typedef mismatch

3-855

file2.c

#include <stddef.h>

void func1()
{
 size_t var = 0;
 /*... more code ... */
}

Correction — Use Shared Header File

One possible correction is to use a shared header file to store your type definition that
gets included in both files.

types.h

typedef unsigned char size_t;

file1.c

#include "types.h"

void func2()
{
 size_t var = 0;
 /*... more code ... */
}

file2.c

#include "types.h"

void func1()
{
 size_t var = 0;
 /*... more code ... */
}

Result Information
Group: Programming
Language: C | C++

3 Defects

3-856

Default: On
Command-Line Syntax: TYPEDEF_MISMATCH
Impact: High

See Also
Declaration mismatch | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

 Typedef mismatch

3-857

Unsigned integer constant overflow
Constant value falls outside range of unsigned integer data type

Description
Unsigned integer constant overflow occurs when you assign a compile-time constant
to a unsigned integer variable whose data type cannot accommodate the value. An n-bit
unsigned integer holds values in the range [0, 2n-1].

For instance, c is an 8-bit unsigned char variable that cannot hold the value 256.

unsigned char c = 256;

To determine the sizes of fundamental types, Bug Finder uses your specification for
Target processor type (-target).

Risk
The C standard states that overflowing unsigned integers must be wrapped around (see,
for instance, the C11 standard, section 6.2.5). However, the wrap-around behavior can be
unintended and cause unexpected results.

Fix
Check if the constant value is what you intended. If the value is correct, use a wider data
type for the variable.

Examples

Overflowing Constant from Macro Expansion
#define MAX_UNSIGNED_CHAR 255
#define MAX_UNSIGNED_SHORT 65535

void main() {

3 Defects

3-858

 unsigned char c1 = MAX_UNSIGNED_CHAR + 1;
 unsigned short c2 = MAX_UNSIGNED_SHORT + 1;
}

In this example, the defect appears on the macros because at least one use of the macro
causes an overflow.

Correction — Use Wider Data Type

One possible correction is to use a wider data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_UNSIGNED_SHORT 65535

void main() {
 unsigned short c1 = MAX_UNSIGNED_CHAR + 1;
 unsigned int c2 = MAX_UNSIGNED_SHORT + 1;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: UINT_CONSTANT_OVFL
Impact: Low
CWE ID: 128, 189, 190, 191

See Also
Find defects (-checkers) | Integer constant overflow | Integer
conversion overflow | Integer overflow | Sign change integer conversion
overflow | Unsigned integer conversion overflow | Unsigned integer
overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018b

 Unsigned integer constant overflow

3-859

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html

Unsigned integer conversion overflow
Overflow when converting between unsigned integer types

Description
Unsigned integer conversion overflow occurs when converting an unsigned integer to
a smaller unsigned integer type. If the variable does not have enough bytes to represent
the original constant, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk
Integer conversion overflows result in undefined behavior.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

In general, avoid conversions to smaller integer types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

3 Defects

3-860

Examples
Converting from int to char
unsigned char convert(void) {
 unsigned int unum = 1000000U;

 return (unsigned char)unum;
}

In the return statement, the unsigned integer variable unum is converted to an unsigned
character type. However, the conversion overflows because 1000000 requires at least 20
bits. The C programming language standard does not view unsigned overflow as an error
because the program automatically reduces the result by modulo the maximum value plus
1. In this example, unum is reduced by modulo 2^8 because a character data type can
only represent 2^8-1.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the
entire number. For example, long.

unsigned long convert(void) {
 unsigned int unum = 1000000U;

 return (unsigned long)unum;
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: UINT_CONV_OVFL
Impact: Low
CWE ID: 128, 131, 189, 190, 191, 192, 197

See Also
Find defects (-checkers) | Float conversion overflow | Integer
conversion overflow | Sign change integer conversion overflow

 Unsigned integer conversion overflow

3-861

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/197.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-862

Unsigned integer overflow
Overflow from operation between unsigned integers

Description
Unsigned integer overflow occurs when an operation on unsigned integer variables can
result in values that cannot be represented by the result data type. The data type of a
variable determines the number of bytes allocated for the variable storage and constrains
the range of allowed values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk
The C11 standard states that unsigned integer overflows result in wrap-around behavior.
However, a wrap around behavior might not always be desirable. For instance, if the
result of a computation is used as an array size and the computation overflows, the array
size is much smaller than expected.

Fix
The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling. In the error handling code, you can override the default wrap-around
behavior for overflows and implement saturation behavior, for instance.

 Unsigned integer overflow

3-863

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Add One to Maximum Unsigned Integer
#include <limits.h>

unsigned int plusplus(void) {

 unsigned uvar = UINT_MAX;
 uvar++;
 return uvar;
}

In the third statement of this function, the variable uvar is increased by 1. However, the
value of uvar is the maximum unsigned integer value, so 1 plus the maximum integer
value cannot be represented by an unsigned int. The C programming language
standard does not view unsigned overflow as an error because the program automatically
reduces the result by modulo the maximum value plus 1. In this example, uvar is reduced
by modulo UINT_MAX. The result is uvar = 1.

Correction — Different Storage Type

One possible correction is to store the operation result in a larger data type. In this
example, by returning an unsigned long long instead of an unsigned int, the
overflow error is fixed.

#include <limits.h>

unsigned long long plusplus(void) {

 unsigned long long ullvar = UINT_MAX;
 ullvar++;
 return ullvar;
}

3 Defects

3-864

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: UINT_OVFL
Impact: Low
CWE ID: 128, 131, 189, 190, 191, 192

See Also
Find defects (-checkers) | Float overflow | Integer overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Unsigned integer overflow

3-865

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html

Static uncalled function
Function with static scope not called in file

Description
Static uncalled function occurs when a static function is not called in the same file
where it is defined.

Risk
Uncalled functions often result from legacy code and cause unnecessary maintenance.

Fix
If the function is not meant to be called, remove the function. If the function is meant for
debugging purposes only, wrap the function definition in a debug macro.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Examples

Uncalled function error
Save the following code in the file Initialize_Value.c

#include <stdlib.h>
#include <stdio.h>

static int Initialize(void)
/* Defect: Function not called */
 {
 int input;

3 Defects

3-866

 printf("Enter an integer:");
 scanf("%d",&input);
 return(input);
 }

 void main()
 {
 int num;

 num=0;

 printf("The value of num is %d",num);
 }

The static function Initialize is not called in the file Initialize_Value.c.

Correction — Call Function at Least Once

One possible correction is to call Initialize at least once in the file
Initialize_Value.c.

#include <stdlib.h>
#include <stdio.h>

static int Initialize(void)
 {
 int input;
 printf("Enter an integer:");
 scanf("%d",&input);
 return(input);
 }

 void main()
 {
 int num;

 /* Fix: Call static function Initialize */
 num=Initialize();

 printf("The value of num is %d",num);
 }

 Static uncalled function

3-867

Check Information
Group: Data flow
Language: C | C++
Default: Off
Command-Line Syntax: UNCALLED_FUNC
Impact: Low
CWE ID: 561

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-868

https://cwe.mitre.org/data/definitions/561.html

Use of undefined thread ID
Thread ID from failed thread creation used in subsequent thread functions

Description
Use of undefined thread ID occurs when a thread creation function such as
pthread_create fails but you continue to use the ID from the thread creation.

For instance, pthread_join uses an undefined thread ID after the previous thread
creation failed. The nonzero return value from pthread_create indicates the failed
thread creation.

pthread_t id;
if(0! = pthread_create(&id, attr, start_func, NULL)) {
 ...
 phread_join(id, NULL);
 ...
}

The issue is also flagged if you do not check the return value from a call to
pthread_create.

Risk
According to the POSIX standard, if thread creation fails, the contents of the thread ID
are undefined. The use of an undefined thread ID can lead to unpredictable results.

The issue often indicates a programming error. For instance, it is possible that you tested
for nonzero values to determine successful thread creation:

if(0 != pthread_create(&id, attr, start_func, NULL))

instead of zero:

if(0 == pthread_create(&id, attr, start_func, NULL))

 Use of undefined thread ID

3-869

Fix
If the use of an undefined thread ID comes from a programming error, fix the error.
Otherwise, remove the thread functions that are using the undefined ID.

Examples

Threads Joined After Failed Thread Creation
#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 if(thread_success != pthread_create(&id, NULL, thread_func, NULL)) {
 if(thread_success == pthread_join(id, NULL)) {
 }
 }

 return 0;
}

In this example, if pthread_create returns a nonzero value, thread creation has failed.
The value of *id is undefined. The subsequent call to pthread_join uses this undefined
value.

Correction – Join Threads After Successful Thread Creation

One possible correction is to call pthread_join with the thread ID as argument only if
pthread_create returns zero.

#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

3 Defects

3-870

int main() {
 pthread_t id;
 if(thread_success == pthread_create(&id, NULL, thread_func, NULL)) {
 if(thread_success == pthread_join(id, NULL)) {
 }
 }

 return 0;
}

Return Value from Thread Creation Not Checked
#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_create(&id, NULL, thread_func, NULL);
 if(thread_success == pthread_join(id, NULL)) {
 }

 return 0;
}

In this example, the return value of pthread_create is not checked. If thread creation
fails, the error does not get handled. A possibly undefined thread ID is later used in the
pthread_join function.

Correction – Handle Errors from Thread Creation

One possible correction is to use the ID from thread creation only if the return value from
pthread_create indicates successful thread creation.

#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

 Use of undefined thread ID

3-871

int main() {
 pthread_t id;
 if(thread_success == pthread_create(&id, NULL, thread_func, NULL)) {
 if(thread_success == pthread_join(id, NULL)) {
 }
 }

 return 0;
}

Check Information
Group: Concurrency
Language: C
Default: Off
Command-Line Syntax: UNDEFINED_THREAD_ID
Impact: Medium

See Also
Join or detach of a joined or detached thread | Missing or double
initialization of thread attribute

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019b

3 Defects

3-872

Unnamed namespace in header file
Header file contains unnamed namespace leading to multiple definitions

Description
Unnamed namespace in header file detects an unnamed namespace in a header file,
which can lead to multiple definitions of objects in the namespace.

Risk
According to the C++ standard, names in an unnamed namespace, for instance, aVar:

namespace {
 int aVar;
}

have internal linkage by default. If a header file contains an unnamed namespace, each
translation unit with a source file that #include-s the header file defines its own instance
of objects in the namespace. The multiple definitions are probably not what you intended
and can lead to unexpected results, unwanted excess memory usage, or inadvertently
violating the one-definition rule.

Fix
Specify names for namespaces in header files or avoid using namespaces in header files.

Examples

Unexpected Results from Unnamed Namespaces in Header
Files
Header File: aHeader.h

 Unnamed namespace in header file

3-873

namespace {
 int aVar;
}

First source file: aSource.cpp

#include "aHeader.h"
#include <iostream>

void setVar(int arg) {
 std::cout << "Current value: " << aVar << std::endl;
 aVar = arg;
 std::cout << "Value set at: " << aVar << std::endl;
}

Second source file: anotherSource.cpp

#include "aHeader.h"
#include <iostream>

extern void setVar(int);

void resetVar() {
 std::cout << "Current value: " << aVar << std::endl;
 aVar = 0;
 std::cout << "Value set at: 0" << std::endl;
}

void main() {
 setVar(1);
 resetVar();
}

In this example, the unnamed namespace leads to two definitions of aVar in the
translation unit from aSource.cpp and the translation unit from anotherSource.cpp.
The two definitions lead to possible unexpected output:

Current value: 0
Value set at: 1
Current value: 0
Value set at: 0

Correction – Avoid the Unnamed Namespace

One possible correction is to avoid a namespace in the header file.

3 Defects

3-874

Header File: aHeader.h

extern int aVar;

First source file: aSource.cpp

#include "aHeader.h"
#include <iostream>

void setVar(int arg) {
 std::cout << "Current value: " << aVar << std::endl;
 aVar = arg;
 std::cout << "Value set at: " << aVar << std::endl;
}

Second source file: anotherSource.cpp

#include "aHeader.h"
#include <iostream>

extern void setVar(int);
int aVar;

void resetVar() {
 std::cout << "Current value: " << aVar << std::endl;
 aVar = 0;
 std::cout << "Value set at: 0" << std::endl;
}

void main() {
 setVar(1);
 resetVar();
}

You now see the expected sequence in the output:

Current value: 0
Value set at: 1
Current value: 1
Value set at: 0

Result Information
Group: Programming

 Unnamed namespace in header file

3-875

Language: C++
Default: On
Command-Line Syntax: UNNAMED_NAMESPACE_IN_HEADER
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019b

3 Defects

3-876

Unprotected dynamic memory allocation
Pointer returned from dynamic allocation not checked for NULL value

Description
Unprotected dynamic memory allocation occurs when you do not check after dynamic
memory allocation whether the memory allocation succeeded.

Risk
When memory is dynamically allocated using malloc, calloc, or realloc, it returns a
value NULL if the requested memory is not available. If the code following the allocation
accesses the memory block without checking for this NULL value, this access is not
protected from failures.

Fix
Check the return value of malloc, calloc, or realloc for NULL before accessing the
allocated memory location.

int *ptr = malloc(size * sizeof(int));

if(ptr) /* Check for NULL */
{
 /* Memory access through ptr */
}

Examples

Unprotected dynamic memory allocation error
#include <stdlib.h>

void Assign_Value(void)
{

 Unprotected dynamic memory allocation

3-877

 int* p = (int*)calloc(5, sizeof(int));

 *p = 2;
 /* Defect: p is not checked for NULL value */

 free(p);
}

If the memory allocation fails, the function calloc returns NULL to p. Before accessing
the memory through p, the code does not check whether p is NULL

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

void Assign_Value(void)
 {
 int* p = (int*)calloc(5, sizeof(int));

 /* Fix: Check if p is NULL */
 if(p!=NULL) *p = 2;

 free(p);
 }

Check Information
Group: Dynamic memory
Language: C | C++
Default: Off
Command-Line Syntax: UNPROTECTED_MEMORY_ALLOCATION
Impact: Low
CWE ID: 253, 690, 789

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”

3 Defects

3-878

https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/789.html

“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Unprotected dynamic memory allocation

3-879

Call through non-prototyped function
pointer
Function pointer declared without its type or number of parameters causes unexpected
behavior

Description
Call through non-prototyped function pointer detects a call to a function through a
pointer without a prototype. A function prototype specifies the type and number of
parameters.

Risk
Arguments passed to a function without a prototype might not match the number and
type of parameters of the function definition, which can cause undefined behavior. If the
parameters are restricted to a subset of their type domain, arguments from untrusted
sources can trigger vulnerabilities in the called function.

Fix
Before calling the function through a pointer, provide a function prototype.

Examples
Argument Does Not Match Parameter Restriction
#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func_ptr)();
extern int getchar_wrapper(void);
extern void restricted_int_sink(int i);
/* Integer value restricted to

3 Defects

3-880

range [-1, 255] */
extern void restricted_float_sink(double i);
/* Double value restricted to > 0.0 */

func_ptr generic_callback[SIZE2] =
{
 (func_ptr)restricted_int_sink,
 (func_ptr)restricted_float_sink
};

void func(void)
{
 int ic;
 ic = getchar_wrapper();
 /* Wrong index used for generic_callback.
 Negative 'int' passed to restricted_float_sink. */
 (*generic_callback[1])(ic);
}

In this example, a call through func_ptr passes ic as an argument to function
generic_callback[1]. The type of ic can have negative values, while the parameter of
generic_callback[1] is restricted to float values greater than 0.0. Typically,
compilers and static analysis tools cannot perform type checking when you do not provide
a pointer prototype.

Correction — Provide Prototype of Pointer to Function

Pass the argument ic to a function with a parameter of type int, by using a properly
prototyped pointer.

#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func_ptr_proto)(int);
extern int getchar_wrapper(void);
extern void restricted_int_sink(int i);
/* Integer value restricted to
range [-1, 255] */
extern void restricted_float_sink(double i);

 Call through non-prototyped function pointer

3-881

/* Double value restricted to > 0.0 */

func_ptr_proto generic_callback[SIZE2] =
{
 (func_ptr_proto)restricted_int_sink,
 (func_ptr_proto)restricted_float_sink
};

void func(void)
{
 int ic;
 ic = getchar_wrapper();
 /* ic passed to function through
properly prototyped pointer. */
 (*generic_callback[0])(ic);
}

Result Information
Group: Programming
Language: C
Default: On
Command-Line Syntax: UNPROTOTYPED_FUNC_CALL
Impact: Medium

See Also
Declaration mismatch | Find defects (-checkers) | Unreliable cast of
function pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

3 Defects

3-882

Unreachable code
Code not executed because of preceding control-flow statements

Description
Unreachable code defects occur on code which cannot be reached because of a previous
break in control flow.

Statements such as break, goto, and return, move the flow of the program to another
section or function. Because of this flow escape, the statements following the control-flow
code, statistically, do not execute, and therefore the statements are unreachable.

This check also finds code following trivial infinite loops, such as while(1). These types
of loops only release the flow of the program by exiting the program. This type of exit
causes code after the infinite loop to be unreachable.

Risk
Unreachable code wastes development time, memory and execution cycles. Developers
have to maintain code that is not being executed. Instructions that are not executed still
have to be stored and cached.

Fix
The fix depends on the intended functionality of the unreachable code. If you want the
code to be executed, check the placement of the code or the prior statement that diverts
the control flow. For instance, if the unreachable code follows a return statement, you
might have to switch their order or remove the return statement altogether.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 Unreachable code

3-883

Examples

Unreachable Code After Return
typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS))
 card = UNKNOWN_SUIT;
 return card;

 if (card < HEARTS) {
 guess(card);
 }
 return card;
}

In this example, there are missing braces and misleading indentation. The first return
statement changes the flow of code back to where the function was called. Because of this
return statement, the if-block and second return statement do not execute.

If you correct the indentation and the braces, the error becomes clearer.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }
 return card;

 if (card < HEARTS) {
 guess(card);
 }
 return card;
}

3 Defects

3-884

Correction — Remove Return

One possible correction is to remove the escape statement. In this example, remove the
first return statement to reach the final if statement.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS))
 {
 card = UNKNOWN_SUIT;
 }

 if(card < HEARTS)
 {
 guess(card);
 }
 return card;
}

Correction — Remove Unreachable Code

Another possible correction is to remove the unreachable code if you do not need it.
Because the function does not reach the second if-statement, removing it simplifies the
code and does not change the program behavior.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS))
 {
 card = UNKNOWN_SUIT;
 }
 return card;
}

 Unreachable code

3-885

Infinite Loop Causing Unreachable Code
int add_apples(int apple) {
 int count = 1;
 while(1) {
 if(apple < 99){
 apple++;
 count++;
 }else{
 count--;
 }
 }
 return count;
}

In this example, the while(1) statement creates an infinite loop. The return count
statement following this infinite loop is unreachable because the only way to exit this
infinite loop is to exit the program.

Correction — Rewrite Loop Condition

One possible correction is to change the loop condition to make the while loop finite. In
the example correction here, the loop uses the statement from the if condition: apple <
99.

int add_apples1(int apple) {
 int count = 0;
 while(apple < 99) {
 apple++;
 count++;
 }
 if(count == 0)
 count = -1;
 return count;
}

Correction — Add a Break Statement

Another possible correction is to add a break from the infinite loop, so there is a
possibility of reaching code after the infinite loop. In this example, a break is added to
the else block making the return count statement reachable.

int add_apples(int apple) {
 int count = 1;

3 Defects

3-886

 while(1) {
 if(apple < 99)
 {
 apple++;
 count++;
 }else{
 count--;
 break;
 }
 }
 return count;
}

Correction — Remove Unreachable Code

Another possible correction is to remove the unreachable code. This correction cleans up
the code and makes it easier to review and maintain. In this example, remove the return
statement and change the function return type to void.

void add_apples(int apple) {
 int count = 1;
 while(1) {
 if(apple < 99)
 {
 apple++;
 count++;
 }else{
 count--;
 }
 }
}

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: UNREACHABLE
Impact: Medium
CWE ID: 561

 Unreachable code

3-887

https://cwe.mitre.org/data/definitions/561.html

See Also
Code deactivated by constant false condition | Dead code | Find defects
(-checkers) | Useless if

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-888

Unsafe standard encryption function
Function is not reentrant or uses a risky encryption algorithm

Description
Unsafe standard encryption function detects use of functions with a broken or weak
cryptographic algorithm. For example, crypt is not reentrant and is based on the risky
Data Encryption Standard (DES).

Risk
The use of a broken, weak, or nonstandard algorithm can expose sensitive information to
an attacker. A determined hacker can access the protected data using various techniques.

If the weak function is nonreentrant, when you use the function in concurrent programs,
there is an additional race condition risk.

Fix
Avoid functions that use these encryption algorithms. Instead, use a reentrant function
that uses a stronger encryption algorithm.

Note Some implementations of crypt support additional, possibly more secure,
encryption algorithms.

Examples

Decrypting Password Using crypt
#define _GNU_SOURCE
#include <pwd.h>
#include <string.h>
#include <crypt.h>

 Unsafe standard encryption function

3-889

volatile int rd = 1;

const char *salt = NULL;
struct crypt_data input, output;

int verif_pwd(const char *pwd, const char *cipher_pwd, int safe)
{
 int r = 0;
 char *decrypted_pwd = NULL;

 switch(safe)
 {
 case 1:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 case 2:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 default:
 decrypted_pwd = crypt(pwd, cipher_pwd);
 break;
 }

 r = (strcmp(cipher_pwd, decrypted_pwd) == 0);

 return r;
}

In this example, crypt_r and crypt decrypt a password. However, crypt is
nonreentrant and uses the unsafe Data Encryption Standard algorithm.

Correction — Use crypt_r

One possible correction is to replace crypt with crypt_r.

#define _GNU_SOURCE
#include <pwd.h>
#include <string.h>
#include <crypt.h>

volatile int rd = 1;

3 Defects

3-890

const char *salt = NULL;
struct crypt_data input, output;

int verif_pwd(const char *pwd, const char *cipher_pwd, int safe)
{
 int r = 0;
 char *decrypted_pwd = NULL;

 switch(safe)
 {
 case 1:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 case 2:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 default:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;
 }

 r = (strcmp(cipher_pwd, decrypted_pwd) == 0);

 return r;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_STD_CRYPT
Impact: Medium
CWE ID: 327, 522, 663

See Also
Deterministic random output from constant seed | Predictable random
output from predictable seed | Vulnerable pseudo-random number
generator | Find defects (-checkers)

 Unsafe standard encryption function

3-891

https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/522.html
https://cwe.mitre.org/data/definitions/663.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-892

Unsafe standard function
Function unsafe for security-related purposes

Description
Unsafe standard function looks for functions that are unsafe and must not be used for
security-related programming. Functions can be unsafe for many reasons. Some functions
are unsafe because they are nonreentrant. Other functions change depending on the
target or platform, making some implementations unsafe.

Risk
Some unsafe functions are not reentrant, meaning that the contents of the function are
not locked during a call. So, an attacker can change the values midstream.

getlogin specifically can be unsafe depending on the implementation. Some
implementations of getlogin return only the first eight characters of a log-in name. An
attacker can use a different login with the same first eight characters to gain entry and
manipulate the program.

Fix
Avoid unsafe functions for security-related purposes. If you cannot avoid unsafe functions,
use a safer version of the function instead. For getlogin, use getlogin_r.

Examples

Using getlogin
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
#include <string.h>

 Unsafe standard function

3-893

#include <stdlib.h>

volatile int rd = 1;

int login_name_check(char *user)
{
 int r = -2;
 char *name = getlogin();
 if (name != NULL)
 {
 if (strcmp(name, user) == 0)
 {
 r = 0;
 }
 else
 r = -1;
 }

 return r;
}

This example uses getlogin to compare the user name of the current user to the given
user name . However, getlogin can return something other than the current user name
because a parallel process can change the string.

Correction — Use getlogin_r

One possible correction is to use getlogin_r instead of getlogin. getlogin_r is
reentrant, so you can trust the result.

#define _POSIX_C_SOURCE 199506L // use of getlogin_r
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
#include <string.h>
#include <stdlib.h>

volatile int rd = 1;

enum { NAME_MAX_SIZE=64 };

3 Defects

3-894

int login_name_check(char *user)
{
 int r;
 char name[NAME_MAX_SIZE];

 if (getlogin_r(name, sizeof(name)) == 0)
 {
 if ((strlen(user) < sizeof(name)) &&
 (strncmp(name, user, strlen(user)) == 0))
 {
 r = 0;
 }
 else
 r = -1;
 }
 else
 r = -2;
 return r;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_STD_FUNC
Impact: Medium
CWE ID: 558, 663

See Also
Use of obsolete standard function | Use of dangerous standard function
| Invalid use of standard library string routine | Find defects (-
checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Unsafe standard function

3-895

https://cwe.mitre.org/data/definitions/558.html
https://cwe.mitre.org/data/definitions/663.html

Unsafe conversion from string to numerical
value
String to number conversion without validation checks

Description
Unsafe conversion from string to numerical value detects conversions from strings
to integer or floating-point values. If your conversion method does not include robust
error handling, a defect is raised.

Risk
Converting a string to numerical value can cause data loss or misinterpretation. Without
validation of the conversion or error handling, your program continues with invalid
values.

Fix
• Add additional checks to validate the numerical value.
• Use a more robust string-to-numeric conversion function such as strtol, strtoll,

strtoul, or strtoull.

Examples

Conversion With atoi
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)

3 Defects

3-896

 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char* argv1)
{
 int s = 0;
 if (demo_check_string_not_empty(argv1))
 {
 s = atoi(argv1);
 }
 return s;
}

In this example, argv1 is converted to an integer with atoi. atoi does not provide
errors for an invalid integer string. The conversion can fail unexpectedly.

Correction — Use strtol instead

One possible correction is to use strtol to validate the input string and the converted
integer.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <errno.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)
 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char *argv1)
{
 char *c_str = argv1;
 char *end;
 long sl;

 if (demo_check_string_not_empty(c_str))
 {

 Unsafe conversion from string to numerical value

3-897

 errno = 0; /* set errno for error check */
 sl = strtol(c_str, &end, 10);
 if (end == c_str)
 {
 (void)fprintf(stderr, "%s: not a decimal number\n", c_str);
 }
 else if ('\0' != *end)
 {
 (void)fprintf(stderr, "%s: extra characters: %s\n", c_str, end);
 }
 else if ((LONG_MIN == sl || LONG_MAX == sl) && ERANGE == errno)
 {
 (void)fprintf(stderr, "%s out of range of type long\n", c_str);
 }
 else if (sl > INT_MAX)
 {
 (void)fprintf(stderr, "%ld greater than INT_MAX\n", sl);
 }
 else if (sl < INT_MIN)
 {
 (void)fprintf(stderr, "%ld less than INT_MIN\n", sl);
 }
 else
 {
 return (int)sl;
 }
 }
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_STR_TO_NUMERIC
Impact: Low
CWE ID: 20, 253, 676

See Also
Find defects (-checkers)

3 Defects

3-898

https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/676.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2016b

 Unsafe conversion from string to numerical value

3-899

Unsafe call to a system function
Unsanitized command argument has exploitable vulnerabilities

Description
Unsafe call to a system function occurs when you use a function that invokes an
implementation-defined command processor. These functions include:

• The C standard system() function.
• The POSIX popen() function.
• The Windows _popen() and _wpopen() functions.

Risk
If the argument of a function that invokes a command processor is not sanitized, it can
cause exploitable vulnerabilities. An attacker can execute arbitrary commands or read
and modify data anywhere on the system.

Fix
Do not use a system-family function to invoke a command processor. Instead, use safer
functions such as POSIX execve() and WinAPI CreateProcess().

Examples

system() Called
include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,

3 Defects

3-900

SIZE3=3};

void func(char *arg)
{
 char buf[SIZE512];
 int retval=sprintf(buf, "/usr/bin/any_cmd %s", arg);

 if (retval<=0 || retval>SIZE512){
 /* Handle error */
 abort();
 }
 /* Use of system() to pass any_cmd with
 unsanitized argument to command processor */

 if (system(buf) == -1) {
 /* Handle error */
 }
}

In this example, system() passes its argument to the host environment for the command
processor to execute. This code is vulnerable to an attack by command-injection.

Correction — Sanitize Argument and Use execve()

In the following code, the argument of any_cmd is sanitized, and then passed to
execve() for execution. exec-family functions are not vulnerable to command-injection
attacks.

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char *const args[SIZE3] = {"any_cmd", arg, NULL};
 char *const env[] = {NULL};

 /* Sanitize argument */

 Unsafe call to a system function

3-901

 /* Use execve() to execute any_cmd. */

 if (execve("/usr/bin/time", args, env) == -1) {
 /* Handle error */
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_SYSTEM_CALL
Impact: High
CWE ID: 78, 88

See Also
Command executed from externally controlled path | Execution of
externally controlled command | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

3 Defects

3-902

https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/88.html

Unused parameter
Function prototype has parameters not read or written in function body

Description
Unused parameter occurs when a function parameter is neither read nor written in the
function body.

Risk
Unused parameters can indicate that the code is possibly incomplete. The parameter is
possibly intended for an operation that you forgot to code.

If the copied objects are large, redundant copies can slow down performance.

Fix
Determine if you intend to use the parameters. Otherwise, remove parameters that you
do not use in the function body.

You can intentionally have unused parameters. For instance, you have parameters that
you intend to use later when you add enhancements to the function. Add a code comment
indicating your intention for later use. The code comment helps you or a code reviewer
understand why your function has unused parameters.

Alternatively, add a statement such as (void)var; in the function body. var is the
unused parameter. You can define a macro that expands to this statement and add the
macro to the function body.

Examples
Unused Parameter
void func(int* xptr, int* yptr, int flag) {
 if(flag==1) {

 Unused parameter

3-903

 *xptr=0;
 }
 else {
 *xptr=1;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

In this example, the parameter yptr is not used in the body of func.

Correction — Use Parameter

One possible correction is to check if you intended to use the parameter. Fix your code if
you intended to use the parameter.

void func(int* xptr, int* yptr, int flag) {
 if(flag==1) {
 *xptr=0;
 *yptr=1;
 }
 else {
 *xptr=1;
 *yptr=0;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

Correction — Explicitly Indicate Unused Parameter

Another possible correction is to explicitly indicate that you are aware of the unused
parameter.

#define UNUSED(x) (void)x

void func(int* xptr, int* yptr, int flag) {

3 Defects

3-904

 UNUSED(yptr);
 if(flag==1) {
 *xptr=0;
 }
 else {
 *xptr=1;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: UNUSED_PARAMETER
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Unused parameter

3-905

Useless if
Unnecessary if conditional

Description
Useless if occurs on if-statements where the condition is always true. This defect occurs
only on if-statements that do not have an else-statement.

This defect shows unnecessary if-statements when there is no difference in code
execution if the if-statement is removed.

Risk
Unnecessary if statements often indicate a coding error. Perhaps the if condition is
coded incorrectly or the if statement is not required at all.

Fix
The fix depends on the root cause of the defect. For instance, the root cause can be an
error condition that is checked twice on the same execution path, making the second
check redundant.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If the redundant condition represents defensive coding practices and you do not want to
fix the issue, add comments to your result or code to avoid another review. See “Address
Polyspace Results Through Bug Fixes or Justifications”.

3 Defects

3-906

Examples

if with Enumerated Type
typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }

 if (card < 7) {
 do_something(card);
 }
}

The type suit is enumerated with five options. However, the conditional expression card
< 7 always evaluates to true because card can be at most 5. The if statement is
unnecessary.

Correction — Change Condition

One possible correction is to change the if-condition in the code. In this correction, the 7
is changed to UNKNOWN_SUIT to relate directly to the type of card.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }

 if (card > UNKNOWN_SUIT) {
 do_something(card);

 Useless if

3-907

 }
}

Correction — Remove If

Another possible correction is to remove the if-condition in the code. Because the
condition is always true, you can remove the condition to simplify your code.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }

 do_something(card);
}

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: USELESS_IF
Impact: Medium

See Also
Code deactivated by constant false condition | Dead code | Find defects
(-checkers) | Unreachable code

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

3 Defects

3-908

Write without a further read
Variable never read after assignment

Description
Write without a further read occurs when a value assigned to a variable is never read.

For instance, you write a value to a variable and then write a second value before reading
the previous value. The first write operation is redundant.

Risk
Redundant write operations often indicate programming errors. For instance, you forgot
to read the variable between two successive write operations or unintentionally read a
different variable.

Fix
Identify the reason why you write to the variable but do not read it later. Look for
common programming errors such as accidentally reading a different variable with a
similar name.

If you determine that the write operation is redundant, remove the operation.

Examples

Write Without Further Read Error
void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();
 /* Defect: Useless write */

 Write without a further read

3-909

}

After the variable level gets assigned the value 4 * getsensor(), it is not read.

Correction — Use Value After Assignment

One possible correction is to use the variable level after the assignment.

#include <stdio.h>

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();

 /* Fix: Use level after assignment */
 printf("The value is %d", level);

}

The variable level is printed, reading the new value.

Check Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: USELESS_WRITE
Impact: Low
CWE ID: 398

See Also
Find defects (-checkers) | MISRA C:2012 Rule 2.2

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

3 Defects

3-910

https://cwe.mitre.org/data/definitions/398.html

Introduced in R2013b

 Write without a further read

3-911

Incorrect data type passed to va_arg
Data type of variadic function argument does not match type in va_arg call

Description
Incorrect data type passed to va_arg when the data type in a va_arg call does not
match the data type of the variadic function argument that va_arg reads.

For instance, you pass an unsigned char argument to a variadic function func.
Because of default argument promotion, the argument is promoted to int. When you use
a va_arg call that reads an unsigned char argument, a type mismatch occurs.

void func (int n, ...) {
 ...
 va_list args;
 va_arg(args, unsigned char);
 ...
}

void main(void) {
 unsigned char c;
 func(1,c);
}

Risk
In a variadic function (function with variable number of arguments), you use va_arg to
read each argument from the variable argument list (va_list). The va_arg use does not
guarantee that there actually exists an argument to read or that the argument data type
matches the data type in the va_arg call. You have to make sure that both conditions are
true.

Reading an incorrect type with a va_arg call can result in undefined behavior. Because
function arguments reside on the stack, you might access an unwanted area of the stack.

3 Defects

3-912

Fix
Make sure that the data type of the argument passed to the variadic function matches the
data type in the va_arg call.

Arguments of a variadic function undergo default argument promotions. The argument
data types of a variadic function cannot be determined from a prototype. The arguments
of such functions undergo default argument promotions (see Sec. 6.5.2.2 and 7.15.1.1 in
the C99 Standard). Integer arguments undergo integer promotion and arguments of type
float are promoted to double. For integer arguments, if a data type can be represented
by an int, for instance, char or short, it is promoted to an int. Otherwise, it is
promoted to an unsigned int. All other arguments do not undergo promotion.

To avoid undefined and implementation-defined behavior, minimize the use of variadic
functions. Use the checkers for MISRA C:2012 Rule 17.1 or MISRA C++:2008 Rule
8-4-1 to detect use of variadic functions.

Examples

char Used as Function Argument Type and va_arg argument
#include <stdarg.h>
#include <stdio.h>

unsigned char func(size_t count, ...) {
 va_list ap;
 unsigned char result = 0;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, unsigned char);
 }
 va_end(ap);
 return result;
}

void func_caller(void) {
 unsigned char c = 0x12;
 (void)func(1, c);
}

 Incorrect data type passed to va_arg

3-913

In this example, func takes an unsigned char argument, which undergoes default
argument promotion to int. The data type in the va_arg call is still unsigned char,
which does not match the int argument type.

Correction — Use int as va_arg Argument

One possible correction is to read an int argument with va_arg.

#include <stdarg.h>
#include <stdio.h>

unsigned char func(size_t count, ...) {
 va_list ap;
 unsigned char result = 0;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 }
 va_end(ap);
 return result;
}

void func_caller(void) {
 unsigned char c = 0x12;
 (void)func(1, c);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: VA_ARG_INCORRECT_TYPE
Impact: Medium
CWE ID: 686

See Also
Find defects (-checkers) | Invalid va_list argument | Too many va_arg
calls for current argument list

3 Defects

3-914

https://cwe.mitre.org/data/definitions/686.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2018a

 Incorrect data type passed to va_arg

3-915

Incorrect type data passed to va_start
Data type of second argument to va_start macro leads to undefined behavior

Description
Incorrect type data passed to va_start occurs when the second argument of the
va_start macro has one of these data types:

• A data type that changes when undergoing default argument promotion.

For instance, char and short undergo promotion to int or unsigned int and
float undergoes promotion to double. The types int and double do not change
under default argument promotion.

• (C only) A register type or a data type declared with the register qualifier.
• (C++ only) A reference data type.
• (C++ only) A data type that has a nontrivial copy constructor or a nontrivial move

constructor.

Risk
In a variadic function or function with variable number of arguments:

void multipleArgumentFunction(int someArg, short rightmostFixedArg, ...) {
 va_list myList;
 va_start(myList, rightmostFixedArg);
 ...
 va_end(myList);
}

The va_start macro initializes a variable argument list so that additional arguments to
the variadic function after the fixed parameters can be captured in the list. According to
the C11 and C++14 Standards, if you use one of the flagged data types for the second
argument of the va_start macro (for instance, rightmostFixedArg in the preceding
example), the behavior is undefined.

3 Defects

3-916

If the data type involves a nontrivial copy constructor, the behavior is implementation-
defined. For instance, whether the copy constructor is invoked in the call to va_start
depends on the compiler.

Fix
When using the va_start macro, try to use the types int, unsigned int or double
for the rightmost named parameter of the variadic function. Then, use this parameter as
the second argument of the va_start macro.

For instance, in this example, the rightmost named parameter of the variadic function has
a supported data type int:

void multipleArgumentFunction(int someArg, int rightmostFixedArg, ...) {
 va_list myList;
 va_start(myList, rightmostFixedArg);
 ...
 va_end(myList);
}

To avoid undefined and implementation-defined behavior, minimize the use of variadic
functions. Use the checkers for MISRA C:2012 Rule 17.1 or MISRA C++:2008 Rule
8-4-1 to detect use of variadic functions.

Examples

Incorrect Data Types for Second Argument of va_start
#include <string>
#include <cstdarg>

double addVariableNumberOfDoubles(double* weight, short num, ...) {
 double sum=0.0;
 va_list list;
 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;

 Incorrect type data passed to va_start

3-917

}

double addVariableNumberOfFloats(float* weight, int num, std::string s, ...) {
 float sum=0.0;
 va_list list;
 va_start(list, s);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, float);
 }
 va_end(list);
 return sum;
}

In this example, the checker flags the call to va_start in:

• addVariableNumberOfDoubles because the argument has type short, which
undergoes default argument promotion to int.

• addVariableNumberOfFloats because the argument has type std::string, which
has a nontrivial copy constructor.

Correction — Fix Data Type for Second Argument of va_start

Make sure that the second argument of the va_start macro has a supported data type.
In the following corrected example:

• In addVariableNumberOfDoubles, the data type of the last named parameter of the
variadic function is changed to int.

• In addVariableNumberOfFloats, the second and third parameters of the variadic
function are switched so that data type of the last named parameter is int.

#include <string>
#include <cstdarg>

double addVariableNumberOfDoubles(double* weight, int num, ...) {
 double sum=0.0;
 va_list list;
 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

3 Defects

3-918

double addVariableNumberOfFloats(double* weight, std::string s, int num, ...) {
 double sum=0.0;
 va_list list;
 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: VA_START_INCORRECT_TYPE
Impact: Medium

See Also
Find defects (-checkers) | Incorrect data type passed to va_arg |
Incorrect use of va_start | Too many va_arg calls for current argument
list

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019a

 Incorrect type data passed to va_start

3-919

Incorrect use of va_start
va_start is called in a non-variadic function or called with a second argument that is not
the rightmost parameter of a variadic function

Description
Incorrect use of va_start occurs when you use the va_start macro in a way that
violates its specifications.

In a variadic function or function with variable number of arguments:

void multipleArgumentFunction(int someArg, int rightmostFixedArg, ...) {
 va_list myList;
 va_start(myList, rightmostFixedArg);
 ...
 va_end(myList);
}

The va_start macro initializes a variable argument list so that additional arguments to
the variadic function after the fixed parameters can be captured in the list. In the
preceding example, the va_start macro initializes myList so that it can capture
arguments after rightmostFixedArg.

You can violate the specifications of va_start in multiple ways. For instance:

• You call va_start in a non-variadic function.
• The second argument of va_start is not the rightmost fixed parameter of the

variadic function.

Risk
Violating the specifications of the va_start macro can result in compilation errors. If the
compiler fails to detect the violation, the violation can result in undefined behavior.

Fix
Make sure that:

3 Defects

3-920

• The va_start macro is used in a variadic function
• The second argument of the va_start macro is the rightmost fixed parameter of the

variadic function.

To avoid undefined and implementation-defined behavior, minimize the use of variadic
functions. Use the checkers for MISRA C:2012 Rule 17.1 or MISRA C++:2008 Rule
8-4-1 to detect use of variadic functions.

Examples

Incorrect Argument to va_start
#include <stdarg.h>

double addVariableNumberOfDoubles(int num, double* weight, ...) {
 double sum=0.0;
 va_list list;
 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

In this example, the rightmost fixed parameter to the addVariableNumberOfDoubles
function is weight. However, a different parameter is used as the second argument to the
va_start macro.

Correction — Switch Order of Fixed Parameters of Variadic Function

One possible correction is to modify the order of fixed parameters to the variadic function
so that the rightmost fixed parameter is used for the va_start macro.

#include <stdarg.h>

double addVariableNumberOfDoubles(double* weight, int num, ...) {
 double sum=0.0;
 va_list list;
 va_start(list, num);
 for(int i=0; i < num; i++) {

 Incorrect use of va_start

3-921

 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: VA_START_MISUSE
Impact: Medium

See Also
Find defects (-checkers) | Incorrect data type passed to va_arg |
Incorrect type data passed to va_start | Too many va_arg calls for
current argument list

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019a

3 Defects

3-922

Variable shadowing
Variable hides another variable of same name with nested scope

Description
Variable shadowing occurs when a variable hides another variable of the same name in
an outer scope.

For instance, if a local variable has the same name as a global variable, the local variable
hides the global variable during its lifetime.

Risk
When two variables with the same name exist in an inner and outer scope, any reference
to the variable name uses the variable in the inner scope. However, a developer or
reviewer might incorrectly expect that the variable in the outer scope was used.

Fix
The fix depends on the root cause of the defect. For instance, suppose you refactor a
function such that you use a local static variable in place of a global variable. In this case,
the global variable is redundant and you can remove its declaration. Alternatively, if you
are not sure if the global variable is used elsewhere, you can modify the name of the local
static variable and all references within the function.

If the shadowing is intended and you do not want to fix the issue, add comments to your
result or code to avoid another review. See “Address Polyspace Results Through Bug Fixes
or Justifications”.

Examples
Variable Shadowing Error
#include <stdio.h>

 Variable shadowing

3-923

int fact[5]={1,2,6,24,120};

int factorial(int n)
 {
 int fact=1;
 /*Defect: Local variable hides global array with same name */

 for(int i=1;i<=n;i++)
 fact*=i;

 return(fact);
 }

Inside the factorial function, the integer variable fact hides the global integer array
fact.

Correction — Change Variable Name

One possible correction is to change the name of one of the variables, preferably the one
with more local scope.

#include <stdio.h>

int fact[5]={1,2,6,24,120};

int factorial(int n)
 {
 /* Fix: Change name of local variable */
 int f=1;

 for(int i=1;i<=n;i++)
 f*=i;

 return(f);
 }

Check Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: VAR_SHADOWING
Impact: Low

3 Defects

3-924

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2013b

 Variable shadowing

3-925

Incompatible types prevent overriding
Derived class method hides a virtual base class method instead of overriding it

Description
Incompatible types prevent overriding occurs when a derived class method has the
same name and number of parameters as a virtual base class method but:

• Differ in at least one parameter type.
• Differ in the presence or absence of qualifiers such as const.

The derived class method hides the virtual base class method instead of overriding it.

Risk
Risks include the following:

• If you intend that the derived class method must override the base class method, the
overriding does not occur.

• Because the base class method is hidden, you cannot use a derived class object to call
the method. If you use a derived class object to call the method with the base class
parameters, the derived class method is called instead. For the parameters whose
types do not match the arguments that you pass, a cast takes place if possible.
Otherwise, a compilation failure occurs.

Fix
Possible solutions include the following:

• If you want the derived class method to override the base class method, change the
interface of the derived class method.

For instance, change the parameter type or add a const qualifier if required.
• Otherwise, add the line using Base_class_name::method_name to the derived

class declaration. In this way, you can access the base class method using an object of
the derived class.

3 Defects

3-926

Examples
typedef Causing Virtual Function Hiding in Derived Class

class Base {
public:
 Base();
 virtual ~Base();
 virtual void func(float i);
 virtual void funcp(float* i);
 virtual void funcr(float& i);
};

typedef double Float;

class Derived: public Base {
public:
 Derived();
 ~Derived();
 void func(Float i);
 void funcp(Float* i);
 void funcr(Float& i);
};

In this example, because of the statement typedef double Float;, the Derived class
methods func, funcp and funcr have double arguments while the Base class methods
with the same name have float arguments.

Therefore, you cannot access the Base class methods using a Derived class object.

The defect appears on the method that hides a base class method. To find which base
class method is hidden:

1 Navigate to the base class definition. On the Source pane, right-click the base class
name and select Go To Definition.

2 In the base class definition, identify the virtual method that has the same name as
the derived class method name.

Correction — Unhide Base Class Method

One possible correction is to use the same argument type for the base and derived class
methods to enable overriding. Otherwise, if you want to call the Base class methods with

 Incompatible types prevent overriding

3-927

the float arguments using a Derived class object, add the line using
Base::method_name to the Derived class declaration.

class Base {
public:
 Base();
 virtual ~Base();
 virtual void func(float i);
 virtual void funcp(float* i);
 virtual void funcr(float& i);
};

typedef double Float;

class Derived: public Base {
public:
 Derived();
 ~Derived();
 using Base::func;
 using Base::funcp;
 using Base::funcr;
 void func(Float i);
 void funcp(Float* i);
 void funcr(Float& i);
};

const Qualifier Missing in Derived Class Method
namespace Missing_Const {
class Base {
public:
 virtual void func(int) const ;
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(int) ;

} ;
}

In this example, Derived::func does not have a const qualifier but Base::func does.
Therefore, Derived::func does not override Base::func.

3 Defects

3-928

Correction — Add const Qualifier to Derived Class Method

To enable overriding, add the const qualifier to the derived class method declaration.

namespace Missing_Const {
class Base {
public:
 virtual void func(int) const ;
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(int) const;

} ;
}

Value Instead of Reference in Derived Class Method
namespace Missing_Ref {

class Obj {
 int data;
};

class Base {
public:
 virtual void func(Obj& o);
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(Obj o) ;

} ;
}

In this example, Derived::func accepts an Obj parameter by value but Base::func
accepts an Obj parameter by reference. Therefore, Derived::func does not override
Base::func.

 Incompatible types prevent overriding

3-929

Correction — Use Reference for Parameter of Derived Class Method

To enable overriding, pass the derived class method parameter by reference.

namespace Missing_Ref {

class Obj {
 int data;
};

class Base {
public:
 virtual void func(Obj& o);
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(Obj& o) ;

} ;
}

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: VIRTUAL_FUNC_HIDING
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-930

Vulnerable pseudo-random number
generator
Using a cryptographically weak pseudo-random number generator

Description
The Vulnerable pseudo-random number generator identifies uses of
cryptographically weak pseudo-random number generator (PRNG) routines.

The list of cryptographically weak routines flagged by this checker include:

• rand, random
• drand48, lrand48, mrand48, erand48, nrand48, jrand48, and their _r equivalents

such as drand48_r
• RAND_pseudo_bytes

Risk
These cryptographically weak routines are predictable and must not be used for security
purposes. When a predictable random value controls the execution flow, your program is
vulnerable to malicious attacks.

Fix
Use more cryptographically sound random number generators, such as CryptGenRandom
(Windows), OpenSSL/RAND_bytes(Linux/UNIX).

Examples

Random Loop Numbers

#include <stdio.h>

 Vulnerable pseudo-random number generator

3-931

#include <stdlib.h>

volatile int rd = 1;
int main(int argc, char *argv[])
{
 int j, r, nloops;
 struct random_data buf;
 int i = 0;

 nloops = rand();

 for (j = 0; j < nloops; j++) {
 if (random_r(&buf, &i))
 exit(1);
 printf("random_r: %ld\n", (long)i);
 }
 return 0;
}

This example uses rand and random_r to generate random numbers. If you use these
functions for security purposes, these PRNGs can be the source of malicious attacks.

Correction — Use Stronger PRNG

One possible correction is to replace the vulnerable PRNG with a stronger random
number generator.

#include <stdio.h>
#include <stdlib.h>
#include <openssl/rand.h>

volatile int rd = 1;
int main(int argc, char* argv[])
{
 int j, r, nloops;
 unsigned char buf;
 unsigned int seed;
 int i = 0;

 if (argc != 3)
 {
 fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

3 Defects

3-932

 seed = atoi(argv[1]);
 nloops = atoi(argv[2]);

 for (j = 0; j < nloops; j++) {
 if (RAND_bytes(&buf, i) != 1)
 exit(1);
 printf("RAND_bytes: %u\n", (unsigned)buf);
 }
 return 0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: VULNERABLE_PRNG
Impact: Medium
CWE ID: 330, 338

See Also
Deterministic random output from constant seed | Predictable random
output from predictable seed | Unsafe standard encryption function |
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

 Vulnerable pseudo-random number generator

3-933

https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/338.html

Mismatched alloc/dealloc functions on
Windows
Improper deallocation function causes memory corruption issues

Description
Mismatched alloc/dealloc functions on Windows occurs when you use a Windows
deallocation function that is not properly paired to its corresponding allocation function.

Risk
Deallocating memory with a function that does not match the allocation function can
cause memory corruption or undefined behavior. If you are using an older version of
Windows, the improper function can also cause compatibility issues with newer versions.

Fix
Properly pair your allocation and deallocation functions according to the functions listed
in this table.

Allocation Function Deallocation Function
malloc() free()
realloc() free()
calloc() free()
_aligned_malloc() _aligned_free()
_aligned_offset_malloc() _aligned_free()
_aligned_realloc() _aligned_free()
_aligned_offset_realloc() _aligned_free()
_aligned_recalloc() _aligned_free()
_aligned_offset_recalloc() _aligned_free()

3 Defects

3-934

Allocation Function Deallocation Function
_malloca() _freea()
LocalAlloc() LocalFree()
LocalReAlloc() LocalFree()
GlobalAlloc() GlobalFree()
GlobalReAlloc() GlobalFree()
VirtualAlloc() VirtualFree()
VirtualAllocEx() VirtualFreeEx()
VirtualAllocExNuma() VirtualFreeEx()
HeapAlloc() HeapFree()
HeapReAlloc() HeapFree()

Examples

Memory Deallocated with Incorrect Function
#ifdef _WIN32_
#include <windows.h>
#else
#define _WIN32_
typedef void *HANDLE;
typedef HANDLE HGLOBAL;
typedef HANDLE HLOCAL;
typedef unsigned int UINT;
extern HLOCAL LocalAlloc(UINT uFlags, UINT uBytes);
extern HLOCAL LocalFree(HLOCAL hMem);
extern HGLOBAL GlobalFree(HGLOBAL hMem);
#endif

#define SIZE9 9

void func(void)
{
 /* Memory allocation */
 HLOCAL p = LocalAlloc(0x0000, SIZE9);

 Mismatched alloc/dealloc functions on Windows

3-935

 if (p) {
 /* Memory deallocation. */
 GlobalFree(p);

 }
}

In this example, memory is allocated with LocallAlloc(). The program then
erroneously uses GlobalFree() to deallocate the memory.

Correction — Properly Pair Windows Allocation and Deallocation Functions

When you allocate memory with LocalAllocate(), use LocalFree() to deallocate the
memory.

#ifdef _WIN32_
#include <windows.h>
#else
#define _WIN32_
typedef void *HANDLE;
typedef HANDLE HGLOBAL;
typedef HANDLE HLOCAL;
typedef unsigned int UINT;
extern HLOCAL LocalAlloc(UINT uFlags, UINT uBytes);
extern HLOCAL LocalFree(HLOCAL hMem);
extern HGLOBAL GlobalFree(HGLOBAL hMem);
#endif

#define SIZE9 9
void func(void)
{
 /* Memory allocation */
 HLOCAL p = LocalAlloc(0x0000, SIZE9);
 if (p) {
 /* Memory deallocation. */
 LocalFree(p);
 }
}

3 Defects

3-936

Result Information
Group: Dynamic memory
Language: C | C++
Default: Off
Command-Line Syntax: WIN_MISMATCH_DEALLOC
Impact: Low
CWE ID: 404, 762

See Also
Find defects (-checkers) | Invalid deletion of pointer | Invalid free
of pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2017b

 Mismatched alloc/dealloc functions on Windows

3-937

https://cwe.mitre.org/data/definitions/404.html
https://cwe.mitre.org/data/definitions/873.html

Modification of internal buffer returned from
nonreentrant standard function
Function attempts to modify internal buffer returned from a nonreentrant standard
function

Description
Modification of internal buffer returned from nonreentrant standard function
occurs when the following happens:

• A nonreentrant standard function returns a pointer.
• You attempt to write to the memory location that the pointer points to.

Nonreentrant standard functions that return a non const-qualified pointer to an internal
buffer include getenv, getlogin, crypt, setlocale, localeconv, strerror and
others.

Risk
Modifying the internal buffer that a nonreentrant standard function returns can cause the
following issues:

• It is possible that the modification does not succeed or alters other internal data.

For instance, getenv returns a pointer to an environment variable value. If you modify
this value, you alter the environment of the process and corrupt other internal data.

• Even if the modification succeeds, it is possible that a subsequent call to the same
standard function does not return your modified value.

For instance, you modify the environment variable value that getenv returns. If
another process, thread, or signal handler calls setenv, the modified value is
overwritten. Therefore, a subsequent call to getenv does not return your modified
value.

3 Defects

3-938

Fix
Avoid modifying the internal buffer using the pointer returned from the function.

Examples

Modification of getenv Return Value
#include <stdlib.h>
#include <string.h>

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 strncpy(env, "C", 1);
 printstr(env);
 }
}

In this example, the first argument of strncpy is the return value from a nonreentrant
standard function getenv. The behavior can be undefined because strncpy modifies this
argument.

Correction - Copy Return Value of getenv and Modify Copy

One possible solution is to copy the return value of getenv and pass the copy to the
strncpy function.

#include <stdlib.h>
#include <string.h>
enum {
 SIZE20 = 20
};

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {

 Modification of internal buffer returned from nonreentrant standard function

3-939

 char env_cp[SIZE20];
 strncpy(env_cp, env, SIZE20);
 strncpy(env_cp, "C", 1);
 printstr(env_cp);
 }
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: WRITE_INTERNAL_BUFFER_RETURNED_FROM_STD_FUNC
Impact: Low
CWE ID: 573, 628

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2015b

3 Defects

3-940

https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/628.html

C++ reference to const-qualified type with
subsequent modification
Reference to const-qualified type is subsequently modified

Description
C++ reference to const-qualified type with subsequent modification occurs when a
variable that refers to a const-qualified type is modified after declaration.

For instance, in this example, refVal has a type const int &, but its value is modified
in a subsequent statement.

using constIntRefType = const int &;
void func(constIntRefType refVal, int val){
 ...
 refVal = val; //refVal is modified
 ...
}

Risk
The const qualifier on a reference type implies that a variable of the type is initialized at
declaration and will not be subsequently modified.

Compilers can detect modification of references to const-qualified types as a compilation
error. If the compiler does not detect the error, the behavior is undefined.

Fix
Avoid modification of const-qualified reference types. If the modification is required,
remove the const qualifier from the reference type declaration.

 C++ reference to const-qualified type with subsequent modification

3-941

Examples

Modification of const-qualified Reference Types
typedef const int cint;
typedef cint& ref_to_cint;

void func(ref_to_cint refVal, int initVal){
 refVal = val;
}

In this example, ref_to_cint is a reference to a const-qualified type. The variable
refVal of type ref_to_cint is supposed to be initialized when func is called and not
modified subsequently. The modification violates the contract implied by the const
qualifier.

Correction — Avoid Modification of const-qualified Reference Types

One possible correction is to avoid the const in the declaration of the reference type.

typedef int& ref_to_int;

void func(ref_to_int refVal, int initVal){
 refVal = val;
}

Result Information
Group: Good practice
Language: C++
Default: Off
Command-Line Syntax: WRITE_REFERENCE_TO_CONST_TYPE
Impact: Low

See Also
C++ reference type qualified with const or volatile | Find defects (-
checkers) | Qualifier removed in conversion | Writing to const
qualified object

3 Defects

3-942

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Justifications”

Introduced in R2019a

 C++ reference to const-qualified type with subsequent modification

3-943

Functions, Properties, Classes, and
Apps

4

polyspace-configure
(DOS/UNIX) Create Polyspace project from your build system at the DOS or UNIX
command line

Syntax
polyspace-configure buildCommand

polyspace-configure [OPTIONS] buildCommand

Description
polyspace-configure buildCommand traces your build system and creates a
Polyspace project with information gathered from your build system.

polyspace-configure [OPTIONS] buildCommand traces your build system and
uses -option value to modify the default operation of polyspace-configure.
Specify the modifiers before buildCommand, otherwise they are considered as options in
the build command itself.

Examples

Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make
targetName buildOptions to build your source code.

Create a Polyspace project specifying a unique project name. Use the -B or -W
makefileName option with make so that the all prerequisite targets in the makefile are
remade.

polyspace-configure -prog myProject \
make -B targetName buildOptions

4 Functions, Properties, Classes, and Apps

4-2

Open the Polyspace project in the Polyspace user interface.

Create Projects That Have Different Source Files from Same Build Trace

This example shows how to create different Polyspace projects from the same trace of
your build system. You can specify which source files to include for each project.

Trace your build system without creating a Polyspace project by specifying the option -
no-project. To ensure that all the prerequisite targets in your makefile are remade, use
the appropriate make build command option, for instance -B.

polyspace-configure -no-project make -B

polyspace-configure stores the cache information and the build trace in default
locations inside the current folder. To store the cache information and build trace in a
different location, specify the options -cache-path and -build-trace.

Generate Polyspace projects by using the build trace information from the previous step.
Specify a project name and use the -include-sources or -exclude-sources option
to select which files to include for each project.

polyspace-configure -no-build -prog myProject \
-include-sources "glob_pattern"

glob_pattern is a glob pattern that corresponds to folders or files you filter in or out of
your project. To ensure the shell does not expand the glob patterns you pass to
polyspace-configure, enclose them in double quotes. For more information on the
supported syntax for glob patterns, see “polyspace-configure Source Files Selection
Syntax”.

If you specified the options -build-trace and -cache-path in the previous step,
specify them again.

Delete the trace file and cache folder.

rm -r polyspace_configure_cache polyspace_configure_built_trace

If you used the options -build-trace and -cache-path, use the paths and file names
from those options.

 polyspace-configure

4-3

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use the command make
targetName buildOptions to build your source code. In this example, you use
polyspace-configure to trace your build system but do not create a Polyspace project.
Instead you create an options file that you can use to run Polyspace analysis from
command-line.

Create a Polyspace options file specifying the -output-options-file command. Use
the -B or -W makefileName option with make so that all prerequisite targets in the
makefile are remade.

polyspace-configure -output-options-file\
 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

polyspace-bug-finder -options-file myOptions

Input Arguments
buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

[OPTIONS] — Options for changing default operation of polyspace-configure
single option starting with -, followed by argument | multiple space-separated option-
argument pairs

Basic Options

4 Functions, Properties, Classes, and Apps

4-4

Option Argument Description
-prog Project name Project name that appears in the Polyspace user

interface. The default is polyspace.

If you do not use the option -output-project,
the -prog argument also sets the project name.

Example: -prog myProject creates a project
that has the name myProject in the user
interface. If you do not use the option -
output-project, the project name is also
myProject.psrprj.

-author Author name Name of project author.

Example: -author jsmith
-output-project Path Project file name and location for saving

project. The default is the file
polyspace.psprj in the current folder.

Example: -output-project ../
myProjects/project1 creates a project
project1.psprj in the folder with the relative
path ../myProjects/.

-output-options-file File name Option to create a Polyspace analysis options
file. Use this file for command-line analysis
using polyspace-bug-finder.

-allow-build-error None Option to create a Polyspace project even if an
error occurs in the build process.

If an error occurs, the build trace log shows the
following message:

polyspace-configure (polyspaceConfigure) ERROR: build command
 command_name fail [status=status_value]

command_name is the build command name
that you use and status_value is the non-zero
exit status or error level that indicates which
error occurred in your build process.

 polyspace-configure

4-5

Option Argument Description
-allow-overwrite None Option to overwrite a project with the same

name, if it exists.

By default, polyspace-configure
(polyspaceConfigure) throws an error if a
project with the same name already exists in
the output folder. Use this option to overwrite
the project.

-silent (default)

-verbose

None Option to suppress or display additional
messages from running polyspace-
configure (polyspaceConfigure).

-help None Option to display the full list of polyspace-
configure (polyspaceConfigure)
commands

-debug None Option used by MathWorks technical support

Options to Create Multiple Modules

Option Argument Description
-module None Option to create a separate options file for each

binary created in build system.

You can only create separate options files for
different binaries. You cannot create multiple
modules in a Polyspace project (for running in
the Polyspace user interface).

Use this option only for build systems that use
GNU and Visual C++ compilers.

See also “Modularize Polyspace Analysis by
Using Build Command”.

4 Functions, Properties, Classes, and Apps

4-6

Option Argument Description
-output-options-path Path name Location where generated options files are

saved. Use this option together with the option
-module.

The options files are named after the binaries
created in the build system.

Advanced Options

Option Argument Description
-compiler-config Path and file name Location and name of compiler configuration

file.

The file must be in a specific format. For
guidance, see the existing configuration files in
polyspaceroot\polyspace\configure\
compiler_configuration\. For information
on the contents of the file, see “Compiler Not
Supported for Project Creation from Build
Systems”.

Example: -compiler-configuration
myCompiler.xml

-no-project None Option to trace your build system without
creating a Polyspace project and save the build
trace information.

Use this option to save your build trace
information for a later run of polyspace-
configure (polyspaceConfigure) with the
-no-build option.

 polyspace-configure

4-7

Option Argument Description
-no-build None Option to create a Polyspace project using

previously saved build trace information.

To use this option, you must have the build
trace information saved from an earlier run of
polyspace-configure
(polyspaceConfigure) with the -no-
project option.

If you use this option, you do not need to specify
the buildCommand argument.

4 Functions, Properties, Classes, and Apps

4-8

Option Argument Description
-no-sources None Option to create a Polyspace options file that

does not contain the source file specifications.

Use this option when you intend to specify the
source files by other means. For instance, you
can use this option when:

• Running Polyspace on AUTOSAR-specific
code.

You want to create an options file that traces
your build command for the compiler
options:

-output-options-file options.txt -no-sources

You later append this options file when
extracting source file names from ARXML
specifications and running the subsequent
Code Prover analysis with polyspace-
autosar

-extra-options-file options.txt

See also “Run Polyspace on AUTOSAR Code
Using Build Command” (Polyspace Code
Prover).

• Running Polyspace in Eclipse™.

Your source files are already specified in
your Eclipse project. When running a
Polyspace analysis, you want to specify an
options file that has the compilation options
only.

 polyspace-configure

4-9

Option Argument Description
-extra-project-options Options to use for

subsequent
Polyspace analysis.
For instance, "-
stubbed-
pointers-are-
unsafe".

Options that are used for subsequent Polyspace
analysis.

Once a Polyspace project is created, you can
change some of the default options in the
project. Alternatively, you can pass these
options when tracing your build command. The
flag -extra-project-options allows you to
pass additional options.

Specify multiple options in a space separated
list, for instance "-allow-negative-
operand-in-shift -stubbed-pointers-
are-unsafe".

Suppose you have to set the option -stubbed-
pointers-are-unsafe for every Polyspace
project created. Instead of opening each project
and setting the option, you can use this flag
when creating the Polyspace project:

-extra-project-options
 "-stubbed-pointers-are-unsafe"

For the list of options available, see:

• “Analysis Options”
•
•

If you are creating an options file instead of a
Polyspace project from your build command, do
not use this flag.

-tmp-path Path Location of folder where temporary files are
stored.

4 Functions, Properties, Classes, and Apps

4-10

Option Argument Description
-build-trace Path and file name Location and name of file where build

information is stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

-include-sources

-exclude-sources

Glob pattern Option to specify which source files
polyspace-configure
(polyspaceConfigure) includes in, or
excludes from, the generated project. You can
combine both options together.

A source file is included if the file path matches
the glob pattern that you pass to -include-
sources.

A source file is excluded if the file path matches
the glob pattern that you pass to -exclude-
sources.

-print-included-sources

-print-excluded-sources

None Option to print the list of source files that
polyspace-configure
(polyspaceConfigure) includes in, or
excludes from, the generated project. You can
combine both options together. The output
displays the full path of each file on a separate
line.

Use this option to troubleshoot the glob
patterns that you pass to -include-sources
or -exclude-sources. You can see which files
match the pattern that you pass to -include-
sources or -exclude-sources.

Cache Control Options

 polyspace-configure

4-11

Option Argument Description
-no-cache

-cache-sources (default)

-cache-all-text

-cache-all-files

None Option to perform one of the following:

• -no-cache: Not create a cache
• -cache-sources: Cache text files

temporarily created during build for later
use by polyspace-configure
(polyspaceConfigure).

• -cache-all-text: Cache all text files
including sources and headers.

• -cache-all-files: Cache all files
including binaries.

Typically, you cache temporary files created by
your build command to debug issues in tracing
the command.

-cache-path Path Location of folder where cache information is
stored.

Example: -cache-path ../cache
-keep-cache

-no-keep-cache (default)

None Option to preserve or clean up cache
information after polyspace-configure
(polyspaceConfigure) completes execution.

If polyspace-configure
(polyspaceConfigure) fails, you can provide
this cache information to technical support for
debugging purposes.

See Also

Topics
“Requirements for Project Creation from Build Systems”
“Compiler Not Supported for Project Creation from Build Systems”
“Modularize Polyspace Analysis by Using Build Command”

4 Functions, Properties, Classes, and Apps

4-12

Introduced in R2013b

 polyspace-configure

4-13

polyspace-bug-finder Command
(DOS/UNIX) Run a Bug Finder analysis from the DOS or UNIX command line

Syntax
polyspace-bug-finder
polyspace-bug-finder -sources sourceFiles [OPTIONS]

polyspace-bug-finder -sources-list-file listOfSources [OPTIONS]

polyspace-bug-finder -options-file optFile

polyspace-bug-finder -h[elp]

Description
polyspace-bug-finder [OPTIONS] runs a Bug Finder analysis if your current folder
contains a sources subfolder with source files (.c or .cxx files). The analysis considers
files in sources and all subfolders under sources.

polyspace-bug-finder -sources sourceFiles [OPTIONS] runs a Bug Finder
analysis on the source file(s) sourceFiles. You can customize the analysis with
additional options.

polyspace-bug-finder -sources-list-file listOfSources [OPTIONS] runs a
Bug Finder analysis on the source files listed in the text file listOfSources. You can
customize the analysis with additional options. Using a sources list file is recommended
when you have many source files. By keeping the list of sources in a text file, the
command is shorter and updates to the list are easier.

polyspace-bug-finder -options-file optFile runs a Bug Finder analysis with
the options specified in the option file. When you have many analysis options, an options
file makes it easier to run the same analysis again.

polyspace-bug-finder -h[elp] lists a summary of possible analysis options.

4 Functions, Properties, Classes, and Apps

4-14

Examples

Run Analysis by Directly Specifying Options

Run a local Bug Finder analysis by specifying analysis options in the command itself. This
example uses source files from a demo Polyspace Bug Finder example. To run this
example, replace polyspaceroot with the path to your Polyspace installation, for
example C:\Program Files\Polyspace\R2019a.

Run an analysis on numerical.c and programming.c, checking for MISRA C:2012
mandatory rules, programming and numerical defects, and using GNU 4.7 compiler
settings. This example command is split by ^ characters for readability. In practice, you
can put all commands on one line.

polyspaceroot\polyspace\bin\polyspace-bug-finder^
 -sources ^
polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c,^
polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c ^
-compiler gnu4.7 -misra3 mandatory -checkers numerical,programming ^
-author jlittle -prog myProject -results-dir C:\Polyspace_Workspace\Results\

Open the results.

polyspaceroot\polyspace\bin\polyspace C:\Polyspace_Workspace\Results\^
ps_results.psbf

To rerun the analysis, you must rerun it from the command line.

Run Local Analysis with Options File

Run a local Bug Finder analysis by specifying analysis options with an options. This
example uses source files from a demo Polyspace Bug Finder example. To run this
example, replace polyspaceroot with the path to your Polyspace installation, for
example C:\Program Files\Polyspace\R2019a.

Save this text to a text file called myOptionsFile.txt.

Options for analyzing numerical.c and programming.c
-sources polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c
-sources polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c

 polyspace-bug-finder Command

4-15

-compiler gnu4.7
-misra3 mandatory
-checkers numerical,programming
-author jlittle
-prog myProject
-results-dir C:\Polyspace_Workspace\Results\

Run the analysis with the options specified in the text file.

polyspaceroot\polyspace\bin\polyspace-bug-finder -options-file myOptionsFile.txt

Open the results.

polyspaceroot\polyspace\bin\polyspace C:\Polyspace_Workspace\Results\^
ps_results.psbf

To rerun the analysis, you must rerun it from the command line.

Input Arguments
sourceFiles — Comma-separated names of C or C++ files to analyze
-sources string

Comma-separated C or C++ source file names, specified as -sources followed by a
string. If the files are not in the current folder (pwd), sourceFiles must include a full or
relative path. To avoid errors because of paths with spaces, add quotes " " around the
path. For more information, see -sources.

If your current folder contains a sources subfolder with the source files, you can omit
the -sources flag. The analysis considers files in sources and all subfolders under
sources.
Example: -sources myFile.c, -sources C:\mySources
\myFile1.c,C:\mySources\myFile2.c

listOfSources — Text file listing names of C or C++ files to analyze
-sources-list-file file

Text file which lists the name of C or C++ files, specified as -sources-list-file
followed by the file. If the files are not in the current folder (pwd), listOfSources must
include a full or relative path. To avoid errors because of paths with spaces, add quotes "
" around the path. For more information, see -sources-list-file.

4 Functions, Properties, Classes, and Apps

4-16

Example: -sources-list-file filename.txt, -sources-list-file
"C:\ps_analysis\source_files.txt"

[OPTIONS] — Analysis option and corresponding value
option syntax

Analysis options and their corresponding values, specified by the option name and if
applicable value. For syntax specifications, see the individual analysis option reference
pages.
Example: -lang C-CPP -compiler diab

optFile — Text file listing analysis options and values
-options-file file

Text file listing analysis options and values, specified as -options-file followed by the
file. For more information, see -options-file.
Example: -options-file opts.txt, -options-file "C:\ps_analysis
\options.txt"

See Also
polyspaceBugFinder

Topics
“Run Polyspace Analysis from Command Line”
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
“Analysis Options”

Introduced in R2013b

 polyspace-bug-finder Command

4-17

polyspace-report-generator
(DOS/UNIX) Generate reports for Polyspace analysis results stored locally or on Polyspace
Access

Syntax
polyspace-report-generator -template <template> [OPTIONS]
polyspace-report-generator -generate-results-list-file [-results-dir
<FOLDER>] [-set-language-english]
polyspace-report-generator -generate-variable-access-file [-results-
dir <FOLDER>] [-set-language-english]

polyspace-report-generator -template <template> -host <HOSTNAME> -
run-id <RUN_ID> [ACCESS_OPTIONS] [OPTIONS]
polyspace-report-generator -generate-results-list-file -host <
HOSTNAME> -run-id <RUN_ID> [ACCESS_OPTIONS] [-set-language-english]
polyspace-report-generator -generate-variable-access-file -host <
HOSTNAME> -run-id <RUN_ID> [ACCESS_OPTIONS] [-set-language-english]

Description
polyspace-report-generator -template <template> [OPTIONS] generates a
report by using TEMPLATE for the local analysis results that you specify with OPTIONS.

By default, reports for results from project-name are stored as project-
name_report-name in the PathToFolder\Polyspace-Doc folder. PathToFolder is
the results folder of project-name.

polyspace-report-generator -generate-results-list-file [-results-dir
<FOLDER>] [-set-language-english]exports the analysis results stored locally in
FOLDER to a tab-delimited text file. The file contains the result information available on
the Results List pane in the user interface. For more information on the exported results
list, see “View Exported Results”.

By default, the results file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the results folder of project-name.

4 Functions, Properties, Classes, and Apps

4-18

polyspace-report-generator -generate-variable-access-file [-results-
dir <FOLDER>] [-set-language-english]exports the list of global variables in your
code from the Code Prover analysis stored locally in FOLDER to a tab-delimited text file.
The file contains the information available on the Variable Access pane in the user
interface. For more information on the exported variables list, see “View Exported
Variable List” (Polyspace Code Prover).

By default, the variables file for results from project-name is stored in the
PathToFolder\Polyspace-Doc folder. PathToFolder is the results folder of
project-name.

polyspace-report-generator -template <template> -host <HOSTNAME> -
run-id <RUN_ID> [ACCESS_OPTIONS] [OPTIONS] generates a report by using
TEMPLATE for the analysis results run RUN_ID stored on Polyspace Access. HOSTNAME is
the fully qualified host name of the machine that hosts Polyspace Access.

By default, reports for results from project-name are stored as project-
name_report-name in the PathToFolder\Polyspace-Doc folder. PathToFolder is
the path from which you call the command.

polyspace-report-generator -generate-results-list-file -host <
HOSTNAME> -run-id <RUN_ID> [ACCESS_OPTIONS] [-set-language-
english]exports the analysis results run RUN_ID stored on Polyspace Access to a tab-
delimited text file. The file contains the result information available on the Results List
pane in the Polyspace Access web interface. HOSTNAME is the fully qualified host name of
the machine that hosts Polyspace Access. For more information on the exported results
list, see “Results List” (Polyspace Bug Finder Access).

By default, the results file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the path from which you call the command.

polyspace-report-generator -generate-variable-access-file -host <
HOSTNAME> -run-id <RUN_ID> [ACCESS_OPTIONS] [-set-language-
english]exports the list of global variables in your code from the Code Prover analysis
run RUN_ID stored on Polyspace Access to a tab-delimited text file. The file contains the
information available on the Variable Access pane in the Polyspace Access web
interface. HOSTNAME is the fully qualified host name of the machine that hosts Polyspace
Access. For more information on the exported variables list, see “View Exported Variable
List” (Polyspace Code Prover).

 polyspace-report-generator

4-19

By default, the variables file for results from project-name is stored in the
PathToFolder\Polyspace-Doc folder. PathToFolder is the path from which you call
the command.

Input Arguments
template — path to report template file
string

Path to the report template that you use to generate an analysis report. To generate
multiple reports, specify a comma-separated list of report template paths (do not put a
space after the commas). The templates are available in polyspaceroot\toolbox
\polyspace\psrptgen\templates\ as .rpt files. Here, polyspaceroot is the
Polyspace installation folder. For more information on the available templates, see Bug
Finder and Code Prover report (-report-template).

This option is not compatible with -generate-variable-access-file and -
generate-results-list-file.
Example: C:\Program Files\Polyspace\R2019a\toolbox\polyspace\psrptgen
\templates\Developer.rpt

Example: TEMPLATE_PATH\BugFinder.rpt,TEMPLATE_PATH\CodingStandards.rpt

FOLDER — Analysis results folder path
string

Path to the folder containing analysis results for which you generate a report, or analysis
results from which you export a list of results or global variables (Code Prover). To
generate a report for multiple verifications, specify a comma-separated list of folder paths
(do not put a space after the commas). If you do not specify a folder path, the command
generates a report for analysis results in the current folder.
Example: C:\Polyspace_Workspace\My_project\Module_1\results
Example: C:\Polyspace_Workspace\My_project
\Module_2\results,C:\Polyspace_Workspace\My_project
\Module_3\other_results

HOSTNAME — Polyspace Access machine host name
string

4 Functions, Properties, Classes, and Apps

4-20

Fully qualified host name of the machine that hosts the Polyspace Access Gateway API
service. You must specify a host name to generate a report for results on the Polyspace
Access database.
Example: my-company-server

RUN_ID — Polyspace Access run ID
integer

Run ID of the project findings for which you generate a report. Polyspace assigns a
unique run ID to each analysis run that you upload to the Polyspace Access. To get the
run ID of project findings, use the command polyspace-access with option -list-
project.
Example: 4

OPTIONS — Options for generated report
string

Option Description
-format HTML | PDF | WORD File format of the report that you generate.

By default, the command generates a
WORD document.

To generate reports in multiple formats,
specify a comma-separated list of formats.
(Do not put a space after the commas). For
instance, -format PDF,HTML.

This option is not compatible with -
generate-variable-access-file and
-generate-results-list-file.

-output-name outputName Name of the generated report or folder
name if you generate multiple reports.

The command stores outputName on the
path from which you call the command. To
store the generated files in a different
folder, specify the full path of the folder, for
instance -output-name C:\PathTo
\OtherFolder.

 polyspace-report-generator

4-21

Option Description
-results-dir
FOLDER_1,...,FOLDER_N

Path to the locally stored results folder. To
generate reports for multiple analyses,
specify a comma-separated list of folder
path. (Do not put a space after the
commas). For example:

-results-dir folderPath1,folderPath2

-set-language-english Generate the report in English. Use this
option if your display language is set to
another language.

-h Display the help information.

ACCESS_OPTIONS — Options for Polyspace Access
string

Option Description
-host HOST_NAME Fully qualified host name of the machine

that hosts the Polyspace Access Gateway
API service.

This option is mandatory when you
generate reports for results stored on the
Polyspace Access database.

-run-id RUN_ID Run ID of the project. Polyspace assigns a
unique run ID to each analysis run that you
upload. To get the last run ID of a project,
use the -list-project option of the
polyspace-access command.

For more information on the command, see
polyspace-access.

This option is mandatory when you
generate reports for results stored on the
Polyspace Access database.

4 Functions, Properties, Classes, and Apps

4-22

Option Description
-all-units Specify this option to generate a report for

all units from a unit by unit analysis.

When you use this option, specify the run
ID of only one unit with -run-id. The
command includes the other units from the
analysis in the report.

-port portNumber Port number of the Polyspace Access
instance. Default value is 9443.

-protocol http | https HTTP protocol used to connect to Polyspace
Access. Default value is https.

-login username

-encryted-password
ENCRYPTED_PASSWD

Credentials that you use to log into
Polyspace Access. The argument of -
encrypted-password is the output of the
polyspace-access -encrypt-
password command.

For more information on the command, see
polyspace-access.

Examples

Generate PDF Reports for Analysis Results Stored Locally

You can generate multiple reports for analysis results that you store locally.

Create a variable template_path to store the path to the report templates and create a
variable report_templates to store a comma-separated list of templates to use.

SET template_path="C:\Program Files"\Polyspace\R2019a\toolbox\polyspace^
\psrptgen\templates\bug_finder
SET report_templates=%template_path%\BugFinder.rpt,^
%template_path%\CodingStandards.rpt

Generate the reports from the templates that you specified in report_templates for
analysis results of Polyspace project myProject.

 polyspace-report-generator

4-23

 polyspace-report-generator -template %report_templates% ^
-results-dir C:\Polyspace_Workspace\myProject\Module_1\BF_Result ^
-format PDF

The command generates two PDF reports, myProject_BugFinder.PDF and
myProject_CodingStandards.PDF. The reports are stored in
C:\Polyspace_Workspace\myProject\Module_1\BF_Result\Polyspace-Doc. For
more information on the content of the reports, see Bug Finder and Code Prover
report (-report-template).

Generate Report and Variables List from Polyspace Access

Note To use the command-line for generating reports of results stored on Polyspace
Access, you must have a Polyspace Bug Finder Server or Polyspace Code Prover Server
installation.

Suppose that you want to generate a report and export the variables list for the results of
a Code Prover analysis stored on the Polyspace Access database.

To connect to Polyspace Access, provide a host name and your login credentials including
your encrypted password. To encrypt your password, use the polyspace-access
command and enter your user name and password at the prompt.

polyspace-access -encrypt-password
login: jsmith
password:
CRYPTED_PASSWORD LAMMMEACDMKEFELKMNDCONEAPECEEKPL
Command Completed

Store your Polyspace Access login credentials in a variable LOGIN.

set LOGIN=-host jsmith ^
-encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

To specify project results on the Polyspace Access, specify the run ID of the project. To
obtain a list of projects with their latest run ID, use the polyspace-access with option
-list-project.

4 Functions, Properties, Classes, and Apps

4-24

polyspace-access -host myAccessServer %LOGIN% -list-project
Connecting to https://myAccessServer:9443
Connecting as jsmith
Get project list with the last Run Id
Restricted/Code_Prover_Example (Code Prover) RUN_ID 14
public/Bug_Finder_Example (Bug Finder) RUN_ID 24
public/CP/Code_Prover_Example (Polyspace Code Prover) RUN_ID 16
public/Polyspace (Code Prover) RUN_ID 28
Command Completed

For more information on the command, see polyspace-access.

Generate a Developer report for results with run ID 16 from the Polyspace Access
instance with host name myAccessServer. The URL of this instance of Polyspace Access
is https://myAccessServer:9443.

SET template_path=^
"C:\Program Files\Polyspace\R2019a\toolbox\polyspace\psrptgen\templates"

polyspace-report-generator %LOGIN% ^
-template %template_path%\Developer.rpt ^
-host myAccessServer ^
-run-id 16 ^
-output-name myReport

The command creates report myReport.docx by using the template that you specify. The
report is stored in folder Polyspace-Doc on the path from which you called the
command.

Generate a tab-delimited text file that contains a list of global variables in your code for
the specified analysis results.

polyspace-report-generator %LOGIN%^
-generate-variable-access-file ^
-host myAccessServer ^
-run-id 16

 polyspace-report-generator

4-25

The list of global variables Variable_View.txt is stored in the same folder as the
generated report. For more information on the exported variables list, see “View Exported
Variable List” (Polyspace Code Prover).

See Also

4 Functions, Properties, Classes, and Apps

4-26

polyspace-results-repository
(DOS/UNIX) Upload, download and otherwise interact with results in the Polyspace
Metrics repository

Syntax
polyspace-results-repository -upload resultsFolder -product
productName -prog projectName -verif-version versionNumber [OPTIONS]

polyspace-results-repository -download resultsFolder -product
productName -prog projectName -verif-version versionNumber [OPTIONS]

polyspace-results-repository -get-projects-list -product productName
polyspace-results-repository -get-versions-list -product productName
-prog projectName
polyspace-results-repository -get-run-numbers-list -product
productName -prog projectName -verif-version versionNumber
polyspace-results-repository -get-files-list -product productName -
prog projectName -verif-version versionNumber [OPTIONS]

polyspace-results-repository -get-sqo-id -product productName -prog
projectName -verif-version versionNumber [OPTIONS]
polyspace-results-repository -set-sqo-id SQOLevel -product
productName -prog projectName -verif-version versionNumber [OPTIONS]

polyspace-results-repository -delete -product productName -prog
projectName -verif-version versionNumber [OPTIONS]
polyspace-results-repository -rename -product productName -new-prog
newProjectName -new-verif-version newVersionNumber -prog projectName
-verif-version versionNumber [OPTIONS]

Description
polyspace-results-repository -upload resultsFolder -product
productName -prog projectName -verif-version versionNumber [OPTIONS]
uploads Polyspace results in resultsFolder to the Polyspace Metrics web repository.

 polyspace-results-repository

4-27

You can customize the default upload with additional options.

polyspace-results-repository -download resultsFolder -product
productName -prog projectName -verif-version versionNumber [OPTIONS]
downloads Polyspace results from the Polyspace Metrics web repository to
resultsFolder.

You can customize the default download with additional options.

polyspace-results-repository -get-projects-list -product productName
displays the Bug Finder or Code Prover projects currently in the Polyspace Metrics web
repository.

polyspace-results-repository -get-versions-list -product productName
-prog projectName displays the versions of a project currently in the Polyspace
Metrics web repository. If the project involves file-by-file verification in Code Prover, add
the -unit-by-unit option.

polyspace-results-repository -get-run-numbers-list -product
productName -prog projectName -verif-version versionNumber displays the
run numbers of a project version currently in the Polyspace Metrics web repository.

The option is useful only if multiple results with the same project name and version
number have been uploaded to Polyspace Metrics.

polyspace-results-repository -get-files-list -product productName -
prog projectName -verif-version versionNumber [OPTIONS] displays the files
involved in the results for a certain project and version.

polyspace-results-repository -get-sqo-id -product productName -prog
projectName -verif-version versionNumber [OPTIONS] displays the Software
Quality Objectives being applied to a certain project and version.

polyspace-results-repository -set-sqo-id SQOLevel -product
productName -prog projectName -verif-version versionNumber [OPTIONS]
applies Software Quality Objectives specified by SQOLevel to a certain project and
version.

polyspace-results-repository -delete -product productName -prog
projectName -verif-version versionNumber [OPTIONS] deletes a certain
project version from the Polyspace Metrics web repository.

4 Functions, Properties, Classes, and Apps

4-28

polyspace-results-repository -rename -product productName -new-prog
newProjectName -new-verif-version newVersionNumber -prog projectName
-verif-version versionNumber [OPTIONS] renames a certain project version to
another project and version.

Examples

Upload Results to Polyspace Metrics

Suppose you want to upload Code Prover results from the folder C:\My_Results to the
Polyspace Metrics server localhost:12427. You want the project name to appear as
Polyspace_Project and the version number 1.0.

Upload the results using this information.

polyspace-results-repository -upload "C:\My_Results" \
 -prog "Polyspace_Project" \
 -verif-version "1.0" \
 -server "localhost:12427" \
 -product "CodeProver"

Download Results from Polyspace Metrics

Suppose you want to download Bug Finder results in version 1.0 of the project
Polyspace_Project from the Polyspace Metrics server localhost:12427. You want
the results to be downloaded to the folder C:\My_Results.

Download the results using this information.

polyspace-results-repository -download "C:\My_Results" \
 -prog "Polyspace_Project" \
 -verif-version "1.0" \
 -server "localhost:12427" \
 -product "BugFinder"

 polyspace-results-repository

4-29

Upload Results of Multiple Modules to Polyspace Metrics

If a Polyspace project consists of multiple modules, you can upload the analysis results for
all modules to the Polyspace Metrics interface.

For instance, if you run polyspace-autosar, a separate module is created for each
AUTOSAR Software Component. You can write a shell script (.sh file) like this (or a
Windows .bat file) to collect result files in subfolders of the project folder and upload
them to Polyspace Metrics. Code Prover result files use extension .pscp.

#! /bin/bash
Upload all results from a polyspace-autosar run to a Metrics server.
MODULES_DIR=`find "$RESULTS_DIR" -name ps_results.pscp -printf '%h\n'`
IFS='
'
for module in $MODULES_DIR; do
 # extract module name from its path foo/bar/behavior_name
 module_name=${module#*AUTOSAR/}
 # transform it to foo.bar.behavior_name
 module_name=${module_name//\//.}
 polyspace-results-repository \
 -f \
 -server localhost \
 -upload “$module” \
 -prog APPLICATION_NAME \
 -module $module_name \
 -verif-version "$RESULTS_VERSION”
done

Input Arguments
resultsFolder — Folder containing Polyspace results
string

Folder name, specified as a string (in double quotes). The folder must contain a Bug
Finder result file (.psbf) or a Code Prover file (.pscp).
Example: "C:\Polyspace_Projects\Proj1\Module_1\BF_Result", "C:\AUTOSAR
\Demo\polyspace\AUTOSAR\pkg\tst002\swc002\bhv\verification"

projectName — Name of Polyspace project
string

4 Functions, Properties, Classes, and Apps

4-30

Name of Polyspace project, as it appears on Polyspace metrics.

Example: "Polyspace_project"

newProjectName — Name of Polyspace project
string

New name of Polyspace project, as it appears on Polyspace metrics.
Example: "Polyspace_project_1"

versionNumber — Version number of Polyspace project
string

Version number of Polyspace project, as it appears on the Runs tab of Polyspace metrics.

Example: "1.0"

newVersionNumber — Version number of Polyspace project
string

New version number of Polyspace project, as it appears on the Runs tab of Polyspace
metrics.
Example: "1.1"

productName — Name of product used for analysis
"CodeProver" (default) | "BugFinder"

 polyspace-results-repository

4-31

Name of product used for producing the results, specified as "BugFinder" or
"CodeProver".

SQOLevel — SQO Level or BF-QO Level to be applied to analysis results
"SQO-1" | "SQO-2" | "SQO-3" | "SQO-4" | "SQO-5" | "SQO-6" | "BF-QO-1" | "BF-
QO-2" | "BF-QO-3" | "BF-QO-4" | "BF-QO-5" | "BF-QO-6" | "Exhaustive"

Quality levels applied to analysis results. The quality levels consist of a set of criteria
based on which the analysis results are assigned a status of PASS or FAIL. Use the SQO
levels for Code Prover results and BF-QO level for Bug Finder results.

See:

• “Software Quality Objectives” (Polyspace Code Prover)
• “Bug Finder Quality Objective Levels”

[OPTIONS] — Options to customize upload or download
option name

Option Description
-server serverName:portNumber Explicitly specify a server name and port

number for upload or download, for
instance, "localhost:12427".

By default, results are uploaded to or
downloaded from the server that you
configured in Polyspace preferences. See
“Set Up Polyspace Metrics”.

-f Use this option in scripts so that the
polyspace-results-repository
command does not require user interaction.

By default, the command asks for
confirmation before transferring results
from your local folder to Polyspace Metrics
or vice versa.

-password password_value Specify the password for uploading or
download a password-protected result in
Polyspace Metrics.

4 Functions, Properties, Classes, and Apps

4-32

Option Description
-module module_name Specify that the result belongs to a module

in the current Polyspace project. Specify a
module name.

Use this option to upload results from a
project with multiple modules. In Polyspace
Metrics, all modules with the same -prog
value appear under the same project.

When you upload the results of multiple
modules in the same project, they appear as
separate modules in Polyspace Metrics.
When you download the result of a specific
module, the result appears in a subfolder of
the download folder.

-run-number If you uploaded multiple results with the
same project name and version number,
they appear as separate runs in Polyspace
metrics. Use this option to upload or
download the results for a specific run.

-integration or -unit-by-unit If you run a file-by-file verification, use -
unit-by-unit to upload or download all
results together. Otherwise, use -
integration. For more information on
file-by-file verification, see Verify files
independently (-unit-by-unit).

By default, the command assumes one
result for each upload or download.

Introduced in R2013b

 polyspace-results-repository

4-33

polyspace-comments-import
(DOS/UNIX) Import review information from previous Polyspace analysis

Syntax
polyspace-comments-import -diff-rte prevResultsFolder
currentResultsFolder

Description
polyspace-comments-import -diff-rte prevResultsFolder
currentResultsFolder imports review information from a results file in
prevResultsFolder to currentResultsFolder. The review information includes the
severity, status and additional notes that you assign to a result. Besides importing the
comments, the command also shows the number of results where review information
could not be imported either because the result changed or the result already had new
review information.

Examples

Import Review Information from Previous Polyspace Results

Run Bug Finder on a sample file and add some review information. Then, run Bug Finder
a second time and import the information from the previous run.

Copy the file numerical.c from polyspaceroot\polyspace\examples\cxx
\Bug_Finder_Example\sources to a writable folder. Open a command window and
navigate to the folder (using cd). Run Bug Finder on the file and save results in the
subfolder Run_1:

polyspace-bug-finder -sources numerical.c -results-dir Run_1/

Depending on the product installed, you can also run polyspace-code-prover,
polyspace-bug-finder-server or polyspace-code-prover-server.

4 Functions, Properties, Classes, and Apps

4-34

Open the results file in the Run_1 subfolder:

polyspace Run_1/ps_results.psbf

Select a result. On the Result Details window, select a Severity and Status and add
some notes. You will import this review information to results from a later analysis.

Run Bug Finder again, but save the results in a different subfolder Run_2:

polyspace-bug-finder -sources numerical.c -results-dir Run_2/

You can open the results file in Run_2 and see that there is no review information.

Import the review information from the results file in the Run_1 subfolder to the Run_2
subfolder:

polyspace-comments-import -diff-rte Run_1/ Run_2/

Open the results file in the Run_2 subfolder:

polyspace Run_2/ps_results.psbf

You see the review information imported from the results file in the Run_1 subfolder.

Input Arguments
prevResultsFolder — Folder containing previous Polyspace results with review
information
string

Path to a folder containing a Polyspace results file (.psbf file for Bug Finder results
and .pscp file for Code Prover results). The results are presumably from an earlier
Polyspace analysis and contain review information that will be imported to a later results
file.
Example: "C:\Polyspace\Project_1_Run_25"

currentResultsFolder — Folder containing later Polyspace results
string

Path to a folder containing Polyspace results (.psbf file for Bug Finder results and .pscp
file for Code Prover results). The results are presumably from a later Polyspace analysis

 polyspace-comments-import

4-35

and have no review information or review information for new results only. You want to
import review information from an earlier Polyspace analysis to these results.
Example: "C:\Polyspace\Project_1_Run_26"

See Also
-import-comments

Topics
“Import Review Information from Previous Polyspace Analysis”

Introduced in R2013b

4 Functions, Properties, Classes, and Apps

4-36

pslinkfun
Manage model analysis at the command line

Syntax
pslinkfun('annotations','type',typeValue,'kind',kindValue,
Name,Value)

pslinkfun('openresults',systemName)

pslinkfun('settemplate',psprjFile)
prjTemplate = pslinkfun('gettemplate')

pslinkfun('advancedoptions')
pslinkfun('enablebacktomodel')
pslinkfun('help')
pslinkfun('metrics')
pslinkfun('jobmonitor')
pslinkfun('stop')

Description
pslinkfun('annotations','type',typeValue,'kind',kindValue,
Name,Value) adds an annotation of type typeValue and kind kindValue to the
selected block in the model. You can specify a different block using a Name,Value pair
argument. You can also add notes about a severity classification, an action status, or other
comments using Name,Value pairs.

In the generated code associated with the annotated block, Polyspace adds code
comments before and after the lines of code. Polyspace reads these comments and marks
Polyspace results of the specified kind with the annotated information.

Syntax limitations:

• You can have only one annotation per block. If a block produces both a rule violation
and an error, you can annotate only one type.

 pslinkfun

4-37

• Even though you apply annotations to individual blocks, the scope of the annotation
can be larger. The generated code from one block can overlap with another, causing
the annotation to also overlap.

For example, consider this model. The first summation block has a Polyspace
annotation, but the second does not.

However, the associated generated code adds all three inputs in one line of code.

/* polyspace:begin<RTE:OVFL:Medium:To Fix>*/
annotate_y.Out1=(annotate_u.In1+annotate_U.In2)+annotate_U.In3;
/* polyspace:end<RTE:OVFL:Medium:To Fix> */

Therefore, the annotation justifies both summations.

pslinkfun('openresults',systemName) opens the Polyspace results associated with
the model or subsystem systemName in the Polyspace environment.

pslinkfun('settemplate',psprjFile) sets the configuration file for new
verifications.

prjTemplate = pslinkfun('gettemplate') returns the template configuration file
used for new analyses.

pslinkfun('advancedoptions') opens the advanced verification options window to
configure additional options for the current model.

pslinkfun('enablebacktomodel') enables the back-to-model feature of the Simulink
plug-in. If your Polyspace results do not properly link to back to the model blocks, run this
command.

pslinkfun('help') opens the Polyspace documentation in a separate window. Use this
option for only pre-R2013b versions of MATLAB.

pslinkfun('metrics') opens the Polyspace Metrics interface.

4 Functions, Properties, Classes, and Apps

4-38

pslinkfun('jobmonitor') opens the Polyspace Job Monitor to display remote
verifications in the queue.

pslinkfun('stop') kills the code analysis that is currently running. Use this option for
local analyses only.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace with MATLAB and Simulink”.

Examples

Annotate a Block and Run a Polyspace Bug Finder Analysis

Use the Polyspace annotation function to annotate a block and see the annotation in the
analysis results.

In the example model WhereAreTheErrors, add an annotation to the switch block for
MISRA C rule 13.7 violations with a comment, a severity, and a status.

model = 'WhereAreTheErrors';
open(model)
pslinkfun('annotations','type','Misra-C', 'kind', '13.7','block',...
 'WhereAreTheErrors/Switch1','status','to fix','comment','must fix')

In the open model, you can see a Polyspace annotation added to the Switch block.

Generate code for the model and run an analysis. After the analysis is finished, open the
results in the Polyspace environment:

slbuild(model)
opts = pslinkoptions(model);
opts.VerificationMode = 'BugFinder';
opts.VerificationSettings = 'PrjConfigAndMisra';
pslinkrun(model,opts)
pslinkfun('openresults',model)

The five MISRA C 13.7 rule violations are annotated with the information you added to
the switch block. The annotations appear in the Status and Comment columns.

 pslinkfun

4-39

Add Batch Options to Default Configuration Template

Change advanced Polyspace options and set the new configuration as a template.

Load the model WhereAreTheErrors and open the advanced options window.

model = 'WhereAreTheErrors';
load_system(model)
pslinkfun('advancedoptions')

In the Run Settings pane, select the options Run Bug Finder analysis on a remote
cluster and Upload results to Polyspace Metrics.

Set the configuration template for new Polyspace analyses to have these options.

pslinkfun('settemplate',fullfile(cd,'pslink_config',...
 'WhereAreTheErrors_config.psprj'))

View the current Polyspace template.

template = pslinkfun('gettemplate')

template =
C:\ModelLinkDemo\pslink_config\WhereAreTheErrors_config.psprj

View Polyspace Queue and Metrics

Run a remote analysis, view the analysis in the queue, and review the metrics.

Before performing this example, check that your Polyspace configuration is set up for
remote analysis and Polyspace Metrics.

Build the model WhereAreTheErrors, create a Polyspace options object, set the
verification mode, and open the advanced options window.

model = 'WhereAreTheErrors';
load_system(model)
slbuild(model)
opts = pslinkoptions(model);
opts.VerificationMode = 'BugFinder';
pslinkfun('advancedoptions')

4 Functions, Properties, Classes, and Apps

4-40

In the Run Settings pane, select the options Run Bug Finder analysis on a remote
cluster and Upload results to Polyspace Metrics.

Run Polyspace, then open the Job Monitor to monitor your remote job.

pslinkrun(model,opts)
pslinkfun('jobmonitor')

After your job is finished, open the metrics server to see your job in the repository.

pslinkfun('metrics')

Input Arguments
typeValue — type of result
'DEFECT' | 'MISRA-C' | 'MISRA-AC-AGC' | 'MISRA-CPP' | 'JSF'

The type of result with which to annotate the block, specified as:

• 'DEFECT' for defects.
• 'MISRA-C' for MISRA C coding rule violations (C code only).
• 'MISRA-AC-AGC' for MISRA C coding rule violations (C code only).
• 'MISRA-CPP' for MISRA C++ coding rule violations (C++ code only).
• 'JSF' for JSF C++ coding rule violations (C++ code only).

Example: 'type','MISRA-C'

kindValue — specific check or coding rule
check acronym | rule number

The specific check or coding rule specified by the acronym of the check or the coding rule
number. For the specific input for each type of annotation, see the following table.

type Value kind Values
'DEFECT' Use the abbreviation associated with the type of defect that you

want to annotate. For example, 'int_ovfl' – Integer overflow.

For the list of possible checks, see: “Polyspace Bug Finder
Results”.

 pslinkfun

4-41

type Value kind Values
'MISRA-C' Use the rule number that you want to annotate. For example,

'2.2'.

For the list of supported MISRA C rules and their numbers, see
“MISRA C:2004 and MISRA AC AGC Coding Rules”.

'MISRA-AC-AGC' Use the rule number that you want to annotate. For example,
'2.2'.

For the list of supported MISRA C rules and their numbers, see
“MISRA C:2004 and MISRA AC AGC Coding Rules”.

'MISRA-CPP' Use the rule number that you want to annotate. For example,
'0-1-1'.

For the list of supported MISRA C++ rules and their numbers,
see “MISRA C++:2008 Rules”.

'JSF' Use the rule number that you want to annotate. For example,
'3'.

For the list of supported JSF C++ rules and their numbers, see
“JSF C++ Coding Rules”.

Example: pslinkfun('annotations','type','MISRA-CPP','kind','1-2-3')
Data Types: char

systemName — Simulink model
system | subsystem

Simulink model specified by the system or subsystem name.
Example: pslinkfun('openresults','WhereAreTheErrors')

psprjFile — Polyspace project file
standard Polyspace template (default) | absolute path to .psprj file

Polyspace project file specified as the absolute path to the .psprj project file. If
psprjFile is empty, Polyspace uses the standard Polyspace template file. New Polyspace
projects start with this project configuration.

4 Functions, Properties, Classes, and Apps

4-42

Example: pslinkfun('settemplate', fullfile(polyspaceroot, 'polyspace',
'examples', 'cxx', 'Bug_Finder_Example',
'Bug_Finder_Example.bf.psprj'));

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'block','MyModel\Sum', 'status','to fix'

block — block to be annotated
gcb (default) | block name

The block you want to annotate specified by the block name. If you do not use this option,
the block returned by the function gcb is annotated.
Example: 'block','MyModel\Sum'

class — severity of the check
'high' | 'medium' | 'low' | 'unset'

Severity of the check specified as high, medium, low, or unset.
Example: 'class','high'

status — action status
'unreviewed' | 'to investigate' | 'to fix' | 'justified' | 'no action
planned' | 'not a defect' | 'other'

Action status of the check specified as unreviewed, to investigate, to fix,
justified, no action planned, not a defect, or other.
Example: 'status','no action planned'

comment — additional comments
character vector

Additional comments specified as a character vector. The comments provide more
information about why the results are justified.
Example: 'comment','defensive code'

 pslinkfun

4-43

See Also
pslinkrun | pslinkoptions | gcb

Introduced in R2014a

4 Functions, Properties, Classes, and Apps

4-44

pslinkoptions
Create options object to customize Polyspace runs from MATLAB command line

Syntax
opts = pslinkoptions(codegen)
opts = pslinkoptions(model)
opts = pslinkoptions(sfunc)

Description
opts = pslinkoptions(codegen) returns an options object with the configuration
options for code generated by codegen.

opts = pslinkoptions(model) returns an options object with the configuration
options for the Simulink model.

opts = pslinkoptions(sfunc) returns an options object with the configuration
options for the S-Function.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace with MATLAB and Simulink”.

Examples

Use a Simulink model to create and edit an options objects

Load psdemo_model_link_sl and create a Polyspace® options object from the model:

load_system('psdemo_model_link_sl');
model_opt = pslinkoptions('psdemo_model_link_sl')

model_opt =

 pslinkoptions

4-45

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'All'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 0
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'

The model is already configured for Embedded Coder®, so only the Embedded Coder
configuration options appear.

Change the results folder name option and set OpenProjectManager to true.

model_opt.ResultDir = 'results_v1_$ModelName$';
model_opt.OpenProjectManager = true

model_opt =

 ResultDir: 'results_v1_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'All'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 0

4 Functions, Properties, Classes, and Apps

4-46

 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'

Create and edit an options object for Embedded Coder at the command line

Create a Polyspace® options object called new_opt with Embedded Coder parameters:

new_opt = pslinkoptions('ec')

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'

To follow the progress in the Polyspace interface, set the OpenProjectManager option
to true. Change the configuration to check for both checks and MISRA C® 2012 coding
rule violations:

new_opt.OpenProjectManager = true;
new_opt.VerificationSettings = 'PrjConfigAndMisraC2012'

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfigAndMisraC2012'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0

 pslinkoptions

4-47

 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'

Create and edit an options object for TargetLink at the command line

Create a Polyspace® options object called new_opt with TargetLink® parameters:

new_opt = pslinkoptions('tl')

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 AutoStubLUT: 1

Set the OpenProjectManager option to true to follow the progress in the Polyspace
interface. Also change the configuration to check for both run-time errors and MISRA C®
coding rule violations:

4 Functions, Properties, Classes, and Apps

4-48

new_opt.OpenProjectManager = true;
new_opt.VerificationSettings = 'PrjConfigAndMisra'

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfigAndMisra'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 AutoStubLUT: 1

Input Arguments
codegen — Code generator
'ec' | 'tl'

Code generator, specified as either 'ec' for Embedded Coder® or 'tl' for TargetLink®.
Each argument creates a Polyspace options object with properties specific to that code
generator.

For a description of all configuration options and their values, see pslinkoptions.
Example: ec_opt = pslinkoptions('ec')
Example: tl_opt = pslinkoptions('tl')
Data Types: char

model — Simulink model name
model name

Simulink model, specified by the model name. Creates a Polyspace options object with the
configuration options of that model. If you have not set any options, the object has the
default configuration options. If you have set a code generator, the object has the default
options for that code generator.

 pslinkoptions

4-49

For a description of all configuration options and their values, see pslinkoptions.
Example: model_opt = pslinkoptions('my_model')
Data Types: char

sfunc — path to S-Function
character vector

Path to S-Function, specified as a character vector. Creates a Polyspace options object
with the configuration options for the S-function. If you have not set any options, the
object has the default configuration options.

For a description of all configuration options and their values, see pslinkoptions.
Example: sfunc_opt = pslinkoptions('path/to/sfunction')
Data Types: char

Output Arguments
opts — Polyspace configuration options
options object

Polyspace configuration options, returned as an options object. The object is used with
pslinkrun to run Polyspace from the MATLAB command line.

For the list of object properties, see pslinkoptions.
Example: opts= pslinkoptions('ec')
opts.VerificationSettings = 'Misra'

See Also
pslinkfun | pslinkrun

Topics
pslinkoptions

Introduced in R2012a

4 Functions, Properties, Classes, and Apps

4-50

pslinkrun
Run Polyspace analysis on model, system, or S-Function

Syntax
[polyspaceFolder, resultsFolder] = pslinkrun
[polyspaceFolder, resultsFolder]= pslinkrun(target)
[polyspaceFolder, resultsFolder] = pslinkrun('-slcc',target)
[polyspaceFolder, resultsFolder] = pslinkrun(target, opts)
[polyspaceFolder, resultsFolder] = pslinkrun('-slcc', target, opts)
[polyspaceFolder, resultsFolder] = pslinkrun(target, opts,
asModelRef)
[polyspaceFolder, resultsFolder] = pslinkrun('-codegenfolder',
codegenFolder, opts)

Description
[polyspaceFolder, resultsFolder] = pslinkrun analyzes code generated from
the current system using the configuration options associated with the current system. It
returns the location of the results folder. The current system is the system returned by the
command bdroot.

[polyspaceFolder, resultsFolder]= pslinkrun(target) analyzes target with
the configuration options associated with the model containing target. Before you run
an analysis, you must:

• Generate code for models and subsystems.
• Compile S-Functions.

[polyspaceFolder, resultsFolder] = pslinkrun('-slcc',target) runs
Polyspace on C/C++ custom code included in C Caller blocks and Stateflow charts in the
model.

[polyspaceFolder, resultsFolder] = pslinkrun(target, opts) analyzes
target with the configuration options from the options object opts. It returns the
location of the results folder.

 pslinkrun

4-51

[polyspaceFolder, resultsFolder] = pslinkrun('-slcc', target, opts)
runs Polyspace on C/C++ custom code included in C Caller blocks and Stateflow charts in
the model. The analysis uses the configuration options from the options object opts.

[polyspaceFolder, resultsFolder] = pslinkrun(target, opts,
asModelRef) uses asModelRef to specify which type of generated code to analyze—
standalone code or model reference code. This option is useful when you want to analyze
only a referenced model instead of an entire model hierarchy.

[polyspaceFolder, resultsFolder] = pslinkrun('-codegenfolder',
codegenFolder, opts) runs Polyspace on C/C++ code generated from MATLAB code
and stored in codegenFolder.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace with MATLAB and Simulink”.

Examples

Analyze Generated Code

Use a Simulink model to generate code, set configuration options, and then run an
analysis from the command line.

% Generate code from the model WhereAreTheErrors.
model = 'WhereAreTheErrors';
load_system(model);
slbuild(model);

% Create a Polyspace options object from the model.
opts = pslinkoptions(model);

% Set properties that define the Polyspace analysis.
opts.VerificationMode = 'CodeProver';
opts.VerificationSettings = 'PrjConfigAndMisraC2012';

% Run Polyspace using the options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,opts);
bdclose(model);

4 Functions, Properties, Classes, and Apps

4-52

The results and the corresponding Polyspace project are saved to the
results_WhereAreTheErrors folder, listed in the polyspaceFolder variable. The full
path to the results folder is in the resultsFolder variable.

Analyze Referenced Model Code

Use a Simulink model to generate model reference code, set configuration options, and
then run an analysis from the command line.

% Generate code from the model WhereAreTheErrors.
% Treat WhereAreTheErrors as if referenced by another model.
model = 'WhereAreTheErrors';
load_system(model);
slbuild(model,'ModelReferenceCoderTargetOnly');

% Create a Polyspace options object from the model.
opts = pslinkoptions(model);

% Set properties that define the Polyspace analysis.
opts.VerificationMode = 'CodeProver';
opts.VerificationSettings = 'PrjConfigAndMisraC2012';

% Run Polyspace with the options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,opts,true);
bdclose(model);

The results and corresponding Polyspace project are saved to the
results_mr_WhereAreTheErrors folder, listed in the polyspaceFolder variable. The
full path to the results folder is in the resultsFolder variable.

Reuse Analysis Options for Multiple Models

This example shows how to reuse a subset of options for Polyspace analysis of multiple
models. Create a generic options object and specify properties that describe the common
options. Associate the generic options object with a model-specific options object.
Optionally, set some model-specific options and run the Polyspace analysis.

% Generate code from the model WhereAreTheErrors.

 pslinkrun

4-53

model = 'psdemo_model_link_sl';
load_system(model);
slbuild(model);

% Create a generic options object to use for multiple model analyses.
opts = polyspace.ModelLinkOptions();
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
opts.MergedReporting.ReportOutputFormat = 'PDF';
opts.MergedReporting.EnableReportGeneration = true;

% Create a model-specific options object.
mlopts = pslinkoptions(model);

% Create a project from the generic options object.
% Associate the project with the model-specific options object.
prjfile = opts.generateProject('model_link_opts');
mlopts.EnablePrjConfigFile = true;
mlopts.PrjConfigFile = prjfile;
mlopts.VerificationMode = 'BugFinder';

% Run Polyspace with the model-specific options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,mlopts);
bdclose(model);

After the analysis completes, results open automatically in the Polyspace interface.

Analyze C/C++ Code Generated from MATLAB Code

This example shows how to analyze C/C++ code generated from MATLAB code.

% Generate code
matlabFileName = fullfile(polyspaceroot, 'help',...
 'toolbox','codeprover','examples','matlab_coder','averaging_filter.m');
codegenFolder = fullfile(pwd, 'codegenFolder');
codegen(matlabFileName, '-config:lib', '-c', '-args', ...
 {zeros(1,100,'double')}, '-d', codegenFolder);

% Configure Polyspace analysis
opts = pslinkoptions('ec');
opts.ResultDir = ['results_',codeName];
opts.OpenProjectManager = 1;

4 Functions, Properties, Classes, and Apps

4-54

% Run Polyspace
[polyspaceFolder, resultsFolder] = pslinkrun('-codegenfolder', codegenFolder, opts);

After the analysis completes, results open automatically in the Polyspace interface.

Input Arguments
target — Target of the analysis
bdroot (default) | model or system name | path to S-Function block

Target of the analysis specified as a character vector, with the model, system, or S-
function in single quotes. The default value is the system returned by bdroot.

If you analyze custom code in C Caller blocks and Stateflow charts using pslinkrun('-
slcc',...), the argument target cannot be an S-Function block.
Example: [polyspaceFolder, resultsFolder] = pslinkrun('demo') where
demo is the name of a model.
Example: [polyspaceFolder, resultsFolder] = pslinkrun('path/to/
sfunction')

Data Types: char

opts — Configuration options
options associated with target (default) | options object

Configuration options for the analysis, specified as a Polyspace options object. The
function pslinkoptions creates an options object. You can customize the options object
by changing the pslinkoption properties.
Example: pslinkrun('demo', opts_demo) where demo is the name of a model and
opts_demo is an options object.

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• If asModelRef is false (default), Polyspace analyzes code that is generated as
standalone code. This option is equivalent to choosing Verify Code Generated For >
Model in the Simulink Polyspace options.

 pslinkrun

4-55

• If asModelRef is true, Polyspace analyzes code that is generated as model referenced
code. This option is equivalent to choosing Verify Code Generated For >
Referenced Model in the Simulink Polyspace options. Specifying model reference
code indicates that Polyspace must look for the generated code in a different location
from the location for standalone code.

Data Types: logical

codegenFolder — Folder containing generated C/C++ code
character vector

Folder containing C/C++ code generated from MATLAB code, specified as a character
vector. You specify this folder with the codegen command using the flag -d.

Output Arguments
polyspaceFolder — Folder containing Polyspace project and results
character vector

Name of the folder containing Polyspace project and results, specified as a character
vector. The default value of this variable is results_$ModelName$.

To change this value, see “Output folder” on page 14-19.

resultsFolder — Full path to subfolder containing Polyspace results
character vector

Full path to subfolder containing Polyspace results, specified as a character vector.

The folder results_$ModelName$ contains your Polyspace project and a subfolder
$ModelName$ with the analysis results. This variable gives you the full path to the
subfolder. You can use this path with the polyspace.BugFinderResults class.

To change the parent folder results_$ModelName$, see “Output folder” on page 14-
19.

See Also
pslinkfun | pslinkoptions | pslinkoptions

4 Functions, Properties, Classes, and Apps

4-56

Topics
“Analyze Code Generated from Simulink Model”
“Run Polyspace Analysis on S-Function Code”
“Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts”
“Recommended Model Configuration Parameters for Polyspace Analysis”

Introduced in R2012a

 pslinkrun

4-57

polyspaceBugFinder
Run Polyspace Bug Finder analysis from MATLAB

Note For easier scripting, run Polyspace® analysis using a polyspace.Project object.

Syntax
polyspaceBugFinder
polyspaceBugFinder(projectFile)

polyspaceBugFinder(optsObject)
polyspaceBugFinder(projectFile, '-nodesktop')

polyspaceBugFinder(resultsFile)
polyspaceBugFinder('-results-dir',resultsFolder)

polyspaceBugFinder('-help')

polyspaceBugFinder('-sources',sourceFiles)
polyspaceBugFinder('-sources',sourceFiles,Name,Value)

Description
polyspaceBugFinder opens Polyspace Bug Finder.

polyspaceBugFinder(projectFile) opens a Polyspace project file in Polyspace Bug
Finder.

polyspaceBugFinder(optsObject) runs an analysis on the Polyspace options object
in MATLAB.

polyspaceBugFinder(projectFile, '-nodesktop') runs an analysis on the
Polyspace project file in MATLAB.

polyspaceBugFinder(resultsFile) opens a Polyspace results file in Polyspace Bug
Finder.

4 Functions, Properties, Classes, and Apps

4-58

polyspaceBugFinder('-results-dir',resultsFolder) opens a Polyspace results
file from resultsFolder in Polyspace Bug Finder.

polyspaceBugFinder('-help') displays options that can be supplied to the
polyspaceBugFinder command to run a Polyspace Bug Finder analysis.

polyspaceBugFinder('-sources',sourceFiles) runs a Polyspace Bug Finder
analysis on the source files specified in sourceFiles.

polyspaceBugFinder('-sources',sourceFiles,Name,Value) runs a Polyspace
Bug Finder analysis on the source files with additional options specified by one or more
Name,Value pair arguments.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace with MATLAB and Simulink”.

Examples

Open Polyspace Projects from MATLAB

This example shows how to open a Polyspace project file with extension .psprj from
MATLAB. In this example, you open the project file Bug_Finder_Example.psprj from
the folder polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example.

Open the project Bug_Finder_Example.psprj in the Polyspace interface.

prjFile = fullfile(polyspaceroot, 'polyspace', 'examples', 'cxx', ...
 'Bug_Finder_Example', 'Bug_Finder_Example.psprj');
polyspaceBugFinder(prjFile);

Open Polyspace Results from MATLAB

This example shows how to open a Polyspace results file from MATLAB. In this example,
you open the results file from the folder polyspaceroot\polyspace\examples\cxx
\Bug_Finder_Example\Module_1\BF_Result.

Open the results of resFolder.

 polyspaceBugFinder

4-59

resFolder = fullfile(polyspaceroot, 'polyspace', 'examples', ...
 'cxx', 'Bug_Finder_Example', 'Module_1', 'BF_Result');
polyspaceBugFinder('-results-dir',resFolder)

Run Polyspace Analysis with Options Object

This example shows how to run a Polyspace analysis from the MATLAB command-line. For
this example:

• Save a C source file, source.c, in the folder C:\Polyspace_Sources.
• Save an include file in the folder C:\Polyspace_Includes.

Create an options object and add the source file and include folder to the properties.

opts = polyspace.BugFinderOptions;
opts.Sources = {'C:\Polyspace_Sources\source.c'};
opts.EnvironmentSettings.IncludeFolders = {'C:\Polyspace_Includes'};
opts.ResultsDir = 'C:\Polyspace_Results';

Polyspace runs on the file C:\Polyspace_Sources\source.c and stores the result in
C:\Polyspace_Results.

Run the analysis and view the results.

polyspaceBugFinder(opts);
polyspaceBugFinder('-results-dir',opts.ResultsDir)

Run Polyspace Analysis from MATLAB with DOS/UNIX Options

This example shows how to run a Polyspace analysis in MATLAB. For this example:

• Save a C source file, source.c, in the folder C:\Polyspace_Sources.
• Save an include file in the folder C:\Polyspace_Includes.

To analyze C:\Polyspace_Sources\source.c, run the following command.

polyspaceBugFinder('-sources','C:\Polyspace_Sources\source.c', ...
 '-I','C:\Polyspace_Includes', ...
 '-results-dir','C:\Polyspace_Results')

4 Functions, Properties, Classes, and Apps

4-60

To view the results, enter:

polyspaceBugFinder('-results-dir','C:\')

Run Polyspace Analysis with Coding Rules Checking

This example shows two different ways to customize an analysis in MATLAB. You can
customize as many additional options as you want by changing properties in an options
object or by using Name-Value pairs. Here you specify checking of MISRA C 2012 coding
rules.

Create variables to save the source file path and results folder path. You can use these
variables for either analysis method.

sourceFileName = fullfile(polyspaceroot, 'polyspace','examples', 'cxx', ...
 'Bug_Finder_Example','sources','dataflow.c');
resFolder1 = fullfile('Polyspace_Results_1');
resFolder2 = fullfile('Polyspace_Results_2');

Analyze coding rules with an options object.

opts = polyspace.BugFinderOptions();
opts.Sources = {sourceFileName};
opts.ResultsDir = resFolder1;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
polyspaceBugFinder(opts);
polyspaceBugFinder('-results-dir',resFolder1);

Analyze coding rules with DOS/UNIX options.

polyspaceBugFinder('-sources',sourceFileName,'-results-dir',resFolder2,...
 '-misra3','all');
polyspaceBugFinder('-results-dir',resFolder2);

Input Arguments
optsObject — Polyspace options object name
object handle

Polyspace options object name, specified as the object handle.

 polyspaceBugFinder

4-61

To create an options object, use one of the Polyspace options classes.
Example: opts

projectFile — Name of .psprj file
character vector

Name of project file with extension .psprj, specified as a character vector.

If the file is not in the current folder, projectFile must include a full or relative path.
Example: 'C:\Polyspace_Projects\myProject.psprj'
Data Types: char

resultsFile — Name of .psbf file
character vector

Name of results file with extension .psbf, specified as a character vector.

If the file is not in the current folder, resultsFile must include a full or relative path.
Example: 'myResults.psbf'
Data Types: char

resultsFolder — Name of result folder
character vector

Name of result folder, specified as a character vector. The folder must contain the results
file with extension .psbf. If the results file resides in a subfolder of the specified folder,
this command does not open the results file.

If the folder is not in the current folder, resultsFolder must include a full or relative
path.
Example: 'C:\Polyspace\Results\'
Data Types: char

sourceFiles — Comma-separated names of C or C++ files
character vector

Comma-separated C or C++ source file names, specified as a single character vector.

If the files are not in the current folder, sourceFiles must include a full or relative path.

4 Functions, Properties, Classes, and Apps

4-62

Example: 'myFile.c', 'C:\mySources\myFile1.c,C:\mySources\myFile2.c'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: '-target','i386','-compiler','gnu4.6' specifies that the source code
is intended for a i386 target and contains non-ANSI C syntax for GCC 4.6.

For option names and values, see the Command-Line Information section in “Analysis
Options”.

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

Introduced in R2013b

 polyspaceBugFinder

4-63

polyspaceConfigure
Create Polyspace project from your build system at the MATLAB command line

Syntax
polyspaceConfigure buildCommand

polyspaceConfigure -option value buildCommand

Description
polyspaceConfigure buildCommand traces your build system and creates a
Polyspace project with information gathered from your build system. You can run an
analysis on a Polyspace project only in the user interface of the Polyspace desktop
products.

polyspaceConfigure -option value buildCommand traces your build system and
uses -option value to modify the default operation of polyspaceConfigure. Specify
the modifiers before buildCommand, otherwise they are considered as options in the
build command itself.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace with MATLAB and Simulink”.

Examples

Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make
targetName buildOptions to build your source code. The example creates a
Polyspace project that can be opened only in the user interface of the Polyspace desktop
products.

4 Functions, Properties, Classes, and Apps

4-64

Create a Polyspace project specifying a unique project name. Use the -B or -W
makefileName option with make so that the all prerequisite targets in the makefile are
remade.

polyspaceConfigure -prog myProject ...
 make -B targetName buildOptions

Open the Polyspace project in the Project Browser.

polyspaceBugFinder('myProject.psprj')

Create Projects That Have Different Source Files from Same Build Trace

This example shows how to create different Polyspace projects from the same trace of
your build system. You can specify which source files to include for each project. The
example creates a Polyspace project that can be opened only in the user interface of the
Polyspace desktop products.

Trace your build system without creating a Polyspace project by specifying the option -
no-project. To ensure that all the prerequisite targets in your makefile are remade, use
the appropriate make build command option, for instance -B.

polyspaceConfigure -no-project make -B;

polyspace-configure stores the cache information and the build trace in default
locations inside the current folder. To store the cache information and build trace in a
different location, specify the options -cache-path and -build-trace.

Generate Polyspace projects by using the build trace information from the previous step.
Specify a project name and use the -include-sources or -exclude-sources option
to select which files to include for each project.

polyspaceConfigure -no-build -prog myProject ...
-include-sources "glob_pattern";

glob_pattern is a glob pattern that corresponds to folders or files you filter in or out of
your project. To ensure the shell does not expand the glob patterns you pass to
polysapce-configure, enclose them in double quotes.For more information on the
supported syntax for glob patterns, see “polyspace-configure Source Files Selection
Syntax”.

If you specified the options -build-trace and -cache-path in the previous step,
specify them again.

 polyspaceConfigure

4-65

Delete the trace file and cache folder.

rmdir('polyspace_configure_cache', 's');
delete polyspace_configure_built_trace;

If you used the options -build-trace and -cache-path, use the paths and file names
from those options.

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use a build command such as
make targetName buildOptions to build your source code. In this example, you use
polyspaceConfigure to trace your build system but do not create a Polyspace project.
Instead you create an options file that you can use to run Polyspace analysis from the
command-line.

Create a Polyspace options file specifying the -output-options-file command. Use
the -B or -W makefileName option with make so that all prerequisite targets in the
makefile are remade.

polyspaceConfigure -output-options-file ...
 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

polyspaceBugFinder -options-file myOptions

Input Arguments
buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

-option value — Options for changing default operation of
polyspaceConfigure
single option starting with -, followed by argument | multiple space-separated option-
argument pairs

4 Functions, Properties, Classes, and Apps

4-66

Basic Options

Option Argument Description
-prog Project name Project name that appears in the Polyspace user

interface. The default is polyspace.

If you do not use the option -output-project,
the -prog argument also sets the project name.

Example: -prog myProject creates a project
that has the name myProject in the user
interface. If you do not use the option -
output-project, the project name is also
myProject.psrprj.

-author Author name Name of project author.

Example: -author jsmith
-output-project Path Project file name and location for saving

project. The default is the file
polyspace.psprj in the current folder.

Example: -output-project ../
myProjects/project1 creates a project
project1.psprj in the folder with the relative
path ../myProjects/.

-output-options-file File name Option to create a Polyspace analysis options
file. Use this file for command-line analysis
using polyspace-bug-finder.

 polyspaceConfigure

4-67

Option Argument Description
-allow-build-error None Option to create a Polyspace project even if an

error occurs in the build process.

If an error occurs, the build trace log shows the
following message:

polyspace-configure (polyspaceConfigure) ERROR: build command
 command_name fail [status=status_value]

command_name is the build command name
that you use and status_value is the non-zero
exit status or error level that indicates which
error occurred in your build process.

-allow-overwrite None Option to overwrite a project with the same
name, if it exists.

By default, polyspace-configure
(polyspaceConfigure) throws an error if a
project with the same name already exists in
the output folder. Use this option to overwrite
the project.

-silent (default)

-verbose

None Option to suppress or display additional
messages from running polyspace-
configure (polyspaceConfigure).

-help None Option to display the full list of polyspace-
configure (polyspaceConfigure)
commands

-debug None Option used by MathWorks technical support

Options to Create Multiple Modules

4 Functions, Properties, Classes, and Apps

4-68

Option Argument Description
-module None Option to create a separate options file for each

binary created in build system.

You can only create separate options files for
different binaries. You cannot create multiple
modules in a Polyspace project (for running in
the Polyspace user interface).

Use this option only for build systems that use
GNU and Visual C++ compilers.

See also “Modularize Polyspace Analysis by
Using Build Command”.

-output-options-path Path name Location where generated options files are
saved. Use this option together with the option
-module.

The options files are named after the binaries
created in the build system.

Advanced Options

Option Argument Description
-compiler-config Path and file name Location and name of compiler configuration

file.

The file must be in a specific format. For
guidance, see the existing configuration files in
polyspaceroot\polyspace\configure\
compiler_configuration\. For information
on the contents of the file, see “Compiler Not
Supported for Project Creation from Build
Systems”.

Example: -compiler-configuration
myCompiler.xml

 polyspaceConfigure

4-69

Option Argument Description
-no-project None Option to trace your build system without

creating a Polyspace project and save the build
trace information.

Use this option to save your build trace
information for a later run of polyspace-
configure (polyspaceConfigure) with the
-no-build option.

-no-build None Option to create a Polyspace project using
previously saved build trace information.

To use this option, you must have the build
trace information saved from an earlier run of
polyspace-configure
(polyspaceConfigure) with the -no-
project option.

If you use this option, you do not need to specify
the buildCommand argument.

4 Functions, Properties, Classes, and Apps

4-70

Option Argument Description
-no-sources None Option to create a Polyspace options file that

does not contain the source file specifications.

Use this option when you intend to specify the
source files by other means. For instance, you
can use this option when:

• Running Polyspace on AUTOSAR-specific
code.

You want to create an options file that traces
your build command for the compiler
options:

-output-options-file options.txt -no-sources

You later append this options file when
extracting source file names from ARXML
specifications and running the subsequent
Code Prover analysis with polyspace-
autosar

-extra-options-file options.txt

See also “Run Polyspace on AUTOSAR Code
Using Build Command” (Polyspace Code
Prover).

• Running Polyspace in Eclipse.

Your source files are already specified in
your Eclipse project. When running a
Polyspace analysis, you want to specify an
options file that has the compilation options
only.

 polyspaceConfigure

4-71

Option Argument Description
-extra-project-options Options to use for

subsequent
Polyspace analysis.
For instance, "-
stubbed-
pointers-are-
unsafe".

Options that are used for subsequent Polyspace
analysis.

Once a Polyspace project is created, you can
change some of the default options in the
project. Alternatively, you can pass these
options when tracing your build command. The
flag -extra-project-options allows you to
pass additional options.

Specify multiple options in a space separated
list, for instance "-allow-negative-
operand-in-shift -stubbed-pointers-
are-unsafe".

Suppose you have to set the option -stubbed-
pointers-are-unsafe for every Polyspace
project created. Instead of opening each project
and setting the option, you can use this flag
when creating the Polyspace project:

-extra-project-options
 "-stubbed-pointers-are-unsafe"

For the list of options available, see:

• “Analysis Options”
•
•

If you are creating an options file instead of a
Polyspace project from your build command, do
not use this flag.

-tmp-path Path Location of folder where temporary files are
stored.

4 Functions, Properties, Classes, and Apps

4-72

Option Argument Description
-build-trace Path and file name Location and name of file where build

information is stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

-include-sources

-exclude-sources

Glob pattern Option to specify which source files
polyspace-configure
(polyspaceConfigure) includes in, or
excludes from, the generated project. You can
combine both options together.

A source file is included if the file path matches
the glob pattern that you pass to -include-
sources.

A source file is excluded if the file path matches
the glob pattern that you pass to -exclude-
sources.

-print-included-sources

-print-excluded-sources

None Option to print the list of source files that
polyspace-configure
(polyspaceConfigure) includes in, or
excludes from, the generated project. You can
combine both options together. The output
displays the full path of each file on a separate
line.

Use this option to troubleshoot the glob
patterns that you pass to -include-sources
or -exclude-sources. You can see which files
match the pattern that you pass to -include-
sources or -exclude-sources.

Cache Control Options

 polyspaceConfigure

4-73

Option Argument Description
-no-cache

-cache-sources (default)

-cache-all-text

-cache-all-files

None Option to perform one of the following:

• -no-cache: Not create a cache
• -cache-sources: Cache text files

temporarily created during build for later
use by polyspace-configure
(polyspaceConfigure).

• -cache-all-text: Cache all text files
including sources and headers.

• -cache-all-files: Cache all files
including binaries.

Typically, you cache temporary files created by
your build command to debug issues in tracing
the command.

-cache-path Path Location of folder where cache information is
stored.

Example: -cache-path ../cache
-keep-cache

-no-keep-cache (default)

None Option to preserve or clean up cache
information after polyspace-configure
(polyspaceConfigure) completes execution.

If polyspace-configure
(polyspaceConfigure) fails, you can provide
this cache information to technical support for
debugging purposes.

See Also

Topics
“Modularize Polyspace Analysis by Using Build Command”
“Requirements for Project Creation from Build Systems”
“Compiler Not Supported for Project Creation from Build Systems”

4 Functions, Properties, Classes, and Apps

4-74

Introduced in R2013b

 polyspaceConfigure

4-75

polyspaceJobsManager
Manage Polyspace jobs on a MATLAB Parallel Server cluster

Syntax
polyspaceJobsManager('listjobs')
polyspaceJobsManager('cancel','-job',jobNumber)
polyspaceJobsManager('remove','-job',jobNumber)
polyspaceJobsManager('getlog','-job',jobNumber)
polyspaceJobsManager('wait','-job',jobNumber)
polyspaceJobsManager('promote','-job',jobNumber)
polyspaceJobsManager('demote','-job',jobNumber)

polyspaceJobsManager('download','-job',jobNumber)
polyspaceJobsManager('download','-job',jobNumber,'-results-folder',
resultsFolder)

polyspaceJobsManager(___ ,'-scheduler',scheduler)

Description
polyspaceJobsManager('listjobs') lists all Polyspace jobs in your cluster.

polyspaceJobsManager('cancel','-job',jobNumber) cancels the specified job.
The job appears in your queue as cancelled.

polyspaceJobsManager('remove','-job',jobNumber) removes the specified job
from your cluster.

polyspaceJobsManager('getlog','-job',jobNumber) displays the log for the
specified job.

polyspaceJobsManager('wait','-job',jobNumber) pauses until the specified job
is done.

polyspaceJobsManager('promote','-job',jobNumber) moves the specified job up
in the MATLAB job scheduler queue.

4 Functions, Properties, Classes, and Apps

4-76

polyspaceJobsManager('demote','-job',jobNumber) moves the specified job
down in the MATLAB job scheduler queue.

polyspaceJobsManager('download','-job',jobNumber) downloads the results
from the specified job. The results are downloaded to the folder you specified when
starting analysis, using the -results-dir on page 2-50 option.

polyspaceJobsManager('download','-job',jobNumber,'-results-folder',
resultsFolder) downloads the results from the specified job to resultsFolder.

polyspaceJobsManager(___ ,'-scheduler',scheduler) performs the specified
action on the job scheduler specified. If you do not specify a server with any of the
previous syntaxes, Polyspace uses the server stored in your Polyspace preferences.

Examples

Manipulate Two Jobs in the Cluster

In this example, use a MATLAB Job Scheduler scheduler to run Polyspace remotely and
monitor your jobs through the queue.

Before performing this example, set up an MATLAB Job Scheduler and Polyspace Metrics.
This example uses the myMJS@myCompany.com scheduler. When you perform this
example, replace this scheduler with your own cluster name.

Set up your source files.

tempDir = fullfile(tempdir, 'psdemo', 'src');
mkdir(tempDir);
demo = fullfile(polyspaceroot,'polyspace','examples','cxx',...
'Bug_Finder_Example','sources');
copyfile(demo,tempDir);

Submit two jobs to your scheduler.

If your jobs have not started running, promote the second job to run before the first job.

polyspaceJobsManager('promote','-job','20','-scheduler',...
 'myMJS@myCompany.com')

Job 20 starts running before job 19.

 polyspaceJobsManager

4-77

Cancel job 19.

polyspaceJobsManager('cancel','-job','19','-scheduler',...
 'myMJS@myCompany.com')
polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

Remove job 19.

polyspaceJobsManager('remove','-job','19','-scheduler',...
 'myMJS@myCompany.com')
polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

Get the log for job 20.

polyspaceJobsManager('getlog','-job','20','-scheduler',...
 'myMJS@myCompany.com')

Download the information from job 20.

resFolder3 = fullfile(tempDir, 'res3');
polyspaceJobsManager('download','-job','20','-results-folder', ...
 ,resFolder3,'-scheduler','myCluster')

Input Arguments
jobNumber — Queued job number
character vector of job number

Number of the queued job that you want to manage, specified as a character vector in
single quotes.
Example: '-job','10'

resultsFolder — Path to results folder
character vector

Path to results folder specified as a character vector in single quotes. This folder stores
the downloaded results files.
Example: '-results-folder','C:\psdemo\myresults'

scheduler — job scheduler
head node of your cluster | job scheduler name | cluster profile

4 Functions, Properties, Classes, and Apps

4-78

Job scheduler for remote verifications specified as one of the following:

• Name of the computer that hosts the head node of your MATLAB Parallel Server
cluster (NodeHost).

• Name of the MATLAB Job Scheduler on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

Example: '-scheduler','myscheduler@mycompany.com'

See Also
polyspaceBugFinder

Topics
“Discover Clusters and Use Cluster Profiles” (Parallel Computing Toolbox)
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts” (Polyspace
Code Prover)

Introduced in R2013b

 polyspaceJobsManager

4-79

polyspaceroot
Get Polyspace installation folder

Syntax
polyspaceroot

Description
polyspaceroot returns the Polyspace installation folder.

Starting in R2019a, to run MATLAB scripts for Polyspace analysis, you install MATLAB
and Polyspace in separate folders and link between them. After installation and linking, to
access files in the Polyspace installation folder from MATLAB, use this function. See also
“Integrate Polyspace with MATLAB and Simulink”.

Examples

Get Polyspace Installation Folder

To determine the Polyspace installation folder, use the polyspaceroot function.

polyspaceroot

C:\Program Files\Polyspace\R2019a

With the products, Polyspace Bug Finder Server or Polyspace Code Prover Server, the
default installation folder in Windows is:

C:\Program Files\Polyspace Server\R2019a

4 Functions, Properties, Classes, and Apps

4-80

Run Polyspace on Sample Files in Polyspace Installation Folder

To access sample files in the Polyspace installation folder, use the polyspaceroot
function to get the root of the installation folder. Append subfolders to the root folder path
with the fullfile function.

Run Bug Finder on the file numerical.c in the subfolder polyspace\examples\cxx
\Bug_Finder_Example\sources of the Polyspace installation folder.

proj = polyspace.Project

% Specify sources and includes
sourceFile = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c');
includeFolder = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');

% Configure analysis
proj.Configuration.Sources = {sourceFile};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.EnvironmentSettings.IncludeFolders = {includeFolder};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

See Also
polyspace.Project

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

Introduced in R2019a

 polyspaceroot

4-81

polyspace_report
Generate reports from Polyspace analysis results

Syntax
polyspace_report('-template', template, '-results-dir',
resultsFolder, options)
polyspace_report('-generate-results-list-file', '-results-dir',
resultsFolder, options)
polyspace_report('-generate-variable-access-file', '-results-dir',
resultsFolder, options)

Description
polyspace_report('-template', template, '-results-dir',
resultsFolder, options) generates a report using a predefined template specified
by template. By default, the report is named after the results file in the folder
resultsFolder and saved in the Polyspace-Doc subfolder. You can change the default
behavior using additional options.

polyspace_report('-generate-results-list-file', '-results-dir',
resultsFolder, options) exports the list of Polyspace results to a tab-delimited text
file.

polyspace_report('-generate-variable-access-file', '-results-dir',
resultsFolder, options) exports the list of global variables to a tab-delimited text
file.

Note

• Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

• You need MATLAB Report Generator™ to use this function.

4 Functions, Properties, Classes, and Apps

4-82

Examples

Generate PDF Report from Results

Generate a PDF report from sample Polyspace Code Prover results.

template = fullfile(polyspaceroot,'toolbox','polyspace','psrptgen','templates',...
 'Developer.rpt');
resPath = fullfile(polyspaceroot,'polyspace','examples','cxx','Code_Prover_Example',...
 'Module_1','CP_Result');
polyspace_report('-template', template, '-results-dir', resPath, '-format', 'PDF');

Input Arguments
template — Path to report template file
character vector

Path to report template file, specified as a character vector. To generate multiple reports,
specify a comma-separated list of report template paths in the character vector (do not
put a space after the commas). The templates are available in polyspaceroot\toolbox
\polyspace\psrptgen\templates\ as .rpt files. Here, polyspaceroot is the
Polyspace installation folder. For more information on the available templates, see Bug
Finder and Code Prover report (-report-template).
Example:
fullfile(polyspaceroot,'toolbox','polyspace','psrptgen','templates',
'Developer.rpt');

resultsFolder — Folder containing analysis results
character vector

Folder containing analysis results, specified as a character vector. The folder must contain
a .psbf file containing Polyspace Bug Finder results or a .pscp file containing Polyspace
Code Prover results.

To generate reports for multiple analyses, specify a comma-separated list of folder paths
(do not put a space after the commas).
Example: 'C:\Polyspace_Workspace\My_project\Module_1\results'

 polyspace_report

4-83

options — Options for generating report
character vector

Options to control report generation, for instance, output format and output name.

Specify each option as a character vector, followed by the option value as a separate
character vector. For instance, you can specify the PDF format by using the syntax
polyspace_report(..., '-format','PDF').

Option Value Description
'-format' 'PDF', 'HTML' or 'WORD' File format of the report

that you generate. By
default, the command
generates a Word document.

To generate reports in
multiple formats, specify a
comma-separated list of
formats. (Do not put a space
after the commas). For
instance,
polyspace_report(...,
'-format',
'PDF,HTML').

This option is not
compatible with -
generate-variable-
access-file and -
generate-results-
list-file.

'-set-language-
english'

 Generate the report in
English. Use this option if
your display option is set to
another language.

4 Functions, Properties, Classes, and Apps

4-84

Option Value Description
'-output-name' Report name, for instance,

PolyspaceReport.
Name of the generated
report or folder name if you
generate multiple reports.

The full path to the report is
created by appending the
name to the current working
folder. To store the reports
on a different path, specify
the full path as value for this
option.

See Also
Introduced in R2013b

 polyspace_report

4-85

polyspace.Project class
Package: polyspace

Run Polyspace analysis on C and C++ code and read results

Description
Run a Polyspace analysis on C and C++ source files by using this MATLAB object.

• To specify source files and customize analysis options, use the Configuration
property.

• To run the analysis, use the run method.
• To read results after analysis, use the Results property.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
proj = polyspace.Project creates an object that you can use to configure and run a
Polyspace analysis, and then read the analysis results.

Properties
Configuration — Analysis options
polyspace.Options object

Options for running Polyspace analysis, implemented as a polyspace.Options object.
The object has properties corresponding to the analysis options. For more information on
those properties, see polyspace.Project.Configuration properties.

You can retain the default options or change them in one of these ways:

4 Functions, Properties, Classes, and Apps

4-86

• Set the source code language to 'C', 'CPP', or 'C-CPP' (default). Some analysis options
might not be available depending on the language setting of the object.

proj=polyspace.Project;
proj.Configuration=polyspace.Options('C');

• Modify the properties directly.

proj = polyspace.Project;
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';

• Obtain the options from another polyspace.Project object.

proj1 = polyspace.Project;
proj1.Configuration.TargetCompiler.Compiler = 'gnu4.9';

proj2 = proj1;

To use common analysis options across multiple projects, follow this approach. For
instance, you want to reuse all options and change only the source files.

• Obtain the options from a project created in the user interface of the Polyspace
desktop products (.psprj file).

proj = polyspace.Project;
projectLocation = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'Bug_Finder_Example.psprj')
proj.Configuration = polyspace.loadProject(projectLocation);

To determine the optimal set of options, set your options in the user interface and then
import them to a polyspace.Project object. In the user interface, you can access
help from features such as the Compilation Assistant and get tooltip help on options.

• Obtain the options from a Simulink model (applies only to Polyspace desktop
products). Before obtaining the options, generate code from the model.

modelName = 'rtwdemo_roll';
load_system(modelName);

% Set parameters for Embedded Coder target
set_param(modelName, 'SystemTargetFile', 'ert.tlc');
set_param(modelName,'Solver','FixedStepDiscrete');
set_param(modelName,'SupportContinuousTime','on');
set_param(modelName,'LaunchReport','off');
set_param(modelName,'InitFltsAndDblsToZero','on');

if exist(fullfile(pwd,'rtwdemo_roll_ert_rtw'), 'dir') == 0

 polyspace.Project class

4-87

 rtwbuild(modelName);
end

% Obtain configuration from model
proj = polyspace.Project;
proj.Configuration = polyspace.ModelLinkOptions(modelName);

Use the options to analyze the code generated from the model.

Results — Analysis results
polyspace.BugFinderResults or polyspace.CodeProverResults object

Results of Polyspace analysis. When you create a polyspace.Project object, this
property is initially empty. The property is populated only after you execute the run
method of the object. Depending on the argument to the run method, 'bugFinder' or
'codeProver', the property is implemented as a polyspace.BugFinderResults or
polyspace.CodeProverResults object.

To read the results, use these methods of the polyspace.BugFinderResults or
polyspace.CodeProverResults object:

• getSummary: Obtain a summarized format of the results into a MATLAB table.

proj = polyspace.Project;
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

proj.run('bugFinder');

resTable = proj.Results.getSummary('defects');

For more information, see polyspace.BugFinderResults.getSummary or
polyspace.CodeProverResults.getSummary.

• getResults: Obtain the full results or a more readable format into a MATLAB table.

proj = polyspace.Project;
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

proj.run('bugFinder');

resTable = proj.Results.getResults('readable');

4 Functions, Properties, Classes, and Apps

4-88

For more information, see polyspace.BugFinderResults.getResults or
polyspace.CodeProverResults.getResults.

Methods
run Run a Polyspace analysis

Examples
Check for Bugs

Run a Polyspace Bug Finder analysis on the example file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getSummary('defects');

Prove Absence of Run-Time Errors

Run a Polyspace Code Prover analysis on the example file single_file_analysis.c.
Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

 polyspace.Project class

4-89

• Specify that a main function must be generated, if the function does not exist in the
source code.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

% Run analysis
cpStatus = proj.run('codeProver');

% Read results
cpSummary = proj.Results.getSummary('runtime');

Check for Bugs and MISRA C:2012 Violations

Run a Polyspace Bug Finder analysis on the example file single_file_analysis.c.
Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Enable checking of MISRA C:2012 rules. Check for the mandatory rules only.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = 'mandatory';

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results

4 Functions, Properties, Classes, and Apps

4-90

defectsSummary = proj.Results.getSummary('defects');
misraSummary = proj.Results.getSummary('misraC2012');

See Also

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”
“Generate MATLAB Scripts from Polyspace User Interface”
“Troubleshoot Polyspace Analysis from MATLAB”

Introduced in R2017b

 polyspace.Project class

4-91

polyspace.Options class
Package: polyspace

Create object for running Polyspace analysis on handwritten code

Note For easier scripting, specify the Polyspace® analysis options using the
Configuration property of a polyspace.Project object. Do not create a
polyspace.Options object directly.

Description
Run a Polyspace analysis from MATLAB by using an options object. To specify source files
and customize analysis options, change the object properties.

To analyze model-generated code (using the Polyspace desktop products), use
polyspace.ModelLinkOptions instead.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
opts = polyspace.Options creates an object whose properties correspond to options
for running a Polyspace analysis.

proj = polyspace.Project creates a polyspace.Project object. The object has a
property Configuration, which is a polyspace.Options object.

opts = polyspace.Options(lang) creates a Polyspace options object with options
that are applicable to the language lang.

opts = polyspace.loadProject(projectFile) creates a Polyspace options object
from an existing Polyspace project projectFile. You set the options in your project in
the Polyspace user interface and create the options object from that project for
programmatically running the analysis.

4 Functions, Properties, Classes, and Apps

4-92

Input Arguments
lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument
determines the object properties.
Data Types: char

projectFile — Name of .psprj file
character vector

Name of Polyspace project file with extension .psprj, specified as a character vector.

If the file is not in the current folder, projectFile must include a full or relative path. To
identify the current folder, use pwd. To change the current folder, use cd.
Example: 'C:\projects\myProject.psprj'

Properties
The object properties correspond to the analysis options for Polyspace projects. The
properties are organized in the same categories as the Polyspace interface. The property
names are a shortened version of the DOS/UNIX command-line name. For syntax details,
see polyspace.Project.Configuration properties.

Methods

copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

 polyspace.Options class

4-93

Customize and Run Analysis

Create a Polyspace analysis options object and customize the properties. Then, run an
analysis.

Create object and customize properties. In case you do not have write access to your
current folder, a temporary folder is being used for storing analysis results.

sources = fullfile(polyspaceroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';
opts.ResultsDir = tempname;

Run a Bug Finder analysis. To run a Code Prover analysis, use polyspaceCodeProver
instead of polyspaceBugFinder.

results = polyspaceBugFinder(opts);

With the Polyspace Server products, you can use the functions
polyspaceBugFinderServer or polyspaceCodeProverServer.

Open the results in the Polyspace user interface of the desktop products.

polyspaceBugFinder('-results-dir',opts.ResultsDir);

Run Polyspace by Generating a Project File

Create a Polyspace analysis options object and customize the properties. Then, run a Bug
Finder analysis.

Create object and customize properties.

sources=fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';
opts.ResultsDir = tempname;

4 Functions, Properties, Classes, and Apps

4-94

Generate a Polyspace project, name it using the Prog property, and open the project in
the Polyspace interface.

psprj = opts.generateProject(opts.Prog);
polyspaceBugFinder(psprj);

You can also analyze the project from the command line. Run the analysis and open the
results in the Polyspace interface.

results = polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder('-results-dir',opts.ResultsDir);

Alternatives
If you are analyzing code generated from a model, use polyspace.ModelLinkOptions
instead.

See Also
polyspace.ModelLinkOptions | polyspace.Project | polyspaceBugFinder

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”
“Generate MATLAB Scripts from Polyspace User Interface”

Introduced in R2017a

 polyspace.Options class

4-95

polyspace.ModelLinkOptions class
Package: polyspace

Create object for running Polyspace analysis on generated code

Description
Run a Polyspace analysis from MATLAB by using an options object. To specify source files
and customize analysis options, change the object properties.

This class is intended for model-generated code. If you are analyzing handwritten code,
use polyspace.Options instead.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
opts = polyspace.ModelLinkOptions creates an object whose properties
correspond to options for running a Polyspace analysis on generated code.

opts = polyspace.ModelLinkOptions(lang) creates a Polyspace options object
with options that are applicable to the language lang.

opts = polyspace.ModelLinkOptions(model) creates a Polyspace options object
with options that are applicable to model. Prior to extracting options from the model, you
must load the model and generate code.

Input Arguments
lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument
determines the object properties.

4 Functions, Properties, Classes, and Apps

4-96

model — Model or subsystem name
character vector

Name or path to model or subsystem, specified as a character vector.

Prior to extracting options from the model, you must:

1 Load the model. Use load_system or open_system.
2 Generate code from the model. Use rtwbuild.

Example: 'psdemo_model_link_sl'

Properties
The object properties correspond to the analysis options for Polyspace projects. The
properties are organized in the same categories as the Polyspace interface. The property
names are a shortened version of the DOS command-line name. For syntax details, see
polyspace.ModelLinkOptions.

Methods
copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Script Analysis of Model Generated Code

This example shows how to customize and run an analysis on code generated from a
model.

Generate code from the model sldemo_bounce. Before code generation, set a system
target file appropriate for code analysis. See also “Recommended Model Configuration
Parameters for Polyspace Analysis”.

 polyspace.ModelLinkOptions class

4-97

modelName = 'rtwdemo_roll';
load_system(modelName);

% Set parameters for Embedded Coder target
set_param(modelName, 'SystemTargetFile', 'ert.tlc');
set_param(modelName,'Solver','FixedStepDiscrete');
set_param(modelName,'SupportContinuousTime','on');
set_param(modelName,'LaunchReport','off');
set_param(modelName,'InitFltsAndDblsToZero','on');

if exist(fullfile(pwd,'rtwdemo_roll_ert_rtw'), 'dir') == 0
 rtwbuild(modelName);
end

Associate a polyspace.ModelLinkOptions object with the model. A subset of the
object properties are set from the configuration parameters associated with the model.
The other properties take their default values. For details on the configuration
parameters, see “Polyspace Analysis in Simulink”.

opts = polyspace.ModelLinkOptions(modelName);

Change the property values if needed. For instance, you can specify that the analysis
must check for all MISRA C: 2012 violations and generate a PDF report of the results. You
can also specify a folder for the analysis results.

opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';

opts.MergedReporting.EnableReportGeneration = true;
opts.MergedReporting.ReportOutputFormat = 'PDF';

opts.ResultsDir = 'newResfolder';

Create a polyspace.Project object. Associate the Configuration property of this
object to the options that you previously specified.

proj = polyspace.Project;
proj.Configuration = opts;

Run analysis and open results.

4 Functions, Properties, Classes, and Apps

4-98

cpStatus = proj.run('codeProver');
proj.Results.getResults('readable');

Alternatives
If you are analyzing handwritten code, use a polyspace.Projectpolyspace.Project
object directly. Alternatively, use a polyspace.Options object.

See Also
polyspace.Options | polyspace.Project | polyspaceBugFinder | pslinkrun

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

Introduced in R2017a

 polyspace.ModelLinkOptions class

4-99

polyspace.BugFinderOptions class
Package: polyspace

Create Polyspace Bug Finder object for handwritten code

Note This class is deprecated and will be removed in a future release. Use
polyspace.Options instead.

Description
Customize a Polyspace Bug Finder analysis from MATLAB by creating a Bug Finder
options object. To specify source files and customize analysis options, change the object
properties.

If you are analyzing model-generated code, use
polyspace.ModelLinkBugFinderOptions instead.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
opts = polyspace.BugFinderOptions creates a Bug Finder options object with
available options.

opts = polyspace.BugFinderOptions(lang) creates a Bug Finder options object
with options that are applicable for the language lang.

Input Arguments
lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

4 Functions, Properties, Classes, and Apps

4-100

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument
determines which properties the object has.

Properties
The object properties are the analysis options for Polyspace Bug Finder projects. The
properties are organized in the same categories as the Polyspace interface. The property
names are a shortened version of the DOS/UNIX command-line name. For syntax details,
see polyspace.Options.

Methods

copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Customize and Run Analysis

Create a Bug Finder analysis options object and customize the properties. Then, run an
analysis.

Create object and customize properties.

sources = fullfile(polyspaceroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
optsBF = polyspace.BugFinderOptions();
optsBF.Prog = 'MyProject';
optsBF.Sources = {sources};
optsBF.TargetCompiler.Compiler = 'gnu4.7';
optsBF.ResultsDir = tempname;

Run the analysis and open the results in the Polyspace interface.

 polyspace.BugFinderOptions class

4-101

results = polyspaceBugFinder(optsBF);
polyspaceBugFinder('-results-dir',optsBF.ResultsDir);

Run Polyspace by Generating a Project File

Create a Bug Finder analysis options object and customize the properties. Then, run an
analysis.

Create object and customize properties.

sources = fullfile(polyspaceroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
optsBF = polyspace.BugFinderOptions();
optsBF.Prog = 'MyProject';
optsBF.Sources = {sources};
optsBF.TargetCompiler.Compiler = 'gnu4.7';
optsBF.ResultsDir = tempname;

Generate a Polyspace project, name it using the Prog property, and open the project in
the Polyspace interface.

psprj = generateProject(optsBF, optsBF.Prog);
polyspaceBugFinder(psprj);

Run the analysis and open the results in the Polyspace interface.

results = polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder('-results-dir',optsBF.ResultsDir);

Alternatives
If you are analyzing code generated from a model, use
polyspace.ModelLinkBugFinderOptions instead.

See Also
polyspace.ModelLinkBugFinderOptions | polyspace.Options |
polyspaceBugFinder

4 Functions, Properties, Classes, and Apps

4-102

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

Introduced in R2016b

 polyspace.BugFinderOptions class

4-103

polyspace.DefectsOptions class
Package: polyspace

Create custom list of defects to check

Description
Create a custom list of defects to check in a Polyspace analysis.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
defectsList = polyspace.DefectsOptions creates the defect options object
defectsList. You can customize the list of active defects by changing the properties.

Properties
An object is created with supported defects as properties. The defects are listed by their
command-line name. See “Short Names of Bug Finder Defect Checkers”.

By default, all defects are turned off. To turn on a defect, set the defect to true. For
example:

defectsList = polyspace.DefectsOptions;
defectsList.FLOAT_ZERO_DIV = true;

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

4 Functions, Properties, Classes, and Apps

4-104

Examples

Customize List of Defects to Check

Customize the list of defects checked during a Polyspace Bug Finder analysis.

Create two objects: a polyspace.DefectsOptions object for setting coding rules and a
polyspace.Project object for running the Polyspace analysis.

defectsList = polyspace.DefectsOptions;
proj = polyspace.Project;

Enable the numerical defects.

defectsList.FLOAT_ZERO_DIV = true;
defectsList.INT_ZERO_DIV = true;
defectsList.FLOAT_ABSORPTION = true;
defectsList.BITWISE_NEG = true;
defectsList.FLOAT_CONV_OVFL = true;
defectsList.FLOAT_OVFL = true;
defectsList.INT_CONV_OVFL = true;
defectsList.INT_OVFL = true;
defectsList.FLOAT_STD_LIB = true;
defectsList.INT_STD_LIB = true;
defectsList.SHIFT_NEG = true;
defectsList.SHIFT_OVFL = true;
defectsList.SIGN_CHANGE = true;
defectsList.UINT_CONV_OVFL = true;
defectsList.UINT_OVFL = true;
defectsList.BAD_PLAIN_CHAR_USE = true;

Add the customized list of defects to the Configuration property of the
polyspace.Project object.

proj.Configuration.BugFinderAnalysis.CheckersList = defectsList;
proj.Configuration.BugFinderAnalysis.CheckersPreset = 'custom';

 polyspace.DefectsOptions class

4-105

You can now use the polyspace.Project object to run the analysis.

See Also
polyspace.CodingRulesOptions | polyspace.ModelLinkOptions |
polyspace.Options | polyspace.Project

Topics
“Short Names of Bug Finder Defect Checkers”

Introduced in R2016b

4 Functions, Properties, Classes, and Apps

4-106

polyspace.ModelLinkBugFinderOptions class
Package: polyspace

Create Polyspace Bug Finder object for generated code

Note This class is deprecated and will be removed in a future release. Use
polyspace.ModelLinkOptions instead.

Description
Customize a Polyspace Bug Finder analysis from MATLAB by creating a Bug Finder
options object. To specify source files and customize analysis options, change the object
properties.

This class is intended for model-generated code. If you are analyzing handwritten code,
use polyspace.BugFinderOptions instead.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
opts = polyspace.BugFinderOptions creates a Bug Finder options object for
generated code with available options for C/C++ generated code.

Properties
The object properties are the analysis options for Polyspace Bug Finder model link
projects. The properties are organized in the same categories as the Polyspace interface.
The property names are a shortened version of the DOS command-line name. For syntax
details, see polyspace.ModelLinkOptions.

 polyspace.ModelLinkBugFinderOptions class

4-107

Methods

copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Script Analysis of Model Generated Code

This example shows how to customize and run an analysis on model generated code with
MATLAB functions and objects.

Create a custom configuration that checks MISRA C 2012 rules and generates a PDF
report.

opts = polyspace.ModelLinkBugFinderOptions();
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
opts.MergedReporting.ReportOutputFormat = 'PDF';
opts.MergedReporting.EnableReportGeneration = true;

Generate code from psdemo_model_link_sl.

model = 'psdemo_model_link_sl';
load_system(model);
slbuild(model);

Add the configuration to pslinkoptions object.

prjfile = opts.generateProject('model_link_opts');
mlopts = pslinkoptions(model);
mlopts.EnablePrjConfigFile = true;
mlopts.PrjConfigFile = prjfile;
mlopts.VerificationMode = 'BugFinder';

Run analysis.

4 Functions, Properties, Classes, and Apps

4-108

[polyspaceFolder, resultsFolder] = pslinkrun(model);

Alternatives
If you are analyzing handwritten code, use polyspace.BugFinderOptions instead.

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkOptions |
polyspaceBugFinder | pslinkrun

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

 polyspace.ModelLinkBugFinderOptions class

4-109

polyspace.GenericTargetOptions class
Package: polyspace

Create a generic target configuration

Description
Create a custom target for a Polyspace analysis if your target processor does not match
one of the predefined targets,.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
genericTarget = polyspace.GenericTargetOptions creates a generic target that
you can customize. To specify the sizes and alignment of data types, change the
properties of the object. For instance:

target = polyspace.GenericTargetOptions;
target.CharNumBits = 16;

Properties
For more details about any of the properties below, see Generic target options.

Alignment — Largest alignment of struct or array objects
32 (default) | 16 | 8

Largest alignment of struct or array objects, specified as 32, 16, or 8. Comparable with
the DOS/UNIX command-line option -align.
Example: target.Alignment = 8

4 Functions, Properties, Classes, and Apps

4-110

CharNumBits — Define the number of bits for a char
8 (default) | 16

Define the number of bits for a char, specified as 8 or 16. Comparable with the DOS/
UNIX command-line option -char-is-16bits.
Example: target.CharNumBits = 16

DoubleNumBits — Define the number of bits for a double
32 (default) | 64

Define the number of bits for a double, specified as 32 or 64. Comparable with the DOS/
UNIX command-line option -double-is-64bits.
Example: target.DoubleNumBits = 64

Endianness — Endianness of target architecture
little (default) | big

Endianness of target architecture, specified as little or big. Comparable with the
DOS/UNIX command-line options -little-endian or -big-endian.
Example: target.Endianess = 'big'

IntNumBits — Define the number of bits for an int
16 (default) | 32

Define the number of bits for an int, specified as 16 or 32. Comparable with the DOS/
UNIX command-line option -int-is-32bits.
Example: target.IntNumBits = 32

LongLongNumBits — Define the number of bits for a long long
32 (default) | 64

Define the number of bits for a long long, specified as 32 or 64. Comparable with the
DOS/UNIX command-line option -long-long-is-64bits.
Example: target.LongNumBits = 64

LongNumBits — Define the number of bits for a long
32 (default)

Define the number of bits for a long, specified as 32. Comparable with the DOS/UNIX
command-line option -long-is-32bits.

 polyspace.GenericTargetOptions class

4-111

Example: target.LongNumBits = 32

PointerNumBits — Define the number of bits for a pointer
16 (default) | 24 | 32

Define the number of bits for a pointer, specified as 16, 24, or 32. Comparable with the
DOS/UNIX command-line options -pointer-is-24bits and -pointer-is-32bits.
Example: target.PointerNumBits = 32

ShortNumBits — Define the number of bits for a short
16 (default) | 8

Define the number of bits for an int, specified as 16 or 8. Comparable with the DOS/
UNIX command-line option -short-is-8bits.
Example: target.ShortNumBits = 8

SignOfChar — Default sign of plain char
signed (default) | unsigned

Default sign of plain char, specified as signed or unsigned. Comparable with the DOS/
UNIX command-line option -default-sign-of-char.
Example: target.SignOfChar = 'unsigned'

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples
Customize Generic Target Settings
Use a custom target for the Polyspace analysis.

Create two objects: a polyspace.GenericTargetOptions object for creating a custom
target and a polyspace.Project object for running the Polyspace analysis.

target = polyspace.GenericTargetOptions;
proj = polyspace.Project;

4 Functions, Properties, Classes, and Apps

4-112

Customize the generic target.

target.Endianess = 'big';
target.LongLongNumBits = 64;
target.ShortNumBits = 8;

Add the custom target to the Configuration property of the polyspace.Project
object.

opts.TargetCompiler.Target = target;

You can now use the polyspace.Project object to run the analysis.

Generic target options | polyspace.CodingRulesOptions |
polyspace.ModelLinkOptions | polyspace.Options | polyspace.Project

Introduced in R2016b

 polyspace.GenericTargetOptions class

4-113

polyspace.CodingRulesOptions class
Package: polyspace

Create custom list of coding rules to check

Description
Create a custom list of coding rules to check in a Polyspace analysis.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
ruleList = polyspace.CodingRulesOptions(RuleSet) creates the coding rules
object ruleList for the RuleSet coding rule set. Set the active rules in the coding rules
object.

Input Arguments
RuleSet — Standard coding rule set
misraC (default) | misraC2012 | misraAcAgc | misraCpp | jsf | certC | certCpp |
iso17961 | autosarCpp14

Standard coding rule set specified as one of the coding rule acronyms.
Example: 'misraCpp'
Data Types: char

Properties
For each coding rule set, an object is created with all supported rules divided into
sections. By default, all rules are on. To turn off a rule, set the rule to false. For example:

4 Functions, Properties, Classes, and Apps

4-114

misraRules = polyspace.CodingRulesOptions('misraC');
misraRules.Section_20_Standard_libraries.rule_20_1 = false;

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Customize List of Coding Rules to Check

Customize the coding rules that are checked in a Polyspace analysis.

Create two objects: a polyspace.CodingRulesOptions object for setting coding rules
and a polyspace.Project object for running the Polyspace analysis.

misraRules = polyspace.CodingRulesOptions('misraC2012');
proj = polyspace.Project;

Customize the coding rule list by turning off rules 2.1-2.7.

misraRules.Section_2_Unused_code.rule_2_1 = false;
misraRules.Section_2_Unused_code.rule_2_2 = false;
misraRules.Section_2_Unused_code.rule_2_3 = false;
misraRules.Section_2_Unused_code.rule_2_4 = false;
misraRules.Section_2_Unused_code.rule_2_5 = false;
misraRules.Section_2_Unused_code.rule_2_6 = false;
misraRules.Section_2_Unused_code.rule_2_7 = false;

Add the customized list of coding rules to the Configuration property of the
polyspace.Project object.

proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = misraRules;
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.EnableCheckersSelectionByFile = true;

You have to enable checkers selection by file because the Polyspace run uses an XML file
underneath to enable the coding rule checkers. The XML file is saved in a .settings
subfolder of the results folder.

 polyspace.CodingRulesOptions class

4-115

You can now use the polyspace.Project object to run the analysis. For instance, you
can enter:

proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.run('bugfinder');

See Also
polyspace.ModelLinkOptions | polyspace.Options | polyspace.Project

Introduced in R2016b

4 Functions, Properties, Classes, and Apps

4-116

polyspace.BugFinderResults class
Package: polyspace

Read Polyspace Bug Finder results from MATLAB

Description
Read Polyspace Bug Finder analysis results to MATLAB tables by using this object.

You can obtain a high-level overview or read each individual result, for example, each
instance of a defect.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and
MATLAB installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
resObj = polyspace.BugFinderResults(resultsFolder) creates an object for
reading a specific set of Bug Finder results into MATLAB tables. Use the object methods
to read the results.

proj = polyspace.Project creates a polyspace.Project object. The object has a
property Results. If you run a Bug Finder analysis, this property is a
polyspace.BugFinderResults object.

Input Arguments
resultsFolder — Name of result folder
character vector

Name of result folder, specified as a character vector. The folder must contain the results
file with extension .psbf. Even if the results file resides in a subfolder of the specified
folder, it cannot be accessed.

 polyspace.BugFinderResults class

4-117

If the folder is not in the current folder, resultsFolder must include a full or relative
path.
Example: 'C:\Polyspace\Results\'

Methods
getSummary View number of defects organized by defect type
getResults Read Bug Finder results into MATLAB table

Examples

Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath=fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example',...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary (resObj);
resTable = getResults (resObj);

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.

4 Functions, Properties, Classes, and Apps

4-118

• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace',...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getResults('readable');

Alternatives
To read Code Prover results from MATLAB, use the class
polyspace.CodeProverResults. See polyspace.CodeProverResults.

Introduced in R2017a

 polyspace.BugFinderResults class

4-119

pslinkoptions Properties
Properties for the pslinkoptions object

Description
You can create a pslinkoptions object to customize your analysis at the command-line.
Use these properties to specify configuration options, where and how to store results,
additional files to include, and data range modes.

Properties
Configuration Options

VerificationSettings — Coding rule and configuration settings for C code
'PrjConfig' (default) | 'PrjConfigAndMisraAGC' | 'PrjConfigAndMisra' |
'PrjConfigAndMisraC2012' | 'MisraAGC' | 'Misra' | 'MisraC2012'

Coding rule and configuration settings for C code specified as:

• 'PrjConfig' – Inherit options from the project configuration.
• 'PrjConfigAndMisraAGC' – Inherit options from the project configuration and

enable MISRA AC AGC rule checking.
• 'PrjConfigAndMisra' – Inherit options from the project configuration and enable

MISRA C:2004 rule checking.
• 'PrjConfigAndMisraC2012' – Inherit options from the project configuration and

enable MISRA C:2012 guideline checking.
• 'MisraAGC' – Enable MISRA AC AGC rule checking. This option runs only

compilation and rule checking.
• 'Misra' – Enable MISRA C:2004 rule checking. This option runs only compilation and

rule checking.
• 'MisraC2012' – Enable MISRA C:2012 rule checking. This option runs only

compilation and guideline checking.

Example: opt.VerificationSettings = 'PrjConfigAndMisraC2012'

4 Functions, Properties, Classes, and Apps

4-120

VerificationMode — Polyspace mode
'BugFinder' (default) | 'CodeProver'

Polyspace mode specified as 'BugFinder', for a Bug Finder analysis, or 'CodeProver',
for a Code Prover verification.
Example: opt.VerificationMode = 'BugFinder';

EnablePrjConfigFile — Allow a custom configuration file
false (default) | true

Allows a custom configuration file instead of the default configuration specified as true or
false. Use the PrjConfigFile option to specify the configuration file.
Example: opt.EnablePrjConfigFile = true;

PrjConfigFile — Custom configuration file
'' (default) | full path to a .psprj file

Custom configuration file to use instead of the default configuration specified by the full
path to a .psprj file. Use the EnablePrjConfigFile option to use this configuration
file during your analysis.
Example: opt.PrjConfigFile = 'C:\Polyspace\config.psprj';

CheckConfigBeforeAnalysis — Configuration check before analysis
'OnWarn' (default) | 'OnHalt' | 'Off'

This property sets the level of configuration checking done before the analysis starts. The
configuration check before analysis is specified as:

• 'Off' — Checks only for errors. Stops if errors are found.
• 'OnWarn' — Stops for errors. Displays a message for warnings.
• 'OnHalt' — Stops for errors and warnings.

Example: opt.CheckConfigBeforeAnalysis = 'OnHalt';

Results

ResultDir — Results folder name and location
'C:\Polyspace_Results\results_$ModelName$' (default) | folder name | folder
path

 pslinkoptions Properties

4-121

Results folder name and location specified as the local folder name or the folder path.
This folder is where Polyspace writes the analysis results. This folder name can be either
an absolute path or a path relative to the current folder. The text $ModelName$ is
replaced with the name of the original model.
Example: opt.ResultDir = '\results_v1_$ModelName$';

AddSuffixToResultDir — Add unique number to the results folder name
false (default) | true

Add unique number to the results folder name specified as true or false. If true, a unique
number is added to the end of every new result. Using this option helps you avoid
overwriting the previous results folders.
Example: opt.AddSuffixToResultDir = true;

OpenProjectManager — Open the Polyspace environment
false (default) | true

Open the Polyspace environment to monitor the progress of the analysis, specified as true
or false. Afterward, you can review the results.
Example: opt.OpenProjectManager = true;

AddToSimulinkProject — Add results to the open Simulink project
false (default) | true

Add your results to the currently open Simulink project, if any, specified as true or false.
This option allows you to keep your Polyspace results organized with the rest of your
project files. If a Simulink project is not open, the results are not added to a Simulink
project.
Example: opt.AddToSimulinkProject = true;

Additional Files

EnableAdditionalFileList — Allow an additional file list
false (default) | true

Allow an additional file list to be analyzed, specified as true or false. Use with the
AdditionalFileList option.
Example: opt.EnableAdditionalFileList = true;

4 Functions, Properties, Classes, and Apps

4-122

AdditionalFileList — List of additional files to be analyzed
{0x1 cell} (default) | cell array of files

List of additional files to be analyzed specified as a cell array of files. Use with the
EnableAdditionalFileList option to add these files to the analysis.
Example: opt.AdditionalFileList = {'sources\file1.c', 'sources
\file2.c'};

Data Types: cell

Data Ranges

InputRangeMode — Enable design range information
'DesignMinMax' (default) | 'FullRange'

Enable design range information specified as 'DesignMinMax', to use data ranges
defined in blocks and workspaces, or 'FullRange', to treat inputs as full-range values.
Example: opt.InputRangeMode = 'FullRange';

ParamRangeMode — Enable constant parameter values
'None' (default) | 'DesignMinMax'

Enable constant parameter values, specified as 'None', to use constant parameters
values specified in the code, or 'DesignMinMax' to use a range defined in blocks and
workspaces.
Example: opt.ParamRangeMode = 'DesignMinMax';

OutputRangeMode — Enable output assertions
'None' (default) | 'DesignMinMax'

Enable output assertions specified by 'None', to not apply assertions, or
'DesignMinMax' to apply assertions to outputs using a range defined in blocks and
workspace.
Example: opt.ParamRangeMode = 'DesignMinMax';

Embedded Coder Only

ModelRefVerifDepth — Depth of verification
'Current model only' (default) | '1' | '2' | '3' | 'All'

Depth of verification specified by the model reference level to which you want to analyze.

 pslinkoptions Properties

4-123

Only for Embedded Coder
Example: opt.ModelRefVerifDepth = '3';

ModelRefByModelRefVerif — Model reference analysis mode
false (default) | true

Model reference analysis mode specified as false to verify reference models within the
model hierarchy, or true to verify referenced models individually.

Only for Embedded Coder
Example: opt.ModelRefByModelRefVerif = true;

CxxVerificationSettings — Coding rule and configuration settings for C++
code
'PrjConfig' (default) | 'PrjConfigAndMisraCxx' | 'PrjConfigAndJSF' |
'MisraCxx' | 'JSF'

Coding rule and configuration settings for C++ code specified as:

• 'PrjConfig' – Inherit options from project configuration and run complete analysis.
• 'PrjConfigAndMisraCxx' – Inherit options from project configuration, enable

MISRA C++ rule checking, and run complete analysis.
• 'PrjConfigAndJSF' – Inherit options from project configuration, enable JSF rule

checking, and run complete analysis.
• 'MisraCxx' – Enable MISRA C++ rule checking, and run compilation phase only.
• 'JSF' – Enable JSF rule checking, and run compilation phase only.

Only for Embedded Coder
Example: opt.CxxVerificationSettings = 'MisraCxx';

TargetLink Only

AutoStubLUT — Lookup Table code usage
false (default) | true

Lookup Table code usage, specified as true or false.

• true — use Lookup Table code during the analysis.
• false — stub Lookup Table code.

4 Functions, Properties, Classes, and Apps

4-124

Only for TargetLink
Example: opts.AutoStubLUT = true;

See Also
pslinkoptions | pslinkrun

 pslinkoptions Properties

4-125

polyspace.Project.Configuration Properties
Customize Polyspace analysis of handwritten code with options object properties

Description
To customize your Polyspace analysis, use these polyspace.Options or
polyspace.Project.Configuration properties. Each property corresponds to an
analysis option on the Configuration pane in the Polyspace user interface.

The properties are grouped using the same categories as the Configuration pane. This
page only shows what values each property can take. For details about:

• The different options, see the analysis option reference pages.
• How to create and use the object, see polyspace.Options or polyspace.Project.

The same properties are also available with the deprecated classes
polyspace.BugFinderOptions and polyspace.CodeProverOptions.

Each property description below also highlights if the option affects only one of Bug
Finder or Code Prover.

Note Some options might not be available depending on the language setting of the
object. You can set the source code language (Language) to 'C', 'CPP' or 'C-CPP'
during object creation, but cannot change it later.

Properties
Advanced

Additional — Additional flags for analysis
character vector

Additional flags for analysis specified as a character vector.

For more information, see Other.

4 Functions, Properties, Classes, and Apps

4-126

Example: opts.Advanced.Additional = '-extra-flags -option -extra-flags
value'

PostAnalysisCommand — Command or script software should execute after
analysis finishes
character vector

Command or script software should execute after analysis finishes, specified as a
character vector.

For more information, see Command/script to apply after the end of the
code verification (-post-analysis-command).
Example: opts.Advanced.PostAnalysisCommand = '"C:\Program Files\perl
\win32\bin\perl.exe" "C:\My_Scripts\send_email"'

AutomaticOrangeTester — Run the Automatic Orange Tester
false (default) | true

This property affects Code Prover analysis only.

Run the Automatic Orange Tester after verification, specified as true or false.

For more information, see Automatic Orange Tester (-automatic-orange-
tester).
Example: opts.Advanced.AutomaticOrangeTester = true

AutomaticOrangeTesterLoopMaxIteration — Number of loop iterations after
which Automatic Orange Tester considers infinite loop
1000 (default) | positive integer

This property affects Code Prover analysis only.

Number of loop iterations after which Automatic Orange Tester considers the test an
infinite loop, specified as a positive integer, maximum of 1000.

For more information, see Maximum loop iterations (-automatic-orange-
tester-loop-max-iteration).
Example: opts.Advanced.AutomaticOrangeTesterLoopMaxIteration = 500

 polyspace.Project.Configuration Properties

4-127

AutomaticOrangeTesterTestsNumber — Number of tests that Automatic Orange
Tester must run
500 (default) | positive integer

This property affects Code Prover analysis only.

Number of tests that Automatic Orange Tester must run, specified as a positive integer,
maximum of 100,000.

For more information, see Number of automatic tests (-automatic-orange-
tester-tests-number).
Example: opts.Advanced.AutomaticOrangeTesterTestsNumber = 1000

AutomaticOrangeTesterTimeout — Time in seconds allowed for a single test in
Automatic Orange Tester
5 (default) | positive integer

This property affects Code Prover analysis only.

Time in seconds allowed for a single test in Automatic Orange Tester, specified as a
positive integer, maximum of 60.

For more information, see Maximum test time (-automatic-orange-tester-
timeout).
Example: opts.Advanced.AutomaticOrangeTesterTimeout = 10

BugFinderAnalysis (Affects Bug Finder Only)

CheckersList — List of custom checkers to activate
polyspace.DefectsOptions object | cell array of defect acronyms

This property affects Bug Finder analysis only.

List of custom checkers to activate specified by using the name of a
polyspace.DefectsOptions object or a cell array of defect acronyms. To use this
custom list in your analysis, set CheckersPreset to custom.

For more information, see polyspace.DefectsOptions.
Example: defects = polyspace.DefectsOptions;
opts.BugFinderAnalysis.CheckersList = defects

4 Functions, Properties, Classes, and Apps

4-128

Example: opts.BugFinderAnalysis.CheckersList =
{'INT_ZERO_DIV','FLOAT_ZERO_DIV'}

CheckersPreset — Subset of Bug Finder defects
default (default) | all | CWE | custom

This property affects Bug Finder analysis only.

Preset checker list, specified as a character vector of one of the preset options: default,
all, CWE,or custom. To use custom, specify a BugFinderAnalysis.CheckersList.

For more information, see Find defects (-checkers).
Example: opts.BugFinderAnalysis.CheckersPreset = 'all'

EnableCheckers — Activate defect checking
true (default) | false

This property affects Bug Finder analysis only.

Activate defect checking, specified as true or false. Setting this property to false disables
all defects. If you want to disable defect checking but still get results, turn on coding
rules checking or code metric checking.

This property is equivalent to the Find defects check box in the Polyspace interface.
Example: opts.BugFinderAnalysis.EnableCheckers = false

ChecksAssumption (Affects Code Prover Only)

AllowNegativeOperandInShift — Allow left shift operations on a negative
number
false (default) | true

This property affects Code Prover analysis only.

Allow left shift operations on a negative number, specified as true or false.

For more information, see Allow negative operand for left shifts (-allow-
negative-operand-in-shift).
Example: opts.ChecksAssumption.AllowNegativeOperandInShift = true

AllowNonFiniteFloats — Incorporate infinities and/or NaNs
false (default) | true

 polyspace.Project.Configuration Properties

4-129

This property affects Code Prover analysis only.

Incorporate infinities and/or NaNs, specified as true or false.

For more information, see Consider non finite floats (-allow-non-finite-
floats).
Example: opts.ChecksAssumption.AllowNonFiniteFloats = true

AllowPtrArithOnStruct — Allow arithmetic on pointer to a structure field so
that it points to another field
false (default) | true

This property affects Code Prover analysis only.

Allow arithmetic on pointer to a structure field so that it points to another field, specified
as true or false.

For more information, see Enable pointer arithmetic across fields (-allow-
ptr-arith-on-struct).
Example: opts.ChecksAssumption.AllowPtrArithOnStruct = true

CheckInfinite — Detect floating-point operations that result in infinities
allow (default) | warn-first | forbid

This property affects Code Prover analysis only.

Detect floating-point operations that result in infinities.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see Infinities (-check-infinite).
Example: opts.ChecksAssumption.CheckInfinite = 'forbid'

CheckNan — Detect floating-point operations that result in NaN-s
allow (default) | warn-first | forbid

This property affects Code Prover analysis only.

Detect floating-point operations that result in NaN-s.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

4 Functions, Properties, Classes, and Apps

4-130

For more information, see NaNs (-check-nan).
Example: opts.ChecksAssumption.CheckNan = 'forbid'

CheckSubnormal — Detect operations that result in subnormal floating point
values
allow (default) | warn-first | warn-all | forbid

This property affects Code Prover analysis only.

Detect operations that result in subnormal floating point values.

For more information, see Subnormal detection mode (-check-subnormal).
Example: opts.ChecksAssumption.CheckSubnormal = 'forbid'

DetectPointerEscape — Find cases where a function returns a pointer to one of
its local variables
false (default) | true

This property affects Code Prover analysis only.

Find cases where a function returns a pointer to one of its local variables, specified as
true or false.

For more information, see Detect stack pointer dereference outside scope
(-detect-pointer-escape).
Example: opts.ChecksAssumption.DetectPointerEscape = true

DisableInitializationChecks — Disable checks for noninitialized variables
and pointers
false (default) | true

This property affects Code Prover analysis only.

Disable checks for noninitialized variables and pointers, specified as true or false.

For more information, see Disable checks for non-initialization (-disable-
initialization-checks).
Example: opts.ChecksAssumption.DisableInitializationChecks = true

 polyspace.Project.Configuration Properties

4-131

PermissiveFunctionPointer — Allow type mismatch between function pointers
and the functions they point to
false (default) | true

This property affects Code Prover analysis only.

Allow type mismatch between function pointers and the functions they point to, specified
as true or false.

For more information, see Permissive function pointer calls (-permissive-
function-pointer).
Example: opts.ChecksAssumption.PermissiveFunctionPointer = true

SignedIntegerOverflows — Behavior of signed integer overflows
forbid (default) | allow | warn-with-wrap-around

This property affects Code Prover analysis only.

Enable the check for signed integer overflows and the assumptions to make following an
overflow specified as forbid, allow, or warn-with-wrap-around.

For more information, see Overflow mode for signed integer (-signed-
integer-overflows).
Example: opts.ChecksAssumption.SignedIntegerOverflows = 'warn-with-
wrap-around'

SizeInBytes — Allow a pointer with insufficient memory buffer to point to a
structure
false (default) | true

This property affects Code Prover analysis only.

Allow a pointer with insufficient memory buffer to point to a structure, specified as true or
false.

For more information, see Allow incomplete or partial allocation of
structures (-size-in-bytes).
Example: opts.ChecksAssumption.SizeInBytes = true

4 Functions, Properties, Classes, and Apps

4-132

UncalledFunctionCheck — Detect functions that are not called directly or
indirectly from main or another entry-point function
none (default) | never-called | called-from-unreachable | all

This property affects Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry-point
function, specified as none, never-called, called-from-unreachable, or all.

For more information, see Detect uncalled functions (-uncalled-function-
checks).
Example: opts.ChecksAssumption.UncalledFunctionCheck = 'all'

UnsignedIntegerOverflows — Behavior of unsigned integer overflows
allow (default) | forbid | warn-with-wrap-around

This property affects Code Prover analysis only.

Enable the check for unsigned integer overflows and the assumptions to make following
an overflow, specified as forbid, allow, or warn-with-wrap-around.

For more information, see Overflow mode for unsigned integer (-unsigned-
integer-overflows).
Example: opts.ChecksAssumption.UnsignedIntegerOverflows = 'allow'

CodeProverVerification (Affects Code Prover only)

ClassAnalyzer — Classes that you want to verify
all (default) | none | custom=class1[,class2,...]

This property affects Code Prover analysis only.

Classes that you want to verify, specified as all, none, or
custom=class1[,class2,...].

For more information, see Class (-class-analyzer).
Example: opts.CodeProverVerification.ClassAnalyzer =
'custom=myClass1,myClass2'

 polyspace.Project.Configuration Properties

4-133

ClassAnalyzerCalls — Class methods that you want to verify
unused (default) | all | all-public | inherited-all | inherited-all-public |
unused-public | inherited-unused | inherited-unused-public |
custom=method1[,method2,...]

This property affects Code Prover analysis only.

Class methods that you want to verify, specified as one of the predefined sets or as
custom=method1[,method2,...].

For more information, see Functions to call within the specified classes
(-class-analyzer-calls).
Example: opts.CodeProverVerification.ClassAnalyzerCalls = 'unused-
public'

ClassOnly — Analyze only class methods
false (default) | true

This property affects Code Prover analysis only.

Analyze only class methods, specified as true or false.

For more information, see Analyze class contents only (-class-only).
Example: opts.CodeProverVerification.ClassOnly = true

EnableMain — Use main function provided in application
false (default) | true

This property affects Code Prover analysis only.

Use main function provided in application, specified as true or false. If you set this
property to false, the analysis generates a main function, if it is not present in the source
files.

For more information, see Verify whole application.
Example: opts.CodeProverVerification.EnableMain = true

FunctionsCalledBeforeMain — Functions that you want the generated main to
call ahead of other functions
cell array of function names

4 Functions, Properties, Classes, and Apps

4-134

This property affects Code Prover analysis only.

Functions that you want the generated main to call ahead of other functions, specified as
a cell array of function names.

For more information, see Initialization functions (-functions-called-
before-main).
Example: opts.CodeProverVerification.FunctionsCalledBeforeMain =
{'func1','func2'}

Main — Use a Microsoft Visual C++ extensions of main
_tmain (default) | wmain | _tWinMain | wWinMain | WinMain | DllMain

This property applies to a Code Prover analysis only .

Use a Microsoft Visual C++ extension of main, specified as one of the predefined main
extensions.

For more information, see Main entry point (-main).
Example: opts.CodeProverVerification.Main = 'wmain'

MainGenerator — Generate a main function if it is not present in source files
true (default) | false

This property applies to a Code Prover analysis only .

Generate a main function if it is not present in source files, specified as true or false.

For more information, see Verify module or library (-main-generator).
Example: opts.CodeProverVerification.MainGenerator = false

MainGeneratorCalls — Functions that you want the generated main to call after
the initialization functions
unused (default) | none | all | custom=function1[,function2[,...]]

This property applies to a Code Prover analysis only .

Functions that you want the generated main to call after the initialization functions,
specified as unused, all, none, or as a character array beginning with custom=
followed by a list of comma-separated function names.

 polyspace.Project.Configuration Properties

4-135

For more information, see Functions to call (-main-generator-calls).
Example: opts.CodeProverVerification.MainGeneratorCalls = 'all'

MainGeneratorWriteVariables — Global variables that you want the generated
main to initialize
uninit (C++ default) | public (C default) | none | all |
custom=variable1[,variable2[,...]]

This property applies to a Code Prover analysis only .

Global variables that you want the generated main to initialize, specified as one of the
predefined sets, or as a character array beginning with custom= followed by a list of
comma-separated variable names.

For more information, see Variables to initialize (-main-generator-writes-
variables).
Example: opts.CodeProverVerification.MainGeneratorWriteVariables =
'all'

NoConstructorsInitCheck — Do not check if class constructor initializes class
members
false (default) | true

This property applies to a Code Prover analysis only .

Do not check if class constructor initializes class members, specified as true or false.

For more information, see Skip member initialization check (-no-
constructors-init-check).
Example: opts.CodeProverVerification.NoConstructorsInitCheck = true

UnitByUnit — Verify each source file independently of other source files
false (default) | true

This property affects Code Prover analysis only.

Verify each source file independently of other source files, specified as true or false.

For more information, see Verify files independently (-unit-by-unit).
Example: opts.CodeProverVerification.UnitByUnit = true

4 Functions, Properties, Classes, and Apps

4-136

UnitByUnitCommonSource — Files that you want to include with each source file
during a file-by-file verification
cell array of file paths

This property affects Code Prover analysis only.

Files that you want to include with each source file during a file-by-file verification,
specified as a cell array of file paths.

For more information, see Common source files (-unit-by-unit-common-
source).
Example: opts.CodeProverVerification.UnitByUnitCommonSource = {'/inc/
file1.h','/inc/file2.h'}

CodingRulesCodeMetrics

AcAgcSubset — Subset of MISRA AC AGC rules to check
OBL-rules (default) | OBL-REC-rules | single-unit-rules | system-decidable-
rules | all-rules | SQO-subset1 | SQO-subset2 |
polyspace.CodingRulesOptions object | from-file

Subset of MISRA AC AGC rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA AC AGC (-misra-ac-agc).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check MISRA AC AGC rules, also set EnableAcAgc to true.
Example: opts.CodingRulesCodeMetrics.AcAgcSubset = 'all-rules'
Data Types: char

 polyspace.Project.Configuration Properties

4-137

AllowedPragmas — Pragma directives for which MISRA C:2004 rule 3.4 or MISRA
C++ 16-6-1 must not be applied
cell array of character vectors

Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ 16-6-1 must not be
applied, specified as a cell array of character vectors. This property affects only MISRA
C:2004 or MISRA AC AGC rule checking.

For more information, see Allowed pragmas (-allowed-pragmas).
Example: opts.CodingRulesCodeMetrics.AllowedPragmas =
{'pragma_01','pragma_02'}

Data Types: cell

AutosarCpp14 — Set of AUTOSAR C++ 14 rules to check
all (default) | required | automated | polyspace.CodingRulesOptions object |
from-file

This property affects Bug Finder only.

Set of AUTOSAR C++ 14 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check AUTOSAR C++ 14 security checks (-autosar-cpp14).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check AUTOSAR C++ 14 rules, also set EnableAutosarCpp14 to true.
Example: opts.CodingRulesCodeMetrics.AutosarCpp14 = 'all'
Data Types: char

4 Functions, Properties, Classes, and Apps

4-138

BooleanTypes — Data types the coding rule checker must treat as effectively
Boolean
cell array of character vectors

Data types that the coding rule checker must treat as effectively Boolean, specified as a
cell array of character vectors.

For more information, see Effective boolean types (-boolean-types).
Example: opts.CodingRulesCodeMetrics.BooleanTypes =
{'boolean1_t','boolean2_t'}

Data Types: cell

CertC — Set of CERT C rules and recommendations to check
all (default) | publish-2016 | rules | polyspace.CodingRulesOptions object |
from-file

This property affects Bug Finder only.

Set of CERT C rules and recommendations to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check CERT-C security checks (-cert-c).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check CERT C rules and recommendations, also set EnableCertC to true.
Example: opts.CodingRulesCodeMetrics.CertC = 'all'
Data Types: char

CertCpp — Set of CERT C++ rules to check
all (default) | rules | polyspace.CodingRulesOptions object | from-file

 polyspace.Project.Configuration Properties

4-139

This property affects Bug Finder only.

Set of CERT C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check CERT-C++ security checks (-cert-cpp).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check CERT C++ rules, also set EnableCertCpp to true.
Example: opts.CodingRulesCodeMetrics.CertCpp = 'all'
Data Types: char

CheckersSelectionByFile — File that defines custom set of coding standard
checkers
full file path of .xml file

File where you define a custom set of coding standards checkers to check, specified as
a .xml file. You can, in the same file, define a custom set of checkers for each of the
coding standards that Polyspace supports. To create a file that defines a custom selection
of coding standard checkers, in the Polyspace interface, select a coding standard on the
Coding Standards & Code Metrics node of the Configuration pane and click Edit.

For more information, see Set checkers by file (-checkers-selection-file).
Example: opts.CodingRulesCodeMetrics.CheckersSelectionByFile =
'C:\ps_settings\coding_rules\custom_rules.xml'

Data Types: char

CodeMetrics — Activate code metric calculations
false (default) | true

4 Functions, Properties, Classes, and Apps

4-140

Activate code metric calculations, specified as true or false. If this property is turned off,
Polyspace does not calculate code metrics even if you upload your results to Polyspace
Metrics.

For more information about the code metrics, see Calculate code metrics (-code-
metrics).

If you assign a coding rules options object to this property, an XML file gets created
automatically with the rules specified.
Example: opts.CodingRulesCodeMetrics.CodeMetrics = true

CustomRulesSubset — Custom naming conventions to check against
full file path of custom coding rules .xml file.

Custom naming conventions to check against, specified as a custom coding rules file. To
create a custom coding rules file, in the Polyspace interface, select Check custom rules
on the Coding Standards & Code Metrics node of the Configuration pane and click
Edit

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.CustomRulesSubset =
'C:\ps_settings\coding_rules\custom_rules.xml'

Data Types: char

EnableAcAgc — Check MISRA AC AGC rules
false (default) | true

Check MISRA AC AGC rules, specified as true or false. To customize which rules are
checked, use AcAgcSubset.

For more information about the MISRA AC AGC checker, see Check MISRA AC AGC (-
misra-ac-agc).
Example: opts.CodingRulesCodeMetrics.EnableAcAgc = true;

EnableAutosarCpp14 — Check AUTOSAR C++ 14 rules
false (default) | true

This property affects Bug Finder only.

Check AUTOSAR C++ 14 rules, specified as true or false. To customize which rules are
checked, use AutosarCpp14.

 polyspace.Project.Configuration Properties

4-141

For more information about the AUTOSAR C++ 14 checker, see Check AUTOSAR C++
14 security checks (-autosar-cpp14).
Example: opts.CodingRulesCodeMetrics.EnableAutosarCpp14 = true;

EnableCertC — check CERT C rules and recommendations
false (default) | true

This property affects Bug Finder only.

Check CERT C rules and recommendations, specified as true or false. To customize which
rules are checked, use CertC.

For more information about the CERT C checker, see Check CERT-C security checks
(-cert-c).
Example: opts.CodingRulesCodeMetrics.EnableCertC = true;

EnableCertCpp — check CERT C++ rules
false (default) | true

This property affects Bug Finder only.

Check CERT C++ rules, specified as true or false. To customize which rules are checked,
use CertCpp.

For more information about the CERT C++ checker, see Check CERT-C++ security
checks (-cert-cpp).
Example: opts.CodingRulesCodeMetrics.EnableCertCpp = true;

EnableCheckersSelectionByFile — Check custom set of coding standard
checkers
false (default) | true

Check custom set of coding standard checkers, specified as true or false. Use with
CheckersSelectionByFile and these coding standards:

• opts.CodingRulesCodeMetrics.AutosarCpp14='from-file'
• opts.CodingRulesCodeMetrics.CertC='from-file'
• opts.CodingRulesCodeMetrics.CertCpp='from-file'
• opts.CodingRulesCodeMetrics.Iso17961='from-file'

4 Functions, Properties, Classes, and Apps

4-142

• opts.CodingRulesCodeMetrics.JsfSubset='from-file'
• opts.CodingRulesCodeMetrics.MisraC3Subset='from-file'
• opts.CodingRulesCodeMetrics.MisraCSubset='from-file'
• opts.CodingRulesCodeMetrics.MisraCppSubset='from-file'

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCheckersSelectionByFile =
true;

EnableCustomRules — Check custom coding rules
false (default) | true

Check custom coding rules, specified as true or false. The file you specify with
CheckersSelectionByFile defines the custom coding rules.

Use with EnableCheckersSelectionByFile.

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCustomRules = true;

EnableIso17961 — check ISO-17961 rules
false (default) | true

This property affects Bug Finder only.

Check ISO/IEC TS 17961 rules, specified as true or false. To customize which rules are
checked, use Iso17961.

For more information about the ISO-17961 checker, see Check ISO-17961 security
checks (-iso-17961).
Example: opts.CodingRulesCodeMetrics.EnableIso17961 = true;

EnableJsf — Check JSF C++ rules
false (default) | true

Check JSF C++ rules, specified as true or false. To customize which rules are checked,
use JsfSubset.

For more information, see Check JSF C++ rules (-jsf-coding-rules).

 polyspace.Project.Configuration Properties

4-143

Example: opts.CodingRulesCodeMetrics.EnableJsf = true;

EnableMisraC — Check MISRA C:2004 rules
false (default) | true

Check MISRA C:2004 rules, specified as true or false. To customize which rules are
checked, use MisraCSubset.

For more information, see Check MISRA C:2004 (-misra2).
Example: opts.CodingRulesCodeMetrics.EnableMisraC = true;

EnableMisraC3 — Check MISRA C:2012 rules
false (default) | true

Check MISRA C:2012 rules, specified as true or false. To customize which rules are
checked, use MisraC3Subset.

For more information about the MISRA C:2012 checker, see Check MISRA C:2012 (-
misra3).
Example: opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

EnableMisraCpp — Check MISRA C++:2008 rules
false (default) | true

Check MISRA C++:2008 rules, specified as true or false. To customize which rules are
checked, use MisraCppSubset.

For more information about the MISRA C++:2008 checker, see Check MISRA C++
rules (-misra-cpp).
Example: opts.CodingRulesCodeMetrics.EnableMisraCpp = true;

Iso17961 — Set of ISO-17961 rules to check
all (default) | decidable | polyspace.CodingRulesOptions object | from-file

This property affects Bug Finder only.

Set of ISO/IEC TS 17961 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check ISO-17961 security checks (-iso-17961).

4 Functions, Properties, Classes, and Apps

4-144

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check ISO/IEC TS 17961 rules, also set EnableIso17961 to true.
Example: opts.CodingRulesCodeMetrics.Iso17961 = 'all'
Data Types: char

JsfSubset — Subset of JSF C++ rules to check
shall-rules (default) | shall-will-rules | all-rules |
polyspace.CodingRulesOptions object | from-file

Subset of JSF C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check JSF C++ rules (-jsf-coding-rules).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check JSF C++ rules, set EnableJsf to true.
Example: opts.CodingRulesCodeMetrics.JsfSubset = 'all-rules'
Data Types: char

 polyspace.Project.Configuration Properties

4-145

Misra3AgcMode — Use the MISRA C:2012 categories for automatically generated
code
false (default) | true

Use the MISRA C:2012 categories for automatically generated code, specified as true or
false.

For more information, see Use generated code requirements (-misra3-agc-
mode).
Example: opts.CodingRulesCodeMetrics.Misra3AgcMode = true;

MisraC3Subset — Subset of MISRA C:2012 rules to check
mandatory-required (default) | mandatory | single-unit-rules | system-
decidable-rules | all | SQO-subset1 | SQO-subset2 |
polyspace.CodingRulesOptions object | from-file

Subset of MISRA C:2012 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2012 (-misra3).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check MISRA C:2012 rules, also set EnableMisraC3 to true.
Example: opts.CodingRulesCodeMetrics.MisraC3Subset = 'all'
Data Types: char

MisraCSubset — Subset of MISRA C:2004 rules to check
required-rules (default) | single-unit-rules | system-decidable-rules | all-
rules | SQO-subset1 | SQO-subset2 | polyspace.CodingRulesOptions object |
from-file

4 Functions, Properties, Classes, and Apps

4-146

Subset of MISRA C:2004 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2004 (-misra2).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check MISRA C:2004 rules, also set EnableMisraC to true.
Example: opts.CodingRulesCodeMetrics.MisraCSubset = 'all-rules'
Data Types: char

MisraCppSubset — Subset of MISRA C++ rules
required-rules (default) | all-rules | CERT-rules | CERT-all | SQO-subset1 |
SQO-subset2 | polyspace.CodingRulesOptions object | from-file

Subset of MISRA C++:2008 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C++ rules (-misra-cpp).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

 polyspace.Project.Configuration Properties

4-147

To check MISRA C++ rules, set EnableMisraCpp to true.
Example: opts.CodingRulesCodeMetrics.MisraCppSubset = 'all-rules'
Data Types: char

EnvironmentSettings

Dos — Consider that file paths are in MS-DOS style
true (default) | false

Consider that file paths are in MS-DOS style, specified as true or false.

For more information, see Code from DOS or Windows file system (-dos).
Example: opts.EnvironmentSettings.Dos = true;

IncludeFolders — Include folders needed for compilation
cell array of include folder paths

Include folders needed for compilation, specified as a cell array of the include folder
paths.

To specify all subfolders of a folder, use folder path followed by **, for instance,
'C:\includes**'. The notation follows the syntax of the dir function. See also
“Specify Multiple Source Files”.

For more information, see -I.
Example: opts.EnvironmentSettings.IncludeFolders = {'/includes','/
com1/inc'};

Example: opts.EnvironmentSettings.IncludeFolders =
{'C:\project1\common\includes'};

Data Types: cell

Includes — Files to be #include-ed by each C file
cell array of files

Files to be #include-ed by each C source file in the analysis, specified by a cell array of
files.

For more information, see Include (-include).

4 Functions, Properties, Classes, and Apps

4-148

Example: opts.EnvironmentSettings.Includes = {'/inc/inc_file.h','/inc/
inc_math.h'}

NoExternC — Ignore linking errors inside extern blocks
false (default) | true

Ignore linking errors inside extern blocks, specified as true or false.

For more information, see Ignore link errors (-no-extern-c).
Example: opts.EnvironmentSettings.NoExternC = false;

PostPreProcessingCommand — Command or script to run on source files after
preprocessing
character vector

Command or script to run on source files after preprocessing, specified as a character
vector of the command to run.

For more information, see Command/script to apply to preprocessed files (-
post-preprocessing-command).
Example: Linux — opts.EnvironmentSettings.PostPreProcessingCommand =
[pwd,'/replace_keyword.pl']

Example: Windows — opts.EnvironmentSettings.PostPreProcessingCommand =
'"C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe"
"C:\My_Scripts\replace_keyword.pl"'

StopWithCompileError — Stop analysis if a file does not compile
false (default) | true

Stop analysis if a file does not compile, specified as true or false.

For more information, see Stop analysis if a file does not compile (-stop-
if-compile-error).
Example: opts.EnvironmentSettings.StopWithCompileError = true;

InputsStubbing

DataRangeSpecifications — Constrain global variables, function inputs, and
return values of stubbed functions
file path

 polyspace.Project.Configuration Properties

4-149

Constrain global variables, function inputs, and return values of stubbed functions
specified by the path to an XML constraint file. For more information about the constraint
file, see “Specify External Constraints”.

For more information about this option, see Constraint setup (-data-range-
specifications).
Example: opts.InputsStubbing.DataRangeSpecifications = 'C:\project
\constraint_file.xml'

DoNotGenerateResultsFor — Files on which you do not want analysis results
include-folders (default) | all-headers | custom=file1[,folder1[,...]]

Files on which you do not want analysis results, specified by include-folders, all-
headers, or a character array beginning with custom= and containing a list of comma-
separated file or folder names.

Use this option with InputsStubbing.GenerateResultsFor. For more information,
see Do not generate results for (-do-not-generate-results-for).
Example: opts.InputsStubbing.DoNotGenerateResultsFor =
'custom=C:\project\file1.c,C:\project\file2.c'

GenerateResultsFor — Files on which you want analysis results
source-headers (default) | all-headers | custom=file1[,folder1[,...]]

Files on which you want analysis results, specified by source-headers, all-headers,
or a character array beginning with custom= and containing a comma-separated file or
folder names.

Use this option with InputsStubbing.DoNotGenerateResultsFor. For more
information, see Generate results for sources and (-generate-results-
for).
Example: opts.InputsStubbing.GenerateResultsFor = 'custom=C:\project
\includes_common_1,C:\project\includes_common_2'

FunctionsToStub — Functions to stub during analysis
cell array of function names

This property affects Code Prover analysis only.

Functions to stub during analysis, specified as a cell array of function names.

4 Functions, Properties, Classes, and Apps

4-150

For more information, see Functions to stub (-functions-to-stub).
Example: opts.InputsStubbing.FunctionsToStub = {'func1', 'func2'}

NoDefInitGlob — Consider global variables as uninitialized
false (default) | true

This property affects Code Prover analysis only.

Consider global variables as uninitialized, specified as true or false.

For more information, see Ignore default initialization of global
variables (-no-def-init-glob).
Example: opts.InputsStubbing.NoDefInitGlob = true

NoStlStubs — Do not use Polyspace implementations of functions in the
Standard Template Library
false (default) | true

This property applies only to a Code Prover analysis of C++ code.

Do not use Polyspace implementations of functions in the Standard Template Library,
specified as true or false.

For more information, see No STL stubs (-no-stl-stubs).
Example: opts.InputsStubbing.NoStlStubs = true

StubECoderLookupTables — Specify that the analysis must stub functions in the
generated code that use lookup tables
true (default) | false

This property applies only to a Code Prover analysis of code generated from models.

Specify that the analysis must stub functions in the generated code that use lookup
tables. By replacing the functions with stubs, the analysis assumes more precise return
values for the functions.

For more information, see Generate stubs for Embedded Coder lookup tables
(-stub-embedded-coder-lookup-table-functions).
Example: opts.InputsStubbing.StubECoderLookupTables = true

 polyspace.Project.Configuration Properties

4-151

Macros

DefinedMacros — Macros to be replaced
cell array of macros

In preprocessed code, macros are replaced by the definition, specified in a cell array of
macros and definitions. Specify the macro as Macro=Value. If you want Polyspace to
ignore the macro, leave the Value blank. A macro with no equal sign replaces all
instances of that macro by 1.

For more information, see Preprocessor definitions (-D).
Example: opts.Macros.DefinedMacros = {'uint32=int','name3=','var'}

UndefinedMacros — Macros to undefine
cell array of macros

In preprocessed code, macros are undefined, specified by a cell array of macros to
undefine.

For more information, see Disabled preprocessor definitions (-U).
Example: opts.Macros.DefinedMacros = {'name1','name2'}

MergedComputingSettings

AddToResultsRepositoryBugFinder — Upload Bug Finder results to Polyspace
Metrics web dashboard
false (default) | true

This property affects Bug Finder analysis only.

Upload Bug Finder analysis results to Polyspace Metrics web dashboard, specified as true
or false. To use this option, in your Polyspace preferences, you must specify a metrics
server.

For more information, see Upload results to Polyspace Metrics (-add-to-
results-repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryBugFinder
= true;

4 Functions, Properties, Classes, and Apps

4-152

AddToResultsRepositoryCodeProver — Upload Code Prover results to
Polyspace Metrics web dashboard
false (default) | true

This property affects Code Prover analysis only.

Upload Code Prover analysis results to Polyspace Metrics web dashboard, specified as
true or false. To use this option, in your Polyspace preferences, you must specify a metrics
server.

For more information, see Upload results to Polyspace Metrics (-add-to-
results-repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryCodeProver
= true;

BatchBugFinder — Send Bug Finder analysis to remote server
false (default) | true

This property affects Bug Finder analysis only.

Send Bug Finder analysis to remote server, specified as true or false. To use this option, in
your Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a
remote cluster (-batch).
Example: opts.MergedComputingSettings.BatchBugFinder = true;

BatchCodeProver — Send Code Prover analysis to remote server
false (default) | true

This property affects Code Prover analysis only.

Send Code Prover analysis to remote server, specified as true or false. To use this option,
in your Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a
remote cluster (-batch).
Example: opts.MergedComputingSettings.BatchCodeProver = true;

FastAnalysis — Run Bug Finder analysis using faster local mode
false (default) | true

 polyspace.Project.Configuration Properties

4-153

This property affects Bug Finder analysis only.

Use fast analysis mode for Bug Finder analysis, specified as true or false.

For more information, see Use fast analysis mode for Bug Finder (-fast-
analysis).
Example: opts.MergedComputingSettings.FastAnalysis = true;

MergedReporting

EnableReportGeneration — Generate a report after the analysis
false (default) | true

After the analysis, generate a report, specified as true or false.

For more information, see Generate report.
Example: opts.MergedReporting.EnableReportGeneration = true

ReportOutputFormat — Output format of generated report
Word (default) | HTML | PDF

Output format of generated report, specified as one of the report formats. To activate this
option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Output format (-report-
output-format).
Example: opts.MergedReporting.ReportOutputFormat = 'PDF'

BugFinderReportTemplate — Template for generating Bug Finder analysis
report
BugFinderSummary (default) | BugFinder | SecurityCWE | CodeMetrics |
CodingStandards

This property affects a Bug Finder analysis only.

Template for generating analysis report, specified as one of the report formats. To
activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover
report (-report-template).
Example: opts.MergedReporting.BugFinderReportTemplate = 'CodeMetrics'

4 Functions, Properties, Classes, and Apps

4-154

CodeProverReportTemplate — Template for generating Code Prover analysis
report
Developer (default) | CallHierarchy | CodeMetrics | CodingStandards |
DeveloperReview | Developer_withGreenChecks | Quality | VariableAccess

This property affects a Code Prover analysis only.

Template for generating analysis report, specified as one of the predefined report
formats. To activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover
report (-report-template).
Example: opts.MergedReporting.CodeProverReportTemplate = 'CodeMetrics'

Multitasking

ArxmlMultitasking — Specify path of ARXML files to parse for multitasking
configuration
cell array of file paths

Specify the path to the ARXML files the software parses to set up your multitasking
configuration.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to autosar.

For more information, see ARXML files selection (-autosar-multitasking)
Example: opts.Multitasking.ArxmlMultitasking={'C:\Polyspace_Workspace
\AUTOSAR\myFile.arxml'}

CriticalSectionBegin — Functions that begin critical sections
cell array of critical section function names

Functions that begin critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionEnd.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).
Example: opts.Multitasking.CriticalSectionBegin =
{'function1:cs1','function2:cs2'}

 polyspace.Project.Configuration Properties

4-155

CriticalSectionEnd — Functions that end critical sections
cell array of critical section function names

Functions that end critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionBegin.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).
Example: opts.Multitasking.CriticalSectionEnd =
{'function1:cs1','function2:cs2'}

CyclicTasks — Specify functions that represent cyclic tasks
cell array of function names

Specify functions that represent cyclic tasks.

To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Cyclic tasks (-cyclic-tasks).
Example: opts.Multitasking.CyclicTasks = {'function1','function2'}

EnableConcurrencyDetection — Enable automatic detection of certain families
of threading functions
false (default) | true

This property affects Code Prover analysis only.

Enable automatic detection of certain families of threading functions, specified as true or
false.

For more information, see Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection).
Example: opts.Multitasking.EnableConcurrencyDetection = true

EnableExternalMultitasking — Enable automatic multitasking configuration
from external file definitions
false (default) | true

4 Functions, Properties, Classes, and Apps

4-156

Enable multitasking configuration of your projects from external files you provide.
Configure multitasking from ARXML files for an AUTOSAR project, or from OIL files for
an OSEK project.

Activate this option to enable Multitasking.ArxmlMultitasking or
Multitasking.OsekMultitasking.

For more information, see OIL files selection (-osek-multitasking) and
ARXML files selection (-autosar-multitasking).
Example: opts.Multitasking.EnableExternalMultitasking = 1

EnableMultitasking — Configure multitasking manually
false (default) | true

Configure multitasking manually by specifying true. This property activates the other
manual, multitasking properties.

For more information, see Configure multitasking manually.
Example: opts.Multitasking.EnableMultitasking = 1

EntryPoints — Functions that serve as entry-points to your multitasking
application
cell array of entry-point function names

Functions that serve as entry-points to your multitasking application specified as a cell
array of entry-point function names. To activate this option, also specify
Multitasking.EnableMultitasking.

For more information, see Tasks (-entry-points).
Example: opts.Multitasking.EntryPoints = {'function1','function2'}

ExternalMultitaskingType — Specify type of file to parse for multitasking
configuration
osek (default) | autosar

Specify the type of file the software parses to set up your multitasking configuration:

• For osek type, the analysis looks for OIL files in the file or folder paths that you
specify.

• For autosar type, the analysis looks for ARXML files in the file paths that you specify.

 polyspace.Project.Configuration Properties

4-157

To activate this option, specify Multitasking.EnableExternalMultitasking.

For more information, see OIL files selection (-osek-multitasking) and
ARXML files selection (-autosar-multitasking).
Example: opts.Multitasking.ExternalMultitaskingType = 'autosar'

Interrupts — Specify functions that represent nonpreemptable interrupts
cell array of function names

Specify functions that represent nonpreemptable interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Interrupts (-interrupts).
Example: opts.Multitasking.Interrupts = {'function1','function2'}

InterruptsDisableAll — Specify routine that disable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that disables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsDisableAll = {'function'}

InterruptsEnableAll — Specify routine that reenable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that reenables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsEnableAll = {'function'}

4 Functions, Properties, Classes, and Apps

4-158

OsekMultitasking — Specify path of OIL files to parse for multitasking
configuration
auto (default) | custom=file1[,folder1[,...]]

Specify the path to the OIL files the software parses to set up your multitasking
configuration:

• In auto mode, the analysis uses OIL files in your project source and include folders,
but not their subfolders.

• In custom mode, the analysis uses the OIL files at the specified path, and the path
subfolders.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to osek.

For more information, see OIL files selection (-osek-multitasking)
Example: opts.Multitasking.OsekMultitasking = 'custom=file_path,
dir_path'

TemporalExclusion — Entry-point functions that cannot execute concurrently
cell array of entry-point function names

Entry-point functions that cannot execute concurrently specified as a cell array of entry-
point function names. Each set of exclusive tasks is one cell array entry with functions
separated by spaces. To activate this option, specify
Multitasking.EnableMultitasking.

For more information, see Temporally exclusive tasks (-temporal-
exclusions-file).
Example: opts.Multitasking.TemporalExclusion = {'function1 function2',
'function3 function4 function5'} where function1 and function2 are temporally
exclusive, and function3, function4, and function 5 are temporally exclusive.

Precision (Affects Code Prover Only)

ContextSensitivity — Store call context information to identify function call
that caused errors
none (default) | auto | custom=function1[,function2[,...]]

This property affects Code Prover analysis only.

 polyspace.Project.Configuration Properties

4-159

Store call context information to identify a function call that caused errors, specified as
none, auto, or as a character array beginning with custom= followed by a list of comma-
separated function names.

For more information, see Sensitivity context (-context-sensitivity).
Example: opts.Precision.ContextSensitivity = 'auto'
Example: opts.Precision.ContextSensitivity = 'custom=func1'

ModulesPrecision — Source files you want to verify at higher precision
cell array of file names and precision levels

This property affects Code Prover analysis only.

Source files that you want to verify at higher precision, specified as a cell array of file
names without the extension and precision levels using this syntax: filename:Olevel

For more information, see Specific precision (-modules-precision).
Example: opts.Precision.ModulesPrecision = {'file1:O0', 'file2:O3'}

OLevel — Precision level for the verification
2 (default) | 0 | 1 | 3

This property affects Code Prover analysis only.

Precision level for the verification, specified as 0, 1, 2, or 3.

For more information, see Precision level (-O).
Example: opts.Precision.OLevel = 3

PathSensitivityDelta — Avoid certain verification approximations for code
with fewer lines
positive integer

This property affects Code Prover analysis only.

Avoid certain verification approximations for code with fewer lines, specified as a positive
integer representing how sensitive the analysis is. Higher values can increase verification
time exponentially.

For more information, see Improve precision of interprocedural analysis (-
path-sensitivity-delta).

4 Functions, Properties, Classes, and Apps

4-160

Example: opts.Precision.PathSensitivityDelta = 2

Timeout — Time limit on your verification
character vector

This property affects Code Prover analysis only.

Time limit on your verification, specified as a character vector of time in hours.

For more information, see Verification time limit (-timeout).
Example: opts.Precision.Timeout = '5.75'

To — Number of times the verification process runs
Software Safety Analysis level 2 (default) | Software Safety Analysis
level 0 | Software Safety Analysis level 1 | Software Safety Analysis
level 3 | Software Safety Analysis level 4 | Source Compliance Checking
| other

This property affects Code Prover analysis only.

Number of times the verification process runs, specified as one of the preset analysis
levels.

For more information, see Verification level (-to).
Example: opts.Precision.To = 'Software Safety Analysis level 3'

Scaling (Affects Code Prover Only)

Inline — Functions on which separate results must be generated for each
function call
cell array of function names

This property affects Code Prover analysis only.

Functions on which separate results must be generated for each function call, specified as
a cell array of function names.

For more information, see Inline (-inline).
Example: opts.Scaling.Inline = {'func1','func2'}

KLimiting — Limit depth of analysis for nested structures
positive integer

 polyspace.Project.Configuration Properties

4-161

This property affects Code Prover analysis only.

Limit depth of analysis for nested structures, specified as a positive integer indicating
how many levels into a nested structure to verify.

For more information, see Depth of verification inside structures (-k-
limiting).
Example: opts.Scaling.KLimiting = 3

TargetCompiler

Compiler — Compiler that builds your source code
generic (default) | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | gnu5.x | gnu6.x |
gnu7.x | clang3.x | clang4.x | clang5.x | visual9.0 | visual10 | visual11.0 |
visual12.0 | visual14.0 | visual15.x | keil | iar | armcc | armclang |
codewarrior | diab | greenhills | iar-ew | renesas | tasking | ti

Compiler that builds your source code.

For more information, see Compiler (-compiler).
Example: opts.TargetCompiler.Compiler = 'Visual11.0'

CppVersion — Specify C++11 standard version followed in code
defined-by-compiler (default) | cpp03 | cpp11 | cpp14

Specify C++ standard version followed in code, specified as a character vector.

For more information, see C++ standard version (-cpp-version).
Example: opts.TargetCompiler.CppVersion = 'cpp11';

CVersion — Specify C standard version followed in code
defined-by-compiler (default) | c90 | c99 | c11

Specify C standard version followed in code, specified as a character vector.

For more information, see C standard version (-c-version).
Example: opts.TargetCompiler.CVersion = 'c90';

DivRoundDown — Round down quotients from division or modulus of negative
numbers
false (default) | true

4 Functions, Properties, Classes, and Apps

4-162

Round down quotients from division or modulus of negative numbers, specified as true or
false.

For more information, see Division round down (-div-round-down).
Example: opts.TargetCompiler.DivRoundDown = true

EnumTypeDefinition — Base type representation of enum
defined-by-compiler (default) | auto-signed-first | auto-unsigned-first

Base type representation of enum, specified by an allowed base-type set. For more
information about the different values, see Enum type definition (-enum-type-
definition).
Example: opts.TargetCompiler.EnumTypeDefinition = 'auto-unsigned-
first'

IgnorePragmaPack — Ignore #pragma pack directives
false (default) | true

Ignore #pragma pack directives, specified as true or false.

For more information, see Ignore pragma pack directives (-ignore-pragma-
pack).
Example: opts.TargetCompiler.IgnorePragmaPack = true

Language — Language of analysis
C-CPP (default) | C | CPP

This property is read-only.

Language of the analysis, specified during the object construction. This value changes
which properties appear.

For more information, see Source code language (-lang).

LogicalSignedRightShift — Treatment of signed bit on signed variables
Arithmetical (default) | Logical

Treatment of signed bit on signed variables, specified as Arithmetical or Logical. For
more information, see Signed right shift (-logical-signed-right-shift).
Example: opts.TargetCompiler.LogicalSignedRightShift = 'Logical'

 polyspace.Project.Configuration Properties

4-163

NoUliterals — Do not use predefined typedefs for char16_t or char32_t
false (default) | true

Do not use predefined typedefs for char16_t or char32_t, specified as true or false. For
more information, see Block char16/32_t types (-no-uliterals).
Example: opts.TargetCompiler.NoUliterals = true

PackAlignmentValue — Default structure packing alignment
defined-by-compiler (default) | 1 | 2 | 4 | 8 | 16

Default structure packing alignment, specified as defined-by-compiler, 1,2, 4, 8, or
16. This property is available only for Visual C++ code.

For more information, see Pack alignment value (-pack-alignment-value).
Example: opts.TargetCompiler.PackAlignmentValue = '4'

SfrTypes — sfr types
cell array of sfr keywords

sfr types, specified as a cell array of sfr keywords using the syntax
sfr_name=size_in_bits. For more information, see Sfr type support (-sfr-
types).

This option only applies when you set TargetCompiler.Compiler to keil or iar.
Example: opts.TargetCompiler.SfrTypes = {'sfr32=32'}

SizeTTypeIs — Underlying type of size_t
defined-by-compiler (default) | unsigned-int | unsigned-long | unsigned-
long-long

Underlying type of size_t, specified as defined-by-compiler, unsigned-int,
unsigned-long, or unsigned-long-long. See Management of size_t (-size-t-
type-is).
Example: opts.TargetCompiler.SizeTTypeIs = 'unsigned-long'

Target — Target processor
i386 (default) | arm | arm64 | avr | c-167 | c166 | c18 | c28x | c6000 | coldfire |
hc08 | hc12 | m68k | mcore | mips | mpc5xx | msp430 | necv850 | powerpc |
powerpc64 | rh850 | rl78 | rx | s12z | sharc21x61 | sparc | superh | tms320c3x |
tricore | x86_64 | generic target object

4 Functions, Properties, Classes, and Apps

4-164

Set size of data types and endianness of processor, specified as one of the predefined
target processors or a generic target object.

For more information about the predefined processors, see Target processor type
(-target).

For more information about creating a generic target, see
polyspace.GenericTargetOptions.
Example: opts.TargetCompiler.Target = 'hc12'

WcharTTypeIs — Underlying type of wchar_t
defined-by-compiler (default) | signed-short | unsigned-short | signed-int |
unsigned-int | signed-long | unsigned-long

Underlying type of wchar_t, specified as defined-by-compiler, signed-short,
unsigned-short, signed-int, unsigned-int, signed-long, or unsigned-long.
See Management of wchar_t (-wchar-t-type-is).
Example: opts.TargetCompiler.WcharTTypeIs = 'unsigned-int'

VerificationAssumption (Affects Code Prover Only)

ConsiderVolatileQualifierOnFields — Assume that volatile qualified
structure fields can have all possible values at any point in code
false (default) | true

This property affects Code Prover analysis only.

Assume that volatile qualified structure fields can have all possible values at any point in
code.

For more information, see Consider volatile qualifier on fields (-
consider-volatile-qualifier-on-fields).
Example: opts.VerificationAssumption.ConsiderVolatileQualifierOnFields
= true

ConstraintPointersMayBeNull — Specify that environment pointers can be
NULL unless constrained otherwise
false (default) | true

This property affects Code Prover analysis only.

 polyspace.Project.Configuration Properties

4-165

Specify that environment pointers can be NULL unless constrained otherwise.

For more information, see Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe).
Example: opts.VerificationAssumption.ConstraintPointersMayBeNull =
true

FloatRoundingMode — Rounding modes to consider when determining the
results of floating-point arithmetic
to-nearest (default) | all

This property affects Code Prover analysis only.

Rounding modes to consider when determining the results of floating-point arithmetic,
specified as to-nearest or all.

For more information, see Float rounding mode (-float-rounding-mode).
Example: opts.VerificationAssumption.FloatRoundingMode = 'all'

RespectTypesInFields — Do not cast nonpointer fields of a structure to
pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer fields of a structure to pointers, specified as true or false.

For more information, see Respect types in fields (-respect-types-in-
fields).
Example: opts.VerificationAssumption.RespectTypesInFields = true

RespectTypesInGlobals — Do not cast nonpointer global variables to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer global variables to pointers, specified as true or false.

For more information, see Respect types in global variables (-respect-
types-in-globals).
Example: opts.VerificationAssumption.RespectTypesInGlobals = true

4 Functions, Properties, Classes, and Apps

4-166

Other Properties

Author — Project author
username of current user (default) | character vector

Name of project author, specified as a character vector.

For more information, see -author.
Example: opts.Author = 'JaneDoe'

ImportComments — Import comments and justifications from previous analysis
character vector

To import comments and justifications from a previous analysis, specify the path to the
results folder of the previous analysis.

You can also point to a previous results folder to see only new results compared to the
previous run. See “Compare Results from Different Polyspace Runs by Using MATLAB
Scripts”.

For more information, see -import-comments
Example: opts.ImportComments =
fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Exam
ple','Module_1','BF_Result')

Prog — Project name
PolyspaceProject (default) | character vector

Project name, specified as a character vector.

For more information, see -prog.
Example: opts.Prog = 'myProject'

ResultsDir — Location to store results
folder path

Location to store results, specified as a folder path. By default, the results are stored in
the current folder.

For more information, see -results-dir.

 polyspace.Project.Configuration Properties

4-167

You can also create a separate results folder for each new run. See “Compare Results
from Different Polyspace Runs by Using MATLAB Scripts”.
Example: opts.ResultsDir = 'C:\project\myproject\results\'

Sources — Source files
cell array of files

Source files to analyze, specified as a cell array of files.

To specify all files in a folder, use folder path followed by *, for instance, 'C:\src*'. To
specify all files in a folder and its subfolders, use folder path followed by **, for instance,
'C:\src**'. The notation follows the syntax of the dir function. See also “Specify
Multiple Source Files”.

For more information, see -sources.
Example: opts.Sources = {'file1.c', 'file2.c', 'file3.c'}
Example: opts.Sources = {'project/src1/file1.c', 'project/src2/
file2.c', 'project/src3/file3.c'}

Version — Project version number
1.0 (default) | character array of a number

Version number of project, specified as a character array of a number. This option is
useful if you upload your results to Polyspace Metrics. If you increment version numbers
each time that you reanalyze your object, you can compare the results from two versions
in Polyspace Metrics.

For more information, see -v[ersion].
Example: opts.Version = '2.3'

See Also

Topics
“Analysis Options”

Introduced in R2017a

4 Functions, Properties, Classes, and Apps

4-168

polyspace.ModelLinkOptions Properties
Customize Polyspace analysis of generated code with options object properties

Description
To customize your Polyspace analysis of generated code, modify the
polyspace.ModelLinkOptions object properties. Each property corresponds to an
analysis option on the Configuration pane in the Polyspace user interface.

The properties are grouped using the same categories as the Configuration pane. This
page only shows what values each property can take. For details about:

• The different options, see the analysis options reference pages.
• How to create and use the object, see polyspace.ModelLinkOptions.

The same properties are also available with the deprecated classes
polyspace.ModelLinkBugFinderOptions and
polyspace.ModelLinkCodeProverOptions.

Each property description below also highlights if the option affects only one of Bug
Finder or Code Prover.

Note Some options might not be available depending on the language setting of the
object. You can set the source code language (Language) to 'C', 'CPP' or 'C-CPP'
during object creation, but cannot change it later.

Properties
Advanced

Additional — Additional flags for analysis
character vector

Additional flags for analysis specified as a character vector.

For more information, see Other.

 polyspace.ModelLinkOptions Properties

4-169

Example: opts.Advanced.Additional = '-extra-flags -option -extra-flags
value'

PostAnalysisCommand — Command or script software should execute after
analysis finishes
character vector

Command or script software should execute after analysis finishes, specified as a
character vector.

For more information, see Command/script to apply after the end of the
code verification (-post-analysis-command).
Example: opts.Advanced.PostAnalysisCommand = '"C:\Program Files\perl
\win32\bin\perl.exe" "C:\My_Scripts\send_email"'

AutomaticOrangeTester — Run the Automatic Orange Tester
false (default) | true

This property affects Code Prover analysis only.

Run the Automatic Orange Tester after verification, specified as true or false.

For more information, see Automatic Orange Tester (-automatic-orange-
tester).
Example: opts.Advanced.AutomaticOrangeTester = true

AutomaticOrangeTesterLoopMaxIteration — Number of loop iterations after
which Automatic Orange Tester considers infinite loop
1000 (default) | positive integer

This property affects Code Prover analysis only.

Number of loop iterations after which Automatic Orange Tester considers the test an
infinite loop, specified as a positive integer, maximum of 1000.

For more information, see Maximum loop iterations (-automatic-orange-
tester-loop-max-iteration).
Example: opts.Advanced.AutomaticOrangeTesterLoopMaxIteration = 500

4 Functions, Properties, Classes, and Apps

4-170

AutomaticOrangeTesterTestsNumber — Number of tests that Automatic Orange
Tester must run
500 (default) | positive integer

This property affects Code Prover analysis only.

Number of tests that Automatic Orange Tester must run, specified as a positive integer,
maximum of 100,000.

For more information, see Number of automatic tests (-automatic-orange-
tester-tests-number).
Example: opts.Advanced.AutomaticOrangeTesterTestsNumber = 1000

AutomaticOrangeTesterTimeout — Time in seconds allowed for a single test in
Automatic Orange Tester
5 (default) | positive integer

This property affects Code Prover analysis only.

Time in seconds allowed for a single test in Automatic Orange Tester, specified as a
positive integer, maximum of 60.

For more information, see Maximum test time (-automatic-orange-tester-
timeout).
Example: opts.Advanced.AutomaticOrangeTesterTimeout = 10

BugFinderAnalysis (Affects Bug Finder Only)

CheckersList — List of custom checkers to activate
polyspace.DefectsOptions object | cell array of defect acronyms

This property affects Bug Finder analysis only.

List of custom checkers to activate specified by using the name of a
polyspace.DefectsOptions object or a cell array of defect acronyms. To use this
custom list in your analysis, set CheckersPreset to custom.

For more information, see polyspace.DefectsOptions.
Example: defects = polyspace.DefectsOptions;
opts.BugFinderAnalysis.CheckersList = defects

 polyspace.ModelLinkOptions Properties

4-171

Example: opts.BugFinderAnalysis.CheckersList =
{'INT_ZERO_DIV','FLOAT_ZERO_DIV'}

CheckersPreset — Subset of Bug Finder defects
default (default) | all | CWE | custom

This property affects Bug Finder analysis only.

Preset checker list, specified as a character vector of one of the preset options: default,
all, CWE,or custom. To use custom, specify a BugFinderAnalysis.CheckersList.

For more information, see Find defects (-checkers).
Example: opts.BugFinderAnalysis.CheckersPreset = 'all'

EnableCheckers — Activate defect checking
true (default) | false

This property affects Bug Finder analysis only.

Activate defect checking, specified as true or false. Setting this property to false disables
all defects. If you want to disable defect checking but still get results, turn on coding
rules checking or code metric checking.

This property is equivalent to the Find defects check box in the Polyspace interface.
Example: opts.BugFinderAnalysis.EnableCheckers = false

ChecksAssumption (Affects Code Prover Only)

AllowNegativeOperandInShift — Allow left shift operations on a negative
number
true (default) | false

This property affects Code Prover analysis only.

Allow left shift operations on a negative number, specified as true or false.

For more information, see Allow negative operand for left shifts (-allow-
negative-operand-in-shift).
Example: opts.ChecksAssumption.AllowNegativeOperandInShift = true

AllowNonFiniteFloats — Incorporate infinities and/or NaNs
false (default) | true

4 Functions, Properties, Classes, and Apps

4-172

This property affects Code Prover analysis only.

Incorporate infinities and/or NaNs, specified as true or false.

For more information, see Consider non finite floats (-allow-non-finite-
floats).
Example: opts.ChecksAssumption.AllowNonFiniteFloats = true

AllowPtrArithOnStruct — Allow arithmetic on pointer to a structure field so
that it points to another field
false (default) | true

This property affects Code Prover analysis only.

Allow arithmetic on pointer to a structure field so that it points to another field, specified
as true or false.

For more information, see Enable pointer arithmetic across fields (-allow-
ptr-arith-on-struct).
Example: opts.ChecksAssumption.AllowPtrArithOnStruct = true

CheckInfinite — Detect floating-point operations that result in infinities
allow (default) | warn-first | forbid

This property affects Code Prover analysis only.

Detect floating-point operations that result in infinities.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see Infinities (-check-infinite).
Example: opts.ChecksAssumption.CheckInfinite = 'forbid'

CheckNan — Detect floating-point operations that result in NaN-s
allow (default) | warn-first | forbid

This property affects Code Prover analysis only.

Detect floating-point operations that result in NaN-s.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

 polyspace.ModelLinkOptions Properties

4-173

For more information, see NaNs (-check-nan).
Example: opts.ChecksAssumption.CheckNan = 'forbid'

CheckSubnormal — Detect operations that result in subnormal floating point
values
allow (default) | warn-first | warn-all | forbid

This property affects Code Prover analysis only.

Detect operations that result in subnormal floating point values.

For more information, see Subnormal detection mode (-check-subnormal).
Example: opts.ChecksAssumption.CheckSubnormal = 'forbid'

DetectPointerEscape — Find cases where a function returns a pointer to one of
its local variables
false (default) | true

This property affects Code Prover analysis only.

Find cases where a function returns a pointer to one of its local variables, specified as
true or false.

For more information, see Detect stack pointer dereference outside scope
(-detect-pointer-escape).
Example: opts.ChecksAssumption.DetectPointerEscape = true

DisableInitializationChecks — Disable checks for noninitialized variables
and pointers
false (default) | true

This property affects Code Prover analysis only.

Disable checks for noninitialized variables and pointers, specified as true or false.

For more information, see Disable checks for non-initialization (-disable-
initialization-checks).
Example: opts.ChecksAssumption.DisableInitializationChecks = true

4 Functions, Properties, Classes, and Apps

4-174

PermissiveFunctionPointer — Allow type mismatch between function pointers
and the functions they point to
false (default) | true

This property affects Code Prover analysis only.

Allow type mismatch between function pointers and the functions they point to, specified
as true or false.

For more information, see Permissive function pointer calls (-permissive-
function-pointer).
Example: opts.ChecksAssumption.PermissiveFunctionPointer = true

SignedIntegerOverflows — Behavior of signed integer overflows
warn-with-wrap-around (default) | forbid | allow

This property affects Code Prover analysis only.

Enable the check for signed integer overflows and the assumptions to make following an
overflow specified as forbid, allow, or warn-with-wrap-around.

For more information, see Overflow mode for signed integer (-signed-
integer-overflows).
Example: opts.ChecksAssumption.SignedIntegerOverflows = 'warn-with-
wrap-around'

SizeInBytes — Allow a pointer with insufficient memory buffer to point to a
structure
false (default) | true

This property affects Code Prover analysis only.

Allow a pointer with insufficient memory buffer to point to a structure, specified as true or
false.

For more information, see Allow incomplete or partial allocation of
structures (-size-in-bytes).
Example: opts.ChecksAssumption.SizeInBytes = true

 polyspace.ModelLinkOptions Properties

4-175

UncalledFunctionCheck — Detect functions that are not called directly or
indirectly from main or another entry-point function
none (default) | never-called | called-from-unreachable | all

This property affects Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry-point
function, specified as none, never-called, called-from-unreachable, or all.

For more information, see Detect uncalled functions (-uncalled-function-
checks).
Example: opts.ChecksAssumption.UncalledFunctionCheck = 'all'

UnsignedIntegerOverflows — Behavior of unsigned integer overflows
allow (default) | forbid | warn-with-wrap-around

This property affects Code Prover analysis only.

Enable the check for unsigned integer overflows and the assumptions to make following
an overflow, specified as forbid, allow, or warn-with-wrap-around.

For more information, see Overflow mode for unsigned integer (-unsigned-
integer-overflows).
Example: opts.ChecksAssumption.UnsignedIntegerOverflows = 'allow'

CodeProverVerification (Affects Code Prover only)

ClassAnalyzer — Classes that you want to verify
none (default) | all | cell array of class names

This property affects Code Prover analysis only.

Classes that you want to verify, specified as all, none, or a cell array of class names.

For more information, see Class (-class-analyzer).
Example: opts.CodeProverVerification.ClassAnalyzer = 'none'

FunctionsCalledAfterLoop — Functions that the generated main must call after
the cyclic code loop
cell array of function names

This property affects Code Prover analysis only.

4 Functions, Properties, Classes, and Apps

4-176

Functions that the generated main must call after the cyclic code loop, specified as a cell
array of function names.

For more information, see Termination functions (-functions-called-after-
loop).
Example: opts.CodeProverVerification.FunctionsCalledAfterLoop =
{'func1','func2'}

FunctionsCalledBeforeLoop — Functions that the generated main must call
before the cyclic code loop
cell array of function names

This property affects Code Prover analysis only.

Model Link only. Functions that the generated main must call before the cyclic code loop,
specified as a cell array of function names.

For more information, see Initialization functions (-functions-called-
before-loop)).
Example: opts.CodeProverVerification.FunctionsCalledBeforeLoop =
{'func1','func2'}

FunctionsCalledInLoop — Functions that the generated main must call in the
cyclic code loop
none (default) | all | cell array of function names

This property affects Code Prover analysis only.

Functions that the generated main must call in the cyclic code loop, specified as none,
all, or a cell array of function names.

For more information, see Step functions (-functions-called-in-loop).
Example: opts.CodeProverVerification.FunctionsCalledInLoop = 'all'

MainGenerator — Generate a main function if it is not present in source files
true (default) | false

This property affects Code Prover analysis only.

Generate a main function if it is not present in source files, specified as true or false.

 polyspace.ModelLinkOptions Properties

4-177

For more information, see Verify module or library (-main-generator).
Example: opts.CodeProverVerification.MainGenerator = false

VariablesWrittenBeforeLoop — Variables that the generated main must
initialize before the cyclic code loop
none (default) | all | cell array of variable names

This property affects Code Prover analysis only.

Variables that the generated main must initialize before the cyclic code loop, specified as
none, all, or a cell array of variable names.

For more information, see Parameters (-variables-written-before-loop).
Example: opts.CodeProverVerification.VariablesWrittenBeforeLoop =
'all'

VariablesWrittenInLoop — Variables that the generated main must initialize in
the cyclic code loop
none (default) | all | cell array of variable names

This property affects Code Prover analysis only.

Variables that the generated main must initialize in the cyclic code loop, specified as
none, all, or a cell array of variable names.

For more information, see Inputs (-variables-written-in-loop).
Example: opts.CodeProverVerification.VariablesWrittenInLoop = 'all'

CodingRulesCodeMetrics

AcAgcSubset — Subset of MISRA AC AGC rules to check
OBL-rules (default) | OBL-REC-rules | single-unit-rules | system-decidable-
rules | all-rules | SQO-subset1 | SQO-subset2 |
polyspace.CodingRulesOptions object | from-file

Subset of MISRA AC AGC rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA AC AGC (-misra-ac-agc).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

4 Functions, Properties, Classes, and Apps

4-178

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check MISRA AC AGC rules, also set EnableAcAgc to true.
Example: opts.CodingRulesCodeMetrics.AcAgcSubset = 'all-rules'
Data Types: char

AllowedPragmas — Pragma directives for which MISRA C:2004 rule 3.4 or MISRA
C++ 16-6-1 must not be applied
cell array of character vectors

Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ 16-6-1 must not be
applied, specified as a cell array of character vectors. This property affects only MISRA
C:2004 or MISRA AC AGC rule checking.

For more information, see Allowed pragmas (-allowed-pragmas).
Example: opts.CodingRulesCodeMetrics.AllowedPragmas =
{'pragma_01','pragma_02'}

Data Types: cell

AutosarCpp14 — Set of AUTOSAR C++ 14 rules to check
all (default) | required | automated | polyspace.CodingRulesOptions object |
from-file

This property affects Bug Finder only.

Set of AUTOSAR C++ 14 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check AUTOSAR C++ 14 security checks (-autosar-cpp14).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

 polyspace.ModelLinkOptions Properties

4-179

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check AUTOSAR C++ 14 rules, also set EnableAutosarCpp14 to true.
Example: opts.CodingRulesCodeMetrics.AutosarCpp14 = 'all'
Data Types: char

BooleanTypes — Data types the coding rule checker must treat as effectively
Boolean
cell array of character vectors

Data types that the coding rule checker must treat as effectively Boolean, specified as a
cell array of character vectors.

For more information, see Effective boolean types (-boolean-types).
Example: opts.CodingRulesCodeMetrics.BooleanTypes =
{'boolean1_t','boolean2_t'}

Data Types: cell

CertC — Set of CERT C rules and recommendations to check
all (default) | publish-2016 | rules | polyspace.CodingRulesOptions object |
from-file

This property affects Bug Finder only.

Set of CERT C rules and recommendations to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check CERT-C security checks (-cert-c).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and

4 Functions, Properties, Classes, and Apps

4-180

CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check CERT C rules and recommendations, also set EnableCertC to true.
Example: opts.CodingRulesCodeMetrics.CertC = 'all'
Data Types: char

CertCpp — Set of CERT C++ rules to check
all (default) | rules | polyspace.CodingRulesOptions object | from-file

This property affects Bug Finder only.

Set of CERT C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check CERT-C++ security checks (-cert-cpp).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check CERT C++ rules, also set EnableCertCpp to true.
Example: opts.CodingRulesCodeMetrics.CertCpp = 'all'
Data Types: char

CheckersSelectionByFile — File that defines custom set of coding standard
checkers
full file path of .xml file

 polyspace.ModelLinkOptions Properties

4-181

File where you define a custom set of coding standards checkers to check, specified as
a .xml file. You can, in the same file, define a custom set of checkers for each of the
coding standards that Polyspace supports. To create a file that defines a custom selection
of coding standard checkers, in the Polyspace interface, select a coding standard on the
Coding Standards & Code Metrics node of the Configuration pane and click Edit.

For more information, see Set checkers by file (-checkers-selection-file).
Example: opts.CodingRulesCodeMetrics.CheckersSelectionByFile =
'C:\ps_settings\coding_rules\custom_rules.xml'

Data Types: char

CodeMetrics — Activate code metric calculations
false (default) | true

Activate code metric calculations, specified as true or false. If this property is turned off,
Polyspace does not calculate code metrics even if you upload your results to Polyspace
Metrics.

For more information about the code metrics, see Calculate code metrics (-code-
metrics).

If you assign a coding rules options object to this property, an XML file gets created
automatically with the rules specified.
Example: opts.CodingRulesCodeMetrics.CodeMetrics = true

CustomRulesSubset — Custom naming conventions to check against
full file path of custom coding rules .xml file.

Custom naming conventions to check against, specified as a custom coding rules file. To
create a custom coding rules file, in the Polyspace interface, select Check custom rules
on the Coding Standards & Code Metrics node of the Configuration pane and click
Edit

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.CustomRulesSubset =
'C:\ps_settings\coding_rules\custom_rules.xml'

Data Types: char

EnableAcAgc — Check MISRA AC AGC rules
false (default) | true

4 Functions, Properties, Classes, and Apps

4-182

Check MISRA AC AGC rules, specified as true or false. To customize which rules are
checked, use AcAgcSubset.

For more information about the MISRA AC AGC checker, see Check MISRA AC AGC (-
misra-ac-agc).
Example: opts.CodingRulesCodeMetrics.EnableAcAgc = true;

EnableAutosarCpp14 — Check AUTOSAR C++ 14 rules
false (default) | true

This property affects Bug Finder only.

Check AUTOSAR C++ 14 rules, specified as true or false. To customize which rules are
checked, use AutosarCpp14.

For more information about the AUTOSAR C++ 14 checker, see Check AUTOSAR C++
14 security checks (-autosar-cpp14).
Example: opts.CodingRulesCodeMetrics.EnableAutosarCpp14 = true;

EnableCertC — check CERT C rules and recommendations
false (default) | true

This property affects Bug Finder only.

Check CERT C rules and recommendations, specified as true or false. To customize which
rules are checked, use CertC.

For more information about the CERT C checker, see Check CERT-C security checks
(-cert-c).
Example: opts.CodingRulesCodeMetrics.EnableCertC = true;

EnableCertCpp — check CERT C++ rules
false (default) | true

This property affects Bug Finder only.

Check CERT C++ rules, specified as true or false. To customize which rules are checked,
use CertCpp.

For more information about the CERT C++ checker, see Check CERT-C++ security
checks (-cert-cpp).

 polyspace.ModelLinkOptions Properties

4-183

Example: opts.CodingRulesCodeMetrics.EnableCertCpp = true;

EnableCheckersSelectionByFile — Check custom set of coding standard
checkers
false (default) | true

Check custom set of coding standard checkers, specified as true or false. Use with
CheckersSelectionByFile and these coding standards:

• opts.CodingRulesCodeMetrics.AutosarCpp14='from-file'
• opts.CodingRulesCodeMetrics.CertC='from-file'
• opts.CodingRulesCodeMetrics.CertCpp='from-file'
• opts.CodingRulesCodeMetrics.Iso17961='from-file'
• opts.CodingRulesCodeMetrics.JsfSubset='from-file'
• opts.CodingRulesCodeMetrics.MisraC3Subset='from-file'
• opts.CodingRulesCodeMetrics.MisraCSubset='from-file'
• opts.CodingRulesCodeMetrics.MisraCppSubset='from-file'

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCheckersSelectionByFile =
true;

EnableCustomRules — Check custom coding rules
false (default) | true

Check custom coding rules, specified as true or false. The file you specify with
CheckersSelectionByFile defines the custom coding rules.

Use with EnableCheckersSelectionByFile.

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCustomRules = true;

EnableIso17961 — check ISO-17961 rules
false (default) | true

This property affects Bug Finder only.

4 Functions, Properties, Classes, and Apps

4-184

Check ISO/IEC TS 17961 rules, specified as true or false. To customize which rules are
checked, use Iso17961.

For more information about the ISO-17961 checker, see Check ISO-17961 security
checks (-iso-17961).
Example: opts.CodingRulesCodeMetrics.EnableIso17961 = true;

EnableJsf — Check JSF C++ rules
false (default) | true

Check JSF C++ rules, specified as true or false. To customize which rules are checked,
use JsfSubset.

For more information, see Check JSF C++ rules (-jsf-coding-rules).
Example: opts.CodingRulesCodeMetrics.EnableJsf = true;

EnableMisraC — Check MISRA C:2004 rules
false (default) | true

Check MISRA C:2004 rules, specified as true or false. To customize which rules are
checked, use MisraCSubset.

For more information, see Check MISRA C:2004 (-misra2).
Example: opts.CodingRulesCodeMetrics.EnableMisraC = true;

EnableMisraC3 — Check MISRA C:2012 rules
false (default) | true

Check MISRA C:2012 rules, specified as true or false. To customize which rules are
checked, use MisraC3Subset.

For more information about the MISRA C:2012 checker, see Check MISRA C:2012 (-
misra3).
Example: opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

EnableMisraCpp — Check MISRA C++:2008 rules
false (default) | true

Check MISRA C++:2008 rules, specified as true or false. To customize which rules are
checked, use MisraCppSubset.

 polyspace.ModelLinkOptions Properties

4-185

For more information about the MISRA C++:2008 checker, see Check MISRA C++
rules (-misra-cpp).
Example: opts.CodingRulesCodeMetrics.EnableMisraCpp = true;

Iso17961 — Set of ISO-17961 rules to check
all (default) | decidable | polyspace.CodingRulesOptions object | from-file

This property affects Bug Finder only.

Set of ISO/IEC TS 17961 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check ISO-17961 security checks (-iso-17961).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check ISO/IEC TS 17961 rules, also set EnableIso17961 to true.
Example: opts.CodingRulesCodeMetrics.Iso17961 = 'all'
Data Types: char

JsfSubset — Subset of JSF C++ rules to check
shall-rules (default) | shall-will-rules | all-rules |
polyspace.CodingRulesOptions object | from-file

Subset of JSF C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check JSF C++ rules (-jsf-coding-rules).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

4 Functions, Properties, Classes, and Apps

4-186

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check JSF C++ rules, set EnableJsf to true.
Example: opts.CodingRulesCodeMetrics.JsfSubset = 'all-rules'
Data Types: char

Misra3AgcMode — Use the MISRA C:2012 categories for automatically generated
code
false (default) | true

Use the MISRA C:2012 categories for automatically generated code, specified as true or
false.

For more information, see Use generated code requirements (-misra3-agc-
mode).
Example: opts.CodingRulesCodeMetrics.Misra3AgcMode = true;

MisraC3Subset — Subset of MISRA C:2012 rules to check
mandatory-required (default) | mandatory | single-unit-rules | system-
decidable-rules | all | SQO-subset1 | SQO-subset2 |
polyspace.CodingRulesOptions object | from-file

Subset of MISRA C:2012 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2012 (-misra3).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

 polyspace.ModelLinkOptions Properties

4-187

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check MISRA C:2012 rules, also set EnableMisraC3 to true.
Example: opts.CodingRulesCodeMetrics.MisraC3Subset = 'all'
Data Types: char

MisraCSubset — Subset of MISRA C:2004 rules to check
required-rules (default) | single-unit-rules | system-decidable-rules | all-
rules | SQO-subset1 | SQO-subset2 | polyspace.CodingRulesOptions object |
from-file

Subset of MISRA C:2004 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2004 (-misra2).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check MISRA C:2004 rules, also set EnableMisraC to true.
Example: opts.CodingRulesCodeMetrics.MisraCSubset = 'all-rules'
Data Types: char

MisraCppSubset — Subset of MISRA C++ rules
required-rules (default) | all-rules | CERT-rules | CERT-all | SQO-subset1 |
SQO-subset2 | polyspace.CodingRulesOptions object | from-file

Subset of MISRA C++:2008 rules to check, specified by:

4 Functions, Properties, Classes, and Apps

4-188

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C++ rules (-misra-cpp).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property
and then use the EnableCheckersSelectionByFile and
CheckersSelectionByFile property to specify the full path to the file where you
define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding
Standard Violations”. If you assign a coding rules options object to this property, an
XML file is created automatically and assigned to the CheckersSelectionByFile
property. The XML file enables rules extracted from the coding rules options object.

To check MISRA C++ rules, set EnableMisraCpp to true.
Example: opts.CodingRulesCodeMetrics.MisraCppSubset = 'all-rules'
Data Types: char

EnvironmentSettings

Dos — Consider that file paths are in MS-DOS style
true (default) | false

Consider that file paths are in MS-DOS style, specified as true or false.

For more information, see Code from DOS or Windows file system (-dos).
Example: opts.EnvironmentSettings.Dos = true;

IncludeFolders — Include folders needed for compilation
cell array of include folder paths

Include folders needed for compilation, specified as a cell array of the include folder
paths.

To specify all subfolders of a folder, use folder path followed by **, for instance,
'C:\includes**'. The notation follows the syntax of the dir function. See also
“Specify Multiple Source Files”.

For more information, see -I.

 polyspace.ModelLinkOptions Properties

4-189

Example: opts.EnvironmentSettings.IncludeFolders = {'/includes','/
com1/inc'};

Example: opts.EnvironmentSettings.IncludeFolders =
{'C:\project1\common\includes'};

Data Types: cell

Includes — Files to be #include-ed by each C file
cell array of files

Files to be #include-ed by each C source file in the analysis, specified by a cell array of
files.

For more information, see Include (-include).
Example: opts.EnvironmentSettings.Includes = {'/inc/inc_file.h','/inc/
inc_math.h'}

NoExternC — Ignore linking errors inside extern blocks
false (default) | true

Ignore linking errors inside extern blocks, specified as true or false.

For more information, see Ignore link errors (-no-extern-c).
Example: opts.EnvironmentSettings.NoExternC = false;

PostPreProcessingCommand — Command or script to run on source files after
preprocessing
character vector

Command or script to run on source files after preprocessing, specified as a character
vector of the command to run.

For more information, see Command/script to apply to preprocessed files (-
post-preprocessing-command).
Example: Linux — opts.EnvironmentSettings.PostPreProcessingCommand =
[pwd,'/replace_keyword.pl']

Example: Windows — opts.EnvironmentSettings.PostPreProcessingCommand =
'"C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe"
"C:\My_Scripts\replace_keyword.pl"'

4 Functions, Properties, Classes, and Apps

4-190

StopWithCompileError — Stop analysis if a file does not compile
false (default) | true

Stop analysis if a file does not compile, specified as true or false.

For more information, see Stop analysis if a file does not compile (-stop-
if-compile-error).
Example: opts.EnvironmentSettings.StopWithCompileError = true;

InputsStubbing

DataRangeSpecifications — Constrain global variables, function inputs, and
return values of stubbed functions
file path

Constrain global variables, function inputs, and return values of stubbed functions
specified by the path to an XML constraint file. For more information about the constraint
file, see “Specify External Constraints”.

For more information about this option, see Constraint setup (-data-range-
specifications).
Example: opts.InputsStubbing.DataRangeSpecifications = 'C:\project
\constraint_file.xml'

DoNotGenerateResultsFor — Files on which you do not want analysis results
include-folders (default) | all-headers | custom=file1[,folder1[,...]]

Files on which you do not want analysis results, specified by include-folders, all-
headers, or a character array beginning with custom= and containing a list of comma-
separated file or folder names.

Use this option with InputsStubbing.GenerateResultsFor. For more information,
see Do not generate results for (-do-not-generate-results-for).
Example: opts.InputsStubbing.DoNotGenerateResultsFor =
'custom=C:\project\file1.c,C:\project\file2.c'

GenerateResultsFor — Files on which you want analysis results
source-headers (default) | all-headers | custom=file1[,folder1[,...]]

 polyspace.ModelLinkOptions Properties

4-191

Files on which you want analysis results, specified by source-headers, all-headers,
or a character array beginning with custom= and containing a comma-separated file or
folder names.

Use this option with InputsStubbing.DoNotGenerateResultsFor. For more
information, see Generate results for sources and (-generate-results-
for).
Example: opts.InputsStubbing.GenerateResultsFor = 'custom=C:\project
\includes_common_1,C:\project\includes_common_2'

FunctionsToStub — Functions to stub during analysis
cell array of function names

This property affects Code Prover analysis only.

Functions to stub during analysis, specified as a cell array of function names.

For more information, see Functions to stub (-functions-to-stub).
Example: opts.InputsStubbing.FunctionsToStub = {'func1', 'func2'}

NoDefInitGlob — Consider global variables as uninitialized
false (default) | true

This property affects Code Prover analysis only.

Consider global variables as uninitialized, specified as true or false.

For more information, see Ignore default initialization of global
variables (-no-def-init-glob).
Example: opts.InputsStubbing.NoDefInitGlob = true

NoStlStubs — Do not use Polyspace implementations of functions in the
Standard Template Library
false (default) | true

This property applies only to a Code Prover analysis of C++ code.

Do not use Polyspace implementations of functions in the Standard Template Library,
specified as true or false.

For more information, see No STL stubs (-no-stl-stubs).

4 Functions, Properties, Classes, and Apps

4-192

Example: opts.InputsStubbing.NoStlStubs = true

StubECoderLookupTables — Specify that the analysis must stub functions in the
generated code that use lookup tables
true (default) | false

This property applies only to a Code Prover analysis of code generated from models.

Specify that the analysis must stub functions in the generated code that use lookup
tables. By replacing the functions with stubs, the analysis assumes more precise return
values for the functions.

For more information, see Generate stubs for Embedded Coder lookup tables
(-stub-embedded-coder-lookup-table-functions).
Example: opts.InputsStubbing.StubECoderLookupTables = true

Macros

DefinedMacros — Macros to be replaced
cell array of macros

In preprocessed code, macros are replaced by the definition, specified in a cell array of
macros and definitions. Specify the macro as Macro=Value. If you want Polyspace to
ignore the macro, leave the Value blank. A macro with no equal sign replaces all
instances of that macro by 1.

For more information, see Preprocessor definitions (-D).
Example: opts.Macros.DefinedMacros = {'uint32=int','name3=','var'}

UndefinedMacros — Macros to undefine
cell array of macros

In preprocessed code, macros are undefined, specified by a cell array of macros to
undefine.

For more information, see Disabled preprocessor definitions (-U).
Example: opts.Macros.DefinedMacros = {'name1','name2'}

 polyspace.ModelLinkOptions Properties

4-193

MergedComputingSettings

AddToResultsRepositoryBugFinder — Upload Bug Finder results to Polyspace
Metrics web dashboard
false (default) | true

This property affects Bug Finder analysis only.

Upload Bug Finder analysis results to Polyspace Metrics web dashboard, specified as true
or false. To use this option, in your Polyspace preferences, you must specify a metrics
server.

For more information, see Upload results to Polyspace Metrics (-add-to-
results-repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryBugFinder
= true;

AddToResultsRepositoryCodeProver — Upload Code Prover results to
Polyspace Metrics web dashboard
false (default) | true

This property affects Code Prover analysis only.

Upload Code Prover analysis results to Polyspace Metrics web dashboard, specified as
true or false. To use this option, in your Polyspace preferences, you must specify a metrics
server.

For more information, see Upload results to Polyspace Metrics (-add-to-
results-repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryCodeProver
= true;

BatchBugFinder — Send Bug Finder analysis to remote server
false (default) | true

This property affects Bug Finder analysis only.

Send Bug Finder analysis to remote server, specified as true or false. To use this option, in
your Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a
remote cluster (-batch).

4 Functions, Properties, Classes, and Apps

4-194

Example: opts.MergedComputingSettings.BatchBugFinder = true;

BatchCodeProver — Send Code Prover analysis to remote server
false (default) | true

This property affects Code Prover analysis only.

Send Code Prover analysis to remote server, specified as true or false. To use this option,
in your Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a
remote cluster (-batch).
Example: opts.MergedComputingSettings.BatchCodeProver = true;

FastAnalysis — Run Bug Finder analysis using faster local mode
false (default) | true

This property affects Bug Finder analysis only.

Use fast analysis mode for Bug Finder analysis, specified as true or false.

For more information, see Use fast analysis mode for Bug Finder (-fast-
analysis).
Example: opts.MergedComputingSettings.FastAnalysis = true;

MergedReporting

EnableReportGeneration — Generate a report after the analysis
false (default) | true

After the analysis, generate a report, specified as true or false.

For more information, see Generate report.
Example: opts.MergedReporting.EnableReportGeneration = true

ReportOutputFormat — Output format of generated report
Word (default) | HTML | PDF

Output format of generated report, specified as one of the report formats. To activate this
option, specify Reporting.EnableReportGeneration.

 polyspace.ModelLinkOptions Properties

4-195

For more information about the different values, see Output format (-report-
output-format).
Example: opts.MergedReporting.ReportOutputFormat = 'PDF'

BugFinderReportTemplate — Template for generating Bug Finder analysis
report
BugFinderSummary (default) | BugFinder | SecurityCWE | CodeMetrics |
CodingStandards

This property affects a Bug Finder analysis only.

Template for generating analysis report, specified as one of the report formats. To
activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover
report (-report-template).
Example: opts.MergedReporting.BugFinderReportTemplate = 'CodeMetrics'

CodeProverReportTemplate — Template for generating Code Prover analysis
report
Developer (default) | CallHierarchy | CodeMetrics | CodingStandards |
DeveloperReview | Developer_withGreenChecks | Quality | VariableAccess

This property affects a Code Prover analysis only.

Template for generating analysis report, specified as one of the predefined report
formats. To activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover
report (-report-template).
Example: opts.MergedReporting.CodeProverReportTemplate = 'CodeMetrics'

Multitasking

ArxmlMultitasking — Specify path of ARXML files to parse for multitasking
configuration
cell array of file paths

Specify the path to the ARXML files the software parses to set up your multitasking
configuration.

4 Functions, Properties, Classes, and Apps

4-196

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to autosar.

For more information, see ARXML files selection (-autosar-multitasking)
Example: opts.Multitasking.ArxmlMultitasking={'C:\Polyspace_Workspace
\AUTOSAR\myFile.arxml'}

CriticalSectionBegin — Functions that begin critical sections
cell array of critical section function names

Functions that begin critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionEnd.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).
Example: opts.Multitasking.CriticalSectionBegin =
{'function1:cs1','function2:cs2'}

CriticalSectionEnd — Functions that end critical sections
cell array of critical section function names

Functions that end critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionBegin.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).
Example: opts.Multitasking.CriticalSectionEnd =
{'function1:cs1','function2:cs2'}

CyclicTasks — Specify functions that represent cyclic tasks
cell array of function names

Specify functions that represent cyclic tasks.

To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Cyclic tasks (-cyclic-tasks).
Example: opts.Multitasking.CyclicTasks = {'function1','function2'}

 polyspace.ModelLinkOptions Properties

4-197

EnableConcurrencyDetection — Enable automatic detection of certain families
of threading functions
false (default) | true

This property affects Code Prover analysis only.

Enable automatic detection of certain families of threading functions, specified as true or
false.

For more information, see Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection).
Example: opts.Multitasking.EnableConcurrencyDetection = true

EnableExternalMultitasking — Enable automatic multitasking configuration
from external file definitions
false (default) | true

Enable multitasking configuration of your projects from external files you provide.
Configure multitasking from ARXML files for an AUTOSAR project, or from OIL files for
an OSEK project.

Activate this option to enable Multitasking.ArxmlMultitasking or
Multitasking.OsekMultitasking.

For more information, see OIL files selection (-osek-multitasking) and
ARXML files selection (-autosar-multitasking).
Example: opts.Multitasking.EnableExternalMultitasking = 1

EnableMultitasking — Configure multitasking manually
false (default) | true

Configure multitasking manually by specifying true. This property activates the other
manual, multitasking properties.

For more information, see Configure multitasking manually.
Example: opts.Multitasking.EnableMultitasking = 1

EntryPoints — Functions that serve as entry-points to your multitasking
application
cell array of entry-point function names

4 Functions, Properties, Classes, and Apps

4-198

Functions that serve as entry-points to your multitasking application specified as a cell
array of entry-point function names. To activate this option, also specify
Multitasking.EnableMultitasking.

For more information, see Tasks (-entry-points).
Example: opts.Multitasking.EntryPoints = {'function1','function2'}

ExternalMultitaskingType — Specify type of file to parse for multitasking
configuration
osek (default) | autosar

Specify the type of file the software parses to set up your multitasking configuration:

• For osek type, the analysis looks for OIL files in the file or folder paths that you
specify.

• For autosar type, the analysis looks for ARXML files in the file paths that you specify.

To activate this option, specify Multitasking.EnableExternalMultitasking.

For more information, see OIL files selection (-osek-multitasking) and
ARXML files selection (-autosar-multitasking).
Example: opts.Multitasking.ExternalMultitaskingType = 'autosar'

Interrupts — Specify functions that represent nonpreemptable interrupts
cell array of function names

Specify functions that represent nonpreemptable interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Interrupts (-interrupts).
Example: opts.Multitasking.Interrupts = {'function1','function2'}

InterruptsDisableAll — Specify routine that disable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that disables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

 polyspace.ModelLinkOptions Properties

4-199

For more information, see Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsDisableAll = {'function'}

InterruptsEnableAll — Specify routine that reenable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that reenables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsEnableAll = {'function'}

OsekMultitasking — Specify path of OIL files to parse for multitasking
configuration
auto (default) | custom=file1[,folder1[,...]]

Specify the path to the OIL files the software parses to set up your multitasking
configuration:

• In auto mode, the analysis uses OIL files in your project source and include folders,
but not their subfolders.

• In custom mode, the analysis uses the OIL files at the specified path, and the path
subfolders.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to osek.

For more information, see OIL files selection (-osek-multitasking)
Example: opts.Multitasking.OsekMultitasking = 'custom=file_path,
dir_path'

TemporalExclusion — Entry-point functions that cannot execute concurrently
cell array of entry-point function names

Entry-point functions that cannot execute concurrently specified as a cell array of entry-
point function names. Each set of exclusive tasks is one cell array entry with functions

4 Functions, Properties, Classes, and Apps

4-200

separated by spaces. To activate this option, specify
Multitasking.EnableMultitasking.

For more information, see Temporally exclusive tasks (-temporal-
exclusions-file).
Example: opts.Multitasking.TemporalExclusion = {'function1 function2',
'function3 function4 function5'} where function1 and function2 are temporally
exclusive, and function3, function4, and function 5 are temporally exclusive.

Precision (Affects Code Prover Only)

ContextSensitivity — Store call context information to identify function call
that caused errors
none (default) | auto | custom=function1[,function2[,...]]

This property affects Code Prover analysis only.

Store call context information to identify a function call that caused errors, specified as
none, auto, or as a character array beginning with custom= followed by a list of comma-
separated function names.

For more information, see Sensitivity context (-context-sensitivity).
Example: opts.Precision.ContextSensitivity = 'auto'
Example: opts.Precision.ContextSensitivity = 'custom=func1'

ModulesPrecision — Source files you want to verify at higher precision
cell array of file names and precision levels

This property affects Code Prover analysis only.

Source files that you want to verify at higher precision, specified as a cell array of file
names without the extension and precision levels using this syntax: filename:Olevel

For more information, see Specific precision (-modules-precision).
Example: opts.Precision.ModulesPrecision = {'file1:O0', 'file2:O3'}

OLevel — Precision level for the verification
2 (default) | 0 | 1 | 3

This property affects Code Prover analysis only.

 polyspace.ModelLinkOptions Properties

4-201

Precision level for the verification, specified as 0, 1, 2, or 3.

For more information, see Precision level (-O).
Example: opts.Precision.OLevel = 3

PathSensitivityDelta — Avoid certain verification approximations for code
with fewer lines
positive integer

This property affects Code Prover analysis only.

Avoid certain verification approximations for code with fewer lines, specified as a positive
integer representing how sensitive the analysis is. Higher values can increase verification
time exponentially.

For more information, see Improve precision of interprocedural analysis (-
path-sensitivity-delta).
Example: opts.Precision.PathSensitivityDelta = 2

Timeout — Time limit on your verification
character vector

This property affects Code Prover analysis only.

Time limit on your verification, specified as a character vector of time in hours.

For more information, see Verification time limit (-timeout).
Example: opts.Precision.Timeout = '5.75'

To — Number of times the verification process runs
Software Safety Analysis level 2 (default) | Software Safety Analysis
level 0 | Software Safety Analysis level 1 | Software Safety Analysis
level 3 | Software Safety Analysis level 4 | Source Compliance Checking
| other

This property affects Code Prover analysis only.

Number of times the verification process runs, specified as one of the preset analysis
levels.

For more information, see Verification level (-to).

4 Functions, Properties, Classes, and Apps

4-202

Example: opts.Precision.To = 'Software Safety Analysis level 3'

Scaling (Affects Code Prover Only)

Inline — Functions on which separate results must be generated for each
function call
cell array of function names

This property affects Code Prover analysis only.

Functions on which separate results must be generated for each function call, specified as
a cell array of function names.

For more information, see Inline (-inline).
Example: opts.Scaling.Inline = {'func1','func2'}

KLimiting — Limit depth of analysis for nested structures
positive integer

This property affects Code Prover analysis only.

Limit depth of analysis for nested structures, specified as a positive integer indicating
how many levels into a nested structure to verify.

For more information, see Depth of verification inside structures (-k-
limiting).
Example: opts.Scaling.KLimiting = 3

TargetCompiler

Compiler — Compiler that builds your source code
generic (default) | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | gnu5.x | gnu6.x |
gnu7.x | clang3.x | clang4.x | clang5.x | visual9.0 | visual10 | visual11.0 |
visual12.0 | visual14.0 | visual15.x | keil | iar | armcc | armclang |
codewarrior | diab | greenhills | iar-ew | renesas | tasking | ti

Compiler that builds your source code.

For more information, see Compiler (-compiler).
Example: opts.TargetCompiler.Compiler = 'Visual11.0'

 polyspace.ModelLinkOptions Properties

4-203

CppVersion — Specify C++11 standard version followed in code
defined-by-compiler (default) | cpp03 | cpp11 | cpp14

Specify C++ standard version followed in code, specified as a character vector.

For more information, see C++ standard version (-cpp-version).
Example: opts.TargetCompiler.CppVersion = 'cpp11';

CVersion — Specify C standard version followed in code
defined-by-compiler (default) | c90 | c99 | c11

Specify C standard version followed in code, specified as a character vector.

For more information, see C standard version (-c-version).
Example: opts.TargetCompiler.CVersion = 'c90';

DivRoundDown — Round down quotients from division or modulus of negative
numbers
false (default) | true

Round down quotients from division or modulus of negative numbers, specified as true or
false.

For more information, see Division round down (-div-round-down).
Example: opts.TargetCompiler.DivRoundDown = true

EnumTypeDefinition — Base type representation of enum
defined-by-compiler (default) | auto-signed-first | auto-unsigned-first

Base type representation of enum, specified by an allowed base-type set. For more
information about the different values, see Enum type definition (-enum-type-
definition).
Example: opts.TargetCompiler.EnumTypeDefinition = 'auto-unsigned-
first'

IgnorePragmaPack — Ignore #pragma pack directives
false (default) | true

Ignore #pragma pack directives, specified as true or false.

4 Functions, Properties, Classes, and Apps

4-204

For more information, see Ignore pragma pack directives (-ignore-pragma-
pack).
Example: opts.TargetCompiler.IgnorePragmaPack = true

Language — Language of analysis
C-CPP (default) | C | CPP

This property is read-only.

Language of the analysis, specified during the object construction. This value changes
which properties appear.

For more information, see Source code language (-lang).

LogicalSignedRightShift — Treatment of signed bit on signed variables
Arithmetical (default) | Logical

Treatment of signed bit on signed variables, specified as Arithmetical or Logical. For
more information, see Signed right shift (-logical-signed-right-shift).
Example: opts.TargetCompiler.LogicalSignedRightShift = 'Logical'

NoUliterals — Do not use predefined typedefs for char16_t or char32_t
false (default) | true

Do not use predefined typedefs for char16_t or char32_t, specified as true or false. For
more information, see Block char16/32_t types (-no-uliterals).
Example: opts.TargetCompiler.NoUliterals = true

PackAlignmentValue — Default structure packing alignment
defined-by-compiler (default) | 1 | 2 | 4 | 8 | 16

Default structure packing alignment, specified as defined-by-compiler, 1,2, 4, 8, or
16. This property is available only for Visual C++ code.

For more information, see Pack alignment value (-pack-alignment-value).
Example: opts.TargetCompiler.PackAlignmentValue = '4'

SfrTypes — sfr types
cell array of sfr keywords

 polyspace.ModelLinkOptions Properties

4-205

sfr types, specified as a cell array of sfr keywords using the syntax
sfr_name=size_in_bits. For more information, see Sfr type support (-sfr-
types).

This option only applies when you set TargetCompiler.Compiler to keil or iar.
Example: opts.TargetCompiler.SfrTypes = {'sfr32=32'}

SizeTTypeIs — Underlying type of size_t
defined-by-compiler (default) | unsigned-int | unsigned-long | unsigned-
long-long

Underlying type of size_t, specified as defined-by-compiler, unsigned-int,
unsigned-long, or unsigned-long-long. See Management of size_t (-size-t-
type-is).
Example: opts.TargetCompiler.SizeTTypeIs = 'unsigned-long'

Target — Target processor
i386 (default) | arm | arm64 | avr | c-167 | c166 | c18 | c28x | c6000 | coldfire |
hc08 | hc12 | m68k | mcore | mips | mpc5xx | msp430 | necv850 | powerpc |
powerpc64 | rh850 | rl78 | rx | s12z | sharc21x61 | sparc | superh | tms320c3x |
tricore | x86_64 | generic target object

Set size of data types and endianness of processor, specified as one of the predefined
target processors or a generic target object.

For more information about the predefined processors, see Target processor type
(-target).

For more information about creating a generic target, see
polyspace.GenericTargetOptions.
Example: opts.TargetCompiler.Target = 'hc12'

WcharTTypeIs — Underlying type of wchar_t
defined-by-compiler (default) | signed-short | unsigned-short | signed-int |
unsigned-int | signed-long | unsigned-long

Underlying type of wchar_t, specified as defined-by-compiler, signed-short,
unsigned-short, signed-int, unsigned-int, signed-long, or unsigned-long.
See Management of wchar_t (-wchar-t-type-is).
Example: opts.TargetCompiler.WcharTTypeIs = 'unsigned-int'

4 Functions, Properties, Classes, and Apps

4-206

VerificationAssumption (Affects Code Prover Only)

ConsiderVolatileQualifierOnFields — Assume that volatile qualified
structure fields can have all possible values at any point in code
false (default) | true

This property affects Code Prover analysis only.

Assume that volatile qualified structure fields can have all possible values at any point in
code.

For more information, see Consider volatile qualifier on fields (-
consider-volatile-qualifier-on-fields).
Example: opts.VerificationAssumption.ConsiderVolatileQualifierOnFields
= true

ConstraintPointersMayBeNull — Specify that environment pointers can be
NULL unless constrained otherwise
false (default) | true

This property affects Code Prover analysis only.

Specify that environment pointers can be NULL unless constrained otherwise.

For more information, see Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe).
Example: opts.VerificationAssumption.ConstraintPointersMayBeNull =
true

FloatRoundingMode — Rounding modes to consider when determining the
results of floating-point arithmetic
to-nearest (default) | all

This property affects Code Prover analysis only.

Rounding modes to consider when determining the results of floating-point arithmetic,
specified as to-nearest or all.

For more information, see Float rounding mode (-float-rounding-mode).
Example: opts.VerificationAssumption.FloatRoundingMode = 'all'

 polyspace.ModelLinkOptions Properties

4-207

RespectTypesInFields — Do not cast nonpointer fields of a structure to
pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer fields of a structure to pointers, specified as true or false.

For more information, see Respect types in fields (-respect-types-in-
fields).
Example: opts.VerificationAssumption.RespectTypesInFields = true

RespectTypesInGlobals — Do not cast nonpointer global variables to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer global variables to pointers, specified as true or false.

For more information, see Respect types in global variables (-respect-
types-in-globals).
Example: opts.VerificationAssumption.RespectTypesInGlobals = true

Other Properties

Author — Project author
username of current user (default) | character vector

Name of project author, specified as a character vector.

For more information, see -author.
Example: opts.Author = 'JaneDoe'

ImportComments — Import comments and justifications from previous analysis
character vector

To import comments and justifications from a previous analysis, specify the path to the
results folder of the previous analysis.

You can also point to a previous results folder to see only new results compared to the
previous run. See “Compare Results from Different Polyspace Runs by Using MATLAB
Scripts”.

4 Functions, Properties, Classes, and Apps

4-208

For more information, see -import-comments
Example: opts.ImportComments =
fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Exam
ple','Module_1','BF_Result')

Prog — Project name
PolyspaceProject (default) | character vector

Project name, specified as a character vector.

For more information, see -prog.
Example: opts.Prog = 'myProject'

ResultsDir — Location to store results
folder path

Location to store results, specified as a folder path. By default, the results are stored in
the current folder.

For more information, see -results-dir.

You can also create a separate results folder for each new run. See “Compare Results
from Different Polyspace Runs by Using MATLAB Scripts”.
Example: opts.ResultsDir = 'C:\project\myproject\results\'

Sources — Source files
cell array of files

Source files to analyze, specified as a cell array of files.

To specify all files in a folder, use folder path followed by *, for instance, 'C:\src*'. To
specify all files in a folder and its subfolders, use folder path followed by **, for instance,
'C:\src**'. The notation follows the syntax of the dir function. See also “Specify
Multiple Source Files”.

For more information, see -sources.
Example: opts.Sources = {'file1.c', 'file2.c', 'file3.c'}
Example: opts.Sources = {'project/src1/file1.c', 'project/src2/
file2.c', 'project/src3/file3.c'}

 polyspace.ModelLinkOptions Properties

4-209

Version — Project version number
1.0 (default) | character array of a number

Version number of project, specified as a character array of a number. This option is
useful if you upload your results to Polyspace Metrics. If you increment version numbers
each time that you reanalyze your object, you can compare the results from two versions
in Polyspace Metrics.

For more information, see -v[ersion].
Example: opts.Version = '2.3'

See Also

Topics
“Analysis Options”

Introduced in R2017a

4 Functions, Properties, Classes, and Apps

4-210

copyTo
Class: polyspace.Options
Package: polyspace

Copy common settings between Polyspace options objects

Syntax
optsFrom.copyTo(optsTo)

Description
optsFrom.copyTo(optsTo) copies the common options from optsFrom to optsTo.
The options objects do not need to be the same type of options object. This method copies
only properties that are common between the two objects.

Input Arguments
optsFrom — Options object you want to copy properties from
polyspace.Options or polyspace.ModelLinkOptions object

Option object that you want to copy properties from, specified as a polyspace.Options
or polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

optsTo — Options object you want to copy properties to
polyspace.Options object

Option object that you want to copy properties to, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

 copyTo

4-211

Examples

Copy Polyspace Options Object

This example shows how to set the properties of one options object and then copy that
object to another one.

Create a Polyspace options object and set properties.

opts1 = polyspace.Options();
opts1.Prog = 'DataRaceProject';
opts1.Sources = {'datarace.c'};
opts1.TargetCompiler.Compiler = 'gnu4.9';

Create another object and use copyTo to copy over options from the previous object.

opts2 = polyspace.Options();
opts1.copyTo(opts2);

See Also
polyspace.ModelLinkOptions | polyspace.Options |
polyspace.Options.generateProject

Introduced in R2016b

4 Functions, Properties, Classes, and Apps

4-212

generateProject
Class: polyspace.Options
Package: polyspace

Generate psprj project from options object

Syntax
opts.generateProject(projectName)

Description
opts.generateProject(projectName) creates a .psprj project called
projectName from the options specified in the polyspace.Options object opts. You
can open a .psprj project in the user interface of the Polyspace desktop products.

Input Arguments
opts — Options object to convert into a psprj file
polyspace.Options or polyspace.ModelLinkOptions object

Option object convert into a psprj file, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

projectName — Project file name
character vector

Project file name specified as a character vector. This argument is used as the name of
the psprj file.
Example: 'myProject'

 generateProject

4-213

Examples

Generate Project from a Bug Finder Options Object

This example shows how to create and use a Polyspace project that was generated from
an options object.

Create a Bug Finder object and set properties.

sources = fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';

Generate a Polyspace project. Name the project using the Prog property.

psprj = opts.generateProject(opts.Prog);

Run a Bug Finder analysis using one of these commands. Both commands produce
identical analysis results. The only difference is that the psprj project can be rerun in
the Polyspace interface.

polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder(opts);

To run a Code Prover analysis, use polyspaceCodeProver instead of
polyspaceBugFinder.

Tips
If you want to include an options object in a pslinkoptions object:

1 Use this method to convert your object to a project.
2 Add the project to the pslinkoptions property PrjConfig.
3 Turn on the property EnablePrjConfig.

4 Functions, Properties, Classes, and Apps

4-214

See Also
polyspace.ModelLinkOptions | polyspace.Options |
polyspace.Options.copyTo

Introduced in R2016b

 generateProject

4-215

toScript
Class: polyspace.Options
Package: polyspace

Add Polyspace options object definition to a script

Syntax
filePath = opts.toScript(fileName,positionInScript)

Description
filePath = opts.toScript(fileName,positionInScript) adds the properties of
a polyspace.Options object to a MATLAB script. The script shows the values assigned
to all the properties of the object. You can run the script later to define the object in the
MATLAB workspace and use it.

Input Arguments
opts — Options object with Polyspace analysis options
polyspace.Options or polyspace.ModelLinkOptions object

Option object to store in MATLAB script, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

fileName — Script name
character vector

Name or path to script, specified as a character vector. If you specify a relative path, the
script is created in subfolder of the current working folder.
Example: 'runPolyspace.m'

4 Functions, Properties, Classes, and Apps

4-216

positionInScript — Where to add object definition
'create' (default) | 'append'

Position in script where the object properties are added, specified as 'create' or
'append'. If you specify 'append', the object properties are added to the end of an
existing script. Otherwise, a new script is created.

Output Arguments
filePath — Full path to script
character vector

Full path to script, specified as a character vector.
Example: 'C:\myScripts\runPolyspace.m'

See Also
polyspace.ModelLinkOptions | polyspace.Options |
polyspace.Options.copyTo | polyspace.Options.generateProject

Introduced in R2017b

 toScript

4-217

run
Class: polyspace.Project
Package: polyspace

Run a Polyspace analysis

Syntax
proj.run(product)

Description
status = proj.run(product) runs a Polyspace Bug Finder or Polyspace Code Prover
analysis using the configuration specified in the polyspace.Project object proj. The
analysis results are also stored in proj.

Input Arguments
proj — Polyspace project
polyspace.Project object

Polyspace project with configuration and results, specified as a polyspace.Project
object.

product — Type of analysis
'bugFinder' | 'codeProver'

Type of analysis to run.

Output Arguments
status — Results of a Code Prover analysis
true | false

4 Functions, Properties, Classes, and Apps

4-218

Status of analysis. If the analysis fails, the status is false. Otherwise, it is true.

The analysis can fail for multiple reasons:

• You provide source files that do not exist.
• None of your files compile. Even if one file compiles, unless you set the property

StopWithCompileError to true, the analysis succeeds and returns a true status.

There can be many other reasons why the analysis fails. If the analysis fails, in your
results folder, check the log file. You can see the results folder using the Configuration
property of the polyspace.Project object:

proj = polyspace.Project;
proj.Configuration.ResultsDir

The log file is named Polyspace_R20##n_ProjectName_date-time.log.

Examples
Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

 run

4-219

% Read results
bfSummary = proj.Results.getSummary('defects');

Introduced in R2017b

4 Functions, Properties, Classes, and Apps

4-220

getSummary
Class: polyspace.BugFinderResults
Package: polyspace

View number of defects organized by defect type

Syntax
resObj.getSummary(resultsType)

Description
resSummary = resObj.getSummary(resultsType) returns the distribution of results
of type resultsType in a Bug Finder result set denoted by the
polyspace.BugFinderResults object resObj. For instance, if you choose to see
defects, you can see how many defects of each type are present in the result set, for
instance, how many non-initialized variables or declaration mismatches.

Input Arguments
resultsType — Type of Bug Finder analysis result
'defects' (default) | 'misraC' | 'misraCAGC' | 'misraCPP' | 'misraC2012' |
'jsf' | 'metrics' | 'customRules'

Type of result, specified as a character vector.

Entry Meaning
'defects' Bugs or defects.
'misraC' MISRA C:2004 rules.
'misraCAGC' MISRA C:2004 rules for generated code.
'misraCPP' MISRA C++ rules.

 getSummary

4-221

Entry Meaning
'misraC2012' MISRA C:2012 rules.
'jsf' JSF C++ rules.
'metrics' Code complexity metrics.
'customRules' Custom rules enforcing naming conventions

for identifiers.

Output Arguments
resSummary — Distribution of defects by defect type
table

Distribution of defects by defect type, specified as a table. For instance, an extract of the
table looks like this:

Category Defect Impact Total
Concurrency Data race High 2
Concurrency Deadlock High 1
Data flow Non-initialized

variable
High 2

The table above shows that the result set contains two data races, one deadlock and two
non-initialized variables.

For more information on MATLAB tables, see “Tables” (MATLAB).

Examples
Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath=fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');

4 Functions, Properties, Classes, and Apps

4-222

userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = resObj.getSummary('defects');
resTable = resObj.getResults();

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getSummary('defects');

See Also
polyspace.BugFinderResults

Topics
“Defects”
“Bug Finder Defect Groups”
“Classification of Defects by Impact”

 getSummary

4-223

Introduced in R2017a

4 Functions, Properties, Classes, and Apps

4-224

getResults
Class: polyspace.BugFinderResults
Package: polyspace

Read Bug Finder results into MATLAB table

Syntax
getResults(content)

Description
resTable = getResults(content) returns a table showing all results in a Bug Finder
result set denoted by the polyspace.BugFinderResults object resObj. You can
manipulate the table to produce graphs and statistics about your results that you cannot
obtain readily from the user interface.

Input Arguments
content — Result information to include
'' (default) | 'readable'

Amount of information to be included for each result. If you specify '', all information is
included. If you specify 'readable', the following information is not included:

• ID: Unique number for a result for the current analysis.
• Group: Defect groups, MISRA C:2012 groups, etc.
• Status, Severity, Comment: Information that you enter about a result.

If you do not specify this argument, the full table is included.

See “Export Polyspace Analysis Results”.

 getResults

4-225

Output Arguments
resTable — Results of a Bug Finder analysis
table

Table showing all results from a single Bug Finder analysis. For each result, the table has
information such as file, family, and so on. If a particular information is not available for a
result, the entry in the table states <undefined>.

For more information on:

• The columns of the table, see “Export Polyspace Analysis Results”.
• MATLAB tables, see “Tables” (MATLAB).

Examples

Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath = fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = resObj.getSummary ('defects');
resTable = resObj.getResults ('');

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

4 Functions, Properties, Classes, and Apps

4-226

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getResults('readable');

See Also
polyspace.BugFinderResults

Introduced in R2017a

 getResults

4-227

MISRA C 2012

5

MISRA C:2012 Rule 1.1
The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation’s translation limits

Description

Rule Definition
The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation’s translation limits.

Polyspace Implementation
The rule violation can come from multiple causes. Standard compilation error messages
do not lead to a violation of this MISRA rule.

Tip To mass-justify all results that come from the same cause, use the Detail column on
the Results List pane. Click the column header so that all results with the same entry are
grouped together. Select the first result and then select the last result while holding the
Shift key. Assign a status to one of the results. If you do not see the Detail column,
right-click any other column header and enable this column.

Message in Report
• Too many nesting levels of #includes: N1. The limit is N0.

Note: The rule checker considers a brace as an additional level. For instance, the if
branch in this code is counted as two levels of nesting.

if(flag) {
}

The metric Number of Call Levels counts this as one level of nesting.
• Integer constant is too large.

5 MISRA C 2012

5-2

• ANSI C does not allow '#XX'.
• Text following preprocessing directive violates ANSI standard.
• Too many macro definitions: N1. The limit is N0.
• Array of zero size should not be used.
• Integer constant does not fit within long int.
• Integer constant does not fit within unsigned long int.
• Too many nesting levels for control flow: N1. The limit is N0.
• Assembly language should not be used.
• Too many enumeration constants: N1. The limit is N0.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 1.1

5-3

MISRA C:2012 Rule 1.2
Language extensions should not be used

Description

Rule Definition
Language extensions should not be used.

Rationale
If a program uses language extensions, its portability is reduced. Even if you document
the language extensions, the documentation might not describe the behavior in all
circumstances.

Polyspace Implementation
All the supported extensions lead to a violation of this MISRA rule.

Message in Report
• ANSI C90 forbids hexadecimal floating-point constants.
• ANSI C90 forbids universal character names.
• ANSI C90 forbids mixed declarations and code.
• ANSI C90/C99 forbids case ranges.
• ANSI C90/C99 forbids local label declaration.
• ANSI C90 forbids mixed declarations and code.
• ANSI C90/C99 forbids typeof operator.
• ANSI C90/C99 forbids casts to union.
• ANSI C90 forbids compound literals.
• ANSI C90/C99 forbids statements and declarations in expressions.

5 MISRA C 2012

5-4

• ANSI C90 forbids __func__ predefined identifier.
• ANSI C90 forbids keyword '_Bool'.
• ANSI C90 forbids 'long long int' type.
• ANSI C90 forbids long long integer constants.
• ANSI C90 forbids 'long double' type.
• ANSI C90/C99 forbids 'short long int' type.
• ANSI C90 forbids _Pragma preprocessing operator.
• ANSI C90 does not allow macros with variable arguments list.
• ANSI C90 forbids designated initializer.

Keyword 'inline' should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Standard C Environment
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 1.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 1.2

5-5

MISRA C:2012 Rule 1.3
There shall be no occurrence of undefined or critical unspecified behaviour

Description

Rule Definition
There shall be no occurrence of undefined or critical unspecified behaviour.

Message in Report
There shall be no occurrence of undefined or critical unspecified behavior

• 'defined' without an identifier.
• macro 'XX' used with too few arguments.
• macro 'XX used with too many arguments.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.1 | Check MISRA C:2012 (-misra3)

5 MISRA C 2012

5-6

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 1.3

5-7

MISRA C:2012 Rule 10.1
Operands shall not be of an inappropriate essential type

Description

Rule Definition
Operands shall not be of an inappropriate essential type.

Rationale
What Are Essential Types?

An essential type category defines the essential type of an object or expression.

Essential type category Standard types
Essentially Boolean bool or _Bool (defined in stdbool.h)

You can also define types that are essentially Boolean using
the option Effective boolean types (-boolean-
types).

Essentially character char
Essentially enum named enum
Essentially signed signed char, signed short, signed int, signed long,

signed long long
Essentially unsigned unsigned char, unsigned short, unsigned int, unsigned

long, unsigned long long
Essentially floating float, double, long double

Amplification and Rationale

For operands of some operators, you cannot use certain essential types. In the table
below, each row represents an operator/operand combination. If the essential type

5 MISRA C 2012

5-8

column is not empty for that row, there is a MISRA restriction when using that type as the
operand. The number in the table corresponds to the rationale list after the table.

Operation Essential type category of arithmetic operand

Operator Operand Boolean character enum signed unsigne
d floating

[] integer 3 4 1
+ (unary) 3 4 5
- (unary) 3 4 5 8

+ - either 3 5
* / either 3 4 5
% either 3 4 5 1

< > <= >= either 3
== != either

! && || any 2 2 2 2 2
<< >> left 3 4 5,6 6 1
<< >> right 3 4 7 7 1

~ & | ^ any 3 4 5,6 6 1
?: 1st 2 2 2 2 2

?: 2nd and
3rd

1 An expression of essentially floating type for these operands is a constraint violation.
2 When an operand is interpreted as a Boolean value, use an expression of essentially

Boolean type.
3 When an operand is interpreted as a numeric value, do not use an operand of

essentially Boolean type.
4 When an operand is interpreted as a numeric value, do not use an operand of

essentially character type. The numeric values of character data are implementation-
defined.

5 In an arithmetic operation, do not use an operand of essentially enum type. An enum
object uses an implementation-defined integer type. An operation involving an enum
object can therefore yield a result with an unexpected type.

 MISRA C:2012 Rule 10.1

5-9

6 Perform only shift and bitwise operations on operands of essentially unsigned type.
When you use shift and bitwise operations on essentially signed types, the resulting
numeric value is implementation-defined.

7 To avoid undefined behavior on negative shifts, use an essentially unsigned right-
hand operand.

8 For the unary minus operator, do not use an operand of essentially unsigned type.
The implemented size of int determines the signedness of the result.

Message in Report
The operand_name operand of the operator_name operator is of an inappropriate
essential type category category_name.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Violation of Rule 10.1, Rationale 2: Inappropriate Operand
Types for Operators That Take Essentially Boolean Operands
typedef unsigned char boolean;

extern float f32a;
extern char cha;
extern signed char s8a;
extern unsigned char u8a;
enum enuma { a1, a2, a3 } ena;

extern boolean bla, blb, rbla;

void foo(void) {

 rbla = cha && bla; /* Non-compliant: cha is essentially char */
 enb = ena ? a1 : a2; /* Non-compliant: ena is essentially enum */
 rbla = s8a && bla; /* Non-compliant: s8a is essentially signed char */

5 MISRA C 2012

5-10

 ena = u8a ? a1 : a2; /* Non-compliant: u8a is essentially unsigned char */
 rbla = f32a && bla; /* Non-compliant: f32a is essentially float */

 rbla = bla && blb; /* Compliant */
 ru8a = bla ? u8a : u8b; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because:

• The operator && expects only essentially Boolean operands. However, at least one of
the operands used has a different type.

• The first operand of ?: is expected to be essentially Boolean. However, a different
operand type is used.

Note For Polyspace to detect the rule violation, you must define the type name boolean
as an effective Boolean type. For more information, see Effective boolean types (-
boolean-types).

Violation of Rule 10.1, Rationale 3: Inappropriate Boolean
Operands
typedef unsigned char boolean;

enum enuma { a1, a2, a3 } ena;
enum { K1 = 1, K2 = 2 }; /* Essentially signed */
extern char cha, chb;
extern boolean bla, blb, rbla;
extern signed char rs8a, s8a;

void foo(void) {

 rbla = bla * blb; /* Non-compliant - Boolean used as a numeric value */
 rbla = bla > blb; /* Non-compliant - Boolean used as a numeric value */

 rbla = bla && blb; /* Compliant */
 rbla = cha > chb; /* Compliant */
 rbla = ena > a1; /* Compliant */
 rbla = u8a > 0U; /* Compliant */

 MISRA C:2012 Rule 10.1

5-11

 rs8a = K1 * s8a; /* Compliant - K1 obtained from anonymous enum */

}

In the noncompliant examples, rule 10.1 is violated because the operators * and > do not
expect essentially Boolean operands. However, the operands used here are essentially
Boolean.

Note For Polyspace to detect the rule violation, you must define the type name boolean
as an effective Boolean type. For more information, see Effective boolean types (-
boolean-types).

Violation of Rule 10.1, Rationale 4: Inappropriate Character
Operands
extern char rcha, cha, chb;
extern unsigned char ru8a, u8a;

void foo(void) {

 rcha = cha & chb; /* Non-compliant - char type used as a numeric value */
 rcha = cha << 1; /* Non-compliant - char type used as a numeric value */

 ru8a = u8a & 2U; /* Compliant */
 ru8a = u8a << 2U; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because the operators & and << do
not expect essentially character operands. However, at least one of the operands used
here has essentially character type.

Violation of Rule 10.1, Rationale 5: Inappropriate Enum
Operands
typedef unsigned char boolean;

enum enuma { a1, a2, a3 } rena, ena, enb;

void foo(void) {

5 MISRA C 2012

5-12

 ena--; /* Non-Compliant - arithmetic operation with enum type*/
 rena = ena * a1; /* Non-Compliant - arithmetic operation with enum type*/
 ena += a1; /* Non-Compliant - arithmetic operation with enum type*/

}

In the noncompliant examples, rule 10.1 is violated because the arithmetic operators --,
* and += do not expect essentially enum operands. However, at least one of the operands
used here has essentially enum type.

Violation of Rule 10.1, Rationale 6: Inappropriate Signed
Operand for Bitwise Operations
extern signed char s8a;
extern unsigned char ru8a, u8a;

void foo(void) {

 ru8a = s8a & 2; /* Non-compliant - bitwise operation on signed type */
 ru8a = 2 << 3U; /* Non-compliant - shift operation on signed type */

 ru8a = u8a << 2U; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because the & and << operations must
not be performed on essentially signed operands. However, the operands used here are
signed.

Violation of Rule 10.1, Rationale 7: Inappropriate Signed Right
Operand for Shift Operations
extern signed char s8a;
extern unsigned char ru8a, u8a;

void foo(void) {

 ru8a = u8a << s8a; /* Non-compliant - shift magnitude uses signed type */
 ru8a = u8a << -1; /* Non-compliant - shift magnitude uses signed type */

 ru8a = u8a << 2U; /* Compliant */

 MISRA C:2012 Rule 10.1

5-13

 ru8a = u8a << 1; /* Compliant - exception */

}

In the noncompliant examples, rule 10.1 is violated because the operation << does not
expect an essentially signed right operand. However, the right operands used here are
signed.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C: 2012 Rules 10.x”

5 MISRA C 2012

5-14

MISRA C:2012 Rule 10.2
Expressions of essentially character type shall not be used inappropriately in addition and
subtraction operations

Description

Rule Definition
Expressions of essentially character type shall not be used inappropriately in addition and
subtraction operations.

Rationale
Essentially character type expressions are char variables. Do not use character data
arithmetically because the data does not represent numeric values.

Message in Report
• The operand_name operand of the + operator applied to an expression of essentially

character type shall have essentially signed or unsigned type.
• The right operand of the - operator applied to an expression of essentially character

type shall have essentially signed or unsigned or character type.
• The left operand of the - operator shall have essentially character type if the right

operand has essentially character type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: The Essential Type Model

 MISRA C:2012 Rule 10.2

5-15

Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C: 2012 Rules 10.x”

5 MISRA C 2012

5-16

MISRA C:2012 Rule 10.3
The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category

Description

Rule Definition
The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category.

Rationale
The use of implicit conversions between types can lead to unintended results, including
possible loss of value, sign, or precision.

Message in Report
• The expression is assigned to an object with a different essential type category.
• The expression is assigned to an object with a narrower essential type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

 MISRA C:2012 Rule 10.3

5-17

See Also
MISRA C:2012 Rule 10.4 | MISRA C:2012 Rule 10.5 | MISRA C:2012 Rule
10.6 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C: 2012 Rules 10.x”

5 MISRA C 2012

5-18

MISRA C:2012 Rule 10.4
Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category

Description

Rule Definition
Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category.

Rationale
The use of implicit conversions between types can lead to unintended results, including
possible loss of value, sign, or precision.

Polyspace Implementation
Polyspace does not produce a violation of this rule:

• If one of the operands is the constant zero.
• If one of the operands is a signed constant and the other operand is unsigned, and the

signed constant has the same representation as its unsigned equivalent.

For instance, the statement u8b = u8a + 3;, where u8a and u8b are unsigned
char variables, does not violate the rule because the constants 3 and 3U have the
same representation.

Message in Report
Operands of operator_name operator shall have the same essential type category.

 MISRA C:2012 Rule 10.4

5-19

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C: 2012 Rules 10.x”

5 MISRA C 2012

5-20

MISRA C:2012 Rule 10.5
The value of an expression should not be cast to an inappropriate essential type

Description

Rule Definition
The value of an expression should not be cast to an inappropriate essential type.

Rationale
Converting Between Variable Types

 From
Boolean character enum signed unsigned floating

To

Boolean Avoid Avoid Avoid Avoid Avoid
character Avoid Avoid

enum Avoid Avoid Avoid Avoid Avoid Avoid
signed Avoid

unsigned Avoid
floating Avoid Avoid

Some inappropriate explicit casts are:

• In C99, the result of a cast of assignment to _Bool is always 0 or 1. This result is not
necessarily the case when casting to another type which is defined as essentially
Boolean.

• A cast to an essential enum type may result in a value that does not lie within the set
of enumeration constants for that type.

• A cast from essential Boolean to any other type is unlikely to be meaningful.
• Converting between floating and character types is not meaningful as there is no

precise mapping between the two representations.

 MISRA C:2012 Rule 10.5

5-21

Some acceptable explicit casts are:

• To change the type in which a subsequent arithmetic operation is performed.
• To truncate a value deliberately.
• To make a type conversion explicit in the interests of clarity.

Message in Report
The value of an expression should not be cast to an inappropriate essential type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: The Essential Type Model
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.8 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C: 2012 Rules 10.x”

5 MISRA C 2012

5-22

MISRA C:2012 Rule 10.6
The value of a composite expression shall not be assigned to an object with wider
essential type

Description

Rule Definition
The value of a composite expression shall not be assigned to an object with wider
essential type.

Rationale
A composite expression is a nonconstant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

If you assign the result of a composite expression to a larger type, the implicit conversion
can result in loss of value, sign, precision, or layout.

Message in Report
The composite expression is assigned to an object with a wider essential type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 10.6

5-23

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C: 2012 Rules 10.x”

5 MISRA C 2012

5-24

MISRA C:2012 Rule 10.7
If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed then the other operand shall not have wider
essential type

Description

Rule Definition
If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed, then the other operand shall not have wider
essential type.

Rationale
A composite expression is a nonconstant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Restricting implicit conversion on composite expressions mean that sequences of
arithmetic operations within expressions must use the same essential type. This
restriction reduces confusion and avoids loss of value, sign, precision, or layout. However,
this rule does not imply that all operands in an expression are of the same essential type.

Message in Report
• The right operand shall not have wider essential type than the left operand which is a

composite expression.

 MISRA C:2012 Rule 10.7

5-25

• The left operand shall not have wider essential type than the right operand which is a
composite expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C: 2012 Rules 10.x”

5 MISRA C 2012

5-26

MISRA C:2012 Rule 10.8
The value of a composite expression shall not be cast to a different essential type
category or a wider essential type

Description

Rule Definition
The value of a composite expression shall not be cast to a different essential type
category or a wider essential type.

Rationale
A composite expression is a non-constant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Casting to a wider type is not permitted because the result may vary between
implementations. Consider this expression:

(uint32_t) (u16a +u16b);

On a 16-bit machine the addition is performed in 16 bits. The result is wrapped before it
is cast to 32 bits. On a 32-bit machine, the addition takes place in 32 bits and preserves
high-order bits that are lost on a 16-bit machine. Casting to a narrower type with the
same essential type category is acceptable as the explicit truncation of the results always
leads to the same loss of information.

For information on essential types, see MISRA C:2012 Rule 10.1.

 MISRA C:2012 Rule 10.8

5-27

Polyspace Implementation
The rule checker raises a defect only if the result of a composite expression is cast to a
different or wider essential type.

For instance, in this example, a violation is shown in the first assignment to i but not the
second. In the first assignment, a composite expression i+1 is directly cast from a signed
to an unsigned type. In the second assignment, the composite expression is first cast to
the same type and then the result is cast to a different type.

typedef int int32_T;
typedef unsigned char uint8_T;
...
...
int32_T i;
i = (uint8_T)(i+1); /* Noncompliant */
i = (uint8_T)((int32_T)(i+1)); /* Compliant */

Message in Report
• The value of a composite expression shall not be cast to a different essential type

category.
• The value of a composite expression shall not be cast to a wider essential type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Casting to Different or Wider Essential Type
extern unsigned short ru16a, u16a, u16b;
extern unsigned int u32a, ru32a;
extern signed int s32a, s32b;

void foo(void)
{

5 MISRA C 2012

5-28

 ru16a = (unsigned short) (u32a + u32a);/* Compliant */
 ru16a += (unsigned short) s32a; /* Compliant - s32a is not composite */
 ru32a = (unsigned int) (u16a + u16b); /* Noncompliant - wider essential type */
}

In this example, rule 10.8 is violated in the following cases:

• s32a and s32b are essentially signed variables. However, the result (s32a +
s32b) is cast to an essentially unsigned type.

• u16a and u16b are essentially unsigned short variables. However, the result
(s32a + s32b) is cast to a wider essential type, unsigned int.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.8

5-29

MISRA C:2012 Rule 11.1
Conversions shall not be performed between a pointer to a function and any other type

Description

Rule Definition
Conversions shall not be performed between a pointer to a function and any other type.

Rationale
The rule forbids the following two conversions:

• Conversion from a function pointer to any other type. This conversion causes
undefined behavior.

• Conversion from a function pointer to another function pointer, if the function pointers
have different argument and return types.

The conversion is forbidden because calling a function through a pointer with
incompatible type results in undefined behavior.

Polyspace Implementation
Polyspace considers both explicit and implicit casts when checking this rule. However,
casts from NULL or (void*)0 do not violate this rule.

Message in Report
Conversions shall not be performed between a pointer to a function and any other type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-30

Examples

Cast between two function pointers
typedef void (*fp16) (short n);
typedef void (*fp32) (int n);

#include <stdlib.h> /* To obtain macro NULL */

void func(void) { /* Exception 1 - Can convert a null pointer
 * constant into a pointer to a function */
 fp16 fp1 = NULL; /* Compliant - exception */
 fp16 fp2 = (fp16) fp1; /* Compliant */
 fp32 fp3 = (fp32) fp1; /* Non-compliant */
 if (fp2 != NULL) {} /* Compliant - exception */
 fp16 fp4 = (fp16) 0x8000; /* Non-compliant - integer to
 * function pointer */}

In this example, the rule is violated when:

• The pointer fp1 of type fp16 is cast to type fp32. The function pointer types fp16
and fp32 have different argument types.

• An integer is cast to type fp16.

The rule is not violated when function pointers fp1 and fp2 are cast to NULL.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”

 MISRA C:2012 Rule 11.1

5-31

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-32

MISRA C:2012 Rule 11.2
Conversions shall not be performed between a pointer to an incomplete type and any
other type

Description

Rule Definition
Conversions shall not be performed between a pointer to an incomplete type and any
other type.

Rationale
An incomplete type is a type that does not contain sufficient information to determine its
size. For example, the statement struct s; describes an incomplete type because the
fields of s are not defined. The size of a variable of type s cannot be determined.

Conversions to or from a pointer to an incomplete type result in undefined behavior.
Typically, a pointer to an incomplete type is used to hide the full representation of an
object. This encapsulation is broken if another pointer is implicitly or explicitly cast to
such a pointer.

Message in Report
Conversions shall not be performed between a pointer to an incomplete type and any
other type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 11.2

5-33

Examples

Casts from incomplete type
struct s *sp;
struct t *tp;
short *ip;
struct ct *ctp1;
struct ct *ctp2;

void foo(void) {

 ip = (short *) sp; /* Non-compliant */
 sp = (struct s *) 1234; /* Non-compliant */
 tp = (struct t *) sp; /* Non-compliant */
 ctp1 = (struct ct *) ctp2; /* Compliant */

 /* You can convert a null pointer constant to
 * a pointer to an incomplete type */
 sp = NULL; /* Compliant - exception */

 /* A pointer to an incomplete type may be converted into void */
 struct s *f(void);
 (void) f(); /* Compliant - exception */

}

In this example, types s, t and ct are incomplete. The rule is violated when:

• The variable sp with an incomplete type is cast to a basic type.
• The variable sp with an incomplete type is cast to a different incomplete type t.

The rule is not violated when:

• The variable ctp2 with an incomplete type is cast to the same incomplete type.
• The NULL pointer is cast to the variable sp with an incomplete type.
• The return value of f with incomplete type is cast to void.

5 MISRA C 2012

5-34

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.2

5-35

MISRA C:2012 Rule 11.3
A cast shall not be performed between a pointer to object type and a pointer to a different
object type

Description
Rule Definition
A cast shall not be performed between a pointer to object type and a pointer to a different
object type.

Rationale
If a pointer to an object is cast into a pointer to a different object, the resulting pointer
can be incorrectly aligned. The incorrect alignment causes undefined behavior.

Even if the conversion produces a pointer that is correctly aligned, the behavior can be
undefined if the pointer is used to access an object.

Exception: You can convert a pointer to object type into a pointer to one of the following
types:

• char
• signed char
• unsigned char

Message in Report
A cast shall not be performed between a pointer to object type and a pointer to a different
object type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-36

Examples

Noncompliant: Cast to Pointer Pointing to Object of Wider
Type
signed char *p1;
unsigned int *p2;

void foo(void){
 p2 = (unsigned int *) p1; /* Non-compliant */
}

In this example, p1 can point to a signed char object. However, p1 is cast to a pointer
that points to an object of wider type, unsigned int.

Noncompliant: Cast to Pointer Pointing to Object of Narrower
Type
extern unsigned int read_value (void);
extern void display (unsigned int n);

void foo (void){
 unsigned int u = read_value ();
 unsigned short *hi_p = (unsigned short *) &u; /* Non-compliant */
 *hi_p = 0;
 display (u);
}

In this example, u is an unsigned int variable. &u is cast to a pointer that points to an
object of narrower type, unsigned short.

On a big-endian machine, the statement *hi_p = 0 attempts to clear the high bits of the
memory location that &u points to. But, from the result of display(u), you might find
that the high bits have not been cleared.

Compliant: Cast Adding a Type Qualifier
const short *p;
const volatile short *q;
void foo (void){

 MISRA C:2012 Rule 11.3

5-37

 q = (const volatile short *) p; /* Compliant */
}

In this example, both p and q can point to short objects. The cast between them adds a
volatile qualifier only and is therefore compliant.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.5 | MISRA C:2012 Rule
11.8 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-38

MISRA C:2012 Rule 11.4
A conversion should not be performed between a pointer to object and an integer type

Description

Rule Definition
A conversion should not be performed between a pointer to object and an integer type.

Rationale
Conversion between integers and pointers can cause errors or undefined behavior.

• If an integer is cast to a pointer, the resulting pointer can be incorrectly aligned. The
incorrect alignment causes undefined behavior.

• If a pointer is cast to an integer, the resulting value can be outside the allowed range
for the integer type.

Polyspace Implementation
Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report
A conversion should not be performed between a pointer to object and an integer type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 11.4

5-39

Examples

Casts between pointer and integer
#include <stdbool.h>

typedef unsigned char uint8_t;
typedef char char_t;
typedef unsigned short uint16_t;
typedef signed int int32_t;

typedef _Bool bool_t;
uint8_t *PORTA = (uint8_t *) 0x0002; /* Non-compliant */

void foo(void) {

 char_t c = 1;
 char_t *pc = &c; /* Compliant */

 uint16_t ui16 = 7U;
 uint16_t *pui16 = &ui16; /* Compliant */
 pui16 = (uint16_t *) ui16; /* Non-compliant */

 uint16_t *p;
 int32_t addr = (int32_t) p; /* Non-compliant */
 bool_t b = (bool_t) p; /* Non-compliant */
 enum etag { A, B } e = (enum etag) p; /* Non-compliant */
}

In this example, the rule is violated when:

• The integer 0x0002 is cast to a pointer.

If the integer defines an absolute address, it is more common to assign the address to
a pointer in a header file. To avoid the assignment being flagged, you can then exclude
headers files from coding rules checking. For more information, see Do not
generate results for (-do-not-generate-results-for).

• The pointer p is cast to integer types such as int32_t, bool_t or enum etag.

The rule is not violated when the address &ui16 is assigned to a pointer.

5 MISRA C 2012

5-40

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 11.3 | MISRA C:2012 Rule 11.7 | MISRA C:2012 Rule
11.9 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.4

5-41

MISRA C:2012 Rule 11.5
A conversion should not be performed from pointer to void into pointer to object

Description
Rule Definition
A conversion should not be performed from pointer to void into pointer to object.

Rationale
If a pointer to void is cast into a pointer to an object, the resulting pointer can be
incorrectly aligned. The incorrect alignment causes undefined behavior. However, such a
cast can sometimes be necessary, for example, when using memory allocation functions.

Polyspace Implementation
Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report
A conversion should not be performed from pointer to void into pointer to object.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Cast from Pointer to void
void foo(void) {

5 MISRA C 2012

5-42

 unsigned int u32a = 0;
 unsigned int *p32 = &u32a;
 void *p;
 unsigned int *p16;

 p = p32; /* Compliant - pointer to uint32_t
 * into pointer to void */
 p16 = p; /* Non-compliant */

 p = (void *) p16; /* Compliant */
 p32 = (unsigned int *) p; /* Non-compliant */
}

In this example, the rule is violated when the pointer p of type void* is cast to pointers
to other types.

The rule is not violated when p16 and p32, which are pointers to non-void types, are
cast to void*.

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 11.2 | MISRA C:2012 Rule 11.3 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.5

5-43

MISRA C:2012 Rule 11.6
A cast shall not be performed between pointer to void and an arithmetic type

Description

Rule Definition
A cast shall not be performed between pointer to void and an arithmetic type.

Rationale
Conversion between integer types and pointers to void can cause errors or undefined
behavior.

• If an integer type is cast to a pointer, the resulting pointer can be incorrectly aligned.
The incorrect alignment causes undefined behavior.

• If a pointer is cast to an arithmetic type, the resulting value can be outside the allowed
range for the type.

Conversion between non-integer arithmetic types and pointers to void is undefined.

Polyspace Implementation
Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report
A cast shall not be performed between pointer to void and an arithmetic type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-44

Examples

Casts Between Pointer to void and Arithmetic Types
void foo(void) {

 void *p;
 unsigned int u;
 unsigned short r;

 p = (void *) 0x1234u; /* Non-compliant - undefined */
 u = (unsigned int) p; /* Non-compliant - undefined */

 p = (void *) 0; /* Compliant - Exception */

}

In this example, p is a pointer to void. The rule is violated when:

• An integer value is cast to p.
• p is cast to an unsigned int type.

The rule is not violated if an integer constant with value 0 is cast to a pointer to void.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 11.6

5-45

Introduced in R2014b

5 MISRA C 2012

5-46

MISRA C:2012 Rule 11.7
A cast shall not be performed between pointer to object and a non-integer arithmetic type

Description

Rule Definition
A cast shall not be performed between pointer to object and a non-integer arithmetic
type.

Rationale
This rule covers types that are essentially Boolean, character, enum or floating.

• If an essentially Boolean, character or enum variable is cast to a pointer, the resulting
pointer can be incorrectly aligned. The incorrect alignment causes undefined behavior.
If a pointer is cast to one of those types, the resulting value can be outside the allowed
range for the type.

• Casts to or from a pointer to a floating type results in undefined behavior.

Message in Report
A cast shall not be performed between pointer to object and a non-integer arithmetic
type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 11.7

5-47

Examples

Casts from Pointer to Non-Integer Arithmetic Types
int foo(void) {

 short *p;
 float f;
 long *l;

 f = (float) p; /* Non-compliant */
 p = (short *) f; /* Non-compliant */

 l = (long *) p; /* Compliant */
}

In this example, the rule is violated when:

• The pointer p is cast to float.
• A float variable is cast to a pointer to short.

The rule is not violated when the pointer p is cast to long*.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-48

Introduced in R2014b

 MISRA C:2012 Rule 11.7

5-49

MISRA C:2012 Rule 11.8
A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer

Description

Rule Definition
A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer.

Rationale
This rule forbids:

• Casts from a pointer to a const object to a pointer that does not point to a const
object.

• Casts from a pointer to a volatile object to a pointer that does not point to a
volatile object.

Such casts violate type qualification. For example, the const qualifier indicates the read-
only status of an object. If a cast removes the qualifier, the object is no longer read-only.

Polyspace Implementation
Polyspace flags both implicit and explicit conversions that violate this rule.

Message in Report
A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer.

5 MISRA C 2012

5-50

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Casts That Remove Qualifiers
void foo(void) {

 /* Cast on simple type */
 unsigned short x;
 unsigned short * const cpi = &x; /* const pointer */
 unsigned short * const *pcpi; /* pointer to const pointer */
 unsigned short **ppi;
 const unsigned short *pci; /* pointer to const */
 volatile unsigned short *pvi; /* pointer to volatile */
 unsigned short *pi;

 pi = cpi; /* Compliant - no cast required */
 pi = (unsigned short *) pci; /* Non-compliant */
 pi = (unsigned short *) pvi; /* Non-compliant */
 ppi = (unsigned short **)pcpi; /* Non-compliant */
}

In this example:

• The variables pci and pcpi have the const qualifier in their type. The rule is violated
when the variables are cast to types that do not have the const qualifier.

• The variable pvi has a volatile qualifier in its type. The rule is violated when the
variable is cast to a type that does not have the volatile qualifier.

Even though cpi has a const qualifier in its type, the rule is not violated in the
statement p=cpi;. The assignment does not cause a type conversion because both p and
cpi have type unsigned short.

 MISRA C:2012 Rule 11.8

5-51

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-52

MISRA C:2012 Rule 11.9
The macro NULL shall be the only permitted form of integer null pointer constant

Description
Rule Definition
The macro NULL shall be the only permitted form of integer null pointer constant.

Rationale
The following expressions require the use of a null pointer constant:

• Assignment to a pointer
• The == or != operation, where one operand is a pointer
• The ?: operation, where one of the operands on either side of : is a pointer

Using NULL rather than 0 makes it clear that a null pointer constant was intended.

Message in Report
The macro NULL shall be the only permitted form of integer null pointer constant.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Using 0 for Pointer Assignments and Comparisons
void main(void) {

 MISRA C:2012 Rule 11.9

5-53

 int *p1 = 0; /* Non-compliant */
 int *p2 = (void *) 0; /* Compliant */

#define MY_NULL_1 0
#define MY_NULL_2 (void *) 0

 if (p1 == MY_NULL_1) /* Non-compliant */
 { }
 if (p2 == MY_NULL_2) /* Compliant */
 { }

}

In this example, the rule is violated when the constant 0 is used instead of (void*) 0 for
pointer assignments and comparisons.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-54

MISRA C:2012 Rule 12.1
The precedence of operators within expressions should be made explicit

Description

Rule Definition
The precedence of operators within expressions should be made explicit.

Rationale
The C language has a large number of operators and their precedence is not intuitive.
Inexperienced programmers can easily make mistakes. Remove any ambiguity by using
parentheses to explicitly define operator precedence.

The following table list the MISRA C definition of operator precedence for this rule.

Description Operator and Operand Precede
nce

Primary identifier, constant, string literal, (expression) 16
Postfix [] () (function call) . -> ++(post-increment) --(post-

decrement) () {}(C99: compound literals)
15

Unary ++(post-increment) --(post-decrement) & * + - ~ !
sizeof defined (preprocessor)

14

Cast () 13
Multiplicative * / % 12
Additive + - 11
Bitwise shift << >> 10
Relational <> <= >= 9
Equality == != 8
Bitwise AND & 7

 MISRA C:2012 Rule 12.1

5-55

Description Operator and Operand Precede
nce

Bitwise XOR ^ 6
Bitwise OR | 5
Logical AND && 4
Logical OR || 3
Conditional ?: 2
Assignment = *= /= += -= <<= >>= &= ^= |= 1
Comma , 0

Message in Report
Operand of logical %s is not a primary expression. The precedence of operators within
expressions should be made explicit.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Ambiguous Precedence in Multi-Operation Expressions
int a, b, c, d, x;

void foo(void) {
 x = sizeof a + b; /* Non-compliant - MISRA-12.1 */

 x = a == b ? a : a - b; /* Non-compliant - MISRA-12.1 */

 x = a << b + c ; /* Non-compliant - MISRA-12.1 */

 if (a || b && c) { } /* Non-compliant - MISRA-12.1 */

5 MISRA C 2012

5-56

 if ((a>x) && (b>x) || (c>x)) { } /* Non-compliant - MISRA-12.1 */
}

This example shows various violations of MISRA rule 12.1. In each violation, if you do not
know the order of operations, the code could execute unexpectedly.

Correction — Clarify With Parentheses

To comply with this MISRA rule, add parentheses around individual operations in the
expressions. One possible solution is shown here.

int a, b, c, d, x;

void foo(void) {
 x = sizeof(a) + b;

 x = (a == b) ? a : (a - b);

 x = a << (b + c);

 if ((a || b) && c) { }

 if (((a>x) && (b>x)) || (c>x)) { }
}

Ambiguous Precedence In Preprocessing Expressions
if defined X && X + Y > Z /* Non-compliant - MISRA-12.1 */
endif

if ! defined X && defined Y /* Non-compliant - MISRA-12.1 */
endif

In this example, two violations of MISRA rule 12.1 are shown in preprocessing code. In
each violation, if you do not know the correct order of operations, the results can be
unexpected and cause problems.

Correction — Clarify with Parentheses

To comply with this MISRA rule, add parentheses around individual operations in the
expressions. One possible solution is shown here.

if defined (X) && ((X + Y) > Z)
endif

 MISRA C:2012 Rule 12.1

5-57

if ! defined (X) && defined (Y)
endif

Compliant Expressions Without Parentheses
int a, b, c, x;
struct {int a; } s, *ps, *pp[2];

void foo(void) {
 ps = &s

 pp[i]-> a; /* Compliant - no need to write (pp[i])->a */
 ps++; / Compliant - no need to write *(p++) */

 x = f (a + b, c); /* Compliant - no need to write f ((a+b),c) */

 x = a, b; /* Compliant - parsed as (x = a), b */

 if (a && b && c){ /* Compliant - all operators have
 * the same precedence */
}

In this example, the expressions shown have multiple operations. However, these
expressions are compliant because operator precedence is already clear.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.2 | MISRA C:2012 Rule 12.3 | MISRA C:2012 Rule
12.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”

5 MISRA C 2012

5-58

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.1

5-59

MISRA C:2012 Rule 12.2
The right hand operand of a shift operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand

Description

Rule Definition
The right hand operand of a shift operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand.

Rationale
Consider the following statement:

var = abc << num;

If abc is a 16-bit integer, then num must be in the range 0–15, (nonnegative and less than
16). If num is negative or greater than 16, then the shift behavior is undefined.

Polyspace Implementation
In Polyspace, the numbers that are manipulated in preprocessing directives are 64 bits
wide. The valid shift range is between 0 and 63. When bitfields are within a complex
expression, Polyspace extends this check onto the bitfield field width or the width of the
base type.

Message in Report
• Shift amount is bigger than size.
• Shift amount is negative.
• The right operand of a shift operator shall lie in the range zero to one less than the

width in bits of the essential type of the left operand.

5 MISRA C 2012

5-60

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.2

5-61

MISRA C:2012 Rule 12.3
The comma operator should not be used

Description

Rule Definition
The comma operator should not be used.

Rationale
The comma operator can be detrimental to readability. You can often write the same code
in another form.

Message in Report
The comma operator should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Comma Usage in C Code
typedef signed int abc, xyz, jkl;

static void func1 (abc, xyz, jkl); /* Compliant - case 1 */

int foo(void)
{

5 MISRA C 2012

5-62

 volatile int rd = 1; /* Compliant - case 2*/
 int var=0, foo=0, k=0, n=2, p, t[10]; /* Compliant - case 3*/

 int abc = 0, xyz = abc + 1; /* Compliant - case 4*/
 int jkl = (abc + xyz, abc + xyz); /* Not compliant - case 1*/

 var = 1, foo += var, kkk = 3; /* Not compliant - case 2*/
 var = (kkk = 1, foo = 2); /* Not compliant - case 3*/

 for (var = 0, ptr = &t[0]; var < num; ++var, ++ptr){}
 /* Not compliant - case 4*/

 if ((abc,xyz)<0) { return 1; } /* Not compliant - case 5*/
}

In this example, the code shows various uses of commas in C code.

Noncompliant Cases

Case Reason for noncompliance
1 When reading the code, it is not immediately obvious what jkl is

initialized to. For example, you could infer that jkl has a value
abc+xyz, (abc+xyz)*(abc+xyz), f((abc+xyz),(abc
+xyz)), and so on.

2 When reading the code, it is not immediately obvious whether
foo has a value 0 or 1 after the statement.

3 When reading the code, it is not immediately obvious what value
is assigned to var.

4 When reading the code, it is not immediately obvious which
values control the for loop.

5 When reading the code, it is not immediately obvious whether the
if statement depends on abc, xyz, or both.

Compliant Cases

Case Reason for compliance
1 Using commas to call functions with variables is allowed.
2 Comma operator is not used.

 MISRA C:2012 Rule 12.3

5-63

Case Reason for compliance
3 & 4 When using the comma for initialization, the variables and their

values are immediately obvious.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-64

MISRA C:2012 Rule 12.4
Evaluation of constant expressions should not lead to unsigned integer wrap-around

Description
Rule Definition
Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Rationale
Unsigned integer expressions do not strictly overflow, but instead wraparound. Although
there may be good reasons to use modulo arithmetic at run time, intentional use at
compile time is less likely.

Message in Report
Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1 | Check MISRA C:2012 (-misra3)

 MISRA C:2012 Rule 12.4

5-65

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-66

MISRA C:2012 Rule 12.5
The sizeof operator shall not have an operand which is a function parameter declared
as “array of type”

Description

Rule Definition
The sizeof operator shall not have an operand which is a function parameter declared
as “array of type”.

Rationale
The sizeof operator acting on an array normally returns the array size in bytes. For
instance, in the following code, sizeof(arr) returns the size of arr in bytes.

int32_t arr[4];
size_t numberOfElements = sizeof (arr) / sizeof(arr[0]);

However, when the array is a function parameter, it degenerates to a pointer. The sizeof
operator acting on the array returns the corresponding pointer size and not the array
size.

The use of sizeof operator on an array that is a function parameter typically indicates
an unintended programming error.

Message in Report
The sizeof operator shall not have an operand which is a function parameter declared
as “array of type”.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 12.5

5-67

Examples

Incorrect Use of sizeof Operator
int32_t glbA[] = { 1, 2, 3, 4, 5 };
void f (int32_t A[4])
{
 uint32_t numElements = sizeof(A) / sizeof(int32_t); /* Non-compliant */
 uint32_t numElements_glbA = sizeof(glbA) / sizeof(glbA[0]); /* Compliant */
}

In this example, the variable numElements always has the same value of 1, irrespective
of the number of members that appear to be in the array (4 in this case), because A has
type int32_t * and not int32_t[4].

The variable numElements_glbA has the expected vale of 5 because the sizeof
operator acts on the global array glbA.

Check Information
Group: Expressions
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-68

MISRA C:2012 Rule 13.1
Initializer lists shall not contain persistent side effects

Description

Rule Definition
Initializer lists shall not contain persistent side effects.

Rationale
C99 permits initializer lists with expressions that can be evaluated only at run-time.
However, the order in which elements of the list are evaluated is not defined. If one
element of the list modifies the value of a variable which is used in another element, the
ambiguity in order of evaluation causes undefined values. Therefore, this rule requires
that expressions occurring in an initializer list cannot modify the variables used in them.

Message in Report
Initializer lists shall not contain persistent side effects.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Initializers with Persistent Side Effect
volatile int v;
int x;
int y;

 MISRA C:2012 Rule 13.1

5-69

void f(void) {
 int arr[2] = {x+y,x-y}; /* Compliant */
 int arr2[2] = {v,0}; /* Non-compliant */
 int arr3[2] = {x++,y}; /* Non-compliant */
}

In this example, the rule is not violated in the first initialization because the initializer
does not modify either x or y. The rule is violated in the other initializations.

• In the second initialization, because v is volatile, the initializer can modify v.
• In the third initialization, the initializer modifies the variable x.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 13.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-70

MISRA C:2012 Rule 13.2
The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders

Description

Rule Definition
The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders.

Rationale
If an expression results in different values depending on the order of evaluation, its value
becomes implementation-defined.

Polyspace Implementation
An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and
written.

• The expression allows more than one order of evaluation.

Therefore, this rule forbids expressions where a variable is modified more than once and
can cause different results under different orders of evaluation.

Message in Report
The value of 'XX' depends on the order of evaluation. The value of volatile 'XX' depends on
the order of evaluation because of multiple accesses.

 MISRA C:2012 Rule 13.2

5-71

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Variable Modified More Than Once in Expression
int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */
 COPY_ELEMENT (i++); /* Noncompliant */
}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++
occurs twice and the order of evaluation of the two expressions is unspecified.

Variable Modified and Used in Multiple Function Arguments
void f (unsigned int param1, unsigned int param2) {}

void main () {
 unsigned int i=0;
 f (i++, i); /* Non-compliant */
}

In this example, the rule is violated because it is unspecified whether the operation i++
occurs before or after the second argument is passed to f. The call f(i++,i) can
translate to either f(0,0) or f(0,1).

Check Information
Group: Side Effects
Category: Required

5 MISRA C 2012

5-72

AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.9 | MISRA C:2012 Rule 13.1 | MISRA C:2012 Rule 13.3 |
MISRA C:2012 Rule 13.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.2

5-73

MISRA C:2012 Rule 13.3
A full expression containing an increment (++) or decrement (--) operator should have no
other potential side effects other than that caused by the increment or decrement
operator

Description

Rule Definition
A full expression containing an increment (++) or decrement (--) operator should have no
other potential side effects other than that caused by the increment or decrement
operator.

Rationale
The rule is violated if the following happens in the same line of code:

• The increment or decrement operator acts on a variable.
• Another read or write operation is performed on the variable.

For example, the line y=x++ violates this rule. The ++ and = operator both act on x.

Although the operator precedence rules determine the order of evaluation, placing the ++
and another operator in the same line can reduce the readability of the code.

Message in Report
A full expression containing an increment (++) or decrement (--) operator should have no
other potential side effects other than that caused by the increment or decrement
operator.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-74

Examples

Increment Operator Used in Expression with Other Side
Effects
int input(void);
int choice(void);
int operation(int, int);

int func() {
 int x = input(), y = input(), res;
 int ch = choice();
 if (choice == -1)
 return(x++);
 if (choice == 0) {
 res = x++ + y++;
 return(res); /* Non-compliant */
 }
 else if (choice == 1) {
 x++; /* Compliant */
 y++; /* Compliant */
 return (x+y);
 }
 else {
 res = operation(x++,y);
 return(res); /* Non-compliant */
 }
}

In this example, the rule is violated when the expressions containing the ++ operator have
side effects other than that caused by the operator. For example, in the expression
return(x++), the other side-effect is the return operation.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Readability
Language: C90, C99

 MISRA C:2012 Rule 13.3

5-75

See Also
MISRA C:2012 Rule 13.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-76

MISRA C:2012 Rule 13.4
The result of an assignment operator should not be used

Description
Rule Definition
The result of an assignment operator should not be used.

Rationale
The rule is violated if the following happens in the same line of code:

• The assignment operator acts on a variable.
• Another read or operation is performed on the result of the assignment.

For example, the line a[x]=a[x=y]; violates this rule. The [] operator acts on the result
of the assignment x=y.

Message in Report
The result of an assignment operator should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Result of Assignment Used
int x, y, b, c, d;
int a[10];

 MISRA C:2012 Rule 13.4

5-77

unsigned int bool_var, false=0, true=1;

int foo(void) {

 x = y; /* Compliant - x is not used */

 a[x] = a[x = y]; /* Non-compliant - Value of x=y is used */

 if (bool_var = false) {}
 /* Non-compliant - bool_var=false is used */

 if (bool_var == false) {} /* Compliant */

 if ((0u == 0u) || (bool_var = true)) {}
 /* Non-compliant - even though (bool_var=true) is not evaluated */

 if ((x = f ()) != 0) {}
 /* Non-compliant - value of x=f() is used */

 a[b += c] = a[b];
 /* Non-compliant - value of b += c is used */

 b = c = d = 0; /* Non-compliant - value of d=0 and c=d=0 are used */

}

In this example, the rule is violated when the result of an assignment is used.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 13.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”

5 MISRA C 2012

5-78

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.4

5-79

MISRA C:2012 Rule 13.5
The right hand operand of a logical && or || operator shall not contain persistent side
effects

Description
Rule Definition
The right hand operand of a logical && or || operator shall not contain persistent side
effects.

Rationale
The right operand of an || operator is not evaluated if the left operand is true. The right
operand of an && operator is not evaluated if the left operand is false. In these cases, if
the right operand modifies the value of a variable, the modification does not take place.
Following the operation, if you expect a modified value of the variable, the modification
might not always happen.

Polyspace Implementation
• For this rule, Polyspace considers that all function calls have a persistent side effect.

If a pure function is flagged, before ignoring this rule violation, make sure that the
function has no side effects. For instance, floating-point functions such as abs() seem
to only return a value and have no other side effect. However, these functions make
use of the FPU Register Stack and can have side-effects in certain architectures, for
instance, certain Intel® architectures.

• If the right operand is a volatile variable, Polyspace does not flag this as a rule
violation.

Message in Report
The right hand operand of a && operator shall not contain side effects. The right hand
operand of a || operator shall not contain side effects.

5 MISRA C 2012

5-80

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Right Operand of Logical Operator with Persistent Side Effects
int check (int arg) {
 static int count;
 if(arg > 0) {
 count++; /* Persistent side effect */
 return 1;
 }
 else
 return 0;
}

int getSwitch(void);
int getVal(void);

void main(void) {
 int val = getVal();
 int mySwitch = getSwitch();
 int checkResult;

 if(mySwitch && check(val)) { /* Non-compliant */
 }

 checkResult = check(val);
 if(checkResult && mySwitch) { /* Compliant */
 }

 if(check(val) && mySwitch) { /* Compliant */
 }
}

In this example, the rule is violated when the right operand of the && operation contains a
function call. The function call has a persistent side effect because the static variable
count is modified in the function body. Depending on mySwitch, this modification might
or might not happen.

 MISRA C:2012 Rule 13.5

5-81

The rule is not violated when the left operand contains a function call. Alternatively, to
avoid the rule violation, assign the result of the function call to a variable. Use this
variable in the logical operation in place of the function call.

In this example, the function call has the side effect of modifying a static variable.
Polyspace flags all function calls when used on the right-hand side of a logical && or ||
operator, even when the function does not have a side effect. Manually inspect your
function body to see if it has side effects. If the function does not have side effects, add a
comment and justification in your Polyspace result explaining why you retained your code.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-82

MISRA C:2012 Rule 13.6
The operand of the sizeof operator shall not contain any expression which has potential
side effects

Description

Rule Definition
The operand of the sizeof operator shall not contain any expression which has potential
side effects.

Rationale
The argument of a sizeof operator is usually not evaluated at run time. If the argument
is an expression, you might wrongly expect that the expression is evaluated.

Polyspace Implementation
The rule is not violated if the argument is a volatile variable.

Message in Report
The operand of the sizeof operator shall not contain any expression which has potential
side effects.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 13.6

5-83

Examples

Expressions in sizeof Operator
#include <stddef.h>
int x;
int y[40];
struct S {
 int a;
 int b;
};
struct S myStruct;

void main() {
 size_t sizeOfType;
 sizeOfType = sizeof(x); /* Compliant */
 sizeOfType = sizeof(y); /* Compliant */
 sizeOfType = sizeof(myStruct); /* Compliant */
 sizeOfType = sizeof(x++); /* Non-compliant */
}

In this example, the rule is violated when the expression x++ is used as argument of
sizeof operator.

Check Information
Group: Side Effects
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 18.8 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-84

Introduced in R2014b

 MISRA C:2012 Rule 13.6

5-85

MISRA C:2012 Rule 14.1
A loop counter shall not have essentially floating type

Description

Rule Definition
A loop counter shall not have essentially floating type.

Rationale
When using a floating-point loop counter, accumulation of rounding errors can result in a
mismatch between the expected and actual number of iterations. This rounding error can
happen when a loop step that is not a power of the floating point radix is rounded to a
value that can be represented by a float.

Even if a loop with a floating-point loop counter appears to behave correctly on one
implementation, it can give a different number of iteration on another implementation.

Polyspace Implementation
If the for index is a variable symbol, Polyspace checks that it is not a float.

Message in Report
A loop counter shall not have essentially floating type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-86

Examples

for Loop Counters
int main(void){
 unsigned int counter = 0u;
 int result = 0;
 float foo;

 // Float loop counters
 for(float foo = 0.0f; foo < 1.0f; foo +=0.001f){
 /* Non-compliant - counter = 1000 at the end of the loop */
 ++counter;
 }

 float fff = 0.0f;
 for(fff = 0.0f; fff <12.0f; fff += 1.0f){ /* Non-compliant*/
 result++;
 }

 // Integer loop count
 for(unsigned int count = 0u; count < 1000u; ++count){ /* Compliant */
 foo = (float) count * 0.001f;
 }
}

In this example, the three for loops show three different loop counters. The first and
second for loops use float variables as loop counters, and therefore are not compliant.
The third loop uses the integer count as the loop counter. Even though count is used as
a float inside the loop, the variable remains an integer when acting as the loop index.
Therefore, this for loop is compliant.

while Loop Counters
int main(void){
 unsigned int u32a;
 float foo;

 foo = 0.0f;
 while (foo < 1.0f){
 foo += 0.001f; /* Non-compliant - foo used as a loop counter */
 }

 MISRA C:2012 Rule 14.1

5-87

 foo = read_float32();
 do{
 u32a = read_u32();
 }while(((float)u32a - foo) > 10.0f);
 /* Compliant - foo doesn't change in the loop */
 /* so cannot be a counter */
 return 1;
}

This example shows two while loops both of which use foo in the while-loop conditions.

The first while loop uses foo in the condition and inside the loop. Because foo changes,
floating-point rounding errors can cause unexpected behavior.

The second while loop does not use foo inside the loop, but does use foo inside the
while-condition. So foo is not the loop counter. The integer u32a is the loop counter
because it changes inside the loop and is part of the while condition. Because u32a is an
integer, the rounding error issue is not a concern, making this while loop compliant.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 14.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-88

MISRA C:2012 Rule 14.2
A for loop shall be well-formed

Description

Rule Definition
A for loop shall be well-formed.

Rationale
The for statement provides a general-purpose looping facility. Using a restricted form of
loop makes code easier to review and to analyze.

Polyspace Implementation
Polyspace checks that:

• The for loop index (V) is a variable symbol.
• V is the last assigned variable in the first expression (if present).
• If the first expression exists, it contains an assignment of V.
• If the second expression exists, it is a comparison of V.
• If the third expression exists, it is an assignment of V.
• There are no direct assignments of the for loop index.

Message in Report
• 1st expression should be an assignment. The following kinds of for loops are allowed:

• all three expressions shall be present;
• the 2nd and 3rd expressions shall be present with prior initialization of the loop

counter;

 MISRA C:2012 Rule 14.2

5-89

• all three expressions shall be empty for a deliberate infinite loop.
• 3rd expression should be an assignment of a loop counter.
• 3rd expression : assigned variable should be the loop counter (counter).
• 3rd expression should be an assignment of loop counter (counter) only.
• 2nd expression should contain a comparison with loop counter (counter).
• Loop counter (counter) should not be modified in the body of the loop.
• Bad type for loop counter (counter).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Altering the Loop Counter Inside the Loop
void foo(void){

 for(short index=0; index < 5; index++){ /* Non-compliant */
 index = index + 3; /* Altering the loop counter */
 }
}

In this example, the loop counter index changes inside the for loop. It is hard to
determine when the loop terminates.

Correction — Use Another Variable to Terminate Early

One possible correction is to use an extra flag to terminate the loop early.

In this correction, the second clause of the for loop depends on the counter value, index
< 5, and upon an additional flag, !flag. With the additional flag, the for loop definition
and counter remain readable, and you can escape the loop early.

#define FALSE 0
#define TRUE 1

5 MISRA C 2012

5-90

void foo(void){

 int flag = FALSE;

 for(short index=0; (index < 5) && !flag; index++){ /* Compliant */
 if((index % 4) == 0){
 flag = TRUE; /* allows early termination of loop */
 }
 }
}

for Loops With Empty Clauses
void foo(void)
 for(short index = 0; ; index++) {} /* Non-compliant */

 for(short index = 0; index < 10;) {} /* Non-compliant */

 short index;
 for(; index < 10;) {} /* Non-compliant */

 for(; index < 10; i++) {} /* Compliant */

 for(;;){}
 /* Compliant - Exception all three clauses can be empty */
}

This example shows for loops definitions with a variety of missing clauses. To be
compliant, initialize the first clause variable before the for loop (line 9). However, you
cannot have a for loop without the second or third clause.

The one exception is a for loop with all three clauses empty, so as to allow for infinite
loops.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Readability
Language: C90, C99

 MISRA C:2012 Rule 14.2

5-91

See Also
MISRA C:2012 Rule 14.1 | MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule
14.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-92

MISRA C:2012 Rule 14.3
Controlling expressions shall not be invariant

Description

Rule Definition
Controlling expressions shall not be invariant.

Rationale
If the controlling expression, for example an if condition, has a constant value, the non-
changing value can point to a programming error.

Polyspace Implementation
Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Polyspace Bug Finder flags some violations of MISRA C 14.3 through the Dead code and
Useless if checkers.

Polyspace Code Prover does not use gray code to flag MISRA C 14.3 violations. In Code
Prover, you can also see a difference in results based on your choice for the option
Verification level (-to). See “Check for Coding Standard Violations”.

Message in Report
• Boolean operations whose results are invariant shall not be permitted.
• Expression is always true.
• Boolean operations whose results are invariant shall not be permitted.
• Expression is always false.
• Controlling expressions shall not be invariant.

 MISRA C:2012 Rule 14.3

5-93

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 14.2 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-94

MISRA C:2012 Rule 14.4
The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type

Description

Rule Definition
The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type

Rationale
Strong typing requires the controlling expression on an if statement or iteration
statement to have essentially Boolean type.

Polyspace Implementation
Polyspace does not flag integer constants, for example if(2).

The analysis recognizes the Boolean types, bool or _Bool (defined in stdbool.h)

You can also define types that are essentially Boolean using the option Effective
boolean types (-boolean-types).

Message in Report
The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 14.4

5-95

Examples

Controlling Expression in if, while, and for
#include <stdbool.h>
#include <stdlib.h>

#define TRUE = 1

typedef _Bool bool_t;
extern bool_t flag;

void foo(void){
 int *p = 1;
 int *q = 0;
 int i = 0;
 while(p){} /* Non-compliant - p is a pointer */

 while(q != NULL){} /* Compliant */

 while(TRUE){} /* Compliant */

 while(flag){} /* Compliant */

 if(i){} /* Non-compliant - int32_t is not boolean */

 if(i != 0){} /* Compliant */

 for(int i=-10; i;i++){} /* Non-compliant - int32_t is not boolean */

 for(int i=0; i<10;i++){} /* Compliant */
}

This example shows various controlling expressions in while, if, and for statements.

The noncompliant statements (the first while, if, and for examples), use a single non-
Boolean variable. If you use a single variable as the controlling statement, it must be
essentially Boolean (lines 17 and 19). Boolean expressions are also compliant with
MISRA.

5 MISRA C 2012

5-96

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 14.2 | MISRA C:2012 Rule 20.8 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 14.4

5-97

MISRA C:2012 Rule 15.1
The goto statement should not be used

Description

Rule Definition
The goto statement should not be used.

Rationale
Unrestricted use of goto statements makes the program unstructured and difficult to
understand.

Message in Report
The goto statement should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Use of goto Statements
void foo(void) {
 int i = 0, result = 0;

label1:
 for (i; i < 5; i++) {
 if (i > 2) goto label2; /* Non-compliant */

5 MISRA C 2012

5-98

 }

label2: {
 result++;
 goto label1; /* Non-compliant */
 }
}

In this example, the rule is violated when goto statements are used.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule
15.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.1

5-99

MISRA C:2012 Rule 15.2
The goto statement shall jump to a label declared later in the same function

Description

Rule Definition
The goto statement shall jump to a label declared later in the same function.

Rationale
Unrestricted use of goto statements makes the program unstructured and difficult to
understand. You can use a forward goto statement together with a backward one to
implement iterations. Restricting backward goto statements ensures that you use only
iteration statements provided by the language such as for or while to implement
iterations. This restriction reduces visual complexity of the code.

Message in Report
The goto statement shall jump to a label declared later in the same function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Use of Backward goto Statements
void foo(void) {
 int i = 0, result = 0;

5 MISRA C 2012

5-100

label1:
 for (i; i < 5; i++) {
 if (i > 2) goto label2; /* Compliant */
 }

label2: {
 result++;
 goto label1; /* Non-compliant */
 }
}

In this example, the rule is violated when a goto statement causes a backward jump to
label1.

The rule is not violated when a goto statement causes a forward jump to label2.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule
15.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.2

5-101

MISRA C:2012 Rule 15.3
Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement

Description

Rule Definition
Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement.

Rationale
Unrestricted use of goto statements makes the program unstructured and difficult to
understand. Restricting use of goto statements to jump between blocks or into nested
blocks reduces visual code complexity.

Message in Report
Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

goto Statements Jump Inside Block
void f1(int a) {
 if(a <= 0) {

5 MISRA C 2012

5-102

 goto L2; /* Non-compliant - L2 in different block*/
 }

 goto L1; /* Compliant - L1 in same block*/

 if(a == 0) {
 goto L1; /* Compliant - L1 in outer block*/
 }

 goto L2; /* Non-compliant - L2 in inner block*/

 L1: if(a > 0) {
 L2:;
 }
}

In this example, goto statements cause jumps to different labels. The rule is violated
when:

• The label occurs in a block different from the block containing the goto statement.

The block containing the label neither encloses nor is enclosed by the current block.
• The label occurs in a block enclosed by the block containing the goto statement.

The rule is not violated when:

• The label occurs in the same block as the block containing the goto statement..
• The label occurs in a block that encloses the block containing the goto statement..

goto Statements in switch Block
void f2 (int x, int z) {
 int y = 0;

 switch(x) {
 case 0:
 if(x == y) {
 goto L1; /* Non-compliant - switch-clauses are treated as blocks */
 }
 break;
 case 1:
 y = x;
 L1: ++x;

 MISRA C:2012 Rule 15.3

5-103

 break;
 default:
 break;
 }

}

In this example, the label for the goto statement appears to occur in a block that
encloses the block containing the goto statement. However, for the purposes of this rule,
the software considers that each case statement begins a new block. Therefore, the goto
statement violates the rule.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule
15.4 | MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-104

MISRA C:2012 Rule 15.4
There should be no more than one break or goto statement used to terminate any
iteration statement

Description

Rule Definition
There should be no more than one break or goto statement used to terminate any
iteration statement.

Rationale
If you use one break or goto statement in your loop, you have one secondary exit point
from the loop. Restricting number of exits from a loop in this way reduces visual
complexity of your code.

Message in Report
There should be no more than one break or goto statement used to terminate any
iteration statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

break Statements in Inner and Outer Loops
volatile int stop;

 MISRA C:2012 Rule 15.4

5-105

int func(int *arr, int size, int sat) {
 int i,j;
 int sum = 0;
 for (i=0; i< size; i++) { /* Compliant */
 if(sum >= sat)
 break;
 for (j=0; j< i; j++) { /* Compliant */
 if(stop)
 break;
 sum += arr[j];
 }
 }
}

In this example, the rule is not violated in both the inner and outer loop because both
loops have one break statement each.

break and goto Statements in Loop
volatile int stop;

void displayStopMessage();

int func(int *arr, int size, int sat) {
 int i;
 int sum = 0;
 for (i=0; i< size; i++) { /* Non-compliant */
 if(sum >= sat)
 break;
 if(stop)
 goto L1;
 sum += arr[i];
 }

 L1: displayStopMessage();
}

In this example, the rule is violated because the for loop has one break statement and
one goto statement.

5 MISRA C 2012

5-106

goto Statement in Inner Loop and break Statement in Outer
Loop
volatile int stop;

void displayMessage();

int func(int *arr, int size, int sat) {
 int i,j;
 int sum = 0;
 for (i=0; i< size; i++) { /* Non-compliant */
 if(sum >= sat)
 break;
 for (j=0; j< i; j++) { /* Compliant */
 if(stop)
 goto L1;
 sum += arr[i];
 }
 }

 L1: displayMessage();
}

In this example, the rule is not violated in the inner loop because you can exit the loop
only through the one goto statement. However, the rule is violated in the outer loop
because you can exit the loop through either the break statement or the goto statement
in the inner loop.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule
15.3 | Check MISRA C:2012 (-misra3)

 MISRA C:2012 Rule 15.4

5-107

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-108

MISRA C:2012 Rule 15.5
A function should have a single point of exit at the end

Description

Rule Definition
A function should have a single point of exit at the end.

Rationale
This rule requires that a return statement must occur as the last statement in the
function body. Otherwise, the following issues can occur:

• Code following a return statement can be unintentionally omitted.
• If a function that modifies some of its arguments has early return statements, when

reading the code, it is not immediately clear which modifications actually occur.

Message in Report
A function should have a single point of exit at the end.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

More Than One return Statement in Function
#define MAX ((unsigned int)2147483647)
#define NULL (void*)0

 MISRA C:2012 Rule 15.5

5-109

typedef unsigned int bool_t;
bool_t false = 0;
bool_t true = 1;

bool_t f1(unsigned short n, char *p) { /* Non-compliant */
 if(n > MAX) {
 return false;
 }

 if(p == NULL) {
 return false;
 }

 return true;
}

In this example, the rule is violated because there are three return statements.

Correction — Use Variable to Store Return Value

One possible correction is to store the return value in a variable and return this variable
just before the function ends.

#define MAX ((unsigned int)2147483647)
#define NULL (void*)0

typedef unsigned int bool_t;
bool_t false = 0;
bool_t true = 1;
bool_t return_value;

bool_t f2 (unsigned short n, char *p) { /* Compliant */
 return_value = true;
 if(n > MAX) {
 return_value = false;
 }

 if(p == NULL) {
 return_value = false;
 }

 return return_value;
}

5 MISRA C 2012

5-110

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 17.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.5

5-111

MISRA C:2012 Rule 15.6
The body of an iteration-statement or a selection-statement shall be a compound
statement

Description

Rule Definition
The body of an iteration-statement or a selection-statement shall be a compound-
statement.

Rationale
The rule applies to:

• Iteration statements such as while, do ... while or for.
• Selection statements such as if ... else or switch.

If the block of code associated with an iteration or selection statement is not contained in
braces, you can make mistakes about the association. For example:

• You can wrongly associate a line of code with an iteration or selection statement
because of its indentation.

• You can accidentally place a semicolon following the iteration or selection statement.
Because of the semicolon, the line following the statement is no longer associated with
the statement even though you intended otherwise.

Message in Report
• The else keyword shall be followed by either a compound statement, or another if

statement.
• An if (expression) construct shall be followed by a compound statement.
• The statement forming the body of a while statement shall be a compound statement.

5 MISRA C 2012

5-112

• The statement forming the body of a do ... while statement shall be a compound
statement.

• The statement forming the body of a for statement shall be a compound statement.
• The statement forming the body of a switch statement shall be a compound statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Iteration Block
int data_available = 1;
void f1(void) {
 while(data_available) /* Non-compliant */
 process_data();

 while(data_available) { /* Compliant */
 process_data();
 }
}

In this example, the second while block is enclosed in braces and does not violate the
rule.

Nested Selection Statements
void f1(void) {
 if(flag_1) /* Non-compliant */
 if(flag_2) /* Non-compliant */
 action_1();
 else /* Non-compliant */
 action_2();
}

 MISRA C:2012 Rule 15.6

5-113

In this example, the rule is violated because the if or else blocks are not enclosed in
braces. Unless indented as above, it is easy to associate the else statement with the
inner if.

Correction — Place Selection Statement Block in Braces

One possible correction is to enclose each block associated with an if or else statement
in braces.

void f1(void) {
 if(flag_1) { /* Compliant */
 if(flag_2) { /* Compliant */
 action_1();
 }
 }
 else { /* Compliant */
 action_2();
 }
}

Spurious Semicolon After Iteration Statement
void f1(void) {
 while(flag_1); /* Non-compliant */
 {
 flag_1 = action_1();
 }
}

In this example, the rule is violated even though the while statement is followed by a
block in braces. The semicolon following the while statement causes the block to
dissociated from the while statement.

The rule helps detect such spurious semicolons.

Check Information
Group: Control Flow
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-114

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.6

5-115

MISRA C:2012 Rule 15.7
All if … else if constructs shall be terminated with an else statement

Description

Rule Definition
All if … else if constructs shall be terminated with an else statement.

Rationale
Unless there is a terminating else statement in an if...elseif...else construct,
during code review, it is difficult to tell if you considered all possible results for the if
condition.

Message in Report
All if … else if constructs shall be terminated with an else statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Missing else Block
int get_flag_1(void);
int get_flag_2(void);
void action_1(void);
void action_2(void);

5 MISRA C 2012

5-116

void f1(void) {
 int flag_1 = get_flag_1(), flag_2 = get_flag_2();
 if(flag_1) {
 action_1();
 }
 else if(flag_2) {
 /* Non-compliant */
 action_2();
 }
}

In this example, the rule is violated because the if ... else if construct does not
have a terminating else block.

Correction — Add else Block

To avoid the rule violation, add a terminating else block. The block can be empty.

int get_flag_1(void);
int get_flag_2(void);
void action_1(void);
void action_2(void);

void f1(void) {
 int flag_1 = get_flag_1(), flag_2 = get_flag_2();
 if(flag_1) {
 action_1();
 }
 else if(flag_2) {
 /* Non-compliant */
 action_2();
 }
 else {
 /* No statement required */
 /* ; is optional */
 }

}

Check Information
Group: Control Flow
Category: Required

 MISRA C:2012 Rule 15.7

5-117

AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 16.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-118

MISRA C:2012 Rule 16.1
All switch statements shall be well-formed

Description

Rule Definition
All switch statements shall be well-formed

Rationale
The syntax for switch statements in C is not particularly rigorous and can allow complex,
unstructured behavior. This rule and other rules impose a simple consistent structure on
the switch statement.

Polyspace Implementation
Following the MISRA specifications, the coding rules checker also raises a violation of
rule 16.1 if a switch statement violates one of these rules: 16.2, 16.3, 16.4, 16.5 or 16.6.

Message in Report
All messages in report file begin with "MISRA-C switch statements syntax normative
restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other

code.

 MISRA C:2012 Rule 16.1

5-119

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 16.2 | MISRA C:2012 Rule
16.3 | MISRA C:2012 Rule 16.4 | MISRA C:2012 Rule 16.5 | MISRA C:2012
Rule 16.6 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-120

MISRA C:2012 Rule 16.2
A switch label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement

Description
Rule Definition
A switch label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement

Rationale
The C Standard permits placing a switch label (for instance, case or default) before
any statement contained in the body of a switch statement. This flexibility can lead to
unstructured code. To prevent unstructured code, make sure a switch label appears only
at the outermost level of the body of a switch statement.

Message in Report
All messages in report file begin with "MISRA-C switch statements syntax normative
restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other

code.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 16.2

5-121

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-122

MISRA C:2012 Rule 16.3
An unconditional break statement shall terminate every switch-clause

Description

Rule Definition
An unconditional break statement shall terminate every switch-clause

Rationale
A switch-clause is a case containing at least one statement. Two consecutive labels
without an intervening statement is compliant with MISRA.

If you fail to end your switch-clauses with a break statement, then control flow “falls” into
the next statement. This next statement can be another switch-clause, or the end of the
switch. This behavior is sometimes intentional, but more often it is an error. If you add
additional cases later, an unterminated switch-clause can cause problems.

Polyspace Implementation
Polyspace raises a warning for each noncompliant case clause.

Message in Report
An unconditional break statement shall terminate every switch-clause.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 16.3

5-123

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-124

MISRA C:2012 Rule 16.4
Every switch statement shall have a default label

Description

Rule Definition
Every switch statement shall have a default label

Rationale
The requirement for a default label is defensive programming. Even if your switch
covers all possible values, there is no guarantee that the input takes one of these values.
Statements following the default label take some appropriate action. If the default
label requires no action, use comments to describe why there are no specific actions.

Message in Report
Every switch statement shall have a default label.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Switch Statement Without default
short func1(short xyz){

 switch(xyz){ /* Non-compliant - default label is required */
 case 0:

 MISRA C:2012 Rule 16.4

5-125

 ++xyz;
 break;
 case 1:
 case 2:
 break;
 }
 return xyz;
}

In this example, the switch statement does not include a default label, and is therefore
noncompliant.

Correction — Add default With Error Flag

One possible correction is to use the default label to flag input errors. If your switch-
clauses cover all expected input, then the default cases flags any input errors.

short func1(short xyz){

 switch(xyz){ /* Compliant */
 case 0:
 ++xyz;
 break;
 case 1:
 case 2:
 break;
 default:
 errorflag = 1;
 break;
 }
 if (errorflag == 1)
 return errorflag;
 else
 return xyz;
}

Switch Statement for Enumerated Inputs
enum Colors{
 RED, GREEN, BLUE
};

enum Colors func2(enum Colors color){
 enum Colors next;

5 MISRA C 2012

5-126

 switch(color){ /* Non-compliant - default label is required */
 case RED:
 next = GREEN;
 break;
 case GREEN:
 next = BLUE;
 break;
 case BLUE:
 next = RED;
 break;
 }
 return next;
}

In this example, the switch statement does not include a default label, and is therefore
noncompliant. Even though this switch statement handles all values of the enumeration,
there is no guarantee that color takes one of the those values.

Correction — Add default

To be compliant, add the default label to the end of your switch. You can use this case
to flag unexpected inputs.

enum Colors{
 RED, GREEN, BLUE, ERROR
};

enum Colors func2(enum Colors color){
 enum Colors next;

 switch(color){ /* Compliant */
 case RED:
 next = GREEN;
 break;
 case GREEN:
 next = BLUE;
 break;
 case BLUE:
 next = RED;
 break;
 default:
 next = ERROR;
 break;

 MISRA C:2012 Rule 16.4

5-127

 }

 return next;
}

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-128

MISRA C:2012 Rule 16.5
A default label shall appear as either the first or the last switch label of a switch
statement

Description

Rule Definition
A default label shall appear as either the first or the last switch label of a switch
statement.

Rationale
Using this rule, you can easily locate the default label within a switch statement.

Message in Report
A default label shall appear as either the first or the last switch label of a switch
statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Default Case in switch Statements
void foo(int var){

 switch(var){
 default: /* Compliant - default is the first label */

 MISRA C:2012 Rule 16.5

5-129

 case 0:
 ++var;
 break;
 case 1:
 case 2:
 break;
 }

 switch(var){
 case 0:
 ++var;
 break;
 default: /* Non-compliant - default is mixed with the case labels */
 case 1:
 case 2:
 break;
 }

 switch(var){
 case 0:
 ++var;
 break;
 case 1:
 case 2:
 default: /* Compliant - default is the last label */
 break;
 }

 switch(var){
 case 0:
 ++var;
 break;
 case 1:
 case 2:
 break;
 default: /* Compliant - default is the last label */
 var = 0;
 break;
 }
}

This example shows the same switch statement several times, each with default in a
different place. As the first, third, and fourth switch statements show, default must be

5 MISRA C 2012

5-130

the first or last label. default can be part of a compound switch-clause (for instance, the
third switch example), but it must be the last listed.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.7 | MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.5

5-131

MISRA C:2012 Rule 16.6
Every switch statement shall have at least two switch-clauses

Description

Rule Definition
Every switch statement shall have at least two switch-clauses.

Rationale
A switch statement with a single path is redundant and can indicate a programming error.

Message in Report
Every switch statement shall have at least two switch-clauses.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

5 MISRA C 2012

5-132

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.6

5-133

MISRA C:2012 Rule 16.7
A switch-expression shall not have essentially Boolean type

Description

Rule Definition
A switch-expression shall not have essentially Boolean type

Rationale
The C Standard requires the controlling expression to a switch statement to have an
integer type. Because C implements Boolean values with integer types, it is possible to
have a Boolean expression control a switch statement. For controlling flow with Boolean
types, an if-else construction is more appropriate.

Polyspace Implementation
The analysis recognizes the Boolean types, bool or _Bool (defined in stdbool.h)

You can also define types that are essentially Boolean using the option Effective
boolean types (-boolean-types).

Message in Report
A switch-expression shall not have essentially Boolean type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-134

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.7

5-135

MISRA C:2012 Rule 17.1
The features of <stdarg.h> shall not be used

Description

Rule Definition
The features of <stdarg.h> shall not be used..

Rationale
The rule forbids use of va_list, va_arg, va_start, va_end, and va_copy.

You can use these features in ways where the behavior is not defined in the Standard. For
instance:

• You invoke va_start in a function but do not invoke the corresponding va_end
before the function block ends.

• You invoke va_arg in different functions on the same variable of type va_list.
• va_arg has the syntax type va_arg (va_list ap, type).

You invoke va_arg with a type that is incompatible with the actual type of the
argument retrieved from ap.

Message in Report
The features of <stdarg.h> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-136

Examples

Use of va_start, va_list, va_arg, and va_end
#include<stdarg.h>
void f2(int n, ...) {
 int i;
 double val;
 va_list vl; /* Non-compliant */

 va_start(vl, n); /* Non-compliant */

 for(i = 0; i < n; i++)
 {
 val = va_arg(vl, double); /* Non-compliant */
 }

 va_end(vl); /* Non-compliant */
}

In this example, the rule is violated because va_start, va_list, va_arg and va_end
are used.

Undefined Behavior of va_arg

#include <stdarg.h>
void h(va_list ap) { /* Non-compliant */
 double y;

 y = va_arg(ap, double); /* Non-compliant */
}

void g(unsigned short n, ...) {
 unsigned int x;
 va_list ap; /* Non-compliant */

 va_start(ap, n); /* Non-compliant */
 x = va_arg(ap, unsigned int); /* Non-compliant */

 h(ap);

 MISRA C:2012 Rule 17.1

5-137

 /* Undefined - ap is indeterminate because va_arg used in h () */
 x = va_arg(ap, unsigned int); /* Non-compliant */

}

void f(void) {
 /* undefined - uint32_t:double type mismatch when g uses va_arg () */
 g(1, 2.0, 3.0);
}

In this example, va_arg is used on the same variable ap of type va_list in both
functions g and h. In g, the second argument is unsigned int and in h, the second
argument is double. This type mismatch causes undefined behavior.

Check Information
Group: Function
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-138

MISRA C:2012 Rule 17.2
Functions shall not call themselves, either directly or indirectly

Description

Rule Definition
Functions shall not call themselves, either directly or indirectly.

Rationale
Variables local to a function are stored in the call stack. If a function calls itself directly or
indirectly several times, the available stack space can be exceeded, causing serious
failure. Unless the recursion is tightly controlled, it is difficult to determine the maximum
stack space required.

Message in Report
Message in Report: Function XX shall not call itself either directly or indirectly.
Function XX is called indirectly by YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Direct and Indirect Recursion
void foo1(void) { /* Non-compliant - Indirect recursion foo1->foo2->foo1... */
 foo2();
 foo1(); /* Non-compliant - Direct recursion */

 MISRA C:2012 Rule 17.2

5-139

}

void foo2(void) {
 foo1();
}

In this example, the rule is violated because of:

• Direct recursion foo1 → foo1.
• Indirect recursion foo1 → foo2 → foo1.

Check Information
Group: Function
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Number of Recursions | Number of Direct Recursions | Check MISRA C:2012
(-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-140

MISRA C:2012 Rule 17.3
A function shall not be declared implicitly

Description

Rule Definition
A function shall not be declared implicitly.

Rationale
An implicit declaration occurs when you call a function before declaring or defining it.
When you declare a function explicitly before calling it, the compiler can match the
argument and return types with the parameter types in the declaration. If an implicit
declaration occurs, the compiler makes assumptions about the argument and return
types. For instance, it assumes a return type of int. The assumptions might not agree
with what you expect and cause undesired type conversions.

Polyspace Specification
To enable checking of this rule, use the value c90 for the option C standard version
(-c-version).

Message in Report
Function 'XX' has no complete visible prototype at call.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 17.3

5-141

Examples

Function Not Declared Before Call
#include <math.h>

extern double power3 (double val, int exponent);
int getChoice(void);

double func() {
 double res;
 int ch = getChoice();
 if(ch == 0) {
 res = power(2.0, 10); /* Non-compliant */
 }
 else if(ch==1) {
 res = power2(2.0, 10); /* Non-compliant */
 }
 else {
 res = power3(2.0, 10); /* Compliant */
 return res;
 }
}

double power2 (double val, int exponent) {
 return (pow(val, exponent));
}

In this example, the rule is violated when a function that is not declared is called in the
code. Even if a function definition exists later in the code, the rule violation occurs.

The rule is not violated when the function is declared before it is called in the code. If the
function definition exists in another file and is available only during the link phase, you
can declare the function in one of the following ways:

• Declare the function with the extern keyword in the current file.
• Declare the function in a header file and include the header file in the current file.

Check Information
Group: Function

5 MISRA C 2012

5-142

Category: Mandatory
AGC Category: Mandatory
Language: C90

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.4 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.3

5-143

MISRA C:2012 Rule 17.4
All exit paths from a function with non-void return type shall have an explicit return
statement with an expression

Description
Rule Definition
All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

Rationale
If a non-void function does not explicitly return a value but the calling function uses the
return value, the behavior is undefined. To prevent this behavior:

1 You must provide return statements with an explicit expression.
2 You must ensure that during run time, at least one return statement executes.

Message in Report
Missing return value for non-void function 'XX'.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Missing Return Statement Along Certain Execution Paths
int absolute(int v) {
 if(v < 0) {

5 MISRA C 2012

5-144

 return v;
 }
}

In this example, the rule is violated because a return statement does not exist on all
execution paths. If v >= 0, then the control returns to the calling function without an
explicit return value.

Return Statement Without Explicit Expression
#define SIZE 10
int table[SIZE];

unsigned short lookup(unsigned short v) {
 if((v < 0) || (v > SIZE)) {
 return;
 }
 return table[v];
}

In this example, the rule is violated because the return statement in the if block does
not have an explicit expression.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 17.4

5-145

Introduced in R2014b

5 MISRA C 2012

5-146

MISRA C:2012 Rule 17.5
The function argument corresponding to a parameter declared to have an array type shall
have an appropriate number of elements

Description

Rule Definition
The function argument corresponding to a parameter declared to have an array type shall
have an appropriate number of elements.

Rationale
If you use an array declarator for a function parameter instead of a pointer, the function
interface is clearer because you can state the minimum expected array size. If you do not
state a size, the expectation is that the function can handle an array of any size. In such
cases, the size value is typically another parameter of the function, or the array is
terminated with a sentinel value.

However, it is legal in C to specify an array size but pass an array of smaller size. This
rule prevents you from passing an array of size smaller than the size you declared.

Message in Report
The function argument corresponding to a parameter declared to have an array type shall
have an appropriate number of elements.

The argument type has actual_size elements whereas the parameter type expects
expected_size elements.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 17.5

5-147

Examples

Incorrect Array Size Passed to Function
void func(int arr[4]);

int main() {
 int arrSmall[3] = {1,2,3};
 int arr[4] = {1,2,3,4};
 int arrLarge[5] ={1,2,3,4,5};

 func(arrSmall); /* Non-compliant */
 func(arr); /* Compliant */
 func(arrLarge); /* Compliant */

 return 0;
}

In this example, the rule is violated when arrSmall, which has size 3, is passed to func,
which expects at least 4 elements.

Check Information
Group: Functions
Category: Advisory
AGC Category: Readability
Language: C90. C99

See Also
Check MISRA C:2012 (-misra3) | MISRA C:2012 Rule 17.6

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-148

MISRA C:2012 Rule 17.6
The declaration of an array parameter shall not contain the static keyword between the []

Description
Rule Definition
The declaration of an array parameter shall not contain the static keyword between the
[].

Rationale
If you use the static keyword within [] for an array parameter of a function, you can
inform a C99 compiler that the array contains a minimum number of elements. The
compiler can use this information to generate efficient code for certain processors.
However, in your function call, if you provide less than the specified minimum number,
the behavior is not defined.

Message in Report
The declaration of an array parameter shall not contain the static keyword between the
[].

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Use of static Keyword Within [] in Array Parameter
extern int arr1[20];
extern int arr2[10];

 MISRA C:2012 Rule 17.6

5-149

/* Non-compliant: static keyword used in array declarator */
unsigned int total (unsigned int n, unsigned int arr[static 20]) {
 unsigned int i;
 unsigned int sum = 0;

 for (i=0U; i < n; i++) {
 sum+= arr[i];
 }

 return sum;
}

void func (void) {
 int res, res2;
 res = total (10U, arr1); /* Non-compliant - behavior not defined */
 res2 = total (20U, arr2); /* Non-compliant, even if behavior is defined */
}

In this example, the rule is violated when the static keyword is used within [] in the
array parameter of function total. Even if you call total with array arguments where
the behavior is well-defined, the rule violation occurs.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-150

MISRA C:2012 Rule 17.7
The value returned by a function having non-void return type shall be used

Description

Rule Definition
The value returned by a function having non-void return type shall be used.

Rationale
You can unintentionally call a function with a non-void return type but not use the return
value. Because the compiler allows the call, you might not catch the omission. This rule
forbids calls to a non-void function where the return value is not used. If you do not
intend to use the return value of a function, explicitly cast the return value to void.

Message in Report
The value returned by a function having non-void return type shall be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Used and Unused Return Values
unsigned int cutOff(unsigned int val) {
 if (val > 10 && val < 100) {
 return val;
 }

 MISRA C:2012 Rule 17.7

5-151

 else {
 return 0;
 }
}

unsigned int getVal(void);

void func2(void) {
 unsigned int val = getVal(), res;
 cutOff(val); /* Non-compliant */
 res = cutOff(val); /* Compliant */
 (void)cutOff(val); /* Compliant */
}

In this example, the rule is violated when the return value of cutOff is not used
subsequently.

The rule is not violated when the return value is:

• Assigned to another variable.
• Explicitly cast to void.

Check Information
Group: Function
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-152

MISRA C:2012 Rule 17.8
A function parameter should not be modified

Description

Rule Definition
A function parameter should not be modified.

Rationale
When you modify a parameter, the function argument corresponding to the parameter is
not modified. However, you or another programmer unfamiliar with C can expect by
mistake that the argument is also modified when you modify the parameter.

Message in Report
A function parameter should not be modified.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Function Parameter Modified
int input(void);

void func(int param1, int* param2) {

 param1 = input(); /* Non-compliant */

 MISRA C:2012 Rule 17.8

5-153

 param2 = input(); / Compliant */
}

In this example, the rule is violated when the parameter param1 is modified.

The rule is not violated when the parameter is a pointer param2 and *param2 is
modified.

Check Information
Group: Functions
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-154

MISRA C:2012 Rule 18.1
A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand

Description

Rule Definition
A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand.

Rationale
Using an invalid array subscript can lead to erroneous behavior of the program. Run-time
derived array subscripts are especially troublesome because they cannot be easily
checked by manual review or static analysis.

The C Standard defines the creation of a pointer to one beyond the end of the array. The
rule permits the C Standard. Dereferencing a pointer to one beyond the end of an array
causes undefined behavior and is noncompliant.

Polyspace Implementation
Polyspace flags this rule during the analysis as:

• Bug Finder — Array access out-of-bounds and Pointer access out-of-
bounds.

• Code Prover — Illegally dereferenced pointer and Out of bounds array
index.

Bug Finder and Code Prover check this rule differently and can show different results for
this rule. In Code Prover, you can also see a difference in results based on your choice for
the option . See “Check for Coding Standard Violations”.

 MISRA C:2012 Rule 18.1

5-155

Message in Report
A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.1 | MISRA C:2012 Rule 18.4 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-156

MISRA C:2012 Rule 18.2
Subtraction between pointers shall only be applied to pointers that address elements of
the same array

Description

Rule Definition
Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Rationale
This rule applies to expressions of the form pointer_expression1 -
pointer_expression2. The behavior is undefined if pointer_expression1 and
pointer_expression2:

• Do not point to elements of the same array,
• Or do not point to the element one beyond the end of the array.

Polyspace Implementation
This rule is raised whenever the analysis detects a Subtraction or comparison
between pointers to different arrays.

Message in Report
Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 18.2

5-157

Examples

Subtracting Pointers
#include <stddef.h>

void f1 (int32_t *ptr)
{
 int32_t a1[10];
 int32_t a2[10];
 int32_t *p1 = &a1[1];
 int32_t *p2 = &a2[10];
 ptrdiff_t diff1, diff2, diff3;

 diff1 = p1 - a1; // Compliant
 diff2 = p2 - a2; // Compliant
 diff3 = p1 - p2; // Non-compliant
}

In this example, the three subtraction expressions show the difference between compliant
and noncompliant pointer subtractions. The diff1 and diff2 subtractions are compliant
because the pointers point to the same array. The diff3 subtraction is not compliant
because p1 and p2 point to different arrays.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.1 | MISRA C:2012 Rule 18.4 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”

5 MISRA C 2012

5-158

“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.2

5-159

MISRA C:2012 Rule 18.3
The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object

Description

Rule Definition
The relational operators >, >=, <, and <= shall not be applied to objects of pointer type
except where they point into the same object.

Rationale
If two pointers do not point to the same object, comparisons between the pointers
produces undefined behavior.

You can address the element beyond the end of an array, but you cannot access this
element.

Message in Report
The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-160

Examples

Pointer and Array Comparisons
void f1(void){
 int arr1[10];
 int arr2[10];
 int *ptr1 = arr1;

 if(ptr1 < arr2){} /* Non-compliant */
 if(ptr1 < arr1){} /* Compliant */
}

In this example, ptr1 is a pointer to arr1. To be compliant with rule 18.3, you can
compare only ptr1 with arr1. Therefore, the comparison between ptr1 and arr2 is
noncompliant.

Structure Comparisons
struct limits{
 int lower_bound;
 int upper_bound;
};

void func2(void){
 struct limits lim_1 = { 2, 5 };
 struct limits lim_2 = { 10, 5 };

 if(&lim_1.lower_bound <= &lim_2.upper_bound){} /* Non-compliant *
 if(&lim_1.lower_bound <= &lim_1.upper_bound){} /* Compliant */
}

This example defines two limits structures, lim1 and lim2, and compares the
elements. To be compliant with rule 18.3, you can compare only the structure elements
within a structure. The first comparison compares the lower_bound of lim1 and the
upper_bound of lim2. This comparison is noncompliant because the
lim_1.lower_bound and lim_2.upper_bound are elements of two different
structures.

 MISRA C:2012 Rule 18.3

5-161

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-162

MISRA C:2012 Rule 18.4
The +, -, += and -= operators should not be applied to an expression of pointer type

Description

Rule Definition
The +, -, += and -= operators should not be applied to an expression of pointer type.

Rationale
The preferred form of pointer arithmetic is using the array subscript syntax ptr[expr].
This syntax is clear and less prone to error than pointer manipulation. With pointer
manipulation, any explicitly calculated pointer value has the potential to access
unintended or invalid memory addresses. Array indexing can also access unintended or
invalid memory, but it is easier to review.

To a new C programmer, the expression ptr+1 can be mistakenly interpreted as one plus
the address of ptr. However, the new memory address depends on the size, in bytes, of
the pointer’s target. This confusion can lead to unexpected behavior.

When used with caution, pointer manipulation using ++ can be more natural (for instance,
sequentially accessing locations during a memory test).

Polyspace Implementation
Polyspace flags operations on pointers, for example, Pointer + Integer, Integer +
Pointer, Pointer - Integer.

Message in Report
The +, -, += and -= operators should not be applied to an expression of pointer type.

 MISRA C:2012 Rule 18.4

5-163

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Pointers and Array Expressions
void fun1(void){
 unsigned char arr[10];
 unsigned char *ptr;
 unsigned char index = 0U;

 index = index + 1U; /* Compliant - rule only applies to pointers */

 arr[index] = 0U; /* Compliant */
 ptr = &arr[5]; /* Compliant */
 ptr = arr;
 ptr++; /* Compliant - increment operator not + */
 (ptr + 5) = 0U; / Non-compliant */
 ptr[5] = 0U; /* Compliant */
}

This example shows various operations with pointers and arrays. The only operation in
this example that is noncompliant is using the + operator directly with a pointer (line 12).

Adding Array Elements Inside a for Loop
void fun2(void){
 unsigned char array_2_2[2][2] = {{1U, 2U}, {4U, 5U}};
 unsigned char i = 0U;
 unsigned char j = 0U;
 unsigned char sum = 0U;

 for(i = 0u; i < 2U; i++){
 unsigned char *row = array_2_2[i];

 for(j = 0u; j < 2U; j++){
 sum += row[j]; /* Compliant */
 }

5 MISRA C 2012

5-164

 }
}

In this example, the second for loop uses the array pointer row in an arithmetic
expression. However, this usage is compliant because it uses the array index form.

Pointers and Array Expressions
void fun3(unsigned char *ptr1, unsigned char ptr2[]){
 ptr1++; /* Compliant */
 ptr1 = ptr1 - 5; /* Non-compliant */
 ptr1 -= 5; /* Non-compliant */
 ptr1[2] = 0U; /* Compliant */

 ptr2++; /* Compliant */
 ptr2 = ptr2 + 3; /* Non-compliant */
 ptr2 += 3; /* Non-compliant */
 ptr2[3] = 0U; /* Compliant */
}

This example shows the offending operators used on pointers and arrays. Notice that the
same types of expressions are compliant and noncompliant for both pointers and arrays.

If ptr1 does not point to an array with at least six elements, and ptr2 does not point to
an array with at least 4 elements, this example violates rule 18.1.

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 18.1 | MISRA C:2012 Rule 18.2 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”

 MISRA C:2012 Rule 18.4

5-165

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-166

MISRA C:2012 Rule 18.5
Declarations should contain no more than two levels of pointer nesting

Description

Rule Definition
Declarations should contain no more than two levels of pointer nesting.

Rationale
The use of more than two levels of pointer nesting can seriously impair the ability to
understand the behavior of the code. Avoid this usage.

Message in Report
Declarations should contain no more than two levels of pointer nesting.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Pointer Nesting
typedef char *INTPTR;

void function(char ** arrPar[]) /* Non-compliant - 3 levels */
{
 char ** obj2; /* Compliant */
 char *** obj3; /* Non-compliant */

 MISRA C:2012 Rule 18.5

5-167

 INTPTR * obj4; /* Compliant */
 INTPTR * const * const obj5; /* Non-compliant */
 char ** arr[10]; /* Compliant */
 char ** (*parr)[10]; /* Compliant */
 char * (**pparr)[10]; /* Compliant */
}

struct s{
 char * s1; /* Compliant */
 char ** s2; /* Compliant */
 char *** s3; /* Non-compliant */
};

struct s * ps1; /* Compliant */
struct s ** ps2; /* Compliant */
struct s *** ps3; /* Non-compliant */

char ** (*pfunc1)(void); /* Compliant */
char ** (**pfunc2)(void); /* Compliant */
char ** (***pfunc3)(void); /* Non-compliant */
char *** (**pfunc4)(void); /* Non-compliant */

This example shows various pointer declarations and nesting levels. Any pointer with
more than two levels of nesting is considered noncompliant.

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-168

MISRA C:2012 Rule 18.6
The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist

Description

Rule Definition
The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist.

Rationale
The address of an object becomes indeterminate when the lifetime of that object expires.
Any use of an indeterminate address results in undefined behavior.

Polyspace Implementation
Polyspace flags a violation when assigning an address to a global variable, returning a
local variable address, or returning a parameter address.

Message in Report
The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 18.6

5-169

Examples

Address of Local Variables
char *func(void){
 char local_auto;
 return &local_auto /* Non-compliant
 * &local_auto is indeterminate */
}

In this example, because local_auto is a local variable, after the function returns, the
address of local_auto is indeterminate.

Copying Pointer Addresses to Local Variables
char *sp;

void f(unsigned short u){
 g(&u);
}

void g(unsigned short *p){
 sp = p; /* Non-compliant
 * the parameter u from f is copied to static sp */
}

void h(void){
 static unsigned short *q;

 unsigned short x =0u;
 q = &x; /* Non-compliant -
 * &x stored in object with greater lifetime */
}

In this example, the function g stores a copy of its pointer parameter p. If p always points
to an object with static storage duration, then the code is compliant with this rule.
However, in this example, p points to an object with automatic storage duration. In such a
case, copying the parameter p is noncompliant.

5 MISRA C 2012

5-170

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.6

5-171

MISRA C:2012 Rule 18.7
Flexible array members shall not be declared

Description

Rule Definition
Flexible array members shall not be declared.

Rationale
Flexible array members are usually used with dynamic memory allocation. Dynamic
memory allocation is banned by Directive 4.12 and Rule 21.3 on page 5-259.

Message in Report
Flexible array members shall not be declared.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 21.3 | Check MISRA C:2012 (-misra3)

5 MISRA C 2012

5-172

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.7

5-173

MISRA C:2012 Rule 18.8
Variable-length array types shall not be used

Description

Rule Definition
Variable-length array types shall not be used.

Rationale
When the size of an array declared in a block or function prototype is not an integer
constant expression, you specify variable array types. Variable array types are typically
implemented as a variable size object stored on the stack. Using variable type arrays can
make it impossible to determine statistically the amount of memory for the stack requires.

If the size of a variable-length array is negative or zero, the behavior is undefined.

If a variable-length array must be compatible with another array type, then the size of the
array types must be identical and positive integers. If your array does not meet these
requirements, the behavior is undefined.

If you use a variable-length array type in a sizeof, it is uncertain if the array size is
evaluated or not.

Message in Report
Variable-length array types shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-174

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 13.6 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.8

5-175

MISRA C:2012 Rule 19.1
An object shall not be assigned or copied to an overlapping object

Description
Rule Definition
An object shall not be assigned or copied to an overlapping object.

Rationale
When you assign an object to another object with overlapping memory, the behavior is
undefined. The exceptions are:

• You assign an object to another object with exactly overlapping memory and
compatible type.

• You copy one object to another using memmove.

Message in Report
• An object shall not be assigned or copied to an overlapping object.
• Destination and source of XX overlap, the behavior is undefined.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Assignment of Union Members
void func (void) {
 union {

5 MISRA C 2012

5-176

 short i;
 int j;
 } a = {0}, b = {1};

 a.j = a.i; /* Non-compliant */
 a = b; /* Compliant */
}

In this example, the rule is violated when a.i is assigned to a.j because the two
variables have overlapping regions of memory.

Assignment of Array Segments
#include <string.h>

int arr[10];

void func(void) {
 memcpy (&arr[5], &arr[4], 2u * sizeof(arr[0])); /* Non-compliant */
 memcpy (&arr[5], &arr[4], sizeof(arr[0])); /* Compliant */
 memcpy (&arr[1], &arr[4], 2u * sizeof(arr[0])); /* Compliant */
}

In this example, memory equal to twice sizeof(arr[0]) is the memory space taken up
by two array elements. If that memory space begins from &a[4] and &a[5], the two
memory regions overlap. The rule is violated when the memcpy function is used to copy
the contents of these two overlapping memory regions.

Check Information
Group: Overlapping Storage
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 19.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”

 MISRA C:2012 Rule 19.1

5-177

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-178

MISRA C:2012 Rule 19.2
The union keyword should not be used

Description

Rule Definition
The union keyword should not be used.

Rationale
If you write to a union member and read the same union member, the behavior is well-
defined. But if you read a different member, the behavior depends on the relative sizes of
the members. For instance:

• If you read a union member with wider memory size, the value you read is unspecified.
• Otherwise, the value is implementation-dependant.

Message in Report
The union keyword should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Possible Problems with union Keyword
unsigned int zext(unsigned int s)
{

 MISRA C:2012 Rule 19.2

5-179

 union /* Non-compliant */
 {
 unsigned int ul;
 unsigned short us;
 } tmp;

 tmp.us = s;
 return tmp.ul; /* Unspecified value */
}

In this example, the 16-bit short field tmp.us is written but the wider 32-bit int field
tmp.ul is read. Using the union keyword can cause such unspecified behavior.
Therefore, the rule forbids using the union keyword.

Check Information
Group: Overlapping Storage
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 19.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-180

MISRA C:2012 Rule 2.1
A project shall not contain unreachable code

Description

Rule Definition
A project shall not contain unreachable code.

Rationale
Unless a program exhibits any undefined behavior, unreachable code cannot execute. The
unreachable code cannot affect the program output. The presence of unreachable code
can indicate an error in the program logic. Unreachable code that the compiler does not
remove wastes resources, for example:

• It occupies space in the target machine memory.
• Its presence can cause a compiler to select longer, slower jump instructions when

transferring control around the unreachable code.
• Within a loop, it can prevent the entire loop from residing in an instruction cache.

Polyspace Implementation
Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

The Code Prover run-time check for unreachable code shows more cases than the MISRA
checker for rule 2.1. See also Unreachable code. The run-time check performs a more
exhaustive analysis. In the process, the check can show some instances that are not
strictly unreachable code but unreachable only in the context of the analysis. For
instance, in the following code, the run-time check shows a potential division by zero in
the first line and then removes the zero value of flag for the rest of the analysis.
Therefore, it considers the if block unreachable.

 MISRA C:2012 Rule 2.1

5-181

val=1.0/flag;
if(!flag) {}

The MISRA checker is designed to prevent these kinds of results.

Message in Report
A project shall not contain unreachable code.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Code Following return Statement
enum light { red, amber, red_amber, green };

enum light next_light (enum light color)
{
 enum light res;

 switch (color)
 {
 case red:
 res = red_amber;
 break;
 case red_amber:
 res = green;
 break;
 case green:
 res = amber;
 break;
 case amber:
 res = red;
 break;
 default:
 {

5 MISRA C 2012

5-182

 error_handler ();
 break;
 }
 }

 res = color;
 return res;
 res = color; /* Non-compliant */
}

In this example, the rule is violated because there is an unreachable operation following
the return statement.

Check Information
Group: Unused Code
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule 16.4 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.1

5-183

MISRA C:2012 Rule 2.2
There shall be no dead code

Description

Rule Definition
There shall be no dead code.

Rationale
If an operation is reachable but removing the operation does not affect program behavior,
the operation constitutes dead code.

The presence of dead code can indicate an error in the program logic. Because a compiler
can remove dead code, its presence can cause confusion for code reviewers.

Operations involving language extensions such as __asm ("NOP"); are not
considered dead code.

Polyspace Implementation
Polyspace Bug Finder detects useless write operations during analysis.

Polyspace Code Prover does not detect useless write operations. For instance, if you
assign a value to a local variable but do not read it later, Polyspace Code Prover does not
detect this useless assignment. Use Polyspace Bug Finder to detect such useless write
operations.

In Code Prover, you can also see a difference in results based on your choice for the
option . See “Check for Coding Standard Violations”.

Message in Report
There shall be no dead code.

5 MISRA C 2012

5-184

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Redundant Operations
extern volatile unsigned int v;
extern char *p;

void f (void) {
 unsigned int x;

 (void) v; /* Compliant - Exception*/
 (int) v; /* Non-compliant */
 v >> 3; /* Non-compliant */

 x = 3; /* Non-compliant - Detected in Bug Finder only */

 p++; / Non-compliant */
 (*p)++; /* Compliant */
}

In this example, the rule is violated when an operation is performed on a variable, but the
result of that operation is not used. For instance,

• The operations (int) and >> on the variable v are redundant because the results are
not used.

• The operation = is redundant because the local variable x is not read after the
operation.

• The operation * on p++ is redundant because the result is not used.

The rule is not violated when:

• A variable is cast to void. The cast indicates that you are intentionally not using the
value.

 MISRA C:2012 Rule 2.2

5-185

• The result of an operation is used. For instance, the operation * on p is not redundant,
because *p is incremented.

Redundant Function Call
void g (void) {
 /* Compliant */
}

void h (void) {
 g(); /* Non-compliant */
}

In this example, g is an empty function. Though the function itself does not violate the
rule, a call to the function violates the rule.

Check Information
Group: Unused Code
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 17.7 | Write without a further read | Check MISRA
C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-186

MISRA C:2012 Rule 2.3
A project should not contain unused type declarations

Description

Rule Definition
A project should not contain unused type declarations.

Rationale
If a type is declared but not used, a reviewer does not know if the type is redundant or if
it is unused by mistake.

Message in Report
A project should not contain unused type declarations: type XX is not used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Unused Local Type
signed short unusedType (void){

 typedef signed short myType; /* Non-compliant */
 return 67;

}

 MISRA C:2012 Rule 2.3

5-187

signed short usedType (void){

 typedef signed short myType; /* Compliant */
 myType tempVar = 67;
 return tempVar;

}

In this example, in function unusedType, the typedef statement defines a new local
type myType. However, this type is never used in the function. Therefore, the rule is
violated.

The rule is not violated in the function usedType because the new type myType is used.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-188

MISRA C:2012 Rule 2.4
A project should not contain unused tag declarations

Description

Rule Definition
A project should not contain unused tag declarations.

Rationale
If a tag is declared but not used, a reviewer does not know if the tag is redundant or if it
is unused by mistake.

Message in Report
A project should not contain unused tag declarations: tag tag_name is not used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Tag Defined in Function but Not Used
void unusedTag (void)
{
 enum state1 { S_init, S_run, S_sleep }; /* Non-compliant */
}

void usedTag (void)

 MISRA C:2012 Rule 2.4

5-189

{
 enum state2 { S_init, S_run, S_sleep }; /* Compliant */
 enum state2 my_State = S_init;
}

In this example, in the function unusedTag, the tag state1 is defined but not used.
Therefore, the rule is violated.

Tag Used in typedef Only
typedef struct record_t /* Non-compliant */
{
 unsigned short key;
 unsigned short val;
} record1_t;

typedef struct /* Compliant */
{
 unsigned short key;
 unsigned short val;
} record2_t;

record1_t myRecord1_t;
record2_t myRecord2_t;

In this example, the tag record_t appears only in the typedef of record1_t. In the
rest of the translation unit, the type record1_t is used. Therefore, the rule is violated.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.3 | Check MISRA C:2012 (-misra3)

5 MISRA C 2012

5-190

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.4

5-191

MISRA C:2012 Rule 2.5
A project should not contain unused macro declarations

Description
Rule Definition
A project should not contain unused macro declarations.

Rationale
If a macro is declared but not used, a reviewer does not know if the macro is redundant
or if it is unused by mistake.

Message in Report
A project should not contain unused macro declarations: macro macro_name is not used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Unused Macro Definition
void use_macro (void)
{
 #define SIZE 4
 #define DATA 3

 use_int16(SIZE);
}

5 MISRA C 2012

5-192

In this example, the macro DATA is never used in the use_macro function.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.5

5-193

MISRA C:2012 Rule 2.6
A function should not contain unused label declarations

Description

Rule Definition
A function should not contain unused label declarations.

Rationale
If you declare a label but do not use it, it is not clear to a reviewer of your code if the
label is redundant or unused by mistake.

Message in Report
A function should not contain unused label declarations.

Label label_name is not used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Unused Label Declarations
void use_var(signed short);

void unused_label (void)
{

5 MISRA C 2012

5-194

 signed short x = 6;

label1: /* Non-compliant - label1 not used */
 use_var (x);
}

void used_label (void)
{
 signed short x = 6;

 for (int i=0; i < 5; i++) {
 if (i==2) goto label1;
 }

label1: /* Compliant - label1 used */
 use_var (x);
}

In this example, the rule is violated when the label label1 in function unused_label is
not used.

Check Information
Group: Unused code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 2.6

5-195

MISRA C:2012 Rule 2.7
There should be no unused parameters in functions

Description
Rule Definition
There should be no unused parameters in functions.

Rationale
If a parameter is unused, it is possible that the implementation of the function does not
match its specifications. This rule can highlight such mismatches.

Message in Report
There should be no unused parameters in functions.

Parameter parameter_name is not used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Unused Function Parameters
double func(int param1, int* param2) {
 return (param1/2.0);
}

In this example, the rule is violated because the parameter param2 is not used.

5 MISRA C 2012

5-196

Check Information
Group: Unused code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3) | Unused parameter

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 2.7

5-197

MISRA C:2012 Rule 20.1
#include directives should only be preceded by preprocessor directives or comments

Description

Rule Definition
#include directives should only be preceded by preprocessor directives or comments.

Rationale
For better code readability, group all #include directives in a file at the top of the file.
Undefined behavior can occur if you use #include to include a standard header file
within a declaration or definition, or if you use part of the Standard Library before
including the related standard header files.

Polyspace Implementation
Polyspace flags text that precedes a #include directive. Polyspace ignores preprocessor
directives, comments, spaces, or "new lines".

Message in Report
#include directives should only be preceded by preprocessor directives or comments.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives

5 MISRA C 2012

5-198

Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.1

5-199

MISRA C:2012 Rule 20.10
The # and ## preprocessor operators should not be used

Description

Rule Definition
The # and ## preprocessor operators should not be used.

Rationale
The order of evaluation associated with multiple #, multiple ##, or a mix of # and ##
preprocessor operators is unspecified. In some cases, it is therefore not possible to
predict the result of macro expansion.

The use of ## can result in obscured code.

Message in Report
The # and ## preprocessor operators should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Advisory
Language: C90, C99

5 MISRA C 2012

5-200

See Also
MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 20.11 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.10

5-201

MISRA C:2012 Rule 20.11
A macro parameter immediately following a # operator shall not immediately be followed
by a ## operator

Description

Rule Definition
A macro parameter immediately following a # operator shall not immediately be followed
by a ## operator.

Rationale
The order of evaluation associated with multiple #, multiple ##, or a mix of # and ##
preprocessor operators, is unspecified. Rule 20.10 discourages the use of # and ##. The
result of a # operator is a string literal. It is extremely unlikely that pasting this result to
any other preprocessing token results in a valid token.

Message in Report
The ## preprocessor operator shall not follow a macro parameter following a #
preprocessor operator.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-202

Examples

Use of # and ##
#define A(x) #x /* Compliant */
#define B(x, y) x ## y /* Compliant */
#define C(x, y) #x ## y /* Non-compliant */

In this example, you can see three uses of the # and ## operators. You can use these
preprocessing operators alone (line 1 and line 2), but using # then ## is noncompliant
(line 3).

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 20.10 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.11

5-203

MISRA C:2012 Rule 20.12
A macro parameter used as an operand to the # or ## operators, which is itself subject
to further macro replacement, shall only be used as an operand to these operators

Description

Rule Definition
A macro parameter used as an operand to the # or ## operators, which is itself subject
to further macro replacement, shall only be used as an operand to these operators.

Rationale
The parameter to # or ## is not expanded prior to being used. The same parameter
appearing elsewhere in the replacement text is expanded. If the macro parameter is itself
subject to macro replacement, its use in mixed contexts within a macro replacement
might not meet developer expectations.

Message in Report
Expanded macro parameter param1 is also an operand of op operator.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-204

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.12

5-205

MISRA C:2012 Rule 20.13
A line whose first token is # shall be a valid preprocessing directive

Description

Rule Definition
A line whose first token is # shall be a valid preprocessing directive

Rationale
You typically use a preprocessing directive to conditionally exclude source code until a
corresponding #else, #elif, or #endif directive is encountered. If your compiler does
not detect a preprocessing directive because it is malformed or invalid, you can end up
excluding more code than you intended.

If all preprocessing directives are syntactically valid, even in excluded code, this
unintended code exclusion cannot happen.

Message in Report
Directive is not syntactically meaningful.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-206

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.13

5-207

MISRA C:2012 Rule 20.14
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,
#ifdef or #ifndef directive to which they are related

Description

Rule Definition
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,
#ifdef or #ifndef directive to which they are related.

Rationale
When conditional compilation directives include or exclude blocks of code and are spread
over multiple files, confusion arises. If you terminate an #if directive within the same
file, you reduce the visual complexity of the code and the chances of an error.

If you terminate #if directives within the same file, you can use #if directives in
included files

Message in Report
• '#else' not within a conditional.
• '#elseif' not within a conditional.
• '#endif' not within a conditional.

Unterminated conditional directive.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-208

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.14

5-209

MISRA C:2012 Rule 20.2
The ', " or \ characters and the /* or // character sequences shall not occur in a header file
name

Description

Rule Definition
The ', " or \ characters and the /* or // character sequences shall not occur in a header file
name.

Rationale
The program’s behavior is undefined if:

• You use ', ", \, /* or // between < > delimiters in a header name preprocessing
token.

• You use ', \, /* or // between " delimiters in a header name preprocessing token.

Although \ results in undefined behavior, many implementations accept / in its place.

Polyspace Implementation
Polyspace flags the characters ', ", \, /* or // between < and > in #include
<filename>.

Polyspace flags the characters ', \, /* or // between " and " in #include
"filename".

Message in Report
The ', "or \ characters and the /* or // character sequences shall not occur in a header file
name.

5 MISRA C 2012

5-210

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.2

5-211

MISRA C:2012 Rule 20.3
The #include directive shall be followed by either a <filename> or \"filename\" sequence

Description

Rule Definition
The #include directive shall be followed by either a <filename> or "filename" sequence.

Rationale
This rule applies only after macro replacement.

The behavior is undefined if an #include directive does not use one of the following
forms:

• #include <filename>
• #include "filename"

Message in Report
• ‘#include' expects \"FILENAME\" or <FILENAME>
• ‘#include_next' expects \"FILENAME\" or <FILENAME>
• ‘#include' does not expect string concatenation.
• ‘#include_next' does not expect string concatenation.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-212

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.3

5-213

MISRA C:2012 Rule 20.4
A macro shall not be defined with the same name as a keyword

Description

Rule Definition
A macro shall not be defined with the same name as a keyword.

Rationale
Using macros to change the meaning of keywords can be confusing. The behavior is
undefined if you include a standard header while a macro is defined with the same name
as a keyword.

Message in Report
• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Redefining int keyword
#define int some_other_type
 /* Non-compliant - int keyword behavior altered */
#include <stdlib.h>
...

5 MISRA C 2012

5-214

In this example, the #define violates Rule 20.4 because it alters the behavior of the int
keyword. The inclusion of the standard header results in undefined behavior.

Correction — Rename keyword

One possible correction is to use a different keyword:

#define int_mine some_other_type
#include <stdlib.h>
...

Redefining keywords versus statements
#define while(E) for (; (E) ;) /* Non-compliant - while redefined*/
#define unless(E) if (!(E)) /* Compliant*/

#define seq(S1, S2) do{ S1; S2;} while(false) /* Compliant*/
#define compound(S) {S;} /* Compliant*/
...

In this example, it is noncompliant to redefine the keyword while, but it is compliant to
define a macro that expands to statements.

Redefining keywords in different standards
#define inline

In this example, redefining inline is compliant in C90, but not in C99 because inline is
not a keyword in C90.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Languages: C90, C99

See Also
Check MISRA C:2012 (-misra3) | MISRA C:2012 Rule 21.1

 MISRA C:2012 Rule 20.4

5-215

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-216

MISRA C:2012 Rule 20.5
#undef should not be used

Description

Rule Definition
#undef should not be used.

Rationale
#undef can make the software unclear which macros exist at a particular point within a
translation unit.

Message in Report
#undef shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

 MISRA C:2012 Rule 20.5

5-217

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-218

MISRA C:2012 Rule 20.6
Tokens that look like a preprocessing directive shall not occur within a macro argument

Description
Rule Definition
Tokens that look like a preprocessing directive shall not occur within a macro argument.

Rationale
An argument containing sequences of tokens that otherwise act as preprocessing
directives leads to undefined behavior.

Polyspace Implementation
Polyspace looks for the # character in a macro arguments (outside a string or character
constant).

Message in Report
Macro argument shall not look like a preprocessing directive.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Macro Expansion Causing Non-Compliance
#define M(A) printf (#A)

 MISRA C:2012 Rule 20.6

5-219

#include <stdio.h>

void foo(void){
 M(
#ifdef SW /* Non-compliant */
 "Message 1"
#else
 "Message 2" /* Compliant - SW not defined */
#endif /* Non-compliant */
);
}

This example shows a macro definition and the macro usage. #ifdef SW and #endif are
noncompliant because they look like a preprocessing directive. Polyspace does not flag
#else "Message 2" because after macro expansion, Polyspace knows SW is not defined.
The expanded macro is printf ("\"Message 2\"");

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-220

MISRA C:2012 Rule 20.7
Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses

Description
Rule Definition
Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses.

Rationale
If you do not use parentheses, then it is possible that operator precedence does not give
the results that you want when macro substitution occurs.

If you are not using a macro parameter as an expression, then the parentheses are not
necessary because no operators are involved in the macro.

Message in Report
Expanded macro parameter param shall be enclosed in parentheses.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Macro Expressions
#define mac1(x, y) (x * y)
#define mac2(x, y) ((x) * (y))

 MISRA C:2012 Rule 20.7

5-221

void foo(void){
 int r;

 r = mac1(1 + 2, 3 + 4); /* Non-compliant */
 r = mac1((1 + 2), (3 + 4)); /* Compliant */

 r = mac2(1 + 2, 3 + 4); /* Compliant */
}

In this example, mac1 and mac2 are two defined macro expressions. The definition of
mac1 does not enclose the arguments in parentheses. In line 7, the macro expands to r =
(1 + 2 * 3 + 4); This expression can be (1 + (2 * 3) + 4) or (1 + 2) * (3 +
4). However, without parentheses, the program does not know the intended expression.
Line 8 uses parentheses, so the line expands to (1 + 2) * (3 + 4). This macro
expression is compliant.

The definition of mac2 does enclose the argument in parentheses. Line 10 (the same
macro arguments in line 7) expands to (1 + 2) * (3 + 4). This macro and macro
expression are compliant.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.9 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-222

MISRA C:2012 Rule 20.8
The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1

Description

Rule Definition
The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or
1.

Rationale
Strong typing requires that conditional inclusion preprocessing directives, #if or #elif,
have a controlling expression that evaluates to a Boolean value.

Message in Report
The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or
1.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Advisory
Language: C90, C99

 MISRA C:2012 Rule 20.8

5-223

See Also
MISRA C:2012 Rule 14.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-224

MISRA C:2012 Rule 20.9
All identifiers used in the controlling expression of #if or #elif preprocessing directives
shall be #define’d before evaluation

Description

Rule Definition
All identifiers used in the controlling expression of #if or #elif preprocessing directives
shall be #define’d before evaluation.

Rationale
If attempt to use a macro identifier in a preprocessing directive, and you have not defined
that identifier, then the preprocessor assumes that it has a value of zero. This value might
not meet developer expectations.

Message in Report
Identifier is not defined.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Macro Identifiers
#if M == 0 /* Non-compliant - Not defined */
#endif

 MISRA C:2012 Rule 20.9

5-225

#if defined (M) /* Compliant - M is not evaluate */
#if M == 0 /* Compliant - M is known to be defined */
#endif
#endif

#if defined (M) && (M == 0) /* Compliant
 * if M defined, M evaluated in (M == 0) */
#endif

This example shows various uses of M in preprocessing directives. The second and third
#if clauses check to see if the software defines M before evaluating M. The first #if
clause does not check to see if M is defined, and because M is not defined, the statement is
noncompliant.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.9 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-226

MISRA C:2012 Rule 21.1
#define and #undef shall not be used on a reserved identifier or reserved macro name

Description

Rule Definition
#define and #undef shall not be used on a reserved identifier or reserved macro name.

Rationale
Reserved identifiers and reserved macro names are intended for use by the
implementation. Removing or changing the meaning of a reserved macro can result in
undefined behavior. This rule applies to the following:

• Identifiers or macro names beginning with an underscore
• Identifiers in file scope described in the C Standard Library (ISO/IEC 9899:1999,

Section 7, "Library")
• Macro names described in the C Standard Library as being defined in a standard

header (ISO/IEC 9899:1999, Section 7, "Library").

Message in Report
• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.
• The macro macro_name shall not be defined.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 21.1

5-227

Examples

Defining or Undefining Reserved Identifiers
#undef __LINE__ /* Non-compliant - begins with _ */
#define _Guard_H 1 /* Non-compliant - begins with _ */
#undef _ BUILTIN_sqrt /* Non-compliant - implementation may
 * use _BUILTIN_sqrt for other purposes,
 * e.g. generating a sqrt instruction */
#define defined /* Non-compliant - reserved identifier */
#define errno my_errno /* Non-compliant - library identifier */
#define isneg(x) ((x) < 0) /* Compliant - rule doesn't include
 * future library directions */

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Languages: C90, C99

See Also
MISRA C:2012 Rule 20.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-228

MISRA C:2012 Rule 21.10
The Standard Library time and date functions shall not be used

Description

Rule Definition
The Standard Library time and date functions shall not be used.

Rationale
Using these functions can cause unspecified, undefined and implementation-defined
behavior.

Polyspace Implementation
If the function is a macro and the macro is expanded in the code, this rule is violated. It is
assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Standard Libraries
Category: Required

 MISRA C:2012 Rule 21.10

5-229

AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-230

MISRA C:2012 Rule 21.11
The standard header file <tgmath.h> shall not be used

Description

Rule Definition
The standard header file <tgmath.h> shall not be used.

Rationale
Using the facilities of this header file can cause undefined behavior.

Polyspace Implementation
If the function is a macro and the macro is expanded in the code, this rule is violated. It is
assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 21.11

5-231

Examples

Use of Function in tgmath.h
#include <tgmath.h>

float f1,res;

void func(void) {
 res = sqrt(f1); /* Non-compliant */
}

In this example, the rule is violated when the sqrt macro defined in tgmath.h is used.

Correction — Use Appropriate Function in math.h

For this example, one possible correction is to use the function sqrtf defined in math.h
for float arguments.

#include <math.h>

float f1, res;

void func(void) {
 res = sqrtf(f1);
}

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

5 MISRA C 2012

5-232

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.11

5-233

MISRA C:2012 Rule 21.12
The exception handling features of <fenv.h> should not be used

Description

Rule Definition
The exception handling features of <fenv.h> should not be used.

Rationale
In some cases, the values of the floating-point status flags are unspecified. Attempts to
access them can cause undefined behavior.

Message in Report
The exception handling features of <fenv.h> should not be used

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Use of Features in <fenv.h>
#include <fenv.h>

void func(float x, float y) {
 float z;

 feclearexcept(FE_DIVBYZERO); /* Non-compliant */

5 MISRA C 2012

5-234

 z = x/y;

 if(fetestexcept (FE_DIVBYZERO)) { /* Non-compliant */
 }
 else {
#pragma STDC FENV_ACCESS ON
 z=x*y;
 if(z>x) {
#pragma STDC FENV_ACCESS OFF
 if(fetestexcept (FE_OVERFLOW)) { /* Non-compliant */
 }
 }
 }
}

In this example, the rule is violated when the identifiers feclearexcept and
fetestexcept, and the macros FE_DIVBYZERO and FE_OVERFLOW are used.

Check Information
Group: Standard libraries
Category: Advisory
AGC Category: Advisory
Language: C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 21.12

5-235

MISRA C:2012 Rule 21.13
Any value passed to a function in <ctype.h> shall be representable as an unsigned
char or be the value EOF

Description

Rule Definition
Any value passed to a function in <ctype.h> shall be representable as an unsigned
char or be the value EOF.

Rationale
Functions in <ctype.h> have a well-defined behavior only for int arguments whose
value is within the range of unsigned char or the negative value equivalent of EOF. The
use of other values results in undefined behavior.

Polyspace Implementation
Polyspace considers that the negative value equivalent of EOF is -1 and does not raise a
violation if you pass -1 as argument to a function in ctype.h.

Message in Report
Any value passed to a function in <ctype.h> shall be representable as an unsigned
char or be the value EOF.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-236

Examples

Invalid Arguments for Functions from <ctype.h>
bool_t f (uint8_t a)
{
 return (isdigit ((int32_t) a) /* Compliant */
 && isalpha ((int32_t) 'b') /* Compliant */
 && islower (EOF) /* Compliant */
 && isalpha (256)); /* Non-compliant */
}

In this example, the rule is violated when 256, which is an neither an unsigned char or
the value EOF, is passed as an input argument to the isalpha function.

Note The int casts in the above example are required to comply with Rule 10.3 on page
5-17.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 21.13

5-237

MISRA C:2012 Rule 21.14
The Standard Library function memcmp shall not be used to compare null terminated
strings

Description

Rule Definition
The Standard Library function memcmp shall not be used to compare null terminated
strings.

Rationale
If memcmp is used to compare two strings and the length of either string is less than the
number of bytes compared, the strings can appear different even when they are logically
the same. The characters after the null terminator are compared even though they do not
form part of the string.

For instance:

memcmp(string1, string2, sizeof(string1))

can compare bytes after the null terminator if string1 is longer than string2.

Message in Report
The Standard Library function memcmp shall not be used to compare null terminated
strings.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-238

Examples

Using memcmp for String Comparison
extern char buffer1[12];
extern char buffer2[12];
void f1 (void)
{
 (void) strcpy (buffer1, "abc");
 (void) strcpy (buffer2, "abc");
 if (memcmp (buffer1, buffer2, sizeof (buffer1)) != 0)
 {
 /* Non-compliant */
 }
}

In this example, the comparison in the if statement is noncompliant. The strings stored
in buffer1 and buffer2 can be reported different, but this difference comes from
uninitialized characters after the null terminators.

Check Information
Group: Standard libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 21.15 | MISRA C:2012 Rule 21.16 | Check MISRA C:2012
(-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 21.14

5-239

MISRA C:2012 Rule 21.15
The pointer arguments to the Standard Library functions memcpy, memmove and memcmp
shall be pointers to qualified or unqualified versions of compatible types

Description

Rule Definition
The pointer arguments to the Standard Library functions memcpy, memmove and memcmp
shall be pointers to qualified or unqualified versions of compatible types.

Rationale
The functions

memcpy(arg1, arg2, num_bytes);
memmove(arg1, arg2, num_bytes);
memcmp(arg1, arg2, num_bytes);

perform a byte-by-byte copy, move or comparison between the memory locations that
arg1 and arg2 point to. A byte-by-byte copy, move or comparison is meaningful only if
arg1 and arg2 have compatible types.

Using pointers to different data types for arg1 and arg2 typically indicates a coding
error.

Message in Report
The pointer arguments to the Standard Library functions memcpy, memmove and memcmp
shall be pointers to qualified or unqualified versions of compatible types.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-240

Examples

Incompatible Argument Types for memcpy
void f (uint8_t s1[8], uint16_t s2[8])
{
 (void) memcpy (s1, s2, 8); /* Non-compliant */
}

In this example, s1 and s2 are pointers to different data types. The memcpy statement
copies eight bytes from one buffer to another.

Eight bytes represent the entire span of the buffer that s1 points to, but only part of the
buffer that s2 points to. Therefore, the memcpy statement copies only part of s2 to s1,
which might be unintended.

Check Information
Group: Standard libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 21.14 | MISRA C:2012 Rule 21.16 | Check MISRA C:2012
(-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 21.15

5-241

MISRA C:2012 Rule 21.16
The pointer arguments to the Standard Library function memcmp shall point to either a
pointer type, an essentially signed type, an essentially unsigned type, an essentially
Boolean type or an essentially enum type

Description

Rule Definition
The pointer arguments to the Standard Library function memcmp shall point to either a
pointer type, an essentially signed type, an essentially unsigned type, an essentially
Boolean type or an essentially enum type.

Rationale
The Standard Library function

memcmp (lhs, rhs, num);

performs a byte-by-byte comparison of the first num bytes of the two objects that lhs and
rhs point to.

Do not use memcmp for a byte-by-byte comparison of the following.

Type Rationale
Structures If members of a structure have different data types, your compiler

introduces additional padding for data alignment in memory. The
content of these extra padding bytes is meaningless. If you perform a
byte-by-byte comparison of structures with memcmp, you compare even
the meaningless data stored in the padding. You might reach the false
conclusion that two data structures are not equal, even if their
corresponding members have the same value.

5 MISRA C 2012

5-242

Type Rationale
Objects with
essentially
floating type

The same floating point value can be stored using different
representations. If you perform a byte-by-byte comparison of two
variables with memcmp, you can reach the false conclusion that the
variables are unequal even when they have the same value. The reason
is that the values are stored using two different representations.

Essentially char
arrays

Essentially char arrays are typically used to store strings. In strings, the
content in bytes after the null terminator is meaningless. If you perform
a byte-by-byte comparison of two strings with memcmp, you might reach
the false conclusion that two strings are not equal, even if the bytes
before the null terminator store the same value.

Message in Report
The pointer arguments to the Standard Library function memcmp shall point to either a
pointer type, an essentially signed type, an essentially unsigned type, an essentially
Boolean type or an essentially enum type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Using memcmp for Comparison of Structures, Unions, and
essentially char Arrays
struct S;
bool_t f1 (struct S *s1, struct S *s2)
{
 return (memcmp (s1, s2, sizeof (struct S)) != 0); /* Non-compliant */
}

union U
{
uint32_t range;

 MISRA C:2012 Rule 21.16

5-243

uint32_t height;
};
bool_t f2 (union U *u1, union U *u2)
{
 return (memcmp (u1, u2, sizeof (union U)) != 0); /* Non-compliant */
}

const char a[6] = "task";
bool_t f3 (const char b[6])
{
 return (memcmp (a, b, 6) != 0); /* Non-compliant */
}

In this example:

• Structures s1 and s2 are compared in the bool_t f1 function. The return value of
this function might indicate that s1 and s2 are different due to padding. This
comparison is noncompliant.

• Unions u1 and u2 are compared in the bool_t f2 function. The return value of this
function might indicate that u1 and u2 are the same due to unintentional comparison
of u1.range and u2.height, or u1.height and u2.range. This comparison is
noncompliant.

• Essentially char arrays a and b are compared in the bool_t f3 function. The return
value of this function might incorrectly indicate that the strings are different because
the length of a (four) is less than the number of bytes compared (six). This comparison
is noncompliant.

Check Information
Group: Standard libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 21.14 | MISRA C:2012 Rule 21.15 | Check MISRA C:2012
(-misra3)

5 MISRA C 2012

5-244

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 21.16

5-245

MISRA C:2012 Rule 21.17
Use of the string handling function from <string.h> shall not result in accesses beyond
the bounds of the objects referenced by their pointer parameters

Description

Rule Definition
Use of the string handling function from <string.h> shall not result in accesses beyond
the bounds of the objects referenced by their pointer parameters.

Rationale
Incorrect use of a string handling function might result in a read or write access beyond
the bounds of the function arguments, resulting in undefined behavior.

Message in Report
Use of the string handling function from <string.h> shall not result in accesses beyond
the bounds of the objects referenced by their pointer parameters.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Pointer Access Out of Bounds from strcpy Usage
char string[] = "Short";
void f1 (const char *str)
{

5 MISRA C 2012

5-246

 (void) strcpy (string, "Too long to fit"); /* Non-compliant */
 if (strlen (str) < (sizeof (string) - 1u))
 {
 (void) strcpy (string, str); /* Compliant */
 }
}

size_t f2 (void)
{
 char text[5] = "Token";
 return strlen (text); /* Non-compliant */
}

In this example:

• The first use of strcpy is noncompliant because it attempts to write beyond the end
of its destination argument string.

• The second use of strcpy is compliant because it attempts to write to the destination
argument string only if the source argument str fits.

• The use of strlen is noncompliant. strlen computes the length of a string up to the
null terminator. The character array text has no null terminator.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 21.18 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 21.17

5-247

MISRA C:2012 Rule 21.18
The size_t argument passed to any function in <string.h> shall have an appropriate
value

Description

Rule Definition
The size_t argument passed to any function in <string.h> shall have an appropriate
value.

Rationale
The value must be positive and not greater than the size of the smallest object passed by
pointer to the function. For instance, suppose you use the strncmp function to compare
two strings lhs_string and rhs_string as follows:

strncmp (lhs_string, rhs_string, num)

The third argument num must be positive and must not be greater than the size of
lhs_string or rhs_string, whichever is smaller.

Otherwise, using the function can result in read or write access beyond the bounds of the
function argument.

Message in Report
The size_t argument passed to any function in <string.h> shall have an appropriate
value.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-248

Examples

Incorrect size_t Argument for memcmp
char buf1[5] = "12345";
char buf2[10] = "1234567890";

void f (void)
{
 if (memcmp (buf1, buf2, 5) == 0)
 {
 /* Compliant */
 }
 if (memcmp (buf1, buf2, 6) == 0)
 {
 /* Non-compliant */
 }
}

In this example, the first if statement is compliant. The size_t argument is five, which
is same as the size of the smaller string, buf1.

By the same reasoning, the second if statement is noncompliant.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 21.17 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 21.18

5-249

Introduced in R2017a

5 MISRA C 2012

5-250

MISRA C:2012 Rule 21.19
The pointers returned by the Standard Library functions localeconv, getenv,
setlocale or strerror shall only be used as if they have pointer to const-qualified
type

Description

Rule Definition
The pointers returned by the Standard Library functions localeconv, getenv,
setlocale or strerror shall only be used as if they have pointer to const-qualified
type.

Rationale
The C99 Standard states that if the program modifies the structure pointed to by the
value returned by localeconv, or the strings returned by getenv, setlocale or
strerro, undefined behavior occurs. Treating the pointers returned by the various
functions as if they were const-qualified allows an analysis tool to detect any attempt to
modify an object through one of the pointers. Assigning the return values of the functions
to const-qualified pointers results in the compiler issuing a diagnostic if an attempt is
made to modify an object.

Message in Report
The pointers returned by the Standard Library functions localeconv, getenv,
setlocale or strerror shall only be used as if they have pointer to const-qualified
type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 21.19

5-251

Examples

Returning Pointers fromsetlocale and localeconv
void f1 (void)
{
 char *s1 = setlocale (LC_ALL, 0); /* Non-compliant */
 struct lconv *conv = localeconv (); /* Non-compliant */
 s1[1] = 'A'; /* Undefined behavior */
 conv->decimal_point = "^"; /* Undefined behavior */
}

void f2 (void)
{
 char str[128];
 (void) strcpy (str, setlocale (LC_ALL,0)); /* Compliant */
 const struct lconv *conv = localeconv (); /* Compliant */
 conv->decimanl_point = "^" /* Constraint violation */
}

void f3 (void)
{
const struct lconv *conv = localeconv (); /* Compliant */
conv->grouping[2] = 'x'; /* Non-compliant */
}

In the above example:

• The usage of setlocale and localeconv in the function f1 are non-compliant as
the returned pointers are assigned to non-const—qualified pointers.

Note The usage of setlocale and localeconv above are not constraint violations
and will therefore not be reported by a compiler. However, an analysis tool will be able
to report a violation.

• The usage of setlocale in the function f2 is compliant as strcpy takes a const
char * as its second parameter. The usage of localeconv in the function f2 is
compliant as the returned pointers are assigned to a const-qualified pointer. Any
attempt to modify an object through a pointer will be reported by a compiler or
analysis tool as this is a constraint violation.

5 MISRA C 2012

5-252

• The usage of a const-qualified pointer in the function f3 gives compile time
protection of the value returned by localeconv but the same is not true for the
strings it references. Modification of these strings can be detected by an analysis tool.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 7.4 | MISRA C:2012 Rule 11.8 | MISRA C:2012 Rule 21.8
| Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 21.19

5-253

MISRA C:2012 Rule 21.2
A reserved identifier or macro name shall not be declared

Description

Rule Definition
A reserved identifier or macro name shall not be declared.

Rationale
The Standard allows implementations to treat reserved identifiers specially. If you reuse
reserved identifiers, you can cause undefined behavior.

Polyspace Implementation
• If you define a macro name that corresponds to a standard library macro, object, or

function, rule 21.1 is violated.
• The rule considers tentative definitions as definitions.

Message in Report
Identifier 'XX' shall not be reused.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Standard Libraries
Category: Required

5 MISRA C 2012

5-254

AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.2

5-255

MISRA C:2012 Rule 21.20
The pointer returned by the Standard Library functions asctime, ctime, gmtime,
localtime, localeconv, getenv, setlocale or strerror shall not be used following
a subsequent call to the same function

Description

Rule Definition
The pointer returned by the Standard Library functions asctime, ctime, gmtime,
localtime, localeconv, getenv, setlocale or strerror shall not be used following
a subsequent call to the same function.

Rationale
The preceding functions return a pointer to an object within the Standard Library.
Implementation for this object can use a static buffer that can be modified by a second
call to the same function. Therefore the value accessed through a pointer before a
subsequent call to the same function can change unexpectedly.

Message in Report
The pointer returned by the Standard Library functions asctime, ctime, gmtime,
localtime, localeconv, getenv, setlocale or strerror shall not be used following
a subsequent call to the same function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-256

Examples
Use of Return Value from getenv After Another Call to getenv
void f1(void)
{
 const char *res1;
 const char *res2;
 char copy[128];
 res1 = setlocale (LC_ALL, 0);
 (void) strcpy (copy, res1);
 res2 = setlocale (LC_MONETARY, "French");
 printf ("%s\n", res1); /* Non-compliant */
 printf ("%s\n", copy); /* Compliant */
 printf ("%s\n", res2); /* Compliant */
}

In this example:

• The first printf statement is non-compliant because the pointer returned by
setlocale is used following a subsequent call to it when res2 is assigned.

• The second printf statement is compliant because the copy operation performed by
strcpy is made before a subsequent call to setlocale function is made.

• The third printf statement is compliant because there is no subsequent call to the
setlocale function is made before use.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”

 MISRA C:2012 Rule 21.20

5-257

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-258

MISRA C:2012 Rule 21.3
The memory allocation and deallocation functions of <stdlib.h> shall not be used

Description

Rule Definition
The memory allocation and deallocation functions of <stdlib.h> shall not be used.

Rationale
Using memory allocation and deallocation routines can cause undefined behavior. For
instance:

• You free memory that you had not allocated dynamically.
• You use a pointer that points to a freed memory location.

Polyspace Implementation
If you use names of dynamic heap memory allocation functions for macros, and you
expand the macros in the code, this rule is violated. It is assumed that rule 21.2 is not
violated.

Message in Report
• The macro <name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 21.3

5-259

Examples

Use of malloc, calloc, realloc and free
#include <stdlib.h>

static int foo(void);

typedef struct struct_1 {
 int a;
 char c;
} S_1;

static int foo(void) {

 S_1 * ad_1;
 int * ad_2;
 int * ad_3;

 ad_1 = (S_1*)calloc(100U, sizeof(S_1)); /* Non-compliant */
 ad_2 = malloc(100U * sizeof(int)); /* Non-compliant */
 ad_3 = realloc(ad_3, 60U * sizeof(long)); /* Non-compliant */

 free(ad_1); /* Non-compliant */
 free(ad_2); /* Non-compliant */
 free(ad_3); /* Non-compliant */

 return 1;
}

In this example, the rule is violated when the functions malloc, calloc, realloc and
free are used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-260

See Also
MISRA C:2012 Rule 18.7 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.3

5-261

MISRA C:2012 Rule 21.4
The standard header file <setjmp.h> shall not be used

Description

Rule Definition
The standard header file <setjmp.h> shall not be used.

Rationale
Using setjmp and longjmp, you can bypass normal function call mechanisms and cause
undefined behavior.

Polyspace Implementation
If the longjmp function is a macro and the macro is expanded in the code, this rule is
violated. It is assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Standard Libraries
Category: Required

5 MISRA C 2012

5-262

AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.4

5-263

MISRA C:2012 Rule 21.5
The standard header file <signal.h> shall not be used

Description

Rule Definition
The standard header file <signal.h> shall not be used.

Rationale
Using signal handling functions can cause implementation-defined and undefined
behavior.

Polyspace Implementation
If the signal function is a macro and the macro is expanded in the code, this rule is
violated. It is assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Standard Libraries
Category: Required

5 MISRA C 2012

5-264

AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.5

5-265

MISRA C:2012 Rule 21.6
The Standard Library input/output functions shall not be used

Description

Rule Definition
The Standard Library input/output functions shall not be used.

Rationale
This rule applies to the functions that are provided by <stdio.h> and in C99, their
character-wide equivalents provided by <wchar.h>. Using these functions can cause
unspecified, undefined and implementation-defined behavior.

Polyspace Implementation
If the Standard Library function is a macro and the macro is expanded in the code, this
rule is violated. It is assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Standard Libraries

5 MISRA C 2012

5-266

Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.6

5-267

MISRA C:2012 Rule 21.7
The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used

Description

Rule Definition
The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.

Rationale
When a string cannot be converted, the behavior of these functions can be undefined.

Polyspace Implementation
If the function is a macro and the macro is expanded in the code, this rule is violated. It is
assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

5 MISRA C 2012

5-268

Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.7

5-269

MISRA C:2012 Rule 21.8
The library functions abort, exit, getenv and system of <stdlib.h> shall not be used

Description

Rule Definition
The library functions abort, exit, getenv and system of <stdlib.h> shall not be used.

Rationale
Using these functions can cause undefined and implementation-defined behaviors.

Polyspace Implementation
In case the abort, exit, getenv, and system functions are actually macros, and the macros
are expanded in the code, this rule is detected as violated. It is assumed that rule 21.2 is
not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Standard Libraries
Category: Required

5 MISRA C 2012

5-270

AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.8

5-271

MISRA C:2012 Rule 21.9
The library functions bsearch and qsort of <stdlib.h> shall not be used

Description

Rule Definition
The library functions bsearch and qsort of <stdlib.h> shall not be used.

Rationale
The comparison function in these library functions can behave inconsistently when the
elements being compared are equal. Also, the implementation of qsort can be recursive
and place unknown demands on the call stack.

Polyspace Implementation
If the function is a macro and the macro is expanded in the code, this rule is violated. It is
assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Standard Libraries

5 MISRA C 2012

5-272

Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.9

5-273

MISRA C:2012 Rule 22.1
All resources obtained dynamically by means of Standard Library functions shall be
explicitly released

Description

Rule Definition
All resources obtained dynamically by means of Standard Library functions shall be
explicitly released.

Rationale
Resources are something that you must return to the system once you have used them.
Examples include dynamically allocated memory and file descriptors.

If you do not release resources explicitly as soon as possible, then a failure can occur due
to exhaustion of resources.

Polyspace Implementation
You can check for this rule with a Bug Finder analysis only.

Message in Report
All resources obtained dynamically by means of Standard Library functions shall be
explicitly released.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-274

Examples

Dynamic Memory
#include<stdlib.h>

void performOperation(int);

int func1(int num) {
 int *arr1 = (int*) malloc(num * sizeof(int));

 return 0;
} /* Non-compliant - memory allocated to arr1 is not released */

int func2(int num) {
 int *arr2 = (int*) malloc(num * sizeof(int));

 free(arr2);
 return 0;
} /* Compliant - memory allocated to arr2 is released */

In this example, the rule is violated when memory dynamically allocated using the
malloc function is not freed using the free function before the end of scope.

File Pointers
#include <stdio.h>
void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w"); /* Non-compliant */
 fprintf (fp1, "!");
 fclose (fp1);
}

void func2(void) {
 FILE *fp2;
 fp2 = fopen ("data1.txt", "w");

 MISRA C:2012 Rule 22.1

5-275

 fprintf (fp2, "*");
 fclose(fp2);

 fp2 = fopen ("data2.txt", "w"); /* Compliant */
 fprintf (fp2, "!");
 fclose (fp2);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is
explicitly dissociated from the file stream of data1.txt, it is used to access another file
data2.txt. Therefore, the rule 22.1 is violated.

The rule is not violated in func2 because file data1.txt is closed and the file pointer
fp2 is explicitly dissociated from data1.txt before it is reused.

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3) | MISRA C:2012 Directive 4.13 | MISRA
C:2012 Rule 21.3 | MISRA C:2012 Rule 21.6 | Resource leak

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-276

MISRA C:2012 Rule 22.10
The value of errno shall only be tested when the last function to be called was an errno-
setting function

Description

Rule Definition
The value of errno shall only be tested when the last function to be called was an errno-
setting function.

Rationale
Besides the errno-setting functions, the Standard does not enforce that other functions
set errno on errors. Whether these functions set errno or not is implementation-
dependent.

To detect errors, if you check errno alone, the validity of this check also becomes
implementation-dependent. On implementations that do not require errno setting, even
if you check errno alone, you can overlook error conditions.

For a list of errno-setting functions, see MISRA C:2012 Rule 22.8.

Message in Report
The value of errno shall only be tested when the last function to be called was an errno-
setting function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 22.10

5-277

Examples
Incorrect Test of errno
void f (void)
{
 float64_t f64;
 errno = 0;
 f64 = atof ("A.12");
 if (0 == errno) /* Non-compliant */
 {
 }
 errno = 0;
 f64 = strtod ("A.12", NULL);
 if (0 == errno) /* Compliant */
 {
 }
}

In this example:

• The first if statement is noncompliant because atof may or may not set errno when
an error is detected. f64 may not have a valid value within this if statement.

• The second if statement is compliant because strtod is an errno-setting function.
f64 will have a valid value within this if statement.

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 22.8 | MISRA C:2012 Rule 22.9 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”

5 MISRA C 2012

5-278

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 22.10

5-279

MISRA C:2012 Rule 22.2
A block of memory shall only be freed if it was allocated by means of a Standard Library
function

Description

Rule Definition
A block of memory shall only be freed if it was allocated by means of a Standard Library
function.

Rationale
The Standard Library functions that allocate memory are malloc, calloc and realloc.

You free a block of memory when you pass its address to the free or realloc function.
The following causes undefined behavior:

• You free a block of memory that you did not allocate.
• You free a block of memory that have already freed before.

Polyspace Implementation
You can check for this rule with a Bug Finder analysis only.

Message in Report
A block of memory shall only be freed if it was allocated by means of a Standard Library
function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-280

Examples

Memory Not Allocated Is Freed
#include <stdlib.h>

void func1(void) {
 int x=0;
 int *ptr=&x;

 free(ptr);
 /* Non-compliant: ptr is not dynamically allocated */
}

In this example, the rule is violated because the free function operates on a pointer that
does not point to dynamically allocated memory.

Memory Freed Twice
#include <stdlib.h>

void func(int arrSize) {
 int *ptr = (int*) malloc(arrSize* sizeof(int));

 free(ptr); /* Block of memory freed once */
 free(ptr); /* Non-compliant - Block of memory freed twice */
}

In this example, the rule is violated when the free function operates on ptr twice
without a reallocation in between.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

 MISRA C:2012 Rule 22.2

5-281

See Also
Check MISRA C:2012 (-misra3) | Deallocation of previously deallocated
pointer | Invalid free of pointer | MISRA C:2012 Directive 4.13 | MISRA
C:2012 Rule 21.3

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-282

MISRA C:2012 Rule 22.3
The same file shall not be open for read and write access at the same time on different
streams

Description

Rule Definition
The same file shall not be open for read and write access at the same time on different
streams.

Rationale
If a file is both written and read via different streams, the behavior can be undefined.

Polyspace Implementation
You can check for this rule with a Bug Finder analysis only.

Message in Report
The same file shall not be open for read and write access at the same time on different
streams.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 22.3

5-283

Examples

Opening File That Is Open in Another Stream
#include <stdio.h>

void func(void) {
 FILE *fw = fopen("tmp.txt", "r+");
 FILE *fr = fopen("tmp.txt", "r"); /* Non-compliant: File open in stream fw*/
}

In this example, the rule is violated when the same file tmp.txt is opened in two
streams. The FILE pointers fw and fr point to two different streams here.

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C

See Also
Check MISRA C:2012 (-misra3) | MISRA C:2012 Rule 21.6 | Resource leak

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-284

MISRA C:2012 Rule 22.4
There shall be no attempt to write to a stream which has been opened as read-only

Description
Rule Definition
There shall be no attempt to write to a stream which has been opened as read-only.

Rationale
The Standard does not specify the behavior if an attempt is made to write to a read-only
stream.

Polyspace Implementation
You can check for this rule with a Bug Finder analysis only.

Message in Report
There shall be no attempt to write to a stream which has been opened as read-only.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Writing to File Opened as Read-Only
#include <stdio.h>

 MISRA C:2012 Rule 22.4

5-285

void func1(void) {
 FILE *fp1 = fopen("tmp.txt", "r");
 (void) fprintf(fp1, "Some text"); /* Non-compliant: Read-only stream */
 (void) fclose(fp1);
}

void func2(void) {
 FILE *fp2 = fopen("tmp.txt", "r+");
 (void) fprintf(fp2, "Some text"); /* Compliant */
 (void) fclose(fp2);
}

In this example, the file stream associated with fp1 is opened as read-only. The rule is
violated when the stream is written.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3) | MISRA C:2012 Rule 21.6 | Writing to
read-only resource

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-286

MISRA C:2012 Rule 22.5
A pointer to a FILE object shall not be dereferenced

Description

Rule Definition
A pointer to a FILE object shall not be dereferenced.

Rationale
The Standard states that the address of a FILE object used to control a stream can be
significant. Copying that object might not give the same behavior. This rule ensures that
you cannot perform such a copy.

Directly manipulating a FILE object might be incompatible with its use as a stream
designator.

Message in Report
A pointer to a FILE object shall not be dereferenced

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

FILE* Pointer Dereferenced
#include <stdio.h>

 MISRA C:2012 Rule 22.5

5-287

void func(void) {
 FILE *pf1;
 FILE *pf2;
 FILE f3;

 pf2 = pf1; /* Compliant */
 f3 = *pf2; /* Non-compliant */
 pf2->_flags=0; /* Non-compliant */
 }

In this example, the rule is violated when the FILE* pointer pf2 is dereferenced.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3) | MISRA C:2012 Rule 21.6

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-288

MISRA C:2012 Rule 22.6
The value of a pointer to a FILE shall not be used after the associated stream has been
closed

Description

Rule Definition
The value of a pointer to a FILE shall not be used after the associated stream has been
closed.

Rationale
The Standard states that the value of a FILE* pointer is indeterminate after you close the
stream associated with it.

Polyspace Implementation
You can check for this rule with a Bug Finder analysis only.

Message in Report
The value of a pointer to a FILE shall not be used after the associated stream has been
closed.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 22.6

5-289

Examples

Use of FILE Pointer After Closing Stream
#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fclose(fp);
 fprintf(fp,"text");
 }
}

In this example, the stream associated with the FILE* pointer fp is closed with the
fclose function. The rule is violated FILE* pointer fp is used before the stream is re-
opened.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3) | MISRA C:2012 Directive 4.13 | MISRA
C:2012 Rule 21.6 | Use of previously closed resource

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-290

Introduced in R2015b

 MISRA C:2012 Rule 22.6

5-291

MISRA C:2012 Rule 22.7
The macro EOF shall only be compared with the unmodified return value from any
Standard Library function capable of returning EOF

Description
Rule Definition
The macro EOF shall only be compared with the unmodified return value from any
Standard Library function capable of returning EOF.

Rationale
The EOF value may become indistinguishable from a valid character code if the value
returned is converted to another type. In such cases, testing the converted value against
EOF will not reliably identify if the end of the file has been reached or if an error has
occurred.

Message in Report
The macro EOF shall only be compared with the unmodified return value from any
Standard Library function capable of returning EOF.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Possibly Misleading Results from Comparison with EOF
void f1 (void)
{

5 MISRA C 2012

5-292

 char ch;
 ch = (char) getchar ();
 if (EOF != (int32_t) ch) /* Non-compliant */
 {
 }
}

void f2 (void)
{
 char ch;
 ch = (char) getchar ();
 if (!feof (stdin)) /* Compliant */
 {
 }
}

void f3 (void)
{
 int32_t i_ch;
 i_ch = getchar ();
 if (EOF != i_ch) /* Compliant */
 {
 char ch;
 ch = (char) i_ch;
 }
}

In this example:

• The test in the f1 function is non-compliant. It will not be reliable as the return value
is cast to a narrower type before checking for EOF.

• The test in the f2 function is compliant. It shows how feof() can be used to check
for EOF when the return value from getchar() has been subjected to type
conversion.

• The test in the f3 function is compliant. It is reliable as the unconverted return value
is used when checking for EOF.

Check Information
Group: Resources
Category: Required
AGC Category: Required

 MISRA C:2012 Rule 22.7

5-293

Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-294

MISRA C:2012 Rule 22.8
The value of errno shall be set to zero prior to a call to an errno-setting-function

Description

Rule Definition
The value of errno shall be set to zero prior to a call to an errno-setting-function.

Rationale
If an error occurs during a call to an errno-setting-function, the function writes a
nonzero value to errno. Otherwise, errno is not modified.

If you do not explicitly set errno to zero before a function call, it can contain values from
a previous call. Checking errno for nonzero values after the function call can give the
false impression that an error occurred.

Errno-setting functions include:

• ftell, fgetpos, fgetwc and related functions.
• strtoimax, strtol and related functions.

The wide-character equivalents such as wcstoimax and wcstol are also covered.

Message in Report
The value of errno shall be set to zero prior to a call to an errno-setting-function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 22.8

5-295

Examples

errno Not Reset Before Use
#include <stdlib.h>
#include <errno.h>

double val = 0.0;

void f (void)
{
 val = strtod("1.0",NULL); /* Non-compliant */
 if (0 == errno) /* Check errno for nonzero values */
 {
 val = strtod("1.0",NULL); /* Compliant - case 1*/
 if (0 == errno) /* Check errno for nonzero values */
 {
 }
 }
 else
 {
 errno = 0;
 val = strtod("1.0",NULL); /* Compliant - case 2*/
 if (0 == errno) /* Check errno for nonzero values */
 {
 }
 }
}

In this example, the rule is violated when strtod is called but errno is not reset prior to
the call.

The rule is not violated in the following cases:

• Case 1: errno is compared against zero and then strtod is called in the if(0 ==
errno) branch.

• Case 2: errno is explicitly set to zero and then strtod is called.

Check Information
Group: Resources

5 MISRA C 2012

5-296

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 22.9 | MISRA C:2012 Rule 22.10 | Check MISRA C:2012
(-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 22.8

5-297

MISRA C:2012 Rule 22.9
The value of errno shall be tested against zero after calling an errno-setting function

Description

Rule Definition
The value of errno shall be tested against zero after calling an errno-setting function.

Rationale
If an error occurs during a call to an errno-setting-function, the function writes a
nonzero value to errno. Otherwise, errno is not modified.

When errno is nonzero, the function return value is not likely to be correct. Before using
this return value, you must test errno for nonzero values.

Errno-setting functions include:

• ftell, fgetpos, fgetwc and related functions.
• strtoimax, strtol and related functions.

The wide-character equivalents such as wcstoimax and wcstol are also covered.

Message in Report
The value of errno shall be tested against zero after calling an errno-setting function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-298

Examples

errno Not Tested After Function Call
#include <stdlib.h>
#include <errno.h>

void func(void);
double val = 0.0;

void f1 (void)
{
 errno = 0;
 val = strtod ("1.0", NULL); /* Non-compliant */
 func ();

 if (0 != errno)
 {
 }

 errno = 0;
 val = strtod ("1.0", NULL); /* Compliant */
 if (0 == errno)
 {
 func();
 }
}

In this example, the rule is violated when errno is not checked immediately after the first
call to strtod. Instead, a second function func is called. func might use the value in the
global variable val. The value can be incorrect if an error has occurred during the call to
strtod.

The rule is not violated when errno is checked before operations that potentially use the
return value of strtod.

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 22.9

5-299

See Also
MISRA C:2012 Rule 22.8 | MISRA C:2012 Rule 22.10 | Check MISRA C:2012
(-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-300

MISRA C:2012 Rule 3.1
The character sequences /* and // shall not be used within a comment

Description

Rule Definition
The character sequences /* and // shall not be used within a comment.

Rationale
These character sequences are not allowed in code comments because:

• If your code contains a /* or a // in a /* */ comment, it typically means that you
have inadvertently commented out code.

• If your code contains a /* in a // comment, it typically means that you have
inadvertently uncommented a /* */ comment.

Polyspace Implementation
You cannot annotate this rule in the source code.

For information on annotations, see “Annotate Code and Hide Known or Acceptable
Results”.

Message in Report
The character sequence /* shall not appear within a comment.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 3.1

5-301

Examples

/* Used in // Comments
int x;
int y;
int z;

void non_compliant_comments (void)
{
 x = y // /* Non-compliant
 + z
 // */
 ;
 z++; // Compliant with exception: // permitted within a // comment
}

void compliant_comments (void)
{
 x = y /* Compliant
 + z
 */
 ;
 z++; // Compliant with exception: // is permitted within a // comment
}

In this example, in the non_compliant_comments function, the /* character occurs in
what appears to be a // comment, violating the rule. Because of the comment structure,
the operation that takes place is x = y + z;. However, without the two //-s, an entirely
different operation x=y; takes place. It is not clear which operation is intended.

Use a comment format that makes your intention clear. For instance, in the
compliant_comments function, it is clear that the operation x=y; is intended.

Check Information
Group: Comments
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-302

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 3.1

5-303

MISRA C:2012 Rule 3.2
Line-splicing shall not be used in // comments

Description

Rule Definition
Line-splicing shall not be used in // comments.

Rationale
Line-splicing occurs when the \ character is immediately followed by a new-line
character. Line splicing is used for statements that span multiple lines.

If you use line-splicing in a // comment, the following line can become part of the
comment. In most cases, the \ is spurious and can cause unintentional commenting out of
code.

Message in Report
Line-splicing shall not be used in // comments.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Line Splicing in // Comment
#include <stdbool.h>

5 MISRA C 2012

5-304

extern _Bool b;

void func (void)
{
 unsigned short x = 0; // Non-compliant - Line-splicing \
 if (b)
 {
 ++b;
 }
}

Because of line-splicing, the statement if (b) is a part of the previous // comment.
Therefore, the statement b++ always executes, making the if block redundant.

Check Information
Group: Comments
Category: Required
AGC Category: Required
Language: C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”

Introduced in R2014b

 MISRA C:2012 Rule 3.2

5-305

MISRA C:2012 Rule 4.1
Octal and hexadecimal escape sequences shall be terminated

Description

Rule Definition
Octal and hexadecimal escape sequences shall be terminated.

Rationale
There is potential for confusion if an octal or hexadecimal escape sequence is followed by
other characters. For example, the character constant '\x1f' consists of a single
character, whereas the character constant '\x1g' consists of the two characters '\x1'
and 'g'. The manner in which multi-character constants are represented as integers is
implementation-defined.

If every octal or hexadecimal escape sequence in a character constant or string literal is
terminated, you reduce potential confusion.

Message in Report
Octal and hexadecimal escape sequences shall be terminated.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-306

Examples

Compliant and Noncompliant Escape Sequences
const char *s1 = "\x41g"; /* Non-compliant */
const char *s2 = "\x41" "g"; /* Compliant - Terminated by end of literal */
const char *s3 = "\x41\x67"; /* Compliant - Terminated by another escape sequence*/

int c1 = '\141t'; /* Non-compliant */
int c2 = '\141\t'; /* Compliant - Terminated by another escape sequence*/

In this example, the rule is violated when an escape sequence is not terminated with the
end of string literal or another escape sequence.

Check Information
Group: Character Sets and Lexical Conventions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 4.1

5-307

MISRA C:2012 Rule 4.2
Trigraphs should not be used

Description

Rule Definition
Trigraphs should not be used.

Rationale
You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These
trigraphs can cause accidental confusion with other uses of two question marks.

Note Digraphs (<: :>, <% %>, %:, %:%:) are permitted because they are tokens.

Polyspace Implementation
The Polyspace analysis converts trigraphs to the equivalent character for the defect
analysis. However, Polyspace also raises a MISRA violation.

The standard requires that trigraphs must be transformed before comments are removed
during preprocessing. Therefore, Polyspace raises a violation of this rule even if a
trigraph appears in code comments.

Message in Report
Trigraphs should not be used.

5 MISRA C 2012

5-308

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Character Sets and Lexical Conventions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 4.2

5-309

MISRA C:2012 Rule 5.1
External identifiers shall be distinct

Description

Rule Definition
External identifiers shall be distinct.

Rationale
External identifiers are ones declared with global scope or storage class extern.

Polyspace considers two names as distinct if there is a difference between their first 31
characters. If the difference between two names occurs only beyond the first 31
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 6 characters. To use the
C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Message in Report
External %s %s conflicts with the external identifier XX in file YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-310

Examples

C90: First Six Characters of Identifiers Not Unique
int engine_temperature_raw;
int engine_temperature_scaled; /* Non-compliant */
int engin2_temperature; /* Compliant */

In this example, the identifier engine_temperature_scaled has the same first six
characters as a previous identifier, engine_temperature_raw.

C99: First 31 Characters of Identifiers Not Unique
int engine_exhaust_gas_temperature_raw;
int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

int eng_exhaust_gas_temp_raw;
int eng_exhaust_gas_temp_scaled; /* Compliant */

In this example, the identifier engine_exhaust_gas_temperature_scaled has the
same first 31 characters as a previous identifier,
engine_exhaust_gas_temperature_raw.

C90: First Six Characters Identifiers in Different Translation
Units Differ in Case Alone
/* file1.c */
int abc = 0;

/* file2.c */
int ABC = 0; /* Non-compliant */

In this example, the implementation supports 6 significant case-insensitive characters in
external identifiers. The identifiers in the two translation are different but are not distinct
in their significant characters.

Check Information
Group: Identifiers

 MISRA C:2012 Rule 5.1

5-311

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4 | MISRA C:2012 Rule 5.5 |
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-312

MISRA C:2012 Rule 5.2
Identifiers declared in the same scope and name space shall be distinct

Description

Rule Definition
Identifiers declared in the same scope and name space shall be distinct.

Rationale
Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Message in Report
Identifier XX has same significant characters as identifier YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

C90: First 31 Characters of Identifiers Not Unique
extern int engine_exhaust_gas_temperature_raw;
static int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

 MISRA C:2012 Rule 5.2

5-313

extern double engine_exhaust_gas_temperature_raw;
static double engine_exhaust_gas_temperature2_scaled; /* Compliant */

void func (void)
{
 /* Not in the same scope */
 int engine_exhaust_gas_temperature_local; /* Compliant */
}

In this example, the identifier engine_exhaust_gas_temperature_scaled has the
same 31 characters as a previous identifier, engine_exhaust_gas_temperature_raw.

The rule does not apply if the two identifiers have the same 31 characters but have
different scopes. For instance, engine_exhaust_gas_temperature_local has the
same 31 characters as engine_exhaust_gas_temperature_raw but different scope.

C99: First 63 Characters of Identifiers Not Unique
extern int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_raw;
static int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_scale;
 /* Non-compliant */

extern int engine_gas_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx__raw;
static int engine_gas_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx__scale;
 /* Compliant */

void func (void)
{
/* Not in the same scope */
 int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_local;
 /* Compliant */
}

In this example, the identifier
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_scale
has the same 63 characters as a previous identifier,
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_raw.

5 MISRA C 2012

5-314

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.3 | MISRA C:2012 Rule 5.4 |
MISRA C:2012 Rule 5.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.2

5-315

MISRA C:2012 Rule 5.3
An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope

Description

Rule Definition
An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope.

Rationale
If two identifiers have the same name but different scope, the identifier in the inner scope
hides the identifier in the outer scope. All uses of the identifier name refers to the
identifier in the inner scope. This behavior forces the developer to keep track of the scope
and reduces code readability.

Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Message in Report
Variable XX hides variable XX (FILE line LINE column COLUMN).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-316

Examples

Local Variable Hidden by Another Local Variable in Inner Block
typedef signed short int16_t;

void func(void)
{
 int16_t i;
 {
 int16_t i; /* Non-compliant */
 i = 3;
 }
}

In this example, the identifier i defined in the inner block in func hides the identifier i
with function scope.

It is not immediately clear to a reader which i is referred to in the statement i=3.

Global Variable Hidden by Function Parameter
typedef signed short int16_t;

struct astruct
{
 int16_t m;
};

extern void g (struct astruct *p);
int16_t xyz = 0;

void func (struct astruct xyz) /* Non-compliant */
{
 g (&xyz);
}

In this example, the parameter xyz of function func hides the global variable xyz.

It is not immediately clear to a reader which xyz is referred to in the statement g
(&xyz).

 MISRA C:2012 Rule 5.3

5-317

Check Information
Group: Identifiers
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.8 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-318

MISRA C:2012 Rule 5.4
Macro identifiers shall be distinct

Description

Rule Definition
Macro identifiers shall be distinct.

Rationale
The names of macro identifiers must be distinct from both other macro identifiers and
their parameters.

Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Message in Report
• Macro identifiers shall be distinct. Macro XX has same significant characters as macro

YY.
• Macro identifiers shall be distinct. Macro parameter XX has same significant

characters as macro parameter YY in macro ZZ.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 5.4

5-319

Examples

C90: First 31 Characters of Macro Names Not Unique
#define engine_exhaust_gas_temperature_raw egt_r
#define engine_exhaust_gas_temperature_scaled egt_s /* Non-compliant */

#define engine_exhaust_gas_temp_raw egt_r
#define engine_exhaust_gas_temp_scaled egt_s /* Compliant */

In this example, the macro engine_exhaust_gas_temperature_scaled egt_s has
the same first 31 characters as a previous macro
engine_exhaust_gas_temperature_scaled.

C99: First 63 Characters of Macro Names Not Unique
#define engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw egt_r
#define engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw_scaled egt_s
 /* Non-compliant */

/* 63 significant case-sensitive characters in macro identifiers */
#define new_engine_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw egt_r
#define new_engine_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_scaled egt_s
 /* Compliant */

In this example, the macro
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx___gaz_s
caled has the same first 63 characters as a previous macro
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx___raw.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-320

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.5 |
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.4

5-321

MISRA C:2012 Rule 5.5
Identifiers shall be distinct from macro names

Description

Rule Definition
Identifiers shall be distinct from macro names.

Rationale
The rule requires that macro names that exist only prior to processing must be different
from identifier names that also exist after preprocessing. Keeping macro names and
identifiers distinct help avoid confusion.

Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Message in Report
Identifier XX has same significant characters as macro YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-322

Examples

Macro Names Same as Identifier Names
#define Sum_1(x, y) ((x) + (y))
short Sum_1; /* Non-compliant */

#define Sum_2(x, y) ((x) + (y))
short x = Sum_2 (1, 2); /* Compliant */

In this example, Sum_1 is both the name of an identifier and a macro. Sum_2 is used only
as a macro.

C90: First 31 Characters of Macro Name Same as Identifier
Name
#define low_pressure_turbine_temperature_1 lp_tb_temp_1
static int low_pressure_turbine_temperature_2; /* Non-compliant */

In this example, the identifier low_pressure_turbine_temperature_2 has the same
first 31 characters as a previous macro low_pressure_turbine_temperature_1.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4 |
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 5.5

5-323

Introduced in R2014b

5 MISRA C 2012

5-324

MISRA C:2012 Rule 5.6
A typedef name shall be a unique identifier

Description

Rule Definition
A typedef name shall be a unique identifier.

Rationale
Reusing a typedef name as another typedef or as the name of a function, object or
enum constant can cause developer confusion.

Message in Report
XX conflicts with the typedef name YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

typedef Names Reused
void func (void){
 {
 typedef unsigned char u8_t;
 }
 {
 typedef unsigned char u8_t; /* Non-compliant */

 MISRA C:2012 Rule 5.6

5-325

 }
}

typedef float mass;
void func1 (void){
 float mass = 0.0f; /* Non-compliant */
}

In this example, the typedef name u8_t is used twice. The typedef name mass is also
used as an identifier name.

typedef Name Same as Structure Name
typedef struct list{ /* Compliant - exception */
 struct list *next;
 unsigned short element;
} list;

typedef struct{
 struct chain{ /* Non-compliant */
 struct chain *list2;
 unsigned short element;
 } s1;
 unsigned short length;
} chain;

In this example, the typedef name list is the same as the original name of the struct
type. The rule allows this exceptional case.

However, the typedef name chain is not the same as the original name of the struct
type. The name chain is associated with a different struct type. Therefore, it clashes
with the typedef name.

Check Information
Group: Identifiers
Category:
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-326

See Also
MISRA C:2012 Rule 5.7 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.6

5-327

MISRA C:2012 Rule 5.7
A tag name shall be a unique identifier

Description

Rule Definition
A tag name shall be a unique identifier.

Rationale
Reusing a tag name can cause developer confusion.

Message in Report
XX conflicts with the tag name YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.6 | Check MISRA C:2012 (-misra3)

5 MISRA C 2012

5-328

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.7

5-329

MISRA C:2012 Rule 5.8
Identifiers that define objects or functions with external linkage shall be unique

Description

Rule Definition
Identifiers that define objects or functions with external linkage shall be unique.

Rationale
External identifiers are those declared with global scope or with storage class extern.
Reusing an external identifier name can cause developer confusion.

Identifiers defined within a function have smaller scope. Even if names of such identifiers
are not unique, they are not likely to cause confusion.

Message in Report
• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

5 MISRA C 2012

5-330

See Also
MISRA C:2012 Rule 5.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.8

5-331

MISRA C:2012 Rule 5.9
Identifiers that define objects or functions with internal linkage should be unique

Description

Rule Definition
Identifiers that define objects or functions with internal linkage should be unique.

Polyspace Implementation
This rule checker assumes that rule 5.8 is not violated.

Message in Report
• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Identifiers
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 8.10 | Check MISRA C:2012 (-misra3)

5 MISRA C 2012

5-332

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.9

5-333

MISRA C:2012 Rule 6.1
Bit-fields shall only be declared with an appropriate type

Description

Rule Definition
Bit-fields shall only be declared with an appropriate type.

Rationale
Using int is implementation-defined because bit-fields of type int can be either signed
or unsigned.

The use of enum, short char, or any other type of bit-field is not permitted in C90
because the behavior is undefined.

In C99, the implementation can potentially define other integer types that are permitted
in bit-field declarations.

Message in Report
Bit-fields shall only be declared with an appropriate type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Types
Category: Required
AGC Category: Required

5 MISRA C 2012

5-334

Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 6.1

5-335

MISRA C:2012 Rule 6.2
Single-bit named bit fields shall not be of a signed type

Description

Rule Definition
Single-bit named bit fields shall not be of a signed type.

Rationale
According to the C99 Standard Section 6.2.6.2, a single-bit signed bit-field has one sign
bit and no value bits. In any representation of integers, zero value bits cannot specify a
meaningful value.

A single-bit signed bit-field is therefore unlikely to behave in a useful way. Its presence is
likely to indicate programmer confusion.

Although the C90 Standard does not provide much detail regarding the representation of
types, the same single-bit bit-field considerations apply.

Polyspace Implementation
This rule does not apply to unnamed bit fields because their values cannot be accessed.

Message in Report
Single-bit named bit fields shall not be of a signed type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-336

Check Information
Group: Types
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 6.2

5-337

MISRA C:2012 Rule 7.1
Octal constants shall not be used

Description
Rule Definition
Octal constants shall not be used.

Rationale
Octal constants are denoted by a leading zero. Developers can mistake an octal constant
as a decimal constant with a redundant leading zero.

Polyspace Implementation
If you use octal constants in a macro definition, the rule checker flags the issue even if
the macro is not used.

Message in Report
Octal constants shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Use of octal constants
#define CST 021
#define VALUE 010 /* Compliant - constant not used */

5 MISRA C 2012

5-338

#if 010 == 01 /* Non-Compliant - constant used */
#define CST 021 /* Non-Compliant - constant not used */
#endif

extern short code[5];
static char* str2 = "abcd\0efg"; /* Compliant */

void main(void) {
 int value1 = 0; /* Compliant */
 int value2 = 01; /* Non-Compliant - decimal 01 */
 int value3 = 1; /* Compliant */
 int value4 = '\109'; /* Compliant */

 code[1] = 109; /* Compliant - decimal 109 */
 code[2] = 100; /* Compliant - decimal 100 */
 code[3] = 052; /* Non-Compliant - decimal 42 */
 code[4] = 071; /* Non-Compliant - decimal 57 */

 if (value1 != CST) { /* Non-Compliant - decimal 17 */
 value1 = !(value1 != 0); /* Compliant */
 }
}

In this example, the rule is not violated when octal constants are used to define macros
CST and VALUE. The rule is violated only when the macros are used.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 7.1

5-339

Introduced in R2014b

5 MISRA C 2012

5-340

MISRA C:2012 Rule 7.2
A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type

Description

Rule Definition
A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type.

Rationale
The signedness of a constant is determined from:

• Value of the constant.
• Base of the constant: octal, decimal or hexadecimal.
• Size of the various types.
• Any suffixes used.

Unless you use a suffix u or U, another developer looking at your code cannot determine
easily whether a constant is signed or unsigned.

Message in Report
A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 7.2

5-341

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-342

MISRA C:2012 Rule 7.3
The lowercase character “l” shall not be used in a literal suffix

Description

Rule Definition
The lowercase character “l” shall not be used in a literal suffix.

Rationale
The lowercase character “l” can be confused with the digit “1”. Use the uppercase “L”
instead.

Message in Report
The lowercase character “l” shall not be used in a literal suffix.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

 MISRA C:2012 Rule 7.3

5-343

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-344

MISRA C:2012 Rule 7.4
A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”

Description

Rule Definition
A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”.

Rationale
This rule prevents assignments that allow modification of a string literal.

An attempt to modify a string literal can result in undefined behavior. For example, some
implementations can store string literals in read-only memory. An attempt to modify the
string literal can result in an exception or crash.

Message in Report
A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 7.4

5-345

Examples

Incorrect Assignment of String Literal
char *str1 = "AccountHolderName";
const char *str2 = "AccountHolderName";

void checkAccount1(char*); /* Non-Compliant */
void checkAccount2(const char*); /* Compliant */

void main() {
 checkAccount1("AccountHolderName"); /* Non-Compliant */
 checkAccount2("AccountHolderName"); /* Compliant */
}

In this example, the rule is not violated when string literals are assigned to const char*
pointers, either directly or through copy of function arguments. The rule is violated only
when the const qualifier is not used.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.8 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-346

MISRA C:2012 Rule 8.1
Types shall be explicitly specified

Description

Rule Definition
Types shall be explicitly specified.

Rationale
In some circumstances, you can omit types from the C90 standard. In those cases, the
int type is implicitly specified. However, the omission of an explicit type can lead to
confusion. For example, in the declaration extern void foo (char c, const k);,
the type of k is const int, but you might expect const char.

You might be using an implicit type in:

• Object declarations
• Parameter declarations
• Member declarations
• typedef declarations
• Function return types

Polyspace Implementation
The rule checker flags situations where a function parameter or return type is not
explicitly specified. To enable checking of this rule, use the value c90 for the option C
standard version (-c-version).

Message in Report
Types shall be explicitly specified.

 MISRA C:2012 Rule 8.1

5-347

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Implicit Types
static foo(int a); /* Non compliant */
static void bar(void); /* Compliant */

In this example, the rule is violated because the return type of foo is implicit.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90

See Also
MISRA C:2012 Rule 8.2 | Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-348

MISRA C:2012 Rule 8.10
An inline function shall be declared with the static storage class

Description

Rule Definition
An inline function shall be declared with the static storage class.

Rationale
If you call an inline function that is declared with external linkage but not defined in the
same translation unit, the function might not be inlined. You might not see the reduction
in execution time that you expect from inlining.

If you want to make an inline function available to several translation units, you can still
define it with the static specifier. In this case, place the definition in a header file.
Include the header file in all the files where you want the function inlined.

Polyspace Implementation
The rule checker flags definitions that contain the inline specifier without an
accompanying static specifier.

Message in Report
An inline function shall be declared with the static storage class.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 8.10

5-349

Examples

Inlining Functions with External Linkage
inline double mult(int val);
inline double mult(int val) { /* Non compliant */
 return val * 2.0;
}

static inline double div(int val);
static inline double div(int val) { /* Compliant */
 return val / 2.0;
}

In this example, the definition of mult is noncompliant because it is inlined without the
static storage specifier.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 5.9 | Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-350

MISRA C:2012 Rule 8.11
When an array with external linkage is declared, its size should be explicitly specified

Description

Rule Definition
When an array with external linkage is declared, its size should be explicitly specified.

Rationale
Although it is possible to declare an array with an incomplete type and access its
elements, it is safer to state the size of the array explicitly. If you provide size information
for each declaration, a code reviewer can check multiple declarations for their
consistency. With size information, a static analysis tool can perform array bounds
analysis without analyzing more than one unit.

Polyspace Implementation
The rule checker flags arrays declared with the extern specifier if the declaration does
not explicitly specify the array size.

Message in Report
Size of array array_name should be explicitly stated. When an array with external
linkage is declared, its size should be explicitly specified.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 8.11

5-351

Examples

Array Declarations
extern int32_t array1[10]; /* Compliant */
extern int32_t array2[]; /* Non-compliant */

In this example, two arrays are declared array1 and array2. array1 has external
linkage (the extern keyword) and a size of 10. array2 also has external linkage, but no
specified size. array2 is noncompliant because for arrays with external linkage, you must
explicitly specify a size.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-352

MISRA C:2012 Rule 8.12
Within an enumerator list, the value of an implicitly-specified enumeration constant shall
be unique

Description

Rule Definition
Within an enumerator list, the value of an implicitly-specified enumeration constant shall
be unique.

Rationale
An implicitly specified enumeration constant has a value one greater than its predecessor.
If the first enumeration constant is implicitly specified, then its value is 0. An explicitly
specified enumeration constant has the specified value.

If implicitly and explicitly specified constants are mixed within an enumeration list, it is
possible for your program to replicate values. Such replications can be unintentional and
can cause unexpected behavior.

Polyspace Implementation
The rule checker flags an enumeration if it has an implicitly specified enumeration
constant with the same value as another enumeration constant.

Message in Report
The constant constant1 has same value as the constant constant2.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 8.12

5-353

Examples

Replication of Value in Implicitly Specified Enum Constants
enum color1 {red_1, blue_1, green_1}; /* Compliant */
enum color2 {red_2 = 1, blue_2 = 2, green_2 = 3}; /* Compliant */
enum color3 {red_3 = 1, blue_3, green_3}; /* Compliant */
enum color4 {red_4, blue_4, green_4 = 1}; /* Non Compliant */
enum color5 {red_5 = 2, blue_5, green_5 = 2}; /* Compliant */
enum color6 {red_6 = 2, blue_6, green_6 = 2, yellow_6}; /* Non Compliant */

Compliant situations:

• color1: All constants are implicitly specified.
• color2: All constants are explicitly specified.
• color3: Though there is a mix of implicit and explicit specification, all constants have

unique values.
• color5: The implicitly specified constants have unique values.

Noncompliant situations:

• color4: The implicitly specified constant blue_4 has the same value as green_4.
• color6: The implicitly specified constant blue_6 has the same value as yellow_6.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Standard Violations”

5 MISRA C 2012

5-354

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.12

5-355

MISRA C:2012 Rule 8.13
A pointer should point to a const-qualified type whenever possible

Description
Rule Definition
A pointer should point to a const-qualified type whenever possible.

Rationale
This rule ensures that you do not inadvertently use pointers to modify objects.

Polyspace Implementation
The rule checker flags a pointer to a non-const function parameter if the pointer does
not modify the addressed object. The assumption is that the pointer is not meant to
modify the object and so must point to a const-qualified type.

Message in Report
A pointer should point to a const-qualified type whenever possible.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Pointer That Should Point to const-Qualified Types
#include <string.h>

5 MISRA C 2012

5-356

typedef unsigned short uint16_t;

uint16_t ptr_ex(uint16_t *p) { /* Non-compliant */
 return *p;
}

char last_char(char * const s){ /* Non-compliant */
 return s[strlen(s) - 1u];
}

uint16_t first(uint16_t a[5]){ /* Non-compliant */
 return a[0];
}

This example shows three different noncompliant pointer parameters.

• In the ptr_ex function, p does not modify an object. However, the type to which p
points is not const-qualified, so it is noncompliant.

• In last_char, the pointer s is const-qualified but the type it points to is not. This
parameter is noncompliant because s does not modify an object.

• The function first does not modify the elements of the array a. However, the element
type is not const-qualified, so a is also noncompliant.

Correction — Use const Keywords

One possible correction is to add const qualifiers to the definitions.

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(const uint16_t *p){ /* Compliant */
 return *p;
}

char last_char(const char * const s){ /* Compliant */
 return s[strlen(s) - 1u];
}

uint16_t first(const uint16_t a[5]) { /* Compliant */
 return a[0];
}

 MISRA C:2012 Rule 8.13

5-357

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-358

MISRA C:2012 Rule 8.14
The restrict type qualifier shall not be used

Description

Rule Definition
The restrict type qualifier shall not be used.

Rationale
When you use a restrict qualifier carefully, it improves the efficiency of code generated
by a compiler. It can also improve static analysis. However, when using the restrict
qualifier, it is difficult to make sure that the memory areas operated on by two or more
pointers do not overlap.

Polyspace Implementation
The rule checker flags all uses of the restrict qualifier.

Message in Report
The restrict type qualifier shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 8.14

5-359

Examples

Use of restrict Qualifier
void f(int n, int * restrict p, int * restrict q)
{
}

In this example, both uses of the restrict qualifier are flagged.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-360

MISRA C:2012 Rule 8.2
Function types shall be in prototype form with named parameters

Description

Rule Definition
Function types shall be in prototype form with named parameters.

Rationale
The rule requires that you specify names and data types for all the parameters in a
declaration. The parameter names provide useful information regarding the function
interface. A mismatch between a declaration and definition can indicate a programming
error. For instance, you mixed up parameters when defining the function. By insisting on
parameter names, the rule allows a code reviewer to detect this mismatch.

Polyspace Implementation
The rule checker shows a violation if the parameters in a function declaration or
definition are missing names or data types.

Message in Report
• Too many arguments to function_name.
• Too few arguments to function_name.
• Function types shall be in prototype form with named parameters.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 8.2

5-361

Examples

Function Prototype Without Named Parameters
extern int func(int); /* Non compliant */
extern int func2(int n); /* Compliant */

extern int func3(); /* Non compliant */
extern int func4(void); /* Compliant */

In this example, the declarations of func and func3 are noncompliant because the
parameters are missing or do not have names.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 8.1 | MISRA C:2012 Rule 8.4 | MISRA C:2012 Rule 17.3 |
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-362

MISRA C:2012 Rule 8.3
All declarations of an object or function shall use the same names and type qualifiers

Description

Rule Definition
All declarations of an object or function shall use the same names and type qualifiers.

Rationale
Consistently using parameter names and types across declarations of the same object or
function encourages stronger typing. It is easier to check that the same function interface
is used across all declarations.

Polyspace Implementation
The rule checker detects situations where parameter names or data types are different
between multiple declarations or the declaration and the definition. The checker
considers declarations in all translation units and flags issues that are not likely to be
detected by a compiler.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report
• Definition of function function_name incompatible with its declaration.
• Global declaration of function_name function has incompatible type with its
definition.

• Global declaration of variable_name variable has incompatible type with its
definition.

• All declarations of an object or function shall use the same names and type qualifiers.

 MISRA C:2012 Rule 8.3

5-363

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Mismatch in Parameter Names
extern int div (int num, int den);

int div(int den, int num) { /* Non compliant */
 return(num/den);
}

In this example, the rule is violated because the parameter names in the declaration and
definition are switched.

Mismatch in Parameter Data Types
typedef unsigned short width;
typedef unsigned short height;
typedef unsigned int area;

extern area calculate(width w, height h);

area calculate(width w, width h) { /* Non compliant *
 return w*h;
}

In this example, the rule is violated because the second argument of the calculate
function has data type:

• height in the declaration.
• width in the definition.

The rule is violated even though the underlying type of height and width are identical.

5 MISRA C 2012

5-364

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 8.4 | Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.3

5-365

MISRA C:2012 Rule 8.4
A compatible declaration shall be visible when an object or function with external linkage
is defined

Description

Rule Definition
A compatible declaration shall be visible when an object or function with external linkage
is defined.

Rationale
If a declaration is visible when an object or function is defined, it allows the compiler to
check that the declaration and the definition are compatible.

This rule with MISRA C:2012 Rule 8.5 enforces the practice of declaring an object (or
function) in a header file and including the header file in source files that define or use
the object (or function).

Polyspace Implementation
The rule checker detects situations where:

• An object or function is defined without a previous declaration.
• There is a data type mismatch between the object or function declaration and
definition. Such a mismatch also causes a compilation error.

Message in Report
• Global definition of variable_name variable has no previous declaration.
• Function function_name has no visible compatible prototype at definition.

5 MISRA C 2012

5-366

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Definition Without Previous Declaration
Header file:

/* file.h */
extern int var2;
void func2(void);

Source file:

/* file.c */
#include "file.h"

int var1 = 0; /* Non compliant */
int var2 = 0; /* Compliant */

void func1(void) { /* Non compliant */
}

void func2(void) { /* Compliant */
}

In this example, the definitions of var1 and func1 are noncompliant because they are
not preceded by declarations.

Mismatch in Parameter Data Types
void func(int param1, int param2);

void func(int param1, unsigned int param2) { /* Non compliant */
}

In this example, the definition of func has a different parameter type from its declaration.
The mismatch also causes a compilation error.

 MISRA C:2012 Rule 8.4

5-367

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.3 | MISRA C:2012 Rule 8.5 |
MISRA C:2012 Rule 17.3 | Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-368

MISRA C:2012 Rule 8.5
An external object or function shall be declared once in one and only one file

Description

Rule Definition
An external object or function shall be declared once in one and only one file.

Rationale
If you declare an identifier in a header file, you can include the header file in any
translation unit where the identifier is defined or used. In this way, you ensure
consistency between:

• The declaration and the definition.
• The declarations in different translation units.

The rule enforces the practice of declaring external objects or functions in header files.

Polyspace Implementation
The rule checker checks only explicit extern declarations (tentative definitions are
ignored). The checker flags variables or functions declared extern in a non-header file.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report
• Object object_name has external declarations in multiple files.
• Function function_name has external declarations in multiple files.

 MISRA C:2012 Rule 8.5

5-369

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Extern Declaration in Non-Header File
Header file:

/* file.h */
extern int var;
extern void func1(void); /* Compliant */

Source file:

/* file.c */
#include "file.h"

extern void func2(void); /* Non compliant */

/* Definitions */
int var = 0;
void func1(void) {}

In this example, the declaration of external function func2 is noncompliant because it
occurs in a non-header file. The other external object and function declarations occur in a
header file and comply with this rule.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 8.4 | Check MISRA C:2012 (-misra3)

5 MISRA C 2012

5-370

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.5

5-371

MISRA C:2012 Rule 8.6
An identifier with external linkage shall have exactly one external definition

Description

Rule Definition
An identifier with external linkage shall have exactly one external definition.

Rationale
If you use an identifier for which multiple definitions exist in different files or no definition
exists, the behavior is undefined.

Multiple definitions in different files are not permitted by this rule even if the definitions
are the same.

Polyspace Implementation
The checker flags multiple definitions only if the definitions occur in different files.

The checker does not consider tentative definitions as definitions. For instance, the
following code does not violate the rule:

int val;
int val=1;

The checker does not show a violation if a function is not defined at all but declared with
external linkage and called in the source code.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

5 MISRA C 2012

5-372

Message in Report
• Forbidden multiple definitions for function function_name.
• Forbidden multiple tentative definitions for object object_name.
• Global variable variable_name multiply defined.
• Function function_name multiply defined.
• Global variable has multiple tentative definitions.
• Undefined global variable variable_name.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Variable Multiply Defined
First source file:

extern int var = 1;

Second source file:

int var = 0; /* Non compliant */

In this example, the global variable var is multiply defined. Unless explicitly specified
with the static qualifier, the variables have external linkage.

Function Multiply Defined
Header file:

/* file.h */
int func(int param);

First source file:

 MISRA C:2012 Rule 8.6

5-373

/* file1.c */
#include "file.h"

int func(int param) {
 return param+1;
}

Second source file:

/* file2.c */
#include "file.h"

int func(int param) { /* Non compliant */
 return param-1;
}

In this example, the function func is multiply defined. Unless explicitly specified with the
static qualifier, the functions have external linkage.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-374

MISRA C:2012 Rule 8.7
Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit

Description

Rule Definition
Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit.

Rationale
Compliance with this rule avoids confusion between your identifier and an identical
identifier in another translation unit or library. If you restrict or reduce the visibility of an
object by giving it internal linkage or no linkage, you or someone else is less likely to
access the object inadvertently.

Polyspace Implementation
The rule checker flags:

• Objects that are defined at file scope without the static specifier but used only in
one file.

• Functions that are defined without the static specifier but called only in one file.

If you intend to use the object or function in one file only, declare it static.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report
• Variable variable_name should have internal linkage.

 MISRA C:2012 Rule 8.7

5-375

• Function function_name should have internal linkage.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Variable with External Linkage Used in One File
Header file:

/* file.h */
extern int var;

First source file:

/* file1.c */
#include "file.h"

int var; /* Compliant */
int var2; /* Non compliant */
static int var3; /* Compliant */

void reset(void);

void reset(void) {
 var = 0;
 var2 = 0;
 var3 = 0;
}

Second source file:

/* file2.c */
#include "file.h"

void increment(int var2);

void increment(int var2) {

5 MISRA C 2012

5-376

 var++;
 var2++;
}

In this example:

• The declaration of var is compliant because var is declared with external linkage and
used in multiple files.

• The declaration of var2 is noncompliant because var2 is declared with external
linkage but used in one file only.

It might appear that var2 is defined in both files. However, in the second file, var2 is
a parameter with no linkage and is not the same as the var2 in the first file.

• The declaration of var3 is compliant because var3 is declared with internal linkage
(with the static specifier) and used in one file only.

Function with External Linkage Used in One File
Header file:

/* file.h */
extern int var;
extern void increment1 (void);

First source file:

/* file1.c */
#include "file.h"

int var;

void increment2(void);
static void increment3(void);
void func(void);

void increment2(void) { /* Non compliant */
 var+=2;
}

static void increment3(void) { /* Compliant */
 var+=3;
}

 MISRA C:2012 Rule 8.7

5-377

void func(void) {
 increment1();
 increment2();
 increment3();
}

Second source file:

/* file2.c */
#include "file.h"

void increment1(void) { /* Compliant */
 var++;
}

In this example:

• The definition of increment1 is compliant because increment1 is defined with
external linkage and called in a different file.

• The declaration of increment2 is noncompliant because increment2 is defined with
external linkage but called in the same file and nowhere else.

• The declaration of increment3 is compliant because increment3 is defined with
internal linkage (with the static specifier) and called in the same file and nowhere
else.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”

5 MISRA C 2012

5-378

“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.7

5-379

MISRA C:2012 Rule 8.8
The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage

Description

Rule Definition
The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage.

Rationale
If you do not use the static specifier consistently in all declarations of objects with
internal linkage, you might declare the same object with external and internal linkage.

In this situation, the linkage follows the earlier specification that is visible (C99 Standard,
Section 6.2.2). For instance, if the earlier specification indicates internal linkage, the
object has internal linkage even though the latter specification indicates external linkage.
If you notice the latter specification alone, you might expect otherwise.

Polyspace Implementation
The rule checker detects situations where:

• The same object is declared multiple times with different storage specifiers.
• The same function is declared and defined with different storage specifiers.

Message in Report
The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage.

5 MISRA C 2012

5-380

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Linkage Conflict Between Variable Declarations
static int foo = 0;
extern int foo; /* Non-compliant */

extern int hhh;
static int hhh; /* Non-compliant */

In this example, the first line defines foo with internal linkage. The first line is compliant
because the example uses the static keyword. The second line does not use static in
the declaration, so the declaration is noncompliant. By comparison, the third line declares
hhh with an extern keyword creating external linkage. The fourth line declares hhh with
internal linkage, but this declaration conflicts with the first declaration of hhh.

Correction — Consistent static and extern Use

One possible correction is to use static and extern consistently:

static int foo = 0;
static int foo;

extern int hhh;
extern int hhh;

Linkage Conflict Between Function Declaration and Definition
static int fee(void); /* Compliant - declaration: internal linkage */
int fee(void){ /* Non-compliant */
 return 1;
}

static int ggg(void); /* Compliant - declaration: internal linkage */
extern int ggg(void){ /* Non-compliant */

 MISRA C:2012 Rule 8.8

5-381

 return 1 + x;
}

This example shows two internal linkage violations. Because fee and ggg have internal
linkage, you must use a static class specifier to be compliant with MISRA.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-382

MISRA C:2012 Rule 8.9
An object should be defined at block scope if its identifier only appears in a single
function

Description

Rule Definition
An object should be defined at block scope if its identifier only appears in a single
function.

Rationale
If you define an object at block scope, you or someone else is less likely to access the
object inadvertently outside the block.

Polyspace Implementation
The rule checker flags static objects that are accessed in one function only but declared
at file scope.

Message in Report
An object should be defined at block scope if its identifier only appears in a single
function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C:2012 Rule 8.9

5-383

Examples

Object Declared at File Scope but Used in One Function
static int ctr; /* Non compliant */

int checkStatus(void);
void incrementCount(void);

void incrementCount(void) {
 ctr=0;
 while(1) {
 if(checkStatus())
 ctr++;
 }
}

In this example, the declaration of ctr is noncompliant because it is declared at file scope
but used only in the function incrementCount. Declare ctr in the body of
incrementCount to be MISRA C-compliant.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-384

Introduced in R2014b

 MISRA C:2012 Rule 8.9

5-385

MISRA C:2012 Rule 9.1
The value of an object with automatic storage duration shall not be read before it has
been set

Description
Message in Report:

Rule Definition
The value of an object with automatic storage duration shall not be read before it has
been set.

Rationale
A variable with an automatic storage duration is allocated memory at the beginning of an
enclosing code block and deallocated at the end. All non-global variables have this
storage duration, except those declared static or extern.

Variables with automatic storage duration are not automatically initialized and have
indeterminate values. Therefore, you must not read such a variable before you have set
its value through a write operation.

Polyspace Implementation
The Polyspace analysis checks some of the violations as non-initialized variables. For
more information, see Non-initialized variable.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results. In Code Prover, you can also see a difference in
results based on your choice for the option . See “Check for Coding Standard Violations”.

5 MISRA C 2012

5-386

Message in Report
The value of an object with automatic storage duration shall not be read before it has
been set.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Initialization
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 9.1

5-387

MISRA C:2012 Rule 9.2
The initializer for an aggregate or union shall be enclosed in braces

Description

Rule Definition
The initializer for an aggregate or union shall be enclosed in braces.

Rationale
The rule applies to both objects and subobjects. For example, when initializing a structure
that contains an array, the values assigned to the structure must be enclosed in braces.
Within these braces, the values assigned to the array must be enclosed in another pair of
braces.

Enclosing initializers in braces improves clarity of code that contains complex data
structures such as multidimensional arrays and arrays of structures.

Tip To avoid nested braces for subobjects, use the syntax {0}, which sets all values to
zero.

Message in Report
The initializer for an aggregate or union shall be enclosed in braces.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-388

Examples

Initialization of Two-dimensional Arrays
void initialize(void) {
 int x[4][2] = {{0,0},{1,0},{0,1},{1,1}}; /* Compliant */
 int y[4][2] = {{0},{1,0},{0,1},{1,1}}; /* Compliant */
 int z[4][2] = {0}; /* Compliant */
 int w[4][2] = {0,0,1,0,0,1,1,1}; /* Non-compliant */
}

In this example, the rule is not violated when:

• Initializers for each row of the array are enclosed in braces.
• The syntax {0} initializes all elements to zero.

The rule is violated when a separate pair of braces is not used to enclose the initializers
for each row.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 9.2

5-389

MISRA C:2012 Rule 9.3
Arrays shall not be partially initialized

Description

Rule Definition
Arrays shall not be partially initialized.

Rationale
Providing an explicit initialization for each array element makes it clear that every
element has been considered.

Message in Report
Arrays shall not be partially initialized.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Partial and Complete Initializations
void func(void) {
 int x[3] = {0,1,2}; /* Compliant */
 int y[3] = {0,1}; /* Non-compliant */
 int z[3] = {0}; /* Compliant - exception */
 int a[30] = {[1] = 1,[15]=1}; /* Compliant - exception */
 int b[30] = {{1} = 1, 1}; /* Non-compliant */

5 MISRA C 2012

5-390

 char c[20] = "Hello World"; /* Compliant - exception */
}

In this example, the rule is not violated when each array element is explicitly initialized.

The rule is violated when some elements of the array are implicitly initialized. Exceptions
include the following:

• The initializer has the form {0}, which initializes all elements to zero.
• The array initializer consists only of designated initializers. Typically, you use this

approach for sparse initialization.
• The array is initialized using a string literal.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 9.3

5-391

MISRA C:2012 Rule 9.4
An element of an object shall not be initialized more than once

Description

Rule Definition
An element of an object shall not be initialized more than once.

Rationale
Designated initializers allow explicitly initializing elements of objects such as arrays in
any order. However, using designated initializers, one can inadvertently initialize the
same element twice and therefore overwrite the first initialization.

Message in Report
An element of an object shall not be initialized more than once.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Array Initialization Using Designated Initializers
void func(void) {
 int a[5] = {-2,-1,0,1,2}; /* Compliant */
 int b[5] = {[0]=-2, [1]=-1, [2]=0, [3]=1, [4]=2};
 /* Compliant */
 int c[5] = {[0]=-2, [1]=-1, [1]=0, [3]=1, [4]=2};

5 MISRA C 2012

5-392

 /* Non-compliant */
}

In this example, the rule is violated when the array element c[1] is initialized twice using
a designated initializer.

Structure Initialization Using Designated Initializers
struct myStruct {
 int a;
 int b;
 int c;
 int d;
};

void func(void) {
 struct myStruct struct1 = {-4,-2,2,4}; /* Compliant */
 struct myStruct struct2 = {.a=-4, .b=-2, .c=2, .d=4};
 /* Compliant */
 struct myStruct struct3 = {.a=-4, .b=-2, .b=2, .d=4};
 /* Non-compliant */
}

In this example, the rule is violated when struct3.b is initialized twice using a
designated initializer.

Check Information
Group: Initialization
Category: Required
AGC Category: Required
Language: C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”

 MISRA C:2012 Rule 9.4

5-393

“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-394

MISRA C:2012 Rule 9.5
Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly

Description

Rule Definition
Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

Rationale
If the size of an array is not specified explicitly, it is determined by the highest index of
the elements that are initialized. When using long designated initializers, it might not be
immediately apparent which element has the highest index.

Message in Report
Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Using Designated Initializers Without Specifying Array Size
int a[5] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Compliant */
int b[] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Non-compliant */

 MISRA C:2012 Rule 9.5

5-395

int c[] = {[0]= 1, [1] = 1, [2]= 1, [3]=0, [4] = 1}; /* Non-compliant */

void display(int);

void main() {
 func(a,5);
 func(b,5);
 func(c,5);
}

void func(int* arr, int size) {
 for(int i=0; i<size; i++)
 display(arr[i]);
}

In this example, the rule is violated when the arrays b and c are initialized using
designated initializers but the array size is not specified.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-396

MISRA C:2012 Dir 1.1
Any implementation-defined behavior on which the output of the program depends shall
be documented and understood

Description

Directive Definition
Any implementation-defined behavior on which the output of the program depends shall
be documented and understood.

Rationale
A code construct has implementation-defined behavior if the C standard allows compilers
to choose their own specifications for the construct. The full list of implementation-
defined behavior is available in Annex J.3 of the standard ISO/IEC 9899:1999 (C99) and in
Annex G.3 of the standard ISO/IEC 9899:1990 (C90).

If you understand and document all implementation-defined behavior, you can be assured
that all output of your program is intentional and not produced by chance.

Polyspace Implementation
The analysis detects the following possibilities of implementation-defined behavior in C99
and their counterparts in C90. If you know the behavior of your compiler implementation,
justify the analysis result with appropriate comments. To justify a result, assign one of
these statuses: Justified, No action planned, or Not a defect.

Tip To mass-justify all results that indicate the same implementation-defined behavior,
use the Detail column on the Results List pane. Click the column header so that all
results with the same entry are grouped together. Select the first result and then select
the last result while holding the Shift key. Assign a status to one of the results. If you do
not see the Detail column, right-click any other column header and enable this column.

 MISRA C:2012 Dir 1.1

5-397

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.2:
Environment

An alternative
manner in which
main function
may be defined.

The analysis flags main with arguments and return
types other than:

int main(void) { ... }

or

int main(int argc, char *argv[]) { ... }

See section 5.1.2.2.1 of the C99 Standard.
J.3.2:
Environment

The set of
environment
names and the
method for
altering the
environment list
used by the
getenv function.

The analysis flags uses of the getenv function. For
this function, you need to know the list of
environment variables and how the list is modified.

See section 7.20.4.5 of the C99 Standard.

J.3.6: Floating
Point

The rounding
behaviors
characterized by
non-standard
values of
FLT_ROUNDS.

The analysis flags the include of float.h if values
of FLT_ROUNDS are outside the set, {-1, 0, 1, 2, 3}.
Only the values in this set lead to well-defined
rounding behavior.

See section 5.2.4.2.2 of the C99 Standard.
J.3.6: Floating
Point

The evaluation
methods
characterized by
non-standard
negative values
of
FLT_EVAL_METH
OD.

The analysis flags the include of float.h if values
of FLT_EVAL_METHOD are outside the set, {-1, 0, 1,
2}. Only the values in this set lead to well-defined
behavior for floating-point operations.

See section 5.2.4.2.2 of the C99 Standard.

5 MISRA C 2012

5-398

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.6: Floating
Point

The direction of
rounding when
an integer is
converted to a
floating-point
number that
cannot exactly
represent the
original value.

The analysis flags conversions from integer to
floating-point data types of smaller size (for
example, 64-bit int to 32-bit float).

See section 6.3.1.4 of the C99 Standard.

J.3.6: Floating
Point

The direction of
rounding when a
floating-point
number is
converted to a
narrower
floating-point
number.

The analysis flags these conversions:

• double to float
• long double to double or float

See section 6.3.1.5 of the C99 Standard.

J.3.6: Floating
Point

The default state
for the
FENV_ACCESS
pragma.

The analysis flags use of the pragma other than:

#pragma STDC FENV_ACCESS ON

or

#pragma STDC FENV_ACCESS OFF

See section 7.6.1 of the C99 Standard.
J.3.6: Floating
Point

The default state
for the
FP_CONTRACT
pragma.

The analysis flags use of the pragma other than:

#pragma STDC FP_CONTRACT ON

or

#pragma STDC FP_CONTRACT OFF

See section 7.12.2 of the C99 Standard.

 MISRA C:2012 Dir 1.1

5-399

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.11:
Preprocessing
Directives

The behavior on
each recognized
non-STDC
#pragma
directive.

The analysis flags the pragma usage:

#pragma pp-tokens

where the processing token STDC does not
immediately followpragma. For instance:

#pragma FENV_ACCESS ON

See section 6.10.6 of the C99 Standard.
J.3.12: Library
Functions

Whether the
feraiseexcept
function raises
the ‘‘inexact’’
floating-point
exception in
addition to the
‘‘overflow’’ or
‘‘underflow’’
floating-point
exception.

The analysis flags calls to the feraiseexcept
function.

See section 7.6.2.3 of the C99 Standard.

J.3.12: Library
Functions

Strings other
than "C" and ""
that may be
passed as the
second argument
to the
setlocale
function.

The analysis flags calls to the setlocale function
when its second argument is not "C" or "".

See section 7.11.1.1 of the C99 Standard.

J.3.12: Library
Functions

The types defined
for float_t and
double_t when
the value of the
FLT_EVAL_METH
OD macro is less
than 0 or greater
than 2.

The analysis flags the include of math.h if
FLT_EVAL_METHOD has values outside the set
{0,1,2}.

See section 7.12 of the C99 Standard.

5 MISRA C 2012

5-400

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.12: Library
Functions

The base-2
logarithm of the
modulus used by
the remquo
functions in
reducing the
quotient.

The analysis flags calls to the remquo, remquof
and remquol function.

See section 7.12.10.3 of the C99 Standard.

J.3.12: Library
Functions

The termination
status returned
to the host
environment by
the abort, exit,
or _Exit
function.

The analysis flags calls to the abort, exit, or
_Exit function.

See sections 7.20.4.1, 7.20.4.3 or 7.20.4.4 of the
C99 Standard.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: The implementation
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Dir 1.1

5-401

Introduced in R2017b

5 MISRA C 2012

5-402

MISRA C:2012 Dir 2.1
All source files shall compile without any compilation errors

Description

Directive Definition
All source files shall compile without any compilation errors.

Rationale
A conforming compiler is permitted to produce an object module despite the presence of
compilation errors. However, execution of the resulting program can produce unexpected
behavior.

Polyspace Implementation
The software raises a violation of this directive if it finds a compilation error. Because
Code Prover is more strict about compilation errors compared to Bug Finder, the coding
rules checking in the two products can produce different results for this directive.

Message in Report
All source files shall compile without any compilation errors.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Compilation and build

 MISRA C:2012 Dir 2.1

5-403

Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3) | MISRA C:2012 Rule 1.1

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-404

MISRA C:2012 Dir 4.1
Run-time failures shall be minimized

Description

Directive Definition
Run-time failures shall be minimized.

Rationale
Some areas to concentrate on are:

• Arithmetic errors
• Pointer arithmetic
• Array bound errors
• Function parameters
• Pointer dereferencing
• Dynamic memory

Polyspace Implementation
This directive is checked through the Polyspace analysis. For more information, see:

• “Defects”.
• “Run-Time Checks” (Polyspace Code Prover).

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report
Run-time failures shall be minimized.

 MISRA C:2012 Dir 4.1

5-405

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.11 | MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 18.1 |
MISRA C:2012 Rule 18.2 | MISRA C:2012 Rule 18.3 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-406

MISRA C:2012 Dir 4.10
Precautions shall be taken in order to prevent the contents of a header file being included
more than once

Description
Directive Definition
Precautions shall be taken in order to prevent the contents of a header file being included
more than once.

Rationale
When a translation unit contains a complex hierarchy of nested header files, it is possible
for a particular header file to be included more than once, leading to confusion. If this
multiple inclusion produces multiple or conflicting definitions, then your program can
have undefined or erroneous behavior.

For instance, suppose that a header file contains:

#ifdef _WIN64
 int env_var;
#elseif
 long int env_var;
#endif

If the header file is contained in two inclusion paths, one that defines the macro _WIN64
and another that undefines it, you can have conflicting definitions of env_var.

Polyspace Implementation
If you include a header file whose contents are not guarded from multiple inclusion, the
analysis raises a violation of this directive. The violation is shown at the beginning of the
header file.

You can guard the contents of a header file from multiple inclusion by using one of the
following methods:

 MISRA C:2012 Dir 4.10

5-407

<start-of-file>
#ifndef <control macro>
#define <control macro>
 /* Contents of file */
#endif
<end-of-file>

or

<start-of-file>
#ifdef <control macro>
#error ...
#else
#define <control macro>
 /* Contents of file */
#endif
<end-of-file>

Unless you use one of these methods, Polyspace flags the header file inclusion as
noncompliant.

Message in Report
Precautions shall be taken in order to prevent the contents of a header file being included
more than once.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Code After Macro Guard
#ifndef __MY_MACRO__
#define __MY_MACRO__
 void func(void);

5 MISRA C 2012

5-408

#endif
void func2(void);

If a header file contains this code, it is noncompliant because the macro guard does not
cover the entire content of the header file. The line void func2(void) is outside the
guard.

Note You can have comments outside the macro guard.

Code Before Macro Guard

void func(void);
#ifndef __MY_MACRO__
#define __MY_MACRO__
 void func2(void);
#endif

If a header file contains this code, it is noncompliant because the macro guard does not
cover the entire content of the header file. The line void func(void) is outside the
guard.

Note You can have comments outside the macro guard.

Mismatch in Macro Guard
#ifndef __MY_MACRO__
#define __MY_MARCO__
 void func(void);
 void func2(void);
#endif

If a header file contains this code, it is noncompliant because the macro name in the
#ifndef statement is different from the name in the following #define statement.

Check Information
Group: Code Design

 MISRA C:2012 Dir 4.10

5-409

Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-410

MISRA C:2012 Dir 4.11
The validity of values passed to library functions shall be checked

Description

Directive Definition
The validity of values passed to library functions shall be checked.

Rationale
Many Standard C functions do not check the validity of parameters passed to them. Even
if checks are performed by a compiler, there is no guarantee that the checks are
adequate. For example, you should not pass negative numbers to sqrt or log.

Polyspace Implementation
Polyspace raises a violation result for library function arguments if the following are all
true:

• Argument is a local variable.
• Local variable is not tested between last assignment and call to the library function.
• Corresponding parameter of the library function has a restricted input domain.
• Library function is one of the following common mathematical functions:

• sqrt
• tan
• pow
• log
• log10
• fmod
• acos

 MISRA C:2012 Dir 4.11

5-411

• asin
• acosh
• atanh
• or atan2

Bug Finder and Code Prover check this rule differently. The analysis can produce different
results.

Tip To mass-justify all results related to the same library function, use the Detail column
on the Results List pane. Click the column header so that all results with the same entry
are grouped together. Select the first result and then select the last result while holding
the Shift key. Assign a status to one of the results. If you do not see the Detail column,
right-click any other column header and enable this column.

Message in Report
The validity of values passed to library functions shall be checked

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”

5 MISRA C 2012

5-412

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Dir 4.11

5-413

MISRA C:2012 Dir 4.13
Functions which are designed to provide operations on a resource should be called in an
appropriate sequence

Description
Directive Definition
Functions which are designed to provide operations on a resource should be called in an
appropriate sequence.

Rationale
You typically use functions operating on a resource in the following way:

1 You allocate the resource.

For example, you open a file or critical section.
2 You use the resource.

For example, you read from the file or perform operations in the critical section.
3 You deallocate the resource.

For example, you close the file or critical section.

For your functions to operate as you expect, perform the steps in sequence. For instance,
if you call a resource allocation function on a certain execution path, you must call a
deallocation function on that path.

Polyspace Implementation
Polyspace Bug Finder detects a violation of this rule if you specify multitasking options
and your code contains one of these defects:

• Missing lock: A task calls an unlock function before calling the corresponding lock
function.

5 MISRA C 2012

5-414

• Missing unlock: A task calls a lock function but ends without a call to the
corresponding unlock function.

• Double lock: A task calls a lock function twice without an intermediate call to an
unlock function.

• Double unlock: A task calls an unlock function twice without an intermediate call to
a lock function.

For more information on the multitasking options, see “Multitasking”.

Message in Report
Functions which are designed to provide operations on a resource should be called in an
appropriate sequence.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Multitasking: Lock Function That Is Missing Unlock Function
typedef signed int int32_t;
typedef signed short int16_t;

typedef struct tag_mutex_t {
 int32_t value;
} mutex_t;

extern mutex_t mutex_lock (void);
extern void mutex_unlock (mutex_t m);

extern int16_t x;
void func(void);

void task1(void) {
 func();

 MISRA C:2012 Dir 4.13

5-415

}

void task2(void) {
 func();
}

void func (void) {
 mutex_t m = mutex_lock (); /* Non-compliant */

 if (x > 0) {
 mutex_unlock (m);
 } else {
 /* Mutex not unlocked on this path */
 }
}

In this example, the rule is violated when:

• You specify that the functions mutex_lock and mutex_unlock are paired.

mutex_lock begins a critical section and mutex_unlock ends it.
• The function mutex_lock is called. However, if x <= 0, the function mutex_unlock

is not called.

To enable detection of this rule violation, you must specify these analysis options.

Option Specification
Configure multitasking
manually
Entry points task1

task2
Critical section details Starting routine Ending routine

mutex_lock mutex_unlock

For more information on the options, see:

• Tasks (-entry-points)
• Critical section details (-critical-section-begin -critical-

section-end)

5 MISRA C 2012

5-416

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3) | MISRA C:2012 Rule 22.1 | MISRA C:2012
Rule 22.2 | MISRA C:2012 Rule 22.6

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Dir 4.13

5-417

MISRA C:2012 Dir 4.14
The validity of values received from external sources shall be checked

Description

Directive Definition
The validity of values received from external sources shall be checked.

Rationale
The values originating from external sources can be invalid because of errors or
deliberate modification by attackers. Before using the data, you must check the data for
validity.

For instance:

• Before using an external input as array index, you must check if it can potentially
cause an array bounds error.

• Before using a variable to control a loop, you must check if it can potentially result in
an infinite loop.

Message in Report
The validity of values received from external sources shall be checked.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-418

Examples

Validity of External Values Not Checked
#include <stdio.h>

void f1(char from_user[])
{
 char input [128];
 (void) sscanf (from_user, "%128c", input);
 (void) sprintf ("%s", input);
}

In this example, the sscanf statement is noncompliant as there is no check to ensure
that the user input is null terminated. The subsequent sprintf statement that outputs
the string can potentially lead to an array bounds error (buffer overrun).

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Dir 4.14

5-419

MISRA C:2012 Dir 4.3
Assembly language shall be encapsulated and isolated

Description

Directive Definition
Assembly language shall be encapsulated and isolated.

Rationale
Encapsulating assembly language is beneficial because:

• It improves readability.
• The name, and documentation, of the encapsulating macro or function makes the

intent of the assembly language clear.
• All uses of assembly language for a given purpose can share encapsulation, which

improves maintainability.
• You can easily substitute the assembly language for a different target or for purposes

of static analysis.

Polyspace Implementation
Polyspace does not raise a warning on assembly language code encapsulated in the
following:

• asm functions or asm pragmas
• Macros

Message in Report
Assembly language shall be encapsulated and isolated

5 MISRA C 2012

5-420

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Assembly Language Code in C Function
enum boolVal {TRUE, FALSE};
enum boolVal isTaskActive;
void taskHandler(void);

void taskHandler(void) {
 isTaskActive = FALSE;
 // Software interrupt for task switching
 asm volatile
 (
 "SWI &02" /* Service #1: calculate run-time */
);
 return;
}

In this example, the rule violation occurs because the assembly language code is
embedded directly in a C function taskHandler that contains other C language
statements.

Correction: Encapsulate Assembly Code in Macro

One possible correction is to encapsulate the assembly language code in a macro and
invoke the macro in the function taskHandler.

#define RUN_TIME_CALC \
asm volatile \
 (\
 "SWI &02" /* Service #1: calculate run-Time */ \
)\

enum boolVal {TRUE, FALSE};
enum boolVal isTaskActive;
void taskHandler(void);

 MISRA C:2012 Dir 4.3

5-421

void taskHandler(void) {
 isTaskActive = FALSE;
 RUN_TIME_CALC;
 return;
}

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-422

MISRA C:2012 Dir 4.5
Identifiers in the same name space with overlapping visibility should be typographically
unambiguous

Description

Directive Definition
Identifiers in the same name space with overlapping visibility should be typographically
unambiguous.

Rationale
What “unambiguous” means depends on the alphabet and language in which source code
is written. When you use identifiers that are typographically close, you can confuse
between them.

For the Latin alphabet as used in English words, at a minimum, the identifiers should not
differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.
• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

 MISRA C:2012 Dir 4.5

5-423

Message in Report
Identifiers in the same name space with overlapping visibility should be typographically
unambiguous.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Typographically Ambiguous Identifiers
void func(void) {
 int id1_numval;
 int id1_num_val; /* Non-compliant */

 int id2_numval;
 int id2_numVal; /* Non-compliant */

 int id3_lvalue;
 int id3_Ivalue; /* Non-compliant */

 int id4_xyz;
 int id4_xy2; /* Non-compliant */

 int id5_zerO;
 int id5_zer0; /* Non-compliant */

 int id6_rn;
 int id6_m; /* Non-compliant */
}

In this example, the rule is violated when identifiers that can be confused for each other
are used.

5 MISRA C 2012

5-424

Check Information
Group: Code design
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Dir 4.5

5-425

MISRA C:2012 Dir 4.6
typedefs that indicate size and signedness should be used in place of the basic
numerical types

Description

Directive Definition
typedefs that indicate size and signedness should be used in place of the basic
numerical types.

Rationale
When the amount of memory being allocated is important, using specific-length types
makes it clear how much storage is being reserved for each object.

Polyspace Implementation
The rule checker flags use of basic data types in variable or function declarations and
definitions. The rule enforces use of typedefs instead.

The rule checker does not flag the use of basic types in the typedef statements
themselves.

Message in Report
Typedefs that indicate size and signedness should be used in place of the basic numerical
types

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-426

Examples

Direct Use of Basic Types in Definitions
typedef unsigned int uint32_t;

int x = 0; /* Non compliant */
uint32_t y = 0; /* Compliant */

In this example, the declaration of x is noncompliant because it uses a basic type directly.

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Dir 4.6

5-427

MISRA C:2012 Dir 4.7
If a function returns error information, then that error information shall be tested

Description

Directive Definition
If a function returns error information, then that error information shall be tested.

Rationale
Typically a function indicates whether an error occurred during execution, via a special
return value or by another means.

If a function provides a mechanism to determine errors, before you use the function
return value, you must check for such errors.

Polyspace Implementation
The checking of this directive follows the same specifications as the defect checker
Returned value of a sensitive function not checked.

This directive is only partially supported.

Message in Report
If a function returns error information, then that error information shall be tested.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-428

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Dir 4.7

5-429

MISRA C:2012 Dir 4.8
If a pointer to a structure or union is never dereferenced within a translation unit, then
the implementation of the object should be hidden

Description

Rule Definition
If a pointer to a structure or union is never dereferenced within a translation unit, then
the implementation of the object should be hidden.

Rationale
If a pointer to a structure or union is not dereferenced in a file, the implementation
details of the structure or union need not be available in the translation unit for the file.
You can hide the implementation details such as structure members and protect them
from unintentional changes.

Define an opaque type that can be referenced via pointers but whose contents cannot be
accessed.

Polyspace Implementation
If a structure or union is defined in a file or a header file included in the file, a pointer to
this structure or union declared but the pointer never dereferenced in the file, the
checker flags a coding rule violation. The structure or union definition should not be
visible to this file.

If you see a violation of this rule on a structure definition, identify if you have defined a
pointer to the structure in the same file or in a header file included in the file. Then check
if you dereference the pointer anywhere in the file. If you do not dereference the pointer,
the structure definition should be hidden from this file and included header files.

5 MISRA C 2012

5-430

Message in Report
If a pointer to a structure or union is never dereferenced within a translation unit, then
the implementation of the object should be hidden.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Object Implementation Revealed
file.h: Contains structure implementation.

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct {
 int a;
} myStruct;

#endif

file.c: Includes file.h but does not dereference structure.

#include "file.h"

myStruct* getObj(void);
void useObj(myStruct*);

void func() {
 myStruct *sPtr = getObj();
 useObj(sPtr);
}

In this example, the pointer to the type myStruct is not dereferenced. The pointer is
simply obtained from the getObj function and passed to the useObj function.

 MISRA C:2012 Dir 4.8

5-431

The implementation of myStruct is visible in the translation unit consisting of file.c
and file.h.

Correction — Define Opaque Type

One possible correction is to define an opaque data type in the header file file.h. The
opaque data type ptrMyStruct points to the myStruct structure without revealing what
the structure contains. The structure myStruct itself can be defined in a separate
translation unit, in this case, consisting of the file file2.c. The common header file
file.h must be included in both file.c and file2.c for linking the structure
definition to the opaque type definition.

file.h: Does not contain structure implementation.

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct myStruct *ptrMyStruct;

ptrMyStruct getObj(void);
void useObj(ptrMyStruct);

#endif

file.c: Includes file.h but does not dereference structure.

#include "file.h"

void func() {
 ptrMyStruct sPtr = getObj();
 useObj(sPtr);
}

file2.c: Includes file.h and dereferences structure.

#include "file.h"

struct myStruct {
 int a;
};

void useObj(ptrMyStruct ptr) {
 (ptr->a)++;
}

5 MISRA C 2012

5-432

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2018a

 MISRA C:2012 Dir 4.8

5-433

MISRA C:2012 Dir 4.9
A function should be used in preference to a function-like macro where they are
interchangeable

Description

Directive Definition
A function should be used in preference to a function-like macro where they are
interchangeable.

Rationale
In most circumstances, use functions instead of macros. Functions perform argument
type-checking and evaluate their arguments once, avoiding problems with potential
multiple side effects.

Polyspace Implementation
Polyspace considers all function-like macro definitions.

Message in Report
A function should be used in preference to a function-like macro where they are
interchangeable

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-434

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 13.2 | MISRA C:2012 Rule 20.7 | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Dir 4.9

5-435

MISRA C:2012 Dir 4.12
Dynamic memory allocation shall not be used

Description

Rule Definition
Dynamic memory allocation shall not be used.

Rationale
Using dynamic memory allocation and deallocation routines provided by the Standard
Library or third-party libraries can cause undefined behavior. For instance:

• You use free to deallocate memory that you did not allocate with malloc, calloc, or
realloc.

• You use a pointer that points to a freed memory location.
• You access allocated memory that has no value stored into it.

Dynamic memory allocation and deallocation routines from third-party libraries are likely
to exhibit similar undefined behavior.

If you choose to use dynamic memory allocation and deallocation routines, ensure that
your program behavior is predictable. For example, ensure that you safely handle
allocation failure due to insufficient memory.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

5 MISRA C 2012

5-436

Examples

Use of malloc, calloc, realloc and free
#include <stdlib.h>

static int foo(void);

typedef struct struct_1 {
 int a;
 char c;
} S_1;

static int foo(void) {

 S_1 * ad_1;
 int * ad_2;
 int * ad_3;

 ad_1 = (S_1*)calloc(100U, sizeof(S_1)); /* Non-compliant */
 ad_2 = malloc(100U * sizeof(int)); /* Non-compliant */
 ad_3 = realloc(ad_3, 60U * sizeof(long)); /* Non-compliant */

 free(ad_1); /* Non-compliant */
 free(ad_2); /* Non-compliant */
 free(ad_3); /* Non-compliant */

 return 1;
}

In this example, the rule is violated when the functions malloc, calloc, realloc and
free are used.

Check Information
Group: Code Design
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Dir 4.12

5-437

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2019b

5 MISRA C 2012

5-438

MISRA C++: 2008

6

MISRA C++:2008 Rule 0-1-1
A project shall not contain unreachable code

Description

Rule Definition
A project shall not contain unreachable code.

Rationale
This rule flags situations where a group of statements is unreachable because of syntactic
reasons. For instance, code following a return statement are always unreachable.

Unreachable code involve unnecessary maintenance and can often indicate programming
errors.

Polyspace Implementation
Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
A project shall not contain unreachable code.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

6 MISRA C++: 2008

6-2

Examples

Unreachable statements
int func(int arg) {
 int temp = 0;
 switch(arg) {
 temp = arg; // Noncompliant
 case 1:
 {
 break;
 }
 default:
 {
 break;
 }
 }
 return arg;
 arg++; // Noncompliant
}

These statements are unreachable:

• Statements inside a switch statement that do not belong to a case or default
block.

• Statements after a return statement.

Check Information
Group: Language Independent Issues
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 0-1-1

6-3

MISRA C++:2008 Rule 0-1-2
A project shall not contain infeasible paths

Description
Rule Definition
A project shall not contain infeasible paths.

Rationale
This rule flags situations where a group of statements is redundant because of
nonsyntactic reasons. For instance, an if condition is always true or false. Code that is
unreachable from syntactic reasons are flagged by rule 0-1-1.

Unreachable or redundant code involve unnecessary maintenance and can often indicate
programming errors.

Polyspace Implementation
Bug Finder and Code Prover check this rule differently. The analysis can produce different
results.

• Bug Finder checks for this rule through the Dead code and Useless if checkers..
• Code Prover does not use run-time checks to detect violations of this rule. Instead,

Code Prover detects the violations at compile time.

Message in Report
A project shall not contain infeasible paths.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

6 MISRA C++: 2008

6-4

Examples

Boolean Operations with Invariant Results
void func (unsigned int arg) {
 if (arg >= 0U) //Noncompliant
 arg = 1U;
 if (arg < 0U) //Noncompliant
 arg = 1U;
}

An unsigned int variable is nonnegative. Both if conditions involving the variable are
always true or always false and are therefore redundant.

Check Information
Group: Language Independent Issues
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 0-1-2

6-5

MISRA C++:2008 Rule 0-1-3
A project shall not contain unused variables

Description

Rule Definition
A project shall not contain unused variables.

Polyspace Implementation
The checker flags local or global variables that are declared or defined but not used
anywhere in the source files. This specification also applies to members of structures and
classes.

Message in Report
A project shall not contain unused variables.

Variable is never used or used only in unreachable code.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Use of Named Bit Field for Padding
#include <iostream>
struct S {
 unsigned char b1 : 3;

6 MISRA C++: 2008

6-6

 unsigned char pad: 1; //Noncompliant
 unsigned char b2 : 4;
};
void init(struct S S_obj)
{
 S_obj.b1 = 0;
 S_obj.b2 = 0;
}

In this example, the bit field pad is used for padding the structure. Therefore, the field is
never read or written and causes a violation of this rule. To avoid the violation, use an
unnamed field for padding.

struct S {
 unsigned char b1 : 3;
 unsigned char : 1;
 unsigned char b2 : 4;
};

Check Information
Group: Language Independent Issues
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

 MISRA C++:2008 Rule 0-1-3

6-7

MISRA C++:2008 Rule 0-1-5
A project shall not contain unused type declarations

Description

Rule Definition
A project shall not contain unused type declarations.

Rationale
If a type is declared but not used, when reviewing the code later, it is unclear if the type is
redundant or left unused by mistake.

Unused types can indicate coding errors. For instance, you declared a enumerated data
type for some specialized data but used an integer type for the data.

Message in Report
A project shall not contain unused type declarations.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Unused enum Declaration
enum switchValue {low, medium, high}; //Noncompliant

void operate(int userInput) {

6 MISRA C++: 2008

6-8

 switch(userInput) {
 case 0: // Turn on low setting
 break;
 case 1: // Turn on medium setting
 break;
 case 2: // Turn on high setting
 break;
 default: // Return error
 }
}

In this example, the enumerated type switchValue is not used. Perhaps the intention
was to use the type as switch input like this.

enum switchValue {low, medium, high}; //Compliant

void operate(switchValue userInput) {
 switch(userInput) {
 case low: // Turn on low setting
 break;
 case medium: // Turn on medium setting
 break;
 case high: // Turn on high setting
 break;
 default: // Return error
 }
}

Check Information
Group: Language Independent Issues
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

 MISRA C++:2008 Rule 0-1-5

6-9

MISRA C++:2008 Rule 0-1-7
The value returned by a function having a non- void return type that is not an overloaded
operator shall always be used

Description

Rule Definition
The value returned by a function having a non- void return type that is not an overloaded
operator shall always be used.

Rationale
The unused return value might indicate a coding error or oversight.

Overloaded operators are excluded from this rule because their usage must emulate built-
in operators which might not use their return value.

Polyspace Implementation
Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
The value returned by a function having a non- void return type that is not an overloaded
operator shall always be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

6 MISRA C++: 2008

6-10

Examples

Return Value Not Used
#include <iostream>
#include <new>

int assignMemory(int * ptr){
 int res = 1;
 ptr = new (std::nothrow) int;
 if(ptr==NULL) {
 res = 0;
 }
 return res;
}

void main() {
 int val;
 int status;

 assignMemory(&val); //Noncompliant
 status = assignMemory(&val); //Compliant
 (void)assignMemory(&val); //Compliant

}

The first call to the function assignMemory is noncompliant because the return value is
not used. The second and third calls use the return value. The return value from the
second call is assigned to a local variable.

The return value from the third call is cast to void. Casting to void indicates deliberate
non-use of the return value and cannot be a coding oversight.

Check Information
Group: Language Independent Issues
Category: Required

 MISRA C++:2008 Rule 0-1-7

6-11

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-12

MISRA C++:2008 Rule 0-1-9
There shall be no dead code

Description

Rule Definition
There shall be no dead code.

Rationale
If an operation is reachable but removing the operation does not affect program behavior,
the operation constitutes dead code. For instance, suppose that a variable is never read
following a write operation. The write operation is redundant.

The presence of dead code can indicate an error in the program logic. Because a compiler
can remove dead code, its presence can cause confusion for code reviewers.

Message in Report
There shall be no dead code.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Redundant Operations
#define ULIM 10000

 MISRA C++:2008 Rule 0-1-9

6-13

int func(int arg) {
 int res;
 res = arg*arg + arg;
 if (res > ULIM)
 res = 0; //Noncompliant
 return arg;
}

In this example, the operations involving res are redundant because the function func
returns its argument arg. All operations involving res can be removed without changing
the effect of the function.

The checker flags the last write operation on res because the variable is never read after
that point. The dead code can indicate an unintended coding error. For instance, you
intended to return the value of res instead of arg.

Check Information
Group: Language Independent Issues
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2016b

6 MISRA C++: 2008

6-14

MISRA C++:2008 Rule 0-1-10
Every defined function shall be called at least once

Description

Rule Definition
Every defined function shall be called at least once.

Rationale
If a function with a definition is not called, it might indicate a serious coding error. For
instance, the function call is unreachable or a different function is called unintentionally.

Polyspace Implementation
The checker detects situations where a static function is defined but not called at all in its
translation unit.

Message in Report
Every defined function shall be called at least once. The static function funcName is not
called.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 0-1-10

6-15

Examples

Uncalled Static Function
static void func1() {
}

static void func2() { //Noncompliant
}

void func3();

int main() {
 func1();
 return 0;
}

The static function func2 is defined but not called.

The function func3 is not called either, however, it is only declared and not defined. The
absence of a call to func3 does not violate the rule.

Check Information
Group: Language Independent Issues
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-16

MISRA C++:2008 Rule 0-1-11
There shall be no unused parameters (named or unnamed) in nonvirtual functions

Description
Rule Definition
There shall be no unused parameters (named or unnamed) in nonvirtual functions.

Rationale
Unused parameters often indicate later design changes. You perhaps removed all uses of
a specific parameter but forgot to remove the parameter from the parameter list.

Unused parameters constitute an unnecessary overhead. You can also inadvertently call
the function with a different number of arguments causing a parameter mismatch.

Message in Report
There shall be no unused parameters (named or unnamed) in non-virtual functions.

Function funcName has unused parameters.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Unused Parameters
typedef int (*callbackFn) (int a, int b);

 MISRA C++:2008 Rule 0-1-11

6-17

int callback_1 (int a, int b) { //Compliant
 return a+b;
}

int callback_2 (int a, int b) { //Noncompliant
 return a;
}

int callback_3 (int, int b) { //Compliant - flagged by Polyspace
 return b;
}

int getCallbackNumber();
int getInput();

void main() {
 callbackFn ptrFn;
 int n = getCallbackNumber();
 int x = getInput(), y = getInput();
 switch(n) {
 case 0: ptrFn = &callback_1; break;
 case 1: ptrFn = &callback_2; break;
 default: ptrFn = &callback_3; break;
 }

 (*ptrFn)(x,y);
}

In this example, the three functions callback_1, callback_2 and callback_3 are
used as callback functions. One of the three functions is called via a function pointer
depending on a value obtained at run time.

• Function callback_1 uses all its parameters and does not violate the rule.
• Function callback_2 does not use its parameter a and violates this rule.
• Function callback_3 also does not use its first parameter but it does not violate the

rule because the parameter is unnamed. However, Polyspace flags the unused
parameter as a rule violation. If you see a violation of this kind, justify the violation
with comments. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Check Information
Group: Language Independent Issues

6 MISRA C++: 2008

6-18

Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2016b

 MISRA C++:2008 Rule 0-1-11

6-19

MISRA C++:2008 Rule 0-1-12
There shall be no unused parameters (named or unnamed) in the set of parameters for a
virtual function and all the functions that override it

Description

Rule Definition
There shall be no unused parameters (named or unnamed) in the set of parameters for a
virtual function and all the functions that override it.

Rationale
Unused parameters often indicate later design changes. You perhaps removed all uses of
a specific parameter but forgot to remove the parameter from the parameter list.

Unused parameters constitute an unnecessary overhead. You can also inadvertently call
the function with a different number of arguments causing a parameter mismatch.

Polyspace Implementation
Polyspace checks for unused parameters in virtual functions within single translation
units.

For instance, if a base class contains a virtual method with an unused parameter but the
derived class implementation of the method uses that parameter, the rule is not violated.
However, if the base class and derived class are defined in different files, the checker,
which operates file by file, flags a violation of this rule on the base class.

Message in Report
There shall be no unused parameters (named or unnamed) in the set of parameters for a
virtual function and all the functions that override it.

Function funcName has unused parameters.

6 MISRA C++: 2008

6-20

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Unused Parameter in Virtual Function
class base {
 public:
 virtual void assignVal (int arg1, int arg2) = 0; //Noncompliant
 virtual void assignAnotherVal (int arg1, int arg2) = 0;
};

class derived1: public base {
 public:
 virtual void assignVal (int arg1, int arg2) {
 arg1 = 0;
 }
 virtual void assignAnotherVal (int arg1, int arg2) {
 arg1 = 1;
 }
};

class derived2: public base {
 public:
 virtual void assignVal (int arg1, int arg2) {
 arg1 = 0;
 }
 virtual void assignAnotherVal (int arg1, int arg2) {
 arg2 = 1;
 }
};

In this example, the second parameter of the virtual method assignVal is not used in
any of the derived class implementations of the method.

On the other hand, the implementation of the virtual method assignAnotherVal in
derived class derived1 uses the first parameter of the method. The implementation in

 MISRA C++:2008 Rule 0-1-12

6-21

derived2 uses the second parameter. Both parameters of assignAnotherVal are used
and therefore the virtual method does not violate the rule.

Check Information
Group: Language Independent Issues
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2016b

6 MISRA C++: 2008

6-22

MISRA C++:2008 Rule 0-2-1
An object shall not be assigned to an overlapping object

Description

Rule Definition
An object shall not be assigned to an overlapping object.

Rationale
When you assign an object to another object with overlapping memory, the behavior is
undefined.

The exceptions are:

• You assign an object to another object with exactly overlapping memory and
compatible type.

• You copy one object to another with memmove.

Message in Report
An object shall not be assigned to an overlapping object.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 0-2-1

6-23

Examples

Assignment of Union Members
void func (void) {
 union {
 short i;
 int j;
 } a = {0}, b = {1};

 a.j = a.i; //Noncompliant
 a = b; //Compliant
}

In this example, the rule is violated when a.i is assigned to a.j because the two
variables have overlapping regions of memory.

Check Information
Group: Language Independent Issues
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2016b

6 MISRA C++: 2008

6-24

MISRA C++:2008 Rule 1-0-1
All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating
Technical Corrigendum 1"

Description

Rule Definition
All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating
Technical Corrigendum 1".

Polyspace Implementation
The checker reports compilation errors as detected by a compiler that strictly adheres to
the C++03 Standard (ISO/IEC 14882:2003).

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
The message has two parts:

• Rule statement:

All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating
Technical Corrigendum 1".

• Compilation error message such as:

Expected a ;

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 1-0-1

6-25

Check Information
Group: General
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-26

MISRA C++:2008 Rule 2-3-1
Trigraphs shall not be used

Description

Rule Definition
Trigraphs shall not be used.

Rationale
You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These
trigraphs can cause accidental confusion with other uses of two question marks.

For instance, the string

"(Date should be in the form ??-??-??)"

is transformed to

"(Date should be in the form ~~]"

but this transformation might not be intended.

Message in Report
Trigraphs shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 2-3-1

6-27

Check Information
Group: Lexical Conventions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-28

MISRA C++:2008 Rule 2-5-1
Digraphs should not be used

Description

Rule Definition
Digraphs should not be used.

Rationale
Digraphs are a sequence of two characters that are supposed to be treated as a single
character. The checker flags use of these digraphs:

• <%, indicating [
• %>, indicating]
• <:, indicating {
• :>, indicating }
• %:, indicating #
• %:%:

When developing or reviewing code with digraphs, the developer or reviewer can
incorrectly consider the digraph as a sequence of separate characters.

Message in Report
Digraphs should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 2-5-1

6-29

Check Information
Group: Lexical Conventions
Category: Advisory

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-30

MISRA C++:2008 Rule 2-7-1
The character sequence /* shall not be used within a C-style comment

Description
Rule Definition
The character sequence /* shall not be used within a C-style comment.

Rationale
If your code contains a /* in a /* */ comment, it typically means that you have
inadvertently commented out code. See the example that follows.

Polyspace Implementation
You cannot justify a violation of this rule using source code annotations.

Message in Report
The character sequence /* shall not be used within a C-style comment.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Use of /* in /* */ Comment
void foo() {
 /* Initializer functions

 MISRA C++:2008 Rule 2-7-1

6-31

 setup();
 /* Step functions */
}

In this example, the call to setup() is commented out because the ending */ is omitted,
perhaps inadvertently. The checker flags this issue by highlighting the /* in the /* */
comment.

Check Information
Group: Lexical Conventions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-32

MISRA C++:2008 Rule 2-10-1
Different identifiers shall be typographically unambiguous

Description
Rule Definition
Different identifiers shall be typographically unambiguous.

Rationale
When you use identifiers that are typographically close, you can confuse between them.

The identifiers should not differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.
• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

Polyspace Implementation
The rule checker does not consider the fully qualified names of variables when checking
this rule.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

 MISRA C++:2008 Rule 2-10-1

6-33

Message in Report
Different identifiers shall be typographically unambiguous.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Typographically Ambiguous Identifiers
void func(void) {
 int id1_numval;
 int id1_num_val; /* Non-compliant */

 int id2_numval;
 int id2_numVal; /* Non-compliant */

 int id3_lvalue;
 int id3_Ivalue; /* Non-compliant */

 int id4_xyz;
 int id4_xy2; /* Non-compliant */

 int id5_zerO;
 int id5_zer0; /* Non-compliant */

 int id6_rn;
 int id6_m; /* Non-compliant */
}

In this example, the rule is violated when identifiers that can be confused for each other
are used.

Check Information
Group: Lexical Conventions

6 MISRA C++: 2008

6-34

Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 2-10-1

6-35

MISRA C++:2008 Rule 2-10-2
Identifiers declared in an inner scope shall not hide an identifier declared in an outer
scope

Description

Rule Definition
Identifiers declared in an inner scope shall not hide an identifier declared in an outer
scope.

Rationale
The rule flags situations where the same identifier name is used in two variable
declarations, one in an outer scope and the other in an inner scope.

int var;
...
{
...
 int var;
...
}

All uses of the name in the inner scope refers to the variable declared in the inner scope.
However, a developer or code reviewer can incorrectly assume that the usage refers to
the variable declared in the outer scope.

Polyspace Implementation
Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

The rule checker does not flag situations where the same identifier name is used in
different logical scopes:

6 MISRA C++: 2008

6-36

• The same name is used for a class data member and a variable outside the class.
• The same name is used for a method in a base and derived class.

Message in Report
Identifiers declared in an inner scope shall not hide an identifier declared in an outer
scope.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Local Variable Hiding Global Variable
int varInit = 1;

void doSomething(void);

void step(void) {
 int varInit = 0; //Noncompliant
 if(varInit)
 doSomething();
}

In this example, varInit defined in func hides the global variable varInit. The if
condition refers to the local varInit and the block is unreachable, but you might expect
otherwise.

Check Information
Group: Lexical Conventions
Category: Required

 MISRA C++:2008 Rule 2-10-2

6-37

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-38

MISRA C++:2008 Rule 2-10-3
A typedef name (including qualification, if any) shall be a unique identifier

Description
Rule Definition
A typedef name (including qualification, if any) shall be a unique identifier.

Rationale
The rule flags identifier declarations where the identifier name is the same as a previously
declared typedef name. When you use identifiers that are identical, you can confuse
between them.

Polyspace Implementation
The checker does not flag situations where the conflicting names occur in different
namespaces.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
A typedef name (including qualification, if any) shall be a unique identifier.

Identifier typeName should not be reused.

Already used as typedef name (fileName lineNumber).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 2-10-3

6-39

Examples

Typedef Name Conflicting with Other Identifiers

namespace NS1 {
 typedef int WIDTH;
}

namespace NS2 {
 float WIDTH; //Compliant
}

void f1() {
 typedef int TYPE;
}

void f2() {
 float TYPE; //Noncompliant
}

In this example, the declaration of TYPE in f2() conflicts with a typedef declaration in
f1().

The checker does not flag the redeclaration of WIDTH because the two declarations
belong to different namespaces.

Check Information
Group: Lexical Conventions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-40

MISRA C++:2008 Rule 2-10-4
A class, union or enum name (including qualification, if any) shall be a unique identifier

Description
Rule Definition
A class, union or enum name (including qualification, if any) shall be a unique identifier.

Rationale
The rule flags identifier declarations where the identifier name is the same as a previously
declared class, union or typedef name. When you use identifiers that are identical, you
can confuse between them.

Polyspace Implementation
The checker does not flag situations where the conflicting names occur in different
namespaces.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
A class, union or enum name (including qualification, if any) shall be a unique identifier.

Identifier tagName should not be reused.

Already used as tag name (fileName lineNumber).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 2-10-4

6-41

Examples

Typedef Name Conflicting with Other Identifiers
void f1() {
 class floatVar {};
}

void f2() {
 float floatVar; //Noncompliant
}

In this example, the declaration of floatVar in f2() conflicts with a class declaration in
f1().

Check Information
Group: Lexical Conventions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-42

MISRA C++:2008 Rule 2-10-5
The identifier name of a non-member object or function with static storage duration
should not be reused

Description

Rule Definition
The identifier name of a non-member object or function with static storage duration
should not be reused.

Rationale
The rule flags situations where the name of an identifier with static storage duration is
reused. The rule applies even if the identifiers belong to different namespaces because
the reuse leaves the chance that you mistake one identifier for the other.

Polyspace Implementation
The rule checker flags redefined functions only when there is a declaration.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
The identifier name of a non-member object or function with static storage duration
should not be reused.

Identifier name should not be reused.

Already used as static identifier with static storage duration (fileName lineNumber).

 MISRA C++:2008 Rule 2-10-5

6-43

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Reuse of Identifiers in Different Namespaces
namespace NS1 {
 static int WIDTH;
}

namespace NS2 {
 float WIDTH; //Noncompliant
}

In this example, the identifier name WIDTH is reused in the two namespaces NS1 and NS2.

Check Information
Group: Lexical Conventions
Category: Advisory

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-44

MISRA C++:2008 Rule 2-10-6
If an identifier refers to a type, it shall not also refer to an object or a function in the same
scope

Description

Rule Definition
If an identifier refers to a type, it shall not also refer to an object or a function in the same
scope.

Rationale
For compatibility with C, in C++, you are allowed to use the same name for a type and an
object or function. However, the name reuse can cause confusion during development or
code review.

Polyspace Implementation
If the identifier is a function and the function is both declared and defined, then the
violation is reported only once.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
If an identifier refers to a type, it shall not also refer to an object or a function in the same
scope.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 2-10-6

6-45

Examples

Reuse of Name for Type and Object
struct vector{
 int x;
 int y;
 int z;
}vector; //Noncompliant

In this example, the name vector is used both for the structured data type and for an
object of that type.

Check Information
Group: Lexical Conventions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-46

MISRA C++:2008 Rule 2-13-1
Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used

Description

Rule Definition
Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used.

Rationale
Escape sequences are certain special characters represented in string and character
literals. They are written with a backslash (\) followed by a character.

The C++ Standard (ISO/IEC 14882:2003, Sec. 2.13.2) defines a list of escape sequences.
See Escape Sequences. Use of escape sequences (backslash followed by character)
outside that list leads to undefined behavior.

Message in Report
Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used.

\char is not an ISO/IEC escape sequence.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 2-13-1

6-47

https://en.cppreference.com/w/cpp/language/escape

Examples

Incorrect Escape Sequences
void func () {
 const char a[2] = "\k"; \\Noncompliant
 const char b[2] = "\b"; \\Compliant
}

In this example, \k is not a recognized escape sequence.

Check Information
Group: Lexical Conventions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-48

MISRA C++:2008 Rule 2-13-2
Octal constants (other than zero) and octal escape sequences (other than "\0") shall not
be used

Description

Rule Definition
Octal constants (other than zero) and octal escape sequences (other than "\0") shall not
be used.

Rationale
Octal constants are denoted by a leading zero. A developer or code reviewer can mistake
an octal constant as a decimal constant with a redundant leading zero.

Octal escape sequences beginning with \ can also cause confusion. Inadvertently
introducing an 8 or 9 in the digit sequence after \ breaks the escape sequence and
introduces a new digit. A developer or code reviewer can ignore this issue and continue to
treat the escape sequence as one digit.

Message in Report
Octal constants (other than zero) and octal escape sequences (other than "\0") shall not
be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 2-13-2

6-49

Examples

Use of Octal Constants and Octal Escape Sequences
void func(void) {
 int busData[6];

 busData[0] = 100;
 busData[1] = 108;
 busData[2] = 052; //Noncompliant
 busData[3] = 071; //Noncompliant
 busData[4] = '\109'; //Noncompliant
 busData[5] = '\100'; //Noncompliant

}

The checker flags all octal constants (other than zero) and all octal escape sequences
(other than \0).

In this example:

• The octal escape sequence contains the digit 9, which is not an octal digit. This escape
sequence has implementation-defined behavior.

• The octal escape sequence \100 represents the number 64, but the rule checker
forbids this use.

Check Information
Group: Lexical Conventions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-50

MISRA C++:2008 Rule 2-13-3
A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type

Description

Rule Definition
A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type.

Rationale
The signedness of a constant is determined from:

• Value of the constant.
• Base of the constant: octal, decimal or hexadecimal.
• Size of the various types.
• Any suffixes used.

Unless you use a suffix u or U, another developer looking at your code cannot determine
easily whether a constant is signed or unsigned.

Message in Report
A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Lexical Conventions

 MISRA C++:2008 Rule 2-13-3

6-51

Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-52

MISRA C++:2008 Rule 2-13-4
Literal suffixes shall be upper case

Description

Rule Definition
Literal suffixes shall be upper case.

Rationale
Literal constants can end with the letter l (el). Enforcing literal suffixes to be upper case
removes potential confusion between the letter l and the digit 1.

For consistency, use upper case constants for other suffixes such as U (unsigned) and F
(float).

Message in Report
Literal suffixes shall be upper case.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Use of Literal Constants with Lower Case Suffix
const int a = 0l; //Noncompliant
const int b = 0L; //Compliant

 MISRA C++:2008 Rule 2-13-4

6-53

In this example, both a and b are assigned the same literal constant. However, from a
quick glance, one can mistakenly assume that a is assigned the value 01 (octal one).

Check Information
Group: Lexical Conventions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-54

MISRA C++:2008 Rule 2-13-5
Narrow and wide string literals shall not be concatenated

Description

Rule Definition
Narrow and wide string literals shall not be concatenated.

Rationale
Narrow string literals are enclosed in double quotes without a prefix. Wide string literals
are enclosed in double quotes with a prefix L outside the quotes. See string literals.

Concatenation of narrow and wide string literals can lead to undefined behavior.

Message in Report
Narrow and wide string literals shall not be concatenated.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Concatenation of Narrow and Wide String Literals
char array[] = "Hello" "World";
wchar_t w_array[] = L"Hello" L"World";
wchar_t mixed[] = "Hello" L"World"; //Noncompliant

 MISRA C++:2008 Rule 2-13-5

6-55

https://en.cppreference.com/w/cpp/language/string_literal

In this example, in the initialization of the array mixed, the narrow string literal "Hello"
is concatenated with the wide string literal L"World".

Check Information
Group: Lexical Conventions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-56

MISRA C++:2008 Rule 3-1-1
It shall be possible to include any header file in multiple translation units without
violating the One Definition Rule

Description

Rule Definition
It shall be possible to include any header file in multiple translation units without
violating the One Definition Rule.

Rationale
If a header file with variable or function definitions appears in multiple inclusion paths,
the header file violates the One Definition Rule possibly leading to unpredictable
behavior. For instance, a source file includes the header file include.h and another
header file, which also includes include.h.

Polyspace Implementation
The rule checker flags variable and function definitions in header files.

Message in Report
It shall be possible to include any header file in multiple translation units without
violating the One Definition Rule.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 3-1-1

6-57

Check Information
Group: Basic Concepts
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-58

MISRA C++:2008 Rule 3-1-2
Functions shall not be declared at block scope

Description

Rule Definition
Functions shall not be declared at block scope.

Rationale
It is a good practice to place all declarations at the namespace level.

Additionally, if you declare a function at block scope, it is often not clear if the statement
is a function declaration or an object declaration with a call to the constructor.

Message in Report
Functions shall not be declared at block scope.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Function Declarations at Block Scope
class A {
};

void b1() {

 MISRA C++:2008 Rule 3-1-2

6-59

 void func(); //Noncompliant
 A a(); //Noncompliant
}

In this example, the declarations of func and a are in the block scope of b1.

The second function declaration can cause confusion because it is not clear if a is a
function that returns an object of type A or a is itself an object of type A.

Check Information
Group: Basic Concepts
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-60

MISRA C++:2008 Rule 3-1-3
When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization

Description

Rule Definition
When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization.

Rationale
Though you can declare an incomplete array type and later complete the type, specifying
the array size during the first declaration makes the subsequent array access less error-
prone.

Message in Report
When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization.

Size of array arrayName should be explicitly stated.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 3-1-3

6-61

Examples

Array Size Unspecified During Declaration
int array[10];
extern int array2[]; //Noncompliant
int array3[]= {0,1,2};
extern int array4[10];

In the declaration of array2, the array size is unspecified.

Check Information
Group: Basic Concepts
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-62

MISRA C++:2008 Rule 3-2-1
All declarations of an object or function shall have compatible types

Description

Rule Definition
All declarations of an object or function shall have compatible types.

Rationale
If the declarations of an object or function in two different translation units have
incompatible types, the behavior is undefined.

Message in Report
All declarations of an object or function shall have compatible types.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Basic Concepts
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 3-2-1

6-63

Introduced in R2013b

6 MISRA C++: 2008

6-64

MISRA C++:2008 Rule 3-2-2
The One Definition Rule shall not be violated

Description

Rule Definition
The One Definition Rule shall not be violated.

Rationale
Violations of the One Definition Rule leads to undefined behavior.

Polyspace Implementation
The checker flags situations where the same function or object has multiple definitions
and the definitions differ by some token.

Message in Report
The One Definition Rule shall not be violated.

Declaration of class className violates the One Definition Rule:

it conflicts with other declaration (fileName lineNumber).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 3-2-2

6-65

Examples

Different Tokens in Same Type Definition
This example uses two files:

• file1.cpp:

struct S
{
 int x;
 int y;
};

• file2.cpp:

struct S
{
 int y;
 int x;
};

In this example, both file1.cpp and file2.cpp define the structure S. However, the
definitions switch the order of the structure fields.

Check Information
Group: Basic Concepts
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-66

MISRA C++:2008 Rule 3-2-3
A type, object or function that is used in multiple translation units shall be declared in one
and only one file

Description

Rule Definition
A type, object or function that is used in multiple translation units shall be declared in one
and only one file.

Rationale
If you declare an identifier in a header file, you can include the header file in any
translation unit where the identifier is defined or used. In this way, you ensure
consistency between:

• The declaration and the definition.
• The declarations in different translation units.

The rule enforces the practice of declaring external objects or functions in header files.

Message in Report
A type, object or function that is used in multiple translation units shall be declared in one
and only one file.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 3-2-3

6-67

Check Information
Group: Basic Concepts
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-68

MISRA C++:2008 Rule 3-2-4
An identifier with external linkage shall have exactly one definition

Description

Rule Definition
An identifier with external linkage shall have exactly one definition.

Rationale
If an identifier has multiple definitions or no definitions, it can lead to undefined behavior.

Message in Report
An identifier with external linkage shall have exactly one definition.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Multiple Definitions of Identifier
This example uses two files:

• file1.cpp:

int x = 0;

• file2.cpp:

 MISRA C++:2008 Rule 3-2-4

6-69

int x = 1;

The same identifier x is defined in both files.

Check Information
Group: Basic Concepts
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-70

MISRA C++:2008 Rule 3-3-1
Objects or functions with external linkage shall be declared in a header file

Description

Rule Definition
Objects or functions with external linkage shall be declared in a header file.

Rationale
If you declare a function or object in a header file, it is clear that the function or object is
meant to be accessed in multiple translation units. If you intend to access the function or
object from a single translation unit, declare it static or in an unnamed namespace.

Message in Report
Objects or functions with external linkage shall be declared in a header file.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Declaration in Header File Missing
This example uses two files:

• decls.h:

extern int x;

 MISRA C++:2008 Rule 3-3-1

6-71

• file.cpp:

#include "decls.h"

int x = 0;
int y = 0; //Noncompliant
static int z = 0;

In this example, the variable x is declared in a header file but the variable y is not. The
variable z is also not declared in a header file but it is declared with the static specifier
and does not have external linkage.

Check Information
Group: Basic Concepts
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-72

MISRA C++:2008 Rule 3-3-2
If a function has internal linkage then all re-declarations shall include the static storage
class specifier

Description

Rule Definition
If a function has internal linkage then all re-declarations shall include the static storage
class specifier.

Rationale
If a function declaration has the static storage class specifier, it has internal linkage.
Subsequent redeclarations of the function have internal linkage even without the static
specifier.

However, if you do not specify the static keyword explicitly, it is not immediately clear
from a declaration whether the function has internal linkage.

Message in Report
If a function has internal linkage then all re-declarations shall include the static storage
class specifier.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 3-3-2

6-73

Examples

Missing static Specifier from Redeclaration
static void func1 ();
static void func2 ();

void func1() {} //Noncompliant
static void func2() {}

In this example, the function func1 is declared static but defined without the static
specifier.

Check Information
Group: Basic Concepts
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-74

MISRA C++:2008 Rule 3-4-1
An identifier declared to be an object or type shall be defined in a block that minimizes its
visibility

Description

Rule Definition
An identifier declared to be an object or type shall be defined in a block that minimizes its
visibility.

Rationale
Defining variables with the minimum possible block scope reduces the possibility that
they might later be accessed unintentionally.

For instance, if an object is meant to be accessed in one function only, declare the object
local to the function.

Polyspace Implementation
The rule checker determines if an object is used in one block only. If the object is used in
one block but defined outside the block, the checker raises a violation.

Message in Report
An identifier declared to be an object or type shall be defined in a block that minimizes its
visibility.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 3-4-1

6-75

Examples

Use of Global Variable in Single Function
static int countReset; //Noncompliant

volatile int check;

void increaseCount() {
 int count = countReset;
 while(check%2) {
 count++;
 }
}

In this example, the variable countReset is declared global used in one function only. A
compliant solution declares the variable local to the function to reduce its visibility.

Check Information
Group: Basic Concepts
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-76

MISRA C++:2008 Rule 3-9-1
The types used for an object, a function return type, or a function parameter shall be
token-for-token identical in all declarations and re-declarations

Description

Rule Definition
The types used for an object, a function return type, or a function parameter shall be
token-for-token identical in all declarations and re-declarations.

Rationale
If a redeclaration is not token-for-token identical to the previous declaration, it is not
clear from visual inspection which object or function is being redeclared.

Polyspace Implementation
The rule checker compares the current declaration with the last seen declaration.

Message in Report
The types used for an object, a function return type, or a function parameter shall be
token-for-token identical in all declarations and re-declarations.

Variable varName is not compatible with previous declaration.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 3-9-1

6-77

Examples

Identical Declarations That Do Not Match Token for Token
typedef int* intptr;

int* map;
extern intptr map; //Noncompliant

intptr table;
extern intptr table; //Compliant

In this example, the variable map is declared twice. The second declaration uses a
typedef which resolves to the type of the first declaration. Because of the typedef, the
second declaration is not token-for-token identical to the first.

Check Information
Group: Basic Concepts
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-78

MISRA C++:2008 Rule 3-9-2
typedefs that indicate size and signedness should be used in place of the basic numerical
types

Description

Rule Definition
typedefs that indicate size and signedness should be used in place of the basic numerical
types.

Rationale
When the amount of memory being allocated is important, using specific-length types
makes it clear how much storage is being reserved for each object.

Polyspace Implementation
The rule checker does not raise violations in templates that are not instantiated.

Message in Report
typedefs that indicate size and signedness should be used in place of the basic numerical
types.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 3-9-2

6-79

Examples

Direct Use of Basic Numerical Types
typedef unsigned int uint32_t;

unsigned int x = 0; //Noncompliant
uint32_t y = 0; //Compliant

In this example, the declaration of x is noncompliant because it uses the basic type int
directly.

Check Information
Group: Basic Concepts
Category: Advisory

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-80

MISRA C++:2008 Rule 3-9-3
The underlying bit representations of floating-point values shall not be used

Description

Rule Definition
The underlying bit representations of floating-point values shall not be used.

Rationale
The underlying bit representations of floating point values vary across compilers. If you
directly use the underlying representation of floating point values, your program is not
portable across implementations.

Polyspace Implementation
The rule checker flags conversions from pointers to floating point types into pointers to
integer types, and vice versa.

Message in Report
The underlying bit representations of floating-point values shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 3-9-3

6-81

Examples

Using Underlying Representation of Floating-Point Values
float fabs2(float f) {
 unsigned int* ptr = reinterpret_cast <unsigned int*> (&f); //Noncompliant
 *(ptr + 3) &= 0x7f;
 return f;
}

In this example, the reinterpret_cast attempts to cast a floating-point value to an
integer and access the underlying bit representation of the floating point value.

Check Information
Group: Basic Concepts
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-82

MISRA C++:2008 Rule 4-5-1
Expressions with type bool shall not be used as operands to built-in operators other than
the assignment operator =, the logical operators &&, ||, !, the equality operators ==
and !=, the unary & operator, and the conditional operator

Description

Rule Definition
Expressions with type bool shall not be used as operands to built-in operators other than
the assignment operator =, the logical operators &&, ||, !, the equality operators ==
and !=, the unary & operator, and the conditional operator.

Rationale
Operators other than the ones mentioned in the rule do not produce meaningful results
with bool operands. Use of bool operands with these operators can indicate
programming errors. For instance, you intended to use the logical operator || but used
the bitwise operator | instead.

Message in Report
Expressions with type bool shall not be used as operands to built-in operators other than
the assignment operator =, the logical operators &&, ||, !, the equality operators ==
and !=, the unary & operator, and the conditional operator.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 4-5-1

6-83

Examples

Compliant and Noncompliant Uses of bool Operands
void boolOperations() {
 bool lhs = true;
 bool rhs = false;

 int res;

 if(lhs & rhs) {} //Noncompliant
 if(lhs < rhs) {} //Noncompliant
 if(~rhs) {} //Noncompliant
 if(lhs ^ rhs) {} //Noncompliant
 if(lhs == rhs) {} //Compliant
 if(!rhs) {} //Compliant
 res = lhs? -1:1; //Compliant
}

In this example, bool operands do not violate the rule when used with the ==, ! and
the ? operators.

Check Information
Group: Standard Conversions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-84

MISRA C++:2008 Rule 4-5-2
Expressions with type enum shall not be used as operands to built- in operators other
than the subscript operator [], the assignment operator =, the equality operators ==
and !=, the unary & operator, and the relational operators <, <=, >, >=

Description
Rule Definition
Expressions with type enum shall not be used as operands to built- in operators other
than the subscript operator [], the assignment operator =, the equality operators ==
and !=, the unary & operator, and the relational operators <, <=, >, >=.

Message in Report
Expressions with type enum shall not be used as operands to built- in operators other
than the subscript operator [], the assignment operator =, the equality operators ==
and !=, the unary & operator, and the relational operators <, <=, >, >=.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Standard Conversions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 4-5-2

6-85

Introduced in R2013b

6 MISRA C++: 2008

6-86

MISRA C++:2008 Rule 4-5-3
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in
operators other than the assignment operator =, the equality operators == and !=, and
the unary & operator N

Description

Rule Definition
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in
operators other than the assignment operator =, the equality operators == and !=, and
the unary & operator. N

Rationale
The C++03 Standard only requires that the characters '0' to '9' have consecutive
values. Other characters do not have well-defined values. If you use these characters in
operations other than the ones mentioned in the rule, you implicitly use their underlying
values and might see unexpected results.

Message in Report
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in
operators other than the assignment operator =, the equality operators == and !=, and
the unary & operator. N

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 4-5-3

6-87

Examples

Compliant and Noncompliant Uses of Character Operands
void charManipulations (char ch) {

 char initChar = 'a'; //Compliant
 char finalChar = 'z'; //Compliant

 if(ch == initChar) {} //Compliant
 if((ch >= initChar) && (ch <= finalChar)) {} //Noncompliant
 else if((ch >= '0') && (ch <= '9')) {} //Compliant by exception
}

In this example, character operands do not violate the rule when used with the = and ==
operators. Character operands can also be used with relational operators as long as the
comparison is performed with the digits '0' to '9'.

Check Information
Group: Standard Conversions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-88

MISRA C++:2008 Rule 4-10-1
NULL shall not be used as an integer value

Description

Rule Definition
NULL shall not be used as an integer value.

Rationale
In C++, you can use the literals 0 and NULL as both an integer and a null pointer
constant. However, use of 0 as a null pointer constant or NULL as an integer can cause
developer confusion.

This rule restricts the use of NULL to null pointer constants. MISRA C++:2008 Rule
4-10-2 restricts the use of the literal 0 to integers.

Polyspace Implementation
The checker flags assignment of NULL to an integer variable or binary operations
involving NULL and an integer. Assignments can be direct or indirect such as passing
NULL as integer argument to a function.

Message in Report
NULL shall not be used as an integer value.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 4-10-1

6-89

Examples

Compliant and Noncompliant Uses of NULL
#include <cstddef>

void checkInteger(int);
void checkPointer(int *);

void main() {
 checkInteger(NULL); //Noncompliant
 checkPointer(NULL); //Compliant
}

In this example, the use of NULL as argument to the checkInteger function is
noncompliant because the function expects an int argument.

Check Information
Group: Standard Conversions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

6 MISRA C++: 2008

6-90

MISRA C++:2008 Rule 4-10-2
Literal zero (0) shall not be used as the null-pointer-constant

Description

Rule Definition
Literal zero (0) shall not be used as the null-pointer-constant.

Rationale
In C++, you can use the literals 0 and NULL as both an integer and a null pointer
constant. However, use of 0 as a null pointer constant or NULL as an integer can cause
developer confusion.

This rule restricts the use of the literal 0 to integers. MISRA C++:2008 Rule 4-10-1
restricts the use of NULL to null pointer constants.

Polyspace Implementation
The checker flags assignment of 0 to a pointer variable or binary operations involving 0
and a pointer. Assignments can be direct or indirect such as passing 0 as pointer
argument to a function.

Message in Report
Literal zero (0) shall not be used as the null-pointer-constant.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 4-10-2

6-91

Examples

Compliant and Noncompliant Uses of Literal 0
#include <cstddef>

void checkInteger(int);
void checkPointer(int *);

void main() {
 checkInteger(0); //Compliant
 checkPointer(0); //Noncompliant
}

In this example, the use of 0 as argument to the checkPointer function is noncompliant
because the function expects an int * argument.

Check Information
Group: Standard Conversions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

6 MISRA C++: 2008

6-92

MISRA C++:2008 Rule 5-0-1
The value of an expression shall be the same under any order of evaluation that the
standard permits

Description

Rule Definition
The value of an expression shall be the same under any order of evaluation that the
standard permits.

Rationale
If an expression results in different values depending on the order of evaluation, its value
becomes implementation-defined.

Polyspace Implementation
An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and
written.

• The expression allows more than one order of evaluation.

Therefore, the rule checker forbids expressions where a variable is modified more than
once and can cause different results under different orders of evaluation. The rule
checker also detects cases where a volatile variable is read more than once in an
expression.

Message in Report
The value of an expression shall be the same under any order of evaluation that the
standard permits.

 MISRA C++:2008 Rule 5-0-1

6-93

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Variable Modified More Than Once in Expression
int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */
 COPY_ELEMENT (i++); /* Non-compliant */
}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++
occurs twice and the order of evaluation of the two expressions is unspecified.

Variable Modified and Used in Multiple Function Arguments
void f (unsigned int param1, unsigned int param2) {}

void main () {
 unsigned int i=0;
 f (i++, i); /* Non-compliant */
}

In this example, the rule is violated because it is unspecified whether the operation i++
occurs before or after the second argument is passed to f. The call f(i++,i) can
translate to either f(0,0) or f(0,1).

Check Information
Group: Expressions
Category: Required

6 MISRA C++: 2008

6-94

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-1

6-95

MISRA C++:2008 Rule 5-0-2
Limited dependence should be placed on C++ operator precedence rules in expressions

Description

Rule Definition
Limited dependence should be placed on C++ operator precedence rules in expressions.

Rationale
Use parentheses to clearly indicate the order of evaluation.

Depending on operator precedence can cause the following issues:

• If you or another code reviewer reviews the code, the intended order of evaluation is
not immediately clear.

• It is possible that the result of the evaluation does not meet your expectations. For
instance:

• In the operation *p++, it is possible that you expect the dereferenced value to be
incremented. However, the pointer p is incremented before the dereference.

• In the operation (x == y | z), it is possible that you expect x to be compared
with y | z. However, the == operation happens before the | operation.

Message in Report
Limited dependence should be placed on C++ operator precedence rules in expressions.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

6 MISRA C++: 2008

6-96

Examples

Evaluation Order Dependent on Operator Precedence Rules
#include <cstdio>

void showbits(unsigned int x) {
 for(int i = (sizeof(int) * 8) - 1; i >= 0; i--) {
 (x & 1u << i) ? putchar('1') : putchar('0'); // Noncompliant
 }
 printf("\n");
}

In this example, the checker flags the operation x & 1u << i because the statement
relies on operator precedence rules for the << operation to happen before the &
operation. If this is the intended order, the operation can be rewritten as x & (1u <<
i).

Check Information
Group: Expressions
Category: Advisory

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-2

6-97

MISRA C++:2008 Rule 5-0-3
A cvalue expression shall not be implicitly converted to a different underlying type

Description

Rule Definition
A cvalue expression shall not be implicitly converted to a different underlying type.

Rationale
This rule ensures that the result of the expression does not overflow when converted to a
different type.

Polyspace Implementation
Expressions flagged by this checker follow the detailed specifications for cvalue
expressions from the MISRA C++ documentation.

The underlying data type of a cvalue expression is the widest of operand data types in the
expression. For instance, if you add two variables, one of type int8_t (typedef for
char) and another of type int32_t (typedef for int), the addition has underlying type
int32_t. If you assign the sum to a variable of type int8_t, the rule is violated.

Message in Report
A cvalue expression shall not be implicitly converted to a different underlying type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

6 MISRA C++: 2008

6-98

Examples

Implicit Conversion of Cvalue Expression
typedef char int8_t;
typedef signed int int32_t;

void func ()
 {
 int32_t s32;
 int8_t s8;
 s32 = s8 + s8; //Noncompliant
 s32 = s32 + s8; //Compliant
 }

In this example, the rule is violated when two variables of type int8_t are added and the
result is assigned to a variable of type int32_t. The underlying type of the addition does
not take into account the integer promotion involved and is simply the widest of operand
data types, in this case, int8_t.

The rule is not violated if one of the operands has type int32_t and the result is
assigned to a variable of type int32_t. In this case, the underlying data type of the
addition is the same as the type of the variable to which the result is assigned.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-3

6-99

MISRA C++:2008 Rule 5-0-4
An implicit integral conversion shall not change the signedness of the underlying type

Description

Rule Definition
An implicit integral conversion shall not change the signedness of the underlying type.

Rationale
Some conversions from signed to unsigned data types can lead to implementation-defined
behavior. You can see unexpected results from the conversion.

Polyspace Implementation
The checker flags implicit conversions from a signed to an unsigned integer data type or
vice versa.

The checker assumes that ptrdiff_t is a signed integer.

Message in Report
An implicit integral conversion shall not change the signedness of the underlying type.

Implicit conversion of one of the binary + operands whose underlying types are
typename_1 and typename_2.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

6 MISRA C++: 2008

6-100

Examples

Implicit Conversions that Change Signedness
typedef char int8_t;
typedef unsigned char uint8_t;

void func()
 {
 int8_t s8;
 uint8_t u8;

 s8 = u8; //Noncompliant
 u8 = s8 + u8; //Noncompliant
 u8 = static_cast< uint8_t > (s8) + u8; //Compliant
}

In this example, the rule is violated when a variable with a variable with signed data type
is implicitly converted to a variable with unsigned data type or vice versa. If the
conversion is explicit, as in the preceding example, the rule violation does not occur.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-4

6-101

MISRA C++:2008 Rule 5-0-5
There shall be no implicit floating-integral conversions

Description
Rule Definition
There shall be no implicit floating-integral conversions.

Rationale
If you convert from a floating point to an integer type, you lose information. Unless you
explicitly cast from floating point to an integer type, it is not clear whether the loss of
information is intended. Additionally, if the floating-point value cannot be represented in
the integer type, the behavior is undefined.

Conversion from an integer to floating-point type can result in an inexact representation
of the value. The error from conversion can accumulate over later operations and lead to
unexpected results.

Polyspace Implementation
The checker flags implicit conversions between floating-point types (float and double)
and integer types (short, int, etc.).

This rule takes precedence over 5-0-4 and 5-0-6 if they apply at the same time.

Message in Report
There shall be no implicit floating-integral conversions.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

6 MISRA C++: 2008

6-102

Examples

Conversion Between Floating Point and Integer Types
typedef signed int int32_t;
typedef float float32_t;

void func ()
 {
 float32_t f32;
 int32_t s32;
 s32 = f32; //Noncompliant
 f32 = s32; //Noncompliant
 f32 = static_cast< float32_t > (s32); //Compliant
 }

In this example, the rule is violated when a floating-point type is implicitly converted to an
integer type. The violation does not occur if the conversion is explicit.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-5

6-103

MISRA C++:2008 Rule 5-0-6
An implicit integral or floating-point conversion shall not reduce the size of the underlying
type

Description

Rule Definition
An implicit integral or floating-point conversion shall not reduce the size of the underlying
type.

Rationale
A conversion that reduces the size of the underlying type can result in loss of information.
Unless you explicitly cast to the narrower type, it is not clear whether the loss of
information is intended.

Polyspace Implementation
The checker flags implicit conversions that reduce the size of a type.

If the conversion is to a narrower integer with a different sign, then rule 5-0-4 takes
precedence over rule 5-0-6. Only rule 5-0-4 is shown.

Message in Report
An implicit integral or floating-point conversion shall not reduce the size of the underlying
type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

6 MISRA C++: 2008

6-104

Examples

Conversion That Reduces Size of Type
typedef signed short int16_t;
typedef signed int int32_t;

void func ()
 {
 int16_t s16;;
 int32_t s32;
 s16 = s32; //Noncompliant
 s16 = static_cast< int16_t > (s32); //Compliant
 }

In this example, the rule is violated when a type is implicitly converted to a narrower
type. The violation does not occur if the conversion is explicit.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-6

6-105

MISRA C++:2008 Rule 5-0-7
There shall be no explicit floating-integral conversions of a cvalue expression

Description

Rule Definition
There shall be no explicit floating-integral conversions of a cvalue expression.

Rationale
Expressions flagged by this checker follow the detailed specifications for cvalue
expressions from the MISRA C++ documentation.

If you evaluate an expression and later cast the result to a different type, the cast has no
effect on the underlying type of the evaluation (the widest of operand data types in the
expression). For instance, in this example, the result of an integer division is then cast to
a floating-point type.

short num;
short den;
float res;
res= static_cast<float> (num/den);

However, a developer or code reviewer can expect that the evaluation uses the data type
to which the result is cast later. For instance, one can expect a floating-point division
because of the later cast.

Message in Report
There shall be no explicit floating-integral conversions of a cvalue expression.

Complex expression of underlying type typeBeforeConversion may only be cast to
narrower integer type of same signedness, however the destination type is
typeAfterconversion.

6 MISRA C++: 2008

6-106

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Conversion of Division Result from Integer to Floating Point
void func() {
 short num;
 short den;
 short res_short;
 float res_float;

 res_float = static_cast<float> (num/den); //Noncompliant

 res_short = num/den;
 res_short = static_cast<float> (res_float); //Compliant

}

In this example, the first cast on the division result violates the rule but the second cast
does not.

• The first cast can lead to the incorrect expectation that the expression is evaluated
with an underlying type float.

• The second cast makes it clear that the expression is evaluated with the underlying
type short. The result is then cast to the type float.

Check Information
Group: Expressions
Category: Required

 MISRA C++:2008 Rule 5-0-7

6-107

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-108

MISRA C++:2008 Rule 5-0-8
An explicit integral or floating-point conversion shall not increase the size of the
underlying type of a cvalue expression

Description

Rule Definition
An explicit integral or floating-point conversion shall not increase the size of the
underlying type of a cvalue expression.

Rationale
Expressions flagged by this checker follow the detailed specifications for cvalue
expressions from the MISRA C++ documentation.

If you evaluate an expression and later cast the result to a different type, the cast has no
effect on the underlying type of the evaluation (the widest of operand data types in the
expression). For instance, in this example, the sum of two short operands is cast to the
wider type int.

short op1;
short op2;
int res;
res= static_cast<int> (op1 + op2);

However, a developer or code reviewer can expect that the evaluation uses the data type
to which the result is cast later. For instance, one can expect a sum with the underlying
type int because of the later cast.

Message in Report
An explicit integral or floating-point conversion shall not increase the size of the
underlying type of a cvalue expression.

 MISRA C++:2008 Rule 5-0-8

6-109

Complex expression of underlying type typeBeforeConversion may only be cast to
narrower integer type of same signedness, however the destination type is
typeAfterconversion.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Conversion of Sum to Wider Integer Type
void func() {
 short op1;
 short op2;
 int res;

 res = static_cast<int> (op1 + op2); //Noncompliant
 res = static_cast<int> (op1) + op2; //Compliant

}

In this example, the first cast on the sum violates the rule but the second cast does not.

• The first cast can lead to the incorrect expectation that the sum is evaluated with an
underlying type int.

• The second cast first converts one of the operands to int so that the sum is actually
evaluated with the underlying type int.

Check Information
Group: Expressions
Category: Required

6 MISRA C++: 2008

6-110

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-8

6-111

MISRA C++:2008 Rule 5-0-9
An explicit integral conversion shall not change the signedness of the underlying type of a
cvalue expression

Description

Rule Definition
An explicit integral conversion shall not change the signedness of the underlying type of a
cvalue expression.

Rationale
Expressions flagged by this checker follow the detailed specifications for cvalue
expressions from the MISRA C++ documentation.

If you evaluate an expression and later cast the result to a different type, the cast has no
effect on the underlying type of the evaluation (the widest of operand data types in the
expression).. For instance, in this example, the sum of two unsigned int operands is
cast to the type int.

unsigned int op1;
unsigned int op2;
int res;
res= static_cast<int> (op1 + op2);

However, a developer or code reviewer can expect that the evaluation uses the data type
to which the result is cast later. For instance, one can expect a sum with the underlying
type int because of the later cast.

Message in Report
An explicit integral conversion shall not change the signedness of the underlying type of a
cvalue expression.

6 MISRA C++: 2008

6-112

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Conversion of Sum to Wider Integer Type
typedef int int32_t;
typedef unsigned int uint32_t;

void func() {
 uint32_t op1;
 uint32_t op2;
 int32_t res;

 res = static_cast<int32_t> (op1 + op2); //Noncompliant
 res = static_cast<int32_t> (op1) +
 static_cast<int32_t> (op2); //Compliant

}

In this example, the first cast on the sum violates the rule but the second cast does not.

• The first cast can lead to the incorrect expectation that the sum is evaluated with an
underlying type int32_t.

• The second cast first converts each of the operands to int32_t so that the sum is
actually evaluated with the underlying type int32_t.

Check Information
Group: Expressions
Category: Required

 MISRA C++:2008 Rule 5-0-9

6-113

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-114

MISRA C++:2008 Rule 5-0-10
If the bitwise operators ~ and << are applied to an operand with an underlying type of
unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand

Description
Rule Definition
If the bitwise operators ~ and << are applied to an operand with an underlying type of
unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand.

Message in Report
If the bitwise operators ~ and << are applied to an operand with an underlying type of
unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 5-0-10

6-115

Introduced in R2013b

6 MISRA C++: 2008

6-116

MISRA C++:2008 Rule 5-0-11
The plain char type shall only be used for the storage and use of character values

Description

Rule Definition
The plain char type shall only be used for the storage and use of character values.

Polyspace Implementation
The checker raises a violation when a value of signed or unsigned integer type is
implicitly converted to the plain char type.

Message in Report
The plain char type shall only be used for the storage and use of character values.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 5-0-11

6-117

Introduced in R2015a

6 MISRA C++: 2008

6-118

MISRA C++:2008 Rule 5-0-12
Signed char and unsigned char type shall only be used for the storage and use of numeric
values

Description

Rule Definition
Signed char and unsigned char type shall only be used for the storage and use of numeric
values.

Message in Report
Signed char and unsigned char type shall only be used for the storage and use of numeric
values.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 5-0-12

6-119

Introduced in R2015a

6 MISRA C++: 2008

6-120

MISRA C++:2008 Rule 5-0-13
The condition of an if-statement and the condition of an iteration- statement shall have
type bool

Description

Rule Definition
The condition of an if-statement and the condition of an iteration- statement shall have
type bool.

Message in Report
The condition of an if-statement and the condition of an iteration- statement shall have
type bool.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 5-0-13

6-121

Introduced in R2013b

6 MISRA C++: 2008

6-122

MISRA C++:2008 Rule 5-0-14
The first operand of a conditional-operator shall have type bool

Description

Rule Definition
The first operand of a conditional-operator shall have type bool.

Message in Report
The first operand of a conditional-operator shall have type bool.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-14

6-123

MISRA C++:2008 Rule 5-0-15
Array indexing shall be the only form of pointer arithmetic

Description

Rule Definition
Array indexing shall be the only form of pointer arithmetic.

Polyspace Implementation
The checker flags:

• Arithmetic operations on all pointers, for instance p+I, I+p and p-I, where p is a
pointer and I an integer..

• Array indexing on nonarray pointers.

Message in Report
Array indexing shall be the only form of pointer arithmetic.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

6 MISRA C++: 2008

6-124

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-15

6-125

MISRA C++:2008 Rule 5-0-17
Subtraction between pointers shall only be applied to pointers that address elements of
the same array

Description

Rule Definition
Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Polyspace Implementation
Use Bug Finder for this checker. The rule checker performs the same checks as
Subtraction or comparison between pointers to different arrays. Code
Prover can fail to detect some violations.

Message in Report
Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

6 MISRA C++: 2008

6-126

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-17

6-127

MISRA C++:2008 Rule 5-0-18
>, >=, <, <= shall not be applied to objects of pointer type, except where they point to
the same array

Description

Rule Definition
>, >=, <, <= shall not be applied to objects of pointer type, except where they point to
the same array.

Polyspace Implementation
Use Bug Finder for this checker. The rule checker performs the same checks as
Subtraction or comparison between pointers to different arrays. Code
Prover can fail to detect some violations.

The checker ignores casts when showing the violation on relational operator use with
pointers types.

Message in Report
>, >=, <, <= shall not be applied to objects of pointer type, except where they point to
the same array.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

6 MISRA C++: 2008

6-128

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-18

6-129

MISRA C++:2008 Rule 5-0-19
The declaration of objects shall contain no more than two levels of pointer indirection

Description

Rule Definition
The declaration of objects shall contain no more than two levels of pointer indirection.

Message in Report
The declaration of objects shall contain no more than two levels of pointer indirection.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-130

MISRA C++:2008 Rule 5-0-20
Non-constant operands to a binary bitwise operator shall have the same underlying type

Description

Rule Definition
Non-constant operands to a binary bitwise operator shall have the same underlying type.

Message in Report
Non-constant operands to a binary bitwise operator shall have the same underlying type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-20

6-131

MISRA C++:2008 Rule 5-0-21
Bitwise operators shall only be applied to operands of unsigned underlying type

Description

Rule Definition
Bitwise operators shall only be applied to operands of unsigned underlying type.

Message in Report
Bitwise operators shall only be applied to operands of unsigned underlying type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-132

MISRA C++:2008 Rule 5-2-1
Each operand of a logical && or || shall be a postfix-expression

Description

Rule Definition
Each operand of a logical && or || shall be a postfix-expression.

Polyspace Implementation
During preprocessing, violations of this rule are detected on the expressions in #if
directives.

The checker allows exceptions on associativity (a && b && c), (a || b || c).

Message in Report
Each operand of a logical && or || shall be a postfix-expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

 MISRA C++:2008 Rule 5-2-1

6-133

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-134

MISRA C++:2008 Rule 5-2-2
A pointer to a virtual base class shall only be cast to a pointer to a derived class by means
of dynamic_cast

Description

Rule Definition
A pointer to a virtual base class shall only be cast to a pointer to a derived class by means
of dynamic_cast.

Message in Report
A pointer to a virtual base class shall only be cast to a pointer to a derived class by means
of dynamic_cast.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 5-2-2

6-135

Introduced in R2013b

6 MISRA C++: 2008

6-136

MISRA C++:2008 Rule 5-2-3
Casts from a base class to a derived class should not be performed on polymorphic types

Description

Rule Definition
Casts from a base class to a derived class should not be performed on polymorphic types.

Message in Report
Casts from a base class to a derived class should not be performed on polymorphic types.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Advisory

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-3

6-137

MISRA C++:2008 Rule 5-2-4
C-style casts (other than void casts) and functional notation casts (other than explicit
constructor calls) shall not be used

Description

Rule Definition
C-style casts (other than void casts) and functional notation casts (other than explicit
constructor calls) shall not be used.

Message in Report
C-style casts (other than void casts) and functional notation casts (other than explicit
constructor calls) shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-138

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-4

6-139

MISRA C++:2008 Rule 5-2-5
A cast shall not remove any const or volatile qualification from the type of a pointer or
reference

Description

Rule Definition
A cast shall not remove any const or volatile qualification from the type of a pointer or
reference.

Message in Report
A cast shall not remove any const or volatile qualification from the type of a pointer or
reference.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-140

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-5

6-141

MISRA C++:2008 Rule 5-2-6
A cast shall not convert a pointer to a function to any other pointer type, including a
pointer to function type

Description

Rule Definition
A cast shall not convert a pointer to a function to any other pointer type, including a
pointer to function type.

Message in Report
A cast shall not convert a pointer to a function to any other pointer type, including a
pointer to function type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-142

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-6

6-143

MISRA C++:2008 Rule 5-2-7
An object with pointer type shall not be converted to an unrelated pointer type, either
directly or indirectly

Description

Rule Definition
An object with pointer type shall not be converted to an unrelated pointer type, either
directly or indirectly.

Polyspace Implementation
The checker flags all pointer conversions including between a pointer to a struct object
and a pointer to the first member of the same struct type.

Indirect conversions from a pointer to non-pointer type are not detected.

Message in Report
An object with pointer type shall not be converted to an unrelated pointer type, either
directly or indirectly.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

6 MISRA C++: 2008

6-144

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-7

6-145

MISRA C++:2008 Rule 5-2-8
An object with integer type or pointer to void type shall not be converted to an object with
pointer type

Description

Rule Definition
An object with integer type or pointer to void type shall not be converted to an object with
pointer type.

Polyspace Implementation
The checker allows an exception on zero constants.

Objects with pointer type include objects with pointer-to-function type.

Message in Report
An object with integer type or pointer to void type shall not be converted to an object with
pointer type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

6 MISRA C++: 2008

6-146

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-8

6-147

MISRA C++:2008 Rule 5-2-9
A cast should not convert a pointer type to an integral type

Description

Rule Definition
A cast should not convert a pointer type to an integral type.

Message in Report
A cast should not convert a pointer type to an integral type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Advisory

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-148

MISRA C++:2008 Rule 5-2-10
The increment (++) and decrement (--) operators should not be mixed with other
operators in an expression

Description

Rule Definition
The increment (++) and decrement (--) operators should not be mixed with other
operators in an expression.

Message in Report
The increment (++) and decrement (--) operators should not be mixed with other
operators in an expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Advisory

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 5-2-10

6-149

Introduced in R2013b

6 MISRA C++: 2008

6-150

MISRA C++:2008 Rule 5-2-11
The comma operator, && operator and the || operator shall not be overloaded

Description

Rule Definition
The comma operator, && operator and the || operator shall not be overloaded.

Message in Report
The comma operator, && operator and the || operator shall not be overloaded.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-11

6-151

MISRA C++:2008 Rule 5-2-12
An identifier with array type passed as a function argument shall not decay to a pointer

Description

Rule Definition
An identifier with array type passed as a function argument shall not decay to a pointer.

Message in Report
An identifier with array type passed as a function argument shall not decay to a pointer.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-152

MISRA C++:2008 Rule 5-3-1
Each operand of the ! operator, the logical && or the logical || operators shall have type
bool

Description

Rule Definition
Each operand of the ! operator, the logical && or the logical || operators shall have type
bool.

Message in Report
Each operand of the ! operator, the logical && or the logical || operators shall have type
bool.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 5-3-1

6-153

Introduced in R2013b

6 MISRA C++: 2008

6-154

MISRA C++:2008 Rule 5-3-2
The unary minus operator shall not be applied to an expression whose underlying type is
unsigned

Description

Rule Definition
The unary minus operator shall not be applied to an expression whose underlying type is
unsigned.

Message in Report
The unary minus operator shall not be applied to an expression whose underlying type is
unsigned.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 5-3-2

6-155

Introduced in R2013b

6 MISRA C++: 2008

6-156

MISRA C++:2008 Rule 5-3-3
The unary & operator shall not be overloaded

Description

Rule Definition
The unary & operator shall not be overloaded.

Message in Report
The unary & operator shall not be overloaded.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-3-3

6-157

MISRA C++:2008 Rule 5-3-4
Evaluation of the operand to the sizeof operator shall not contain side effects

Description

Rule Definition
Evaluation of the operand to the sizeof operator shall not contain side effects.

Polyspace Implementation
The checker does not show a warning on volatile accesses and function calls

Message in Report
Evaluation of the operand to the sizeof operator shall not contain side effects.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-158

Introduced in R2013b

 MISRA C++:2008 Rule 5-3-4

6-159

MISRA C++:2008 Rule 5-8-1
The right hand operand of a shift operator shall lie between zero and one less than the
width in bits of the underlying type of the left hand operand

Description

Rule Definition
The right hand operand of a shift operator shall lie between zero and one less than the
width in bits of the underlying type of the left hand operand.

Message in Report
The right hand operand of a shift operator shall lie between zero and one less than the
width in bits of the underlying type of the left hand operand.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-160

Introduced in R2013b

 MISRA C++:2008 Rule 5-8-1

6-161

MISRA C++:2008 Rule 5-14-1
The right hand operand of a logical && or || operator shall not contain side effects

Description

Rule Definition
The right hand operand of a logical && or || operator shall not contain side effects.

Polyspace Implementation
The checker does not show a warning on volatile accesses and function calls.

Message in Report
The right hand operand of a logical && or || operator shall not contain side effects.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-162

Introduced in R2013b

 MISRA C++:2008 Rule 5-14-1

6-163

MISRA C++:2008 Rule 5-18-1
The comma operator shall not be used

Description

Rule Definition
The comma operator shall not be used.

Message in Report
The comma operator shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-164

MISRA C++:2008 Rule 5-19-1
Evaluation of constant unsigned integer expressions should not lead to wrap-around

Description

Rule Definition
Evaluation of constant unsigned integer expressions should not lead to wrap-around.

Message in Report
Evaluation of constant unsigned integer expressions should not lead to wrap-around.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-19-1

6-165

MISRA C++:2008 Rule 6-2-1
Assignment operators shall not be used in sub-expressions

Description

Rule Definition
Assignment operators shall not be used in sub-expressions.

Message in Report
Assignment operators shall not be used in sub-expressions.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-166

MISRA C++:2008 Rule 6-2-2
Floating-point expressions shall not be directly or indirectly tested for equality or
inequality

Description

Rule Definition
Floating-point expressions shall not be directly or indirectly tested for equality or
inequality.

Polyspace Implementation
The checker detects the use of == or != with floating-point variables or expressions. The
checker does not detect indirectly testing of equality, for instance, using the <= operator.

Message in Report
Floating-point expressions shall not be directly or indirectly tested for equality or
inequality.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

 MISRA C++:2008 Rule 6-2-2

6-167

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-168

MISRA C++:2008 Rule 6-2-3
Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment, provided that the first character following the null statement is a
white - space character

Description

Rule Definition
Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment, provided that the first character following the null statement is a
white - space character.

Polyspace Implementation
The checker considers a null statement as a line where the first character excluding
comments is a semicolon. The checker flags situations where:

• Comments appear before the semicolon.

For instance:

/* wait for pin */ ;

• Comments appear immediately after the semicolon without a white space in between.

For instance:

;// wait for pin

The checker also shows a violation when a second statement appears on the same line
following the null statement.

For instance:

; count++;

 MISRA C++:2008 Rule 6-2-3

6-169

Message in Report
Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment, provided that the first character following the null statement is a
white - space character.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-170

MISRA C++:2008 Rule 6-3-1
The statement forming the body of a switch, while, do while or for statement shall be a
compound statement

Description

Rule Definition
The statement forming the body of a switch, while, do ... while or for statement shall be a
compound statement.

Message in Report
The statement forming the body of a switch, while, do ... while or for statement shall be a
compound statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 6-3-1

6-171

Introduced in R2013b

6 MISRA C++: 2008

6-172

MISRA C++:2008 Rule 6-4-1
An if (condition) construct shall be followed by a compound statement The else keyword
shall be followed by either a compound statement, or another if statement

Description

Rule Definition
An if (condition) construct shall be followed by a compound statement. The else keyword
shall be followed by either a compound statement, or another if statement.

Message in Report
An if (condition) construct shall be followed by a compound statement. The else keyword
shall be followed by either a compound statement, or another if statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 6-4-1

6-173

Introduced in R2013b

6 MISRA C++: 2008

6-174

MISRA C++:2008 Rule 6-4-2
All if else if constructs shall be terminated with an else clause

Description

Rule Definition
All if ... else if constructs shall be terminated with an else clause.

Message in Report
All if ... else if constructs shall be terminated with an else clause.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-2

6-175

MISRA C++:2008 Rule 6-4-3
A switch statement shall be a well-formed switch statement

Description

Rule Definition
A switch statement shall be a well-formed switch statement.

Polyspace Implementation
The checker flags these situations:

• A statement occurs between the switch statement and the first case statement.

For instance:

switch(ch) {
 int temp;
 case 1:
 break;
 default:
 break;
}

• A label or a jump statement such as goto or return occurs in the switch block.
• A variable is declared in a case statement (outside any block).

For instance:

switch(ch) {
 case 1:
 int temp;
 break;
 default:
 break;
}

6 MISRA C++: 2008

6-176

Message in Report
A switch statement shall be a well-formed switch statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-3

6-177

MISRA C++:2008 Rule 6-4-4
A switch-label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement

Description

Rule Definition
A switch-label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement.

Message in Report
A switch-label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-178

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-4

6-179

MISRA C++:2008 Rule 6-4-5
An unconditional throw or break statement shall terminate every non - empty switch-
clause

Description

Rule Definition
An unconditional throw or break statement shall terminate every non - empty switch-
clause.

Message in Report
An unconditional throw or break statement shall terminate every non - empty switch-
clause.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-180

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-5

6-181

MISRA C++:2008 Rule 6-4-6
The final clause of a switch statement shall be the default-clause

Description

Rule Definition
The final clause of a switch statement shall be the default-clause.

Polyspace Implementation
The checker detects switch statements that do not have a final default clause.

The checker does not raise a violation if the switch variable is an enum with finite
number of values and you have a case clause for each value. For instance:

enum Colours { RED, BLUE, GREEN } colour;

switch (colour) {
 case RED:
 break;
 case BLUE:
 break;
 case GREEN:
 break;
}

Message in Report
The final clause of a switch statement shall be the default-clause.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

6 MISRA C++: 2008

6-182

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-6

6-183

MISRA C++:2008 Rule 6-4-7
The condition of a switch statement shall not have bool type

Description

Rule Definition
The condition of a switch statement shall not have bool type.

Message in Report
The condition of a switch statement shall not have bool type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-184

MISRA C++:2008 Rule 6-4-8
Every switch statement shall have at least one case-clause

Description

Rule Definition
Every switch statement shall have at least one case-clause.

Message in Report
Every switch statement shall have at least one case-clause.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-8

6-185

MISRA C++:2008 Rule 6-5-1
A for loop shall contain a single loop-counter which shall not have floating type

Description

Rule Definition
A for loop shall contain a single loop-counter which shall not have floating type.

Polyspace Implementation
The checker flags these situations:

• The for loop index has a floating point type.
• More than one loop counter is incremented in the for loop increment statement.

For instance:

for(i=0, j=0; i<10 && j < 10;i++, j++) {}

• A loop counter is not incremented in the for loop increment statement.

For instance:

for(i=0; i<10;) {}

Even if you increment the loop counter in the loop body, the checker still raises a
violation. According to the MISRA C++ specifications, a loop counter is one that is
initialized in or prior to the loop expression, acts as an operand to a relational
operator in the loop expression and is modified in the loop expression. If the increment
statement in the loop expression is missing, the checker cannot find the loop counter
modification and considers as if a loop counter is not present.

Message in Report
A for loop shall contain a single loop-counter which shall not have floating type.

6 MISRA C++: 2008

6-186

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-1

6-187

MISRA C++:2008 Rule 6-5-2
If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall
only be used as an operand to <=, <, > or >=

Description

Rule Definition
If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall
only be used as an operand to <=, <, > or >=.

Message in Report
If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall
only be used as an operand to <=, <, > or >=.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-188

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-2

6-189

MISRA C++:2008 Rule 6-5-3
The loop-counter shall not be modified within condition or statement

Description

Rule Definition
The loop-counter shall not be modified within condition or statement.

Rationale
The for loop has a specific syntax for modifying the loop counter. A code reviewer
expects modification using that syntax. Modifying the loop counter elsewhere can make
the code harder to review.

Polyspace Implementation
The checker flags modification of a for loop counter in the loop body or the loop
condition (the condition that is checked to see if the loop must be terminated).

Message in Report
The loop-counter shall not be modified within condition or statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

6 MISRA C++: 2008

6-190

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-3

6-191

MISRA C++:2008 Rule 6-5-4
The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains
constant for the duration of the loop

Description

Rule Definition
The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains
constant for the duration of the loop.

Message in Report
The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains
constant for the duration of the loop.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-192

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-4

6-193

MISRA C++:2008 Rule 6-5-5
A loop-control-variable other than the loop-counter shall not be modified within condition
or expression

Description

Rule Definition
A loop-control-variable other than the loop-counter shall not be modified within condition
or expression.

Message in Report
A loop-control-variable other than the loop-counter shall not be modified within condition
or expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-194

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-5

6-195

MISRA C++:2008 Rule 6-5-6
A loop-control-variable other than the loop-counter which is modified in statement shall
have type bool

Description

Rule Definition
A loop-control-variable other than the loop-counter which is modified in statement shall
have type bool.

Message in Report
A loop-control-variable other than the loop-counter which is modified in statement shall
have type bool.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-196

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-6

6-197

MISRA C++:2008 Rule 6-6-1
Any label referenced by a goto statement shall be declared in the same block, or in a
block enclosing the goto statement

Description

Rule Definition
Any label referenced by a goto statement shall be declared in the same block, or in a
block enclosing the goto statement.

Message in Report
Any label referenced by a goto statement shall be declared in the same block, or in a
block enclosing the goto statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-198

Introduced in R2013b

 MISRA C++:2008 Rule 6-6-1

6-199

MISRA C++:2008 Rule 6-6-2
The goto statement shall jump to a label declared later in the same function body

Description

Rule Definition
The goto statement shall jump to a label declared later in the same function body.

Message in Report
The goto statement shall jump to a label declared later in the same function body.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-200

MISRA C++:2008 Rule 6-6-3
The continue statement shall only be used within a well-formed for loop

Description

Rule Definition
The continue statement shall only be used within a well-formed for loop.

Polyspace Implementation
The checker flags the use of continue statements in:

• for loops that are not well-formed, that is, loops that violate rules 6-5-x.
• while loops.

Message in Report
The continue statement shall only be used within a well-formed for loop.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

 MISRA C++:2008 Rule 6-6-3

6-201

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-202

MISRA C++:2008 Rule 6-6-4
For any iteration statement there shall be no more than one break or goto statement used
for loop termination

Description

Rule Definition
For any iteration statement there shall be no more than one break or goto statement used
for loop termination.

Message in Report
For any iteration statement there shall be no more than one break or goto statement used
for loop termination.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 6-6-4

6-203

Introduced in R2013b

6 MISRA C++: 2008

6-204

MISRA C++:2008 Rule 6-6-5
A function shall have a single point of exit at the end of the function

Description

Rule Definition
A function shall have a single point of exit at the end of the function.

Rationale
This rule requires that a return statement must occur as the last statement in the
function body. Otherwise, the following issues can occur:

• Code following a return statement can be unintentionally omitted.
• If a function that modifies some of its arguments has early return statements, when

reading the code, it is not immediately clear which modifications actually occur.

Polyspace Implementation
The checker flags these situations:

• A function has more than one return statement.
• A non-void function has one return statement only but the return statement is not

the last statement in the function.

A void function need not have a return statement. If a return statement exists, it need
not be the last statement in the function.

Message in Report
A function shall have a single point of exit at the end of the function.

 MISRA C++:2008 Rule 6-6-5

6-205

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-206

MISRA C++:2008 Rule 7-1-1
A variable which is not modified shall be const qualified

Description

Rule Definition
A variable which is not modified shall be const qualified.

Polyspace Implementation
The checker flags function parameters or local variables that are not const-qualified but
never modified in the function body. Function parameters of integer, float, enum and
boolean types are not flagged.

If a variable is passed to another function by reference or pointers, the checker assumes
that the variable can be modified. These variables are not flagged.

Message in Report
A variable which is not modified shall be const qualified.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

 MISRA C++:2008 Rule 7-1-1

6-207

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

6 MISRA C++: 2008

6-208

MISRA C++:2008 Rule 7-1-2
A pointer or reference parameter in a function shall be declared as pointer to const or
reference to const if the corresponding object is not modified

Description

Rule Definition
A pointer or reference parameter in a function shall be declared as pointer to const or
reference to const if the corresponding object is not modified.

Polyspace Implementation
The checker flags pointers where the underlying object is not const-qualified but never
modified in the function body.

If a variable is passed to another function by reference or pointers, the checker assumes
that the variable can be modified. Pointers that point to these variables are not flagged.

Message in Report
A pointer or reference parameter in a function shall be declared as pointer to const or
reference to const if the corresponding object is not modified.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

 MISRA C++:2008 Rule 7-1-2

6-209

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

6 MISRA C++: 2008

6-210

MISRA C++:2008 Rule 7-3-1
The global namespace shall only contain main, namespace declarations and extern "C"
declarations

Description

Rule Definition
The global namespace shall only contain main, namespace declarations and extern "C"
declarations.

Message in Report
The global namespace shall only contain main, namespace declarations and extern "C"
declarations.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 7-3-1

6-211

Introduced in R2013b

6 MISRA C++: 2008

6-212

MISRA C++:2008 Rule 7-3-2
The identifier main shall not be used for a function other than the global function main

Description

Rule Definition
The identifier main shall not be used for a function other than the global function main.

Message in Report
The identifier main shall not be used for a function other than the global function main.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-3-2

6-213

MISRA C++:2008 Rule 7-3-3
There shall be no unnamed namespaces in header files

Description

Rule Definition
There shall be no unnamed namespaces in header files.

Message in Report
There shall be no unnamed namespaces in header files.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-214

MISRA C++:2008 Rule 7-3-4
using-directives shall not be used

Description

Rule Definition
using-directives shall not be used.

Message in Report
using-directives shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-3-4

6-215

MISRA C++:2008 Rule 7-3-5
Multiple declarations for an identifier in the same namespace shall not straddle a using-
declaration for that identifier

Description

Rule Definition
Multiple declarations for an identifier in the same namespace shall not straddle a using-
declaration for that identifier.

Message in Report
Multiple declarations for an identifier in the same namespace shall not straddle a using-
declaration for that identifier.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-216

Introduced in R2013b

 MISRA C++:2008 Rule 7-3-5

6-217

MISRA C++:2008 Rule 7-3-6
using-directives and using-declarations (excluding class scope or function scope using-
declarations) shall not be used in header files

Description

Rule Definition
using-directives and using-declarations (excluding class scope or function scope using-
declarations) shall not be used in header files.

Message in Report
using-directives and using-declarations (excluding class scope or function scope using-
declarations) shall not be used in header files.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-218

Introduced in R2013b

 MISRA C++:2008 Rule 7-3-6

6-219

MISRA C++:2008 Rule 7-4-2
Assembler instructions shall only be introduced using the asm declaration

Description

Rule Definition
Assembler instructions shall only be introduced using the asm declaration.

Message in Report
Assembler instructions shall only be introduced using the asm declaration.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-220

MISRA C++:2008 Rule 7-4-3
Assembly language shall be encapsulated and isolated

Description

Rule Definition
Assembly language shall be encapsulated and isolated.

Polyspace Implementation
The checker flags asm statements unless they are encapsulated in a function call.

For instance, the noncompliant asm statement below is in regular C code while the
compliant asm statement is encapsulated in a call to the function Delay.

void Delay (void)
 {
 asm("NOP");//Compliant
 }
void fn (void)
 {
 DoSomething();
 Delay();// Assembler is encapsulated
 DoSomething();
 asm("NOP"); //Noncompliant
 DoSomething();
 }

Message in Report
Assembly language shall be encapsulated and isolated.

 MISRA C++:2008 Rule 7-4-3

6-221

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-222

MISRA C++:2008 Rule 7-5-1
A function shall not return a reference or a pointer to an automatic variable (including
parameters), defined within the function

Description

Rule Definition
A function shall not return a reference or a pointer to an automatic variable (including
parameters), defined within the function.

Message in Report
A function shall not return a reference or a pointer to an automatic variable (including
parameters), defined within the function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 7-5-1

6-223

Introduced in R2013b

6 MISRA C++: 2008

6-224

MISRA C++:2008 Rule 7-5-2
The address of an object with automatic storage shall not be assigned to another object
that may persist after the first object has ceased to exist

Description

Rule Definition
The address of an object with automatic storage shall not be assigned to another object
that may persist after the first object has ceased to exist.

Polyspace Implementation
The checker flags situations where the address of a local variable is assigned to a pointer
defined at global scope.

The checker does not raise violations of this rule if :

• A function returns the address of a local variable. This situation is covered by MISRA
C++:2008 Rule 7-5-1.

• The address of a variable defined at block scope is assigned to a pointer that is defined
with greater scope (but not global scope).

For instance:

 void foobar (void)
 {
 char * ptr;
 {
 char var;
 ptr = &var;
 }
 }

Only if the pointer is defined at global scope is the issue detected. For instance, the
rule checker flags the issue here:

 MISRA C++:2008 Rule 7-5-2

6-225

char * ptr;
void foobar (void)
 {
 char var;
 ptr = &var;
 }

Message in Report
The address of an object with automatic storage shall not be assigned to another object
that may persist after the first object has ceased to exist.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-226

MISRA C++:2008 Rule 7-5-3
A function shall not return a reference or a pointer to a parameter that is passed by
reference or const reference

Description

Rule Definition
A function shall not return a reference or a pointer to a parameter that is passed by
reference or const reference.

Message in Report
A function shall not return a reference or a pointer to a parameter that is passed by
reference or const reference.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 7-5-3

6-227

Introduced in R2013b

6 MISRA C++: 2008

6-228

MISRA C++:2008 Rule 7-5-4
Functions should not call themselves, either directly or indirectly

Description

Rule Definition
Functions should not call themselves, either directly or indirectly.

Message in Report
Functions should not call themselves, either directly or indirectly.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Advisory

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-5-4

6-229

MISRA C++:2008 Rule 8-0-1
An init-declarator-list or a member-declarator-list shall consist of a single init-declarator
or member-declarator respectively

Description

Rule Definition
An init-declarator-list or a member-declarator-list shall consist of a single init-declarator
or member-declarator respectively.

Message in Report
An init-declarator-list or a member-declarator-list shall consist of a single init-declarator
or member-declarator respectively.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-230

Introduced in R2013b

 MISRA C++:2008 Rule 8-0-1

6-231

MISRA C++:2008 Rule 8-3-1
Parameters in an overriding virtual function shall either use the same default arguments
as the function they override, or else shall not specify any default arguments

Description

Rule Definition
Parameters in an overriding virtual function shall either use the same default arguments
as the function they override, or else shall not specify any default arguments.

Message in Report
Parameters in an overriding virtual function shall either use the same default arguments
as the function they override, or else shall not specify any default arguments.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-232

Introduced in R2013b

 MISRA C++:2008 Rule 8-3-1

6-233

MISRA C++:2008 Rule 8-4-1
Functions shall not be defined using the ellipsis notation

Description

Rule Definition
Functions shall not be defined using the ellipsis notation.

Message in Report
Functions shall not be defined using the ellipsis notation.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-234

MISRA C++:2008 Rule 8-4-2
The identifiers used for the parameters in a re-declaration of a function shall be identical
to those in the declaration

Description

Rule Definition
The identifiers used for the parameters in a re-declaration of a function shall be identical
to those in the declaration.

Polyspace Implementation
The checker detects mismatch in parameter names between:

• A function declaration and the corresponding definition.
• Two declarations of a function, provided they occur in the same file.

If the declarations occur in different files, the checker does not raise a violation for
mismatch in parameter names. Redeclarations in different files are forbidden by
MISRA C++:2008 Rule 3-2-3.

Message in Report
The identifiers used for the parameters in a re-declaration of a function shall be identical
to those in the declaration.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 8-4-2

6-235

Check Information
Group: Declarators
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-236

MISRA C++:2008 Rule 8-4-3
All exit paths from a function with non- void return type shall have an explicit return
statement with an expression

Description

Rule Definition
All exit paths from a function with non- void return type shall have an explicit return
statement with an expression.

Message in Report
All exit paths from a function with non- void return type shall have an explicit return
statement with an expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 8-4-3

6-237

Introduced in R2013b

6 MISRA C++: 2008

6-238

MISRA C++:2008 Rule 8-4-4
A function identifier shall either be used to call the function or it shall be preceded by &

Description

Rule Definition
A function identifier shall either be used to call the function or it shall be preceded by &.

Message in Report
A function identifier shall either be used to call the function or it shall be preceded by &.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 8-4-4

6-239

MISRA C++:2008 Rule 8-5-1
All variables shall have a defined value before they are used

Description

Rule Definition
All variables shall have a defined value before they are used.

Message in Report
All variables shall have a defined value before they are used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-240

MISRA C++:2008 Rule 8-5-2
Braces shall be used to indicate and match the structure in the non- zero initialization of
arrays and structures

Description

Rule Definition
Braces shall be used to indicate and match the structure in the non- zero initialization of
arrays and structures.

Message in Report
Braces shall be used to indicate and match the structure in the non- zero initialization of
arrays and structures.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 8-5-2

6-241

Introduced in R2013b

6 MISRA C++: 2008

6-242

MISRA C++:2008 Rule 8-5-3
In an enumerator list, the = construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized

Description

Rule Definition
In an enumerator list, the = construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

Message in Report
In an enumerator list, the = construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 8-5-3

6-243

Introduced in R2013b

6 MISRA C++: 2008

6-244

MISRA C++:2008 Rule 9-3-1
const member functions shall not return non-const pointers or references to class-data

Description

Rule Definition
const member functions shall not return non-const pointers or references to class-data.

Polyspace Implementation
The checker flags a rule violation only if a const member function returns a non-const
pointer or reference to a nonstatic data member. The rule does not apply to static data
members.

Message in Report
const member functions shall not return non-const pointers or references to class-data.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Classes
Category: Required

 MISRA C++:2008 Rule 9-3-1

6-245

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-246

MISRA C++:2008 Rule 9-3-2
Member functions shall not return non-const handles to class-data

Description

Rule Definition
Member functions shall not return non-const handles to class-data.

Polyspace Implementation
The checker flags a rule violation only if a member function returns a non-const pointer
or reference to a nonstatic data member. The rule does not apply to static data members.

Message in Report
Member functions shall not return non-const handles to class-data.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Classes
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 9-3-2

6-247

Introduced in R2013b

6 MISRA C++: 2008

6-248

MISRA C++:2008 Rule 9-3-3
If a member function can be made static then it shall be made static, otherwise if it can be
made const then it shall be made const

Description

Rule Definition
If a member function can be made static then it shall be made static, otherwise if it can be
made const then it shall be made const.

Polyspace Implementation
The checker flags member functions that are not declared static but do not access a data
member of the class. Such a function can be potentially declared static.

The checker flags member functions that are not declared const but do not modify a data
member of the class. Such a function can be potentially declared const.

Message in Report
If a member function can be made static then it shall be made static, otherwise if it can be
made const then it shall be made const.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Classes
Category: Required

 MISRA C++:2008 Rule 9-3-3

6-249

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

6 MISRA C++: 2008

6-250

MISRA C++:2008 Rule 9-5-1
Unions shall not be used

Description

Rule Definition
Unions shall not be used.

Message in Report
Unions shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Classes
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 9-5-1

6-251

MISRA C++:2008 Rule 9-6-2
Bit-fields shall be either bool type or an explicitly unsigned or signed integral type

Description

Rule Definition
Bit-fields shall be either bool type or an explicitly unsigned or signed integral type.

Message in Report
Bit-fields shall be either bool type or an explicitly unsigned or signed integral type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Classes
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-252

MISRA C++:2008 Rule 9-6-3
Bit-fields shall not have enum type

Description

Rule Definition
Bit-fields shall not have enum type.

Message in Report
Bit-fields shall not have enum type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Classes
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 9-6-3

6-253

MISRA C++:2008 Rule 9-6-4
Named bit-fields with signed integer type shall have a length of more than one bit

Description

Rule Definition
Named bit-fields with signed integer type shall have a length of more than one bit.

Message in Report
Named bit-fields with signed integer type shall have a length of more than one bit.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Classes
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-254

MISRA C++:2008 Rule 10-1-1
Classes should not be derived from virtual bases

Description

Rule Definition
Classes should not be derived from virtual bases.

Rationale
The use of virtual bases can lead to many confusing behaviors.

For instance, in an inheritance hierarchy involving a virtual base, the most derived class
calls the constructor of the virtual base. Intermediate calls to the virtual base constructor
are ignored.

Message in Report
Classes should not be derived from virtual bases.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Use of Virtual Bases
class Base {};
class Intermediate: public virtual Base {}; //Noncompliant
class Final: public Intermediate {};

 MISRA C++:2008 Rule 10-1-1

6-255

In this example, the rule checker raises a violation when the Intermediate class is
derived from the class Base with the virtual keyword.

The following behavior can be a potential source of confusion. When you create an object
of type Final, the constructor of Final directly calls the constructor of Base. Any call to
the Base constructor from the Intermediate constructor are ignored. You might see
unexpected results if you do not take into account this behavior.

Check Information
Group: Derived Classes
Category: Advisory

See Also
MISRA C++:2008 Rule 10-1-2

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-256

MISRA C++:2008 Rule 10-1-2
A base class shall only be declared virtual if it is used in a diamond hierarchy

Description

Rule Definition
A base class shall only be declared virtual if it is used in a diamond hierarchy.

Rationale
This rule is less restrictive than MISRA C++:2008 Rule 10-1-1. Rule 10-1-1 forbids
the use of a virtual base anywhere in your code because a virtual base can lead to
potentially confusing behavior.

Rule 10-1-2 allows the use of virtual bases in the one situation where they are useful, that
is, as a common base class in diamond hierarchies.

For instance, the following diamond hierarchy violates rule 10-1-1 but not rule 10-1-2.

class Base {};
class Intermediate1: public virtual Base {};
class Intermediate2: public virtual Base {};
class Final: public Intermediate1, public Intermediate2 {};

Message in Report
A base class shall only be declared virtual if it is used in a diamond hierarchy.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 10-1-2

6-257

Check Information
Group: Derived Classes
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-258

MISRA C++:2008 Rule 10-1-3
An accessible base class shall not be both virtual and non-virtual in the same hierarchy

Description

Rule Definition
An accessible base class shall not be both virtual and non-virtual in the same hierarchy.

Rationale
The checker flags situations where the same class is inherited as a virtual base class and
a non-virtual base class in the same derived class. These situations defeat the purpose of
virtual inheritance and causes multiple copies of the base class sub-object in the derived
class object.

Message in Report
An accessible base class shall not be both virtual and non-virtual in the same hierarchy.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Base Class Both Virtual and Non-Virtual in Same Hierarchy
class Base {};
class Intermediate1: virtual public Base {};
class Intermediate2: virtual public Base {};

 MISRA C++:2008 Rule 10-1-3

6-259

class Intermediate3: public Base {};
class Final: public Intermediate1, Intermediate2, Intermediate3 {}; //Noncompliant

In this example, the class Base is inherited in Final both as a virtual and non-virtual
base class. The Final object contains at least two copies of a Base sub-object.

Check Information
Group: Derived Classes
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-260

MISRA C++:2008 Rule 10-2-1
All accessible entity names within a multiple inheritance hierarchy should be unique

Description

Rule Definition
All accessible entity names within a multiple inheritance hierarchy should be unique.

Polyspace Implementation
The checker flags data members from different classes with conflicting names if the same
class derives from these classes. For instance:

class B1
 {
 public:
 int count;
 void foo ();
 };
class B2
 {
 public:
 int count;
 void foo ();
 };

class D : public B1, public B2
 {
 public:
 void Bar ()
 {
 ++B1::count;
 B1::foo ();
 }
 };

 MISRA C++:2008 Rule 10-2-1

6-261

If the data member access in the derived class is ambiguous, the analysis reports this
issue as a compilation error and not a coding rule violation. For instance, a compilation
error occurs in the preceding example if the class D is rewritten as:

class D : public B1, public B2
 {
 public:
 void Bar ()
 {
 ++count; // Is that B1::count or B2::count?
 foo (); // Is that B1::foo() or B2::foo()?
 }
 };

The checker does not check for conflicts between entities of different kinds, for instance,
member functions against data members.

Message in Report
All accessible entity names within a multiple inheritance hierarchy should be unique.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Derived Classes
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-262

MISRA C++:2008 Rule 10-3-1
There shall be no more than one definition of each virtual function on each path through
the inheritance hierarchy

Description

Rule Definition
There shall be no more than one definition of each virtual function on each path through
the inheritance hierarchy.

Rationale
The checker flags virtual member functions that have multiple definitions on the same
path in an inheritance hierarchy. If a function is defined multiple times, it can be
ambiguous which implementation is used in a given function call.

Polyspace Implementation
The checker also raises a violation if a base class member function is redefined in the
derived class without the virtual keyword.

Message in Report
There shall be no more than one definition of each virtual function on each path through
the inheritance hierarchy.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 10-3-1

6-263

Examples

Virtual Function Redefined in Derived Class
class Base {
 public:
 virtual void foo() {
 }
};

class Intermediate1: public virtual Base {
 public:
 virtual void foo() { //Noncompliant
 }
};

class Intermediate2: public virtual Base {
 public:
 void bar() {
 foo(); // Calls Base::foo()
 }
};

class Final: public Intermediate1, public Intermediate2 {
};

void main() {
 Intermediate2 intermediate2Obj;
 intermediate2Obj.bar(); // Calls Base::foo()
 Final finalObj;
 finalObj.bar(); //Calls Intermediate1::foo()
 //but you might expect Base::foo()
}

In this example, the virtual function foo is defined in the base class Base and also in
the derived class Intermediate1.

A potential source of confusion can be the following. The class Final derives from
Intermediate1 and also derives from Base through another path using
Intermediate2.

6 MISRA C++: 2008

6-264

• When an Intermediate2 object calls the function bar that calls the function foo,
the implementation of foo in Base is called. An Intermediate2 object does not
know of the implementation in Intermediate1.

• However, when a Final object calls the same function bar that calls the function foo,
the implementation of foo in Intermediate1 is called because of dominance of the
more derived class.

You might see unexpected results if you do not take this behavior into account.

To prevent this issue, declare a function as pure virtual in the base class. For instance,
you can declare the class Base as follows:

class Base {
 public:
 virtual void foo()=0;
};

void Base::foo() {
 //You can still define Base::foo()
}

Check Information
Group: Derived Classes
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 10-3-1

6-265

MISRA C++:2008 Rule 10-3-2
Each overriding virtual function shall be declared with the virtual keyword

Description

Rule Definition
Each overriding virtual function shall be declared with the virtual keyword.

Message in Report
Each overriding virtual function shall be declared with the virtual keyword.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Derived Classes
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-266

MISRA C++:2008 Rule 10-3-3
A virtual function shall only be overridden by a pure virtual function if it is itself declared
as pure virtual

Description

Rule Definition
A virtual function shall only be overridden by a pure virtual function if it is itself declared
as pure virtual.

Message in Report
A virtual function shall only be overridden by a pure virtual function if it is itself declared
as pure virtual.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Derived Classes
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 10-3-3

6-267

Introduced in R2013b

6 MISRA C++: 2008

6-268

MISRA C++:2008 Rule 11-0-1
Member data in non- POD class types shall be private

Description

Rule Definition
Member data in non- POD class types shall be private.

Message in Report
Member data in non- POD class types shall be private.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Member Access Control
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 11-0-1

6-269

MISRA C++:2008 Rule 12-1-1
An object's dynamic type shall not be used from the body of its constructor or destructor

Description

Rule Definition
An object's dynamic type shall not be used from the body of its constructor or destructor.

Message in Report
An object's dynamic type shall not be used from the body of its constructor or destructor.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Special Member Functions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-270

MISRA C++:2008 Rule 12-1-2
All constructors of a class should explicitly call a constructor for all of its immediate base
classes and all virtual base classes

Description

Rule Definition
All constructors of a class should explicitly call a constructor for all of its immediate base
classes and all virtual base classes.

Message in Report
All constructors of a class should explicitly call a constructor for all of its immediate base
classes and all virtual base classes.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Special Member Functions
Category: Advisory

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 12-1-2

6-271

Introduced in R2013b

6 MISRA C++: 2008

6-272

MISRA C++:2008 Rule 12-1-3
All constructors that are callable with a single argument of fundamental type shall be
declared explicit

Description

Rule Definition
All constructors that are callable with a single argument of fundamental type shall be
declared explicit.

Message in Report
All constructors that are callable with a single argument of fundamental type shall be
declared explicit.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Special Member Functions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 12-1-3

6-273

Introduced in R2013b

6 MISRA C++: 2008

6-274

MISRA C++:2008 Rule 12-8-1
A copy constructor shall only initialize its base classes and the non- static members of the
class of which it is a member

Description

Rule Definition
A copy constructor shall only initialize its base classes and the non- static members of the
class of which it is a member.

Message in Report
A copy constructor shall only initialize its base classes and the non- static members of the
class of which it is a member.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Special Member Functions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 12-8-1

6-275

Introduced in R2013b

6 MISRA C++: 2008

6-276

MISRA C++:2008 Rule 12-8-2
The copy assignment operator shall be declared protected or private in an abstract class

Description

Rule Definition
The copy assignment operator shall be declared protected or private in an abstract class.

Message in Report
The copy assignment operator shall be declared protected or private in an abstract class.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Special Member Functions
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 12-8-2

6-277

MISRA C++:2008 Rule 14-5-2
A copy constructor shall be declared when there is a template constructor with a single
parameter that is a generic parameter

Description

Rule Definition
A copy constructor shall be declared when there is a template constructor with a single
parameter that is a generic parameter.

Message in Report
A copy constructor shall be declared when there is a template constructor with a single
parameter that is a generic parameter.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Templates
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-278

Introduced in R2013b

 MISRA C++:2008 Rule 14-5-2

6-279

MISRA C++:2008 Rule 14-5-3
A copy assignment operator shall be declared when there is a template assignment
operator with a parameter that is a generic parameter

Description

Rule Definition
A copy assignment operator shall be declared when there is a template assignment
operator with a parameter that is a generic parameter.

Message in Report
A copy assignment operator shall be declared when there is a template assignment
operator with a parameter that is a generic parameter.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Templates
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-280

Introduced in R2013b

 MISRA C++:2008 Rule 14-5-3

6-281

MISRA C++:2008 Rule 14-6-1
In a class template with a dependent base, any name that may be found in that dependent
base shall be referred to using a qualified-id or this->

Description

Rule Definition
In a class template with a dependent base, any name that may be found in that dependent
base shall be referred to using a qualified-id or this->

Message in Report
In a class template with a dependent base, any name that may be found in that dependent
base shall be referred to using a qualified-id or this->

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Templates
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-282

Introduced in R2013b

 MISRA C++:2008 Rule 14-6-1

6-283

MISRA C++:2008 Rule 14-6-2
The function chosen by overload resolution shall resolve to a function declared previously
in the translation unit

Description

Rule Definition
The function chosen by overload resolution shall resolve to a function declared previously
in the translation unit.

Message in Report
The function chosen by overload resolution shall resolve to a function declared previously
in the translation unit.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Templates
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-284

Introduced in R2013b

 MISRA C++:2008 Rule 14-6-2

6-285

MISRA C++:2008 Rule 14-7-3
All partial and explicit specializations for a template shall be declared in the same file as
the declaration of their primary template

Description

Rule Definition
All partial and explicit specializations for a template shall be declared in the same file as
the declaration of their primary template.

Message in Report
All partial and explicit specializations for a template shall be declared in the same file as
the declaration of their primary template.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Templates
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-286

Introduced in R2013b

 MISRA C++:2008 Rule 14-7-3

6-287

MISRA C++:2008 Rule 14-8-1
Overloaded function templates shall not be explicitly specialized

Description

Rule Definition
Overloaded function templates shall not be explicitly specialized.

Polyspace Implementation
The checker first checks within file scope to find overloads. The checker later looks for
call to a specialized template function later. As a result, the checker flags all
specializations of overloaded templates even if overloading occurs after the call.

Message in Report
Overloaded function templates shall not be explicitly specialized.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Templates
Category: Required

6 MISRA C++: 2008

6-288

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 14-8-1

6-289

MISRA C++:2008 Rule 14-8-2
The viable function set for a function call should either contain no function
specializations, or only contain function specializations

Description

Rule Definition
The viable function set for a function call should either contain no function
specializations, or only contain function specializations.

Message in Report
The viable function set for a function call should either contain no function
specializations, or only contain function specializations.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Templates
Category: Advisory

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-290

Introduced in R2013b

 MISRA C++:2008 Rule 14-8-2

6-291

MISRA C++:2008 Rule 15-0-2
An exception object should not have pointer type

Description

Rule Definition
An exception object should not have pointer type.

Polyspace Implementation
The checker raises a violation if a throw statement throws an exception of pointer type.

The checker does not raise a violation if a NULL pointer is thrown as exception. Throwing
a NULL pointer is forbidden by MISRA C++:2008 Rule 15-1-2.

Message in Report
An exception object should not have pointer type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Advisory

6 MISRA C++: 2008

6-292

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-0-2

6-293

MISRA C++:2008 Rule 15-0-3
Control shall not be transferred into a try or catch block using a goto or a switch
statement

Description

Rule Definition
Control shall not be transferred into a try or catch block using a goto or a switch
statement.

Message in Report
Control shall not be transferred into a try or catch block using a goto or a switch
statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-294

Introduced in R2013b

 MISRA C++:2008 Rule 15-0-3

6-295

MISRA C++:2008 Rule 15-1-2
NULL shall not be thrown explicitly

Description

Rule Definition
NULL shall not be thrown explicitly.

Message in Report
NULL shall not be thrown explicitly.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-296

MISRA C++:2008 Rule 15-1-3
An empty throw (throw;) shall only be used in the compound- statement of a catch
handler

Description

Rule Definition
An empty throw (throw;) shall only be used in the compound- statement of a catch
handler.

Message in Report
An empty throw (throw;) shall only be used in the compound- statement of a catch
handler.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 15-1-3

6-297

Introduced in R2013b

6 MISRA C++: 2008

6-298

MISRA C++:2008 Rule 15-3-2
There should be at least one exception handler to catch all otherwise unhandled
exceptions

Description

Rule Definition
There should be at least one exception handler to catch all otherwise unhandled
exceptions.

Polyspace Implementation
The checker shows a violation if there is no try/catch in the main function or the catch
does not handle all exceptions (with ellipsis ...). The rule is not checked if a main
function does not exist.

The checker does not determine if an exception of an unhandled type actually propagates
to main.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
There should be at least one exception handler to catch all otherwise unhandled
exceptions.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 15-3-2

6-299

Check Information
Group: Exception Handling
Category: Advisory

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-300

MISRA C++:2008 Rule 15-3-3
Handlers of a function-try-block implementation of a class constructor or destructor shall
not reference non-static members from this class or its bases

Description

Rule Definition
Handlers of a function-try-block implementation of a class constructor or destructor shall
not reference non-static members from this class or its bases.

Message in Report
Handlers of a function-try-block implementation of a class constructor or destructor shall
not reference non-static members from this class or its bases.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 15-3-3

6-301

Introduced in R2013b

6 MISRA C++: 2008

6-302

MISRA C++:2008 Rule 15-3-5
A class type exception shall always be caught by reference

Description

Rule Definition
A class type exception shall always be caught by reference.

Message in Report
A class type exception shall always be caught by reference.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-3-5

6-303

MISRA C++:2008 Rule 15-3-6
Where multiple handlers are provided in a single try-catch statement or function-try-block
for a derived class and some or all of its bases, the handlers shall be ordered most-derived
to base class

Description
Rule Definition
Where multiple handlers are provided in a single try-catch statement or function-try-block
for a derived class and some or all of its bases, the handlers shall be ordered most-derived
to base class.

Message in Report
Where multiple handlers are provided in a single try-catch statement or function-try-block
for a derived class and some or all of its bases, the handlers shall be ordered most-derived
to base class.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also
Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-304

Introduced in R2013b

 MISRA C++:2008 Rule 15-3-6

6-305

MISRA C++:2008 Rule 15-3-7
Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last

Description

Rule Definition
Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

Message in Report
Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-306

Introduced in R2013b

 MISRA C++:2008 Rule 15-3-7

6-307

MISRA C++:2008 Rule 15-4-1
If a function is declared with an exception-specification, then all declarations of the same
function (in other translation units) shall be declared with the same set of type-ids

Description

Rule Definition
If a function is declared with an exception-specification, then all declarations of the same
function (in other translation units) shall be declared with the same set of type-ids.

Message in Report
If a function is declared with an exception-specification, then all declarations of the same
function (in other translation units) shall be declared with the same set of type-ids.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-308

Introduced in R2013b

 MISRA C++:2008 Rule 15-4-1

6-309

MISRA C++:2008 Rule 15-5-1
A class destructor shall not exit with an exception

Description

Rule Definition
A class destructor shall not exit with an exception.

Polyspace Implementation
The checker flags exceptions thrown in the body of the destructor. If the destructor calls
another function, the checker does not detect if that function throws an exception.

The checker does not detect these situations:

• A catch statement does not catch exceptions of all types that are thrown.

The checker considers the presence of a catch statement corresponding to a try
block as indication that an exception is caught.

• throw statements inside catch blocks

Message in Report
A class destructor shall not exit with an exception.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling

6 MISRA C++: 2008

6-310

Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-5-1

6-311

MISRA C++:2008 Rule 15-5-2
Where a function's declaration includes an exception-specification, the function shall only
be capable of throwing exceptions of the indicated type(s)

Description

Rule Definition
Where a function's declaration includes an exception-specification, the function shall only
be capable of throwing exceptions of the indicated type(s).

Polyspace Implementation
The checker flags situations where the data type of the exception thrown does not match
the exception type listed in the function specification.

For instance:

void goo () throw (Exception)
 {
 throw 21; // Non-compliant - int is not listed
 }

The checker limits detection to throw statements that are in the body of the function. If
the function calls another function, the checker does not detect if the called function
throws an exception.

The checker does not detect throw statements inside catch blocks.

Message in Report
Where a function's declaration includes an exception-specification, the function shall only
be capable of throwing exceptions of the indicated type(s).

6 MISRA C++: 2008

6-312

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-5-2

6-313

MISRA C++:2008 Rule 15-5-3
The terminate() function shall not be called implicitly

Description

Rule Definition
The terminate() function shall not be called implicitly.

Polyspace Implementation
The checker flags these situations when the terminate() function can be called implicitly:

• An exception escapes uncaught. This also violates MISRA C++:2008 Rule 15-3-2.
For instance:

• Before an exception is caught, it escapes through another function that throws an
uncaught exception. For instance, a catch statement or exception handler invokes a
copy constructor that throws an uncaught exception.

• A throw expression with no operand rethrows an uncaught exception.
• A class destructor throws an exception. This also violates MISRA C++:2008 Rule

15-5-1.

Message in Report
The terminate() function shall not be called implicitly.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

6 MISRA C++: 2008

6-314

Check Information
Group: Exception Handling
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

 MISRA C++:2008 Rule 15-5-3

6-315

MISRA C++:2008 Rule 16-0-1
#include directives in a file shall only be preceded by other preprocessor directives or
comments

Description

Rule Definition
#include directives in a file shall only be preceded by other preprocessor directives or
comments.

Message in Report
#include directives in a file shall only be preceded by other preprocessor directives or
comments.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-316

Introduced in R2013b

 MISRA C++:2008 Rule 16-0-1

6-317

MISRA C++:2008 Rule 16-0-2
Macros shall only be #define 'd or #undef 'd in the global namespace

Description

Rule Definition
Macros shall only be #define 'd or #undef 'd in the global namespace.

Message in Report
Macros shall only be #define 'd or #undef 'd in the global namespace.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-318

MISRA C++:2008 Rule 16-0-3
#undef shall not be used

Description

Rule Definition
#undef shall not be used.

Message in Report
#undef shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-0-3

6-319

MISRA C++:2008 Rule 16-0-4
Function-like macros shall not be defined

Description

Rule Definition
Function-like macros shall not be defined.

Message in Report
Function-like macros shall not be defined.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-320

MISRA C++:2008 Rule 16-0-5
Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives

Description

Rule Definition
Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives.

Message in Report
Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 16-0-5

6-321

Introduced in R2013b

6 MISRA C++: 2008

6-322

MISRA C++:2008 Rule 16-0-6
In the definition of a function-like macro, each instance of a parameter shall be enclosed
in parentheses, unless it is used as the operand of # or ##

Description

Rule Definition
In the definition of a function-like macro, each instance of a parameter shall be enclosed
in parentheses, unless it is used as the operand of # or ##.

Message in Report
In the definition of a function-like macro, each instance of a parameter shall be enclosed
in parentheses, unless it is used as the operand of # or ##.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 16-0-6

6-323

Introduced in R2013b

6 MISRA C++: 2008

6-324

MISRA C++:2008 Rule 16-0-7
Undefined macro identifiers shall not be used in #if or #elif preprocessor directives,
except as operands to the defined operator

Description

Rule Definition
Undefined macro identifiers shall not be used in #if or #elif preprocessor directives,
except as operands to the defined operator.

Message in Report
Undefined macro identifiers shall not be used in #if or #elif preprocessor directives,
except as operands to the defined operator.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 16-0-7

6-325

Introduced in R2013b

6 MISRA C++: 2008

6-326

MISRA C++:2008 Rule 16-0-8
If the # token appears as the first token on a line, then it shall be immediately followed by
a preprocessing token

Description

Rule Definition
If the # token appears as the first token on a line, then it shall be immediately followed by
a preprocessing token.

Message in Report
If the # token appears as the first token on a line, then it shall be immediately followed by
a preprocessing token.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 16-0-8

6-327

Introduced in R2013b

6 MISRA C++: 2008

6-328

MISRA C++:2008 Rule 16-1-1
The defined preprocessor operator shall only be used in one of the two standard forms

Description

Rule Definition
The defined preprocessor operator shall only be used in one of the two standard forms.

Message in Report
The defined preprocessor operator shall only be used in one of the two standard forms.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-1-1

6-329

MISRA C++:2008 Rule 16-1-2
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if
or #ifdef directive to which they are related

Description

Rule Definition
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if
or #ifdef directive to which they are related.

Message in Report
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if
or #ifdef directive to which they are related.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-330

Introduced in R2013b

 MISRA C++:2008 Rule 16-1-2

6-331

MISRA C++:2008 Rule 16-2-1
The preprocessor shall only be used for file inclusion and include guards

Description

Rule Definition
The preprocessor shall only be used for file inclusion and include guards.

Polyspace Implementation
The checker flags #ifdef and #define statements in files that are not include files.

Message in Report
The preprocessor shall only be used for file inclusion and include guards.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-332

Introduced in R2013b

 MISRA C++:2008 Rule 16-2-1

6-333

MISRA C++:2008 Rule 16-2-2
C++ macros shall only be used for: include guards, type qualifiers, or storage class
specifiers

Description

Rule Definition
C++ macros shall only be used for: include guards, type qualifiers, or storage class
specifiers.

Polyspace Implementation
The checker flags #define statements where the macros expand to something other than
include guards, type qualifiers or storage class specifiers such as static, inline,
volatile, auto, register and const.

Message in Report
C++ macros shall only be used for: include guards, type qualifiers, or storage class
specifiers.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

6 MISRA C++: 2008

6-334

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-2-2

6-335

MISRA C++:2008 Rule 16-2-3
Include guards shall be provided

Description

Rule Definition
Include guards shall be provided.

Polyspace Implementation
The checker raises a violation if a header file does not contain an include guard.

For instance, this code uses an include guard for the #define and #include statements
and does not violate the rule:

// Contents of a header file
#ifndef FILE_H

#define FILE_H
#include "libFile.h"

#endif

Message in Report
Include guards shall be provided.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

6 MISRA C++: 2008

6-336

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-2-3

6-337

MISRA C++:2008 Rule 16-2-4
The ', ", /* or // characters shall not occur in a header file name

Description

Rule Definition
The ', ", /* or // characters shall not occur in a header file name.

Message in Report
The ', ", /* or // characters shall not occur in a header file name.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-338

MISRA C++:2008 Rule 16-2-5
The \ character should not occur in a header file name

Description

Rule Definition
The \ character should not occur in a header file name.

Message in Report
The \ character should not occur in a header file name.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Advisory

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-2-5

6-339

MISRA C++:2008 Rule 16-2-6
The #include directive shall be followed by either a <filename> or "filename" sequence

Description

Rule Definition
The #include directive shall be followed by either a <filename> or "filename" sequence.

Message in Report
The #include directive shall be followed by either a <filename> or "filename" sequence.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-340

MISRA C++:2008 Rule 16-3-1
There shall be at most one occurrence of the # or ## operators in a single macro
definition

Description

Rule Definition
There shall be at most one occurrence of the # or ## operators in a single macro
definition.

Message in Report
There shall be at most one occurrence of the # or ## operators in a single macro
definition.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 16-3-1

6-341

Introduced in R2013b

6 MISRA C++: 2008

6-342

MISRA C++:2008 Rule 16-3-2
The # and ## operators should not be used

Description

Rule Definition
The # and ## operators should not be used.

Message in Report
The # and ## operators should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Advisory

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-3-2

6-343

MISRA C++:2008 Rule 16-6-1
All uses of the #pragma directive shall be documented

Description

Rule Definition
All uses of the #pragma directive shall be documented.

Polyspace Implementation
To check this rule, you must list the pragmas that are allowed in source files by using the
option Allowed pragmas (-allowed-pragmas). If Polyspace finds a pragma not in
the allowed pragma list, a violation is raised.

Message in Report
All uses of the #pragma directive shall be documented.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Document

6 MISRA C++: 2008

6-344

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2016b

 MISRA C++:2008 Rule 16-6-1

6-345

MISRA C++:2008 Rule 17-0-1
Reserved identifiers, macros and functions in the standard library shall not be defined,
redefined or undefined

Description

Rule Definition
Reserved identifiers, macros and functions in the standard library shall not be defined,
redefined or undefined.

Message in Report
Reserved identifiers, macros and functions in the standard library shall not be defined,
redefined or undefined.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Library Introduction
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

6 MISRA C++: 2008

6-346

Introduced in R2013b

 MISRA C++:2008 Rule 17-0-1

6-347

MISRA C++:2008 Rule 17-0-2
The names of standard library macros and objects shall not be reused

Description

Rule Definition
The names of standard library macros and objects shall not be reused.

Message in Report
The names of standard library macros and objects shall not be reused.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Library Introduction
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-348

MISRA C++:2008 Rule 17-0-3
The names of standard library functions shall not be overridden

Description

Rule Definition
The names of standard library functions shall not be overridden.

Message in Report
The names of standard library functions shall not be overridden.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Library Introduction
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

 MISRA C++:2008 Rule 17-0-3

6-349

MISRA C++:2008 Rule 17-0-5
The setjmp macro and the longjmp function shall not be used

Description

Rule Definition
The setjmp macro and the longjmp function shall not be used.

Message in Report
The setjmp macro and the longjmp function shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Library Introduction
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-350

MISRA C++:2008 Rule 18-0-1
The C library shall not be used

Description

Rule Definition
The C library shall not be used.

Message in Report
The C library shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 18-0-1

6-351

MISRA C++:2008 Rule 18-0-2
The library functions atof, atoi and atol from library <cstdlib> shall not be used

Description

Rule Definition
The library functions atof, atoi and atol from library <cstdlib> shall not be used.

Message in Report
The library functions atof, atoi and atol from library <cstdlib> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-352

MISRA C++:2008 Rule 18-0-3
The library functions abort, exit, getenv and system from library <cstdlib> shall not be
used

Description

Rule Definition
The library functions abort, exit, getenv and system from library <cstdlib> shall not be
used.

Message in Report
The library functions abort, exit, getenv and system from library <cstdlib> shall not be
used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 18-0-3

6-353

Introduced in R2013b

6 MISRA C++: 2008

6-354

MISRA C++:2008 Rule 18-0-4
The time handling functions of library <ctime> shall not be used

Description

Rule Definition
The time handling functions of library <ctime> shall not be used.

Message in Report
The time handling functions of library <ctime> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 18-0-4

6-355

MISRA C++:2008 Rule 18-0-5
The unbounded functions of library <cstring> shall not be used

Description

Rule Definition
The unbounded functions of library <cstring> shall not be used.

Message in Report
The unbounded functions of library <cstring> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-356

MISRA C++:2008 Rule 18-2-1
The macro offsetof shall not be used

Description

Rule Definition
The macro offsetof shall not be used.

Message in Report
The macro offsetof shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 18-2-1

6-357

MISRA C++:2008 Rule 18-4-1
Dynamic heap memory allocation shall not be used

Description

Rule Definition
Dynamic heap memory allocation shall not be used.

Message in Report
Dynamic heap memory allocation shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-358

MISRA C++:2008 Rule 18-7-1
The signal handling facilities of <csignal> shall not be used

Description

Rule Definition
The signal handling facilities of <csignal> shall not be used.

Rationale
Signal handling functions such as signal contains undefined and implementation-
specific behavior.

You have to be very careful when using signal to avoid these behaviors.

Message in Report
The signal handling facilities of <csignal> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

 MISRA C++:2008 Rule 18-7-1

6-359

See Also
Function called from signal handler not asynchronous-safe | Return
from computational exception signal handler | Shared data access
within signal handler | Signal call in multithreaded program

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-360

MISRA C++:2008 Rule 19-3-1
The error indicator errno shall not be used

Description

Rule Definition
The error indicator errno shall not be used.

Rationale
Observing this rule encourages the good practice of not relying on errno to check error
conditions.

Checking errno is not sufficient to guarantee absence of errors. Functions such as
fopen might not set errno on error conditions. Often, you have to check the return value
of such functions for error conditions.

Message in Report
The error indicator errno shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Use of errno
#include <cstdlib>
#include <cerrno>

 MISRA C++:2008 Rule 19-3-1

6-361

void func (const char* str) {
 errno = 0; // Noncompliant
 int i = atoi(str);
 if(errno != 0) { // Noncompliant
 //Handle Error
 }
}

The use of errno violates this rule. The function atoi is not required to set errno if the
input string cannot be converted to an integer. Checking errno later does not safeguard
against possible failures in conversion.

Check Information
Group: Diagnostic Library
Category: Required

See Also
Misuse of errno | Misuse of errno in a signal handler

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-362

MISRA C++:2008 Rule 27-0-1
The stream input/output library <cstdio> shall not be used

Description

Rule Definition
The stream input/output library <cstdio> shall not be used.

Rationale
Functions in cstdio such as gets, fgetpos, fopen, ftell, etc. have unspecified,
undefined and implementation-defined behavior.

For instance:

• The gets function:

char * gets (char * buf);

does not check if the number of characters provided at the standard input exceeds the
buffer buf. The function can have unexpected behavior when the input exceeds the
buffer.

• The fopen function has implementation-specific behavior related to whether it sets
errno on errors or whether it accepts additional characters following the standard
mode specifiers.

Message in Report
The stream input/output library <cstdio> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 MISRA C++:2008 Rule 27-0-1

6-363

Examples

Use of gets
#include <cstdio>

void func() {
 char array[10];
 gets(array);
}

The use of gets violates this rule.

Check Information
Group: Input/output Library
Category: Required

See Also

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

6 MISRA C++: 2008

6-364

CERT C Rules and Recommendations

7

Acknowledgement
This software has been created by MathWorks incorporating portions of: the “SEI CERT-C
Website,” © 2017 Carnegie Mellon University, the SEI CERT-C++ Web site © 2017
Carnegie Mellon University, ”SEI CERT C Coding Standard – Rules for Developing safe,
Reliable and Secure systems – 2016 Edition,” © 2016 Carnegie Mellon University, and
“SEI CERT C++ Coding Standard – Rules for Developing safe, Reliable and Secure
systems in C++ – 2016 Edition” © 2016 Carnegie Mellon University, with special
permission from its Software Engineering Institute.

ANY MATERIAL OF CARNEGIE MELLON UNIVERSITY AND/OR ITS SOFTWARE
ENGINEERING INSTITUTE CONTAINED HEREIN IS FURNISHED ON AN "AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This software and associated documentation has not been reviewed nor is it endorsed by
Carnegie Mellon University or its Software Engineering Institute.

7 CERT C Rules and Recommendations

7-2

CERT C: Rule PRE30-C
Do not create a universal character name through concatenation

Description

Rule Definition
Do not create a universal character name through concatenation.

Examples

Universal character name from token concatenation
Description

Universal character name from token concatenation occurs when two preprocessing
tokens joined with a ## operator create a universal character name. A universal character
name begins with \u or \U followed by hexadecimal digits. It represents a character not
found in the basic character set.

For instance, you form the character \u0401 by joining two tokens:

#define assign(uc1, uc2, val) uc1##uc2 = val
...
assign(\u04, 01, 4);

Risk

The C11 Standard (Sec. 5.1.1.2) states that if a universal character name is formed by
token concatenation, the behavior is undefined.

Fix

Use the universal character name directly instead of producing it through token
concatenation.

 CERT C: Rule PRE30-C

7-3

Example - Universal Character Name from Token Concatenation

#define assign(uc1, uc2, val) uc1##uc2 = val

int func(void) {
 int \u0401 = 0;
 assign(\u04, 01, 4);
 return \u0401;
}

In this example, the assign macro, when expanded, joins the two tokens \u04 and 01 to
form the universal character name \u0401.

Correction — Use Universal Character Name Directly

One possible correction is to use the universal character name \u0401 directly. The
correction redefines the assign macro so that it does not join tokens.

#define assign(ucn, val) ucn = val

int func(void) {
 int \u0401 = 0;
 assign(\u0401, 4);
 return \u0401;
}

Check Information
Group: Rule 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE30-C

7 CERT C Rules and Recommendations

7-4

https://wiki.sei.cmu.edu/confluence/x/UdcxBQ

Introduced in R2019a

 CERT C: Rule PRE30-C

7-5

CERT C: Rule PRE31-C
Avoid side effects in arguments to unsafe macros

Description

Rule Definition
Avoid side effects in arguments to unsafe macros.

Examples

Side effect in arguments to unsafe macro
Description

Side effect in arguments to unsafe macro occurs when you call an unsafe macro with
an expression that has a side effect.

• Unsafe macro: When expanded, an unsafe macro evaluates its arguments multiple
times or does not evaluate its argument at all.

For instance, the ABS macro evaluates its argument x twice.

#define ABS(x) (((x) < 0) ? -(x) : (x))

• Side effect: When evaluated, an expression with a side effect modifies at least one of
the variables in the expression.

For instance, ++n modifies n, but n+1 does not modify n.

The checker does not consider side effects in nested macros. The checker also does
not consider function calls or volatile variable access as side effects.

7 CERT C Rules and Recommendations

7-6

Risk

If you call an unsafe macro with an expression that has a side effect, the expression is
evaluated multiple times or not evaluated at all. The side effect can occur multiple times
or not occur at all, causing unexpected behavior.

For instance, in the call MACRO(++n), you expect only one increment of the variable n. If
MACRO is an unsafe macro, the increment happens more than once or does not happen at
all.

The checker flags expressions with side effects in the assert macro because the assert
macro is disabled in non-debug mode. To compile in non-debug mode, you define the
NDEBUG macro during compilation. For instance, in GCC, you use the flag -DNDEBUG.

Fix

Evaluate the expression with a side effect in a separate statement, and then use the result
as a macro argument.

For instance, instead of:

MACRO(++n);

perform the operation in two steps:

++n;
MACRO(n);

Alternatively, use an inline function instead of a macro. Pass the expression with side
effect as argument to the inline function.

The checker considers modifications of a local variable defined only in the block scope of
a macro body as a side effect. This defect cannot happen since the variable is visible only
in the macro body. If you see a defect of this kind, ignore the defect.

Example - Macro Argument with Side Effects

#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 int m = ABS(++n);

 CERT C: Rule PRE31-C

7-7

 /* ... */
}

In this example, the ABS macro evaluates its argument twice. The second evaluation can
result in an unintended increment.

Correction — Separate Evaluation of Expression from Macro Usage

One possible correction is to first perform the increment, and then pass the result to the
macro.

#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 ++n;
 int m = ABS(n);

 /* ... */
}

Correction — Evaluate Expression in Inline Function

Another possible correction is to evaluate the expression in an inline function.

static inline int iabs(int x) {
 return (((x) < 0) ? -(x) : (x));
}

void func(int n) {
 /* Validate that n is within the desired range */

int m = iabs(++n);

 /* ... */
}

Check Information
Group: Rule 01. Preprocessor (PRE)

7 CERT C Rules and Recommendations

7-8

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE31-C

Introduced in R2019a

 CERT C: Rule PRE31-C

7-9

https://wiki.sei.cmu.edu/confluence/x/I9YxBQ

CERT C: Rule PRE32-C
Do not use preprocessor directives in invocations of function-like macros

Description

Rule Definition
Do not use preprocessor directives in invocations of function-like macros.

Examples

Preprocessor directive in macro argument
Description

Preprocessor directive in macro argument occurs when you use a preprocessor
directive in the argument to a function-like macro or a function that might be
implemented as a function-like macro.

For instance, a #ifdef statement occurs in the argument to a memcpy function. The
memcpy function might be implemented as a macro.

memcpy(dest, src,
 #ifdef PLATFORM1
 12
 #else
 24
 #endif
);

The checker flags similar usage in printf and assert, which can also be implemented
as macros.

7 CERT C Rules and Recommendations

7-10

Risk

During preprocessing, a function-like macro call is replaced by the macro body and the
parameters are replaced by the arguments to the macro call (argument substitution).
Suppose a macro min() is defined as follows.

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

When you call min(1,2), it is replaced by the body ((X) < (Y) ? (X) : (Y)). X and
Y are replaced by 1 and 2.

According to the C11 Standard (Sec. 6.10.3), if the list of arguments to a function-like
macro itself has preprocessing directives, the argument substitution during
preprocessing is undefined.

Fix

To ensure that the argument substitution happens in an unambiguous manner, use the
preprocessor directives outside the function-like macro.

For instance, to execute memcpy with different arguments based on a #ifdef directive,
call memcpy multiple times within the #ifdef directive branches.

#ifdef PLATFORM1
 memcpy(dest, src, 12);
#else
 memcpy(dest, src, 24);
#endif

Example - Directives in Function-Like Macros

#include <stdio.h>

#define print(A) printf(#A)

void func(void) {
 print(
#ifdef SW
 "Message 1"
#else
 "Message 2"
#endif
);
}

 CERT C: Rule PRE32-C

7-11

In this example, the preprocessor directives #ifdef and #endif occur in the argument
to the function-like macro print().

Correction — Use Directives Outside Macro

One possible correction is to use the function-like macro multiple times in the branches of
the #ifdef directive.

#include <stdio.h>

#define print(A) printf(#A)

void func(void) {
#ifdef SW
 print("Message 1");
#else
 print("Message 2");
#endif
}

Check Information
Group: Rule 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE32-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-12

https://wiki.sei.cmu.edu/confluence/x/y9YxBQ

CERT C: Rule DCL30-C
Declare objects with appropriate storage durations

Description

Rule Definition
Declare objects with appropriate storage durations.

Examples

Pointer or reference to stack variable leaving scope
Description

Pointer or reference to stack variable leaving scope occurs when a pointer or
reference to a local variable leaves the scope of the variable. For instance:

• A function returns a pointer to a local variable.
• A function performs the assignment globPtr = &locVar. globPtr is a global

pointer variable and locVar is a local variable.
• A function performs the assignment *paramPtr = &locVar. paramPtr is a function

parameter that is, for instance, an int** pointer and locVar is a local int variable.
• A C++ method performs the assignment memPtr = &locVar. memPtr is a pointer

data member of the class the method belongs to. locVar is a variable local to the
method.

The defect also applies to memory allocated using the alloca function. The defect does
not apply to static, local variables.

 CERT C: Rule DCL30-C

7-13

Risk

Local variables are allocated an address on the stack. Once the scope of a local variable
ends, this address is available for reuse. Using this address to access the local variable
value outside the variable scope can cause unexpected behavior.

If a pointer to a local variable leaves the scope of the variable, Polyspace Bug Finder
highlights the defect. The defect appears even if you do not use the address stored in the
pointer. For maintainable code, it is a good practice to not allow the pointer to leave the
variable scope. Even if you do not use the address in the pointer now, someone else using
your function can use the address, causing undefined behavior.

Fix

Do not allow a pointer or reference to a local variable to leave the variable scope.

Example - Pointer to Local Variable Returned from Function

void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

In this example, func1 returns a pointer to local variable ret.

In main, ptr points to the address of the local variable. When ptr is accessed in func2,
the access is illegal because the scope of ret is limited to func1,

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

7 CERT C Rules and Recommendations

7-14

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL30-C

Introduced in R2019a

 CERT C: Rule DCL30-C

7-15

https://wiki.sei.cmu.edu/confluence/x/UtcxBQ

CERT C: Rule DCL31-C
Declare identifiers before using them

Description

Rule Definition
Declare identifiers before using them.

Examples

Types not explicitly specified
Description

The rule checker flags situations where a function parameter or return type is not
explicitly specified. To enable checking of this rule, use the value c90 for the option C
standard version (-c-version).

Risk

In some circumstances, you can omit types from the C90 standard. In those cases, the
int type is implicitly specified. However, the omission of an explicit type can lead to
confusion. For example, in the declaration extern void foo (char c, const k);,
the type of k is const int, but you might expect const char.

You might be using an implicit type in:

• Object declarations
• Parameter declarations
• Member declarations
• typedef declarations
• Function return types

7 CERT C Rules and Recommendations

7-16

Example - Implicit Types

static foo(int a); /* Non compliant */
static void bar(void); /* Compliant */

In this example, the rule is violated because the return type of foo is implicit.

Implicit function declaration
Description

The issue occurs when you call a function before you declare or define it.

Risk

An implicit declaration occurs when you call a function before declaring or defining it.
When you declare a function explicitly before calling it, the compiler can match the
argument and return types with the parameter types in the declaration. If an implicit
declaration occurs, the compiler makes assumptions about the argument and return
types. For instance, it assumes a return type of int. The assumptions might not agree
with what you expect and cause undesired type conversions.

Example - Function Not Declared Before Call

#include <math.h>

extern double power3 (double val, int exponent);
int getChoice(void);

double func() {
 double res;
 int ch = getChoice();
 if(ch == 0) {
 res = power(2.0, 10); /* Non-compliant */
 }
 else if(ch==1) {
 res = power2(2.0, 10); /* Non-compliant */
 }
 else {
 res = power3(2.0, 10); /* Compliant */
 return res;
 }
}

 CERT C: Rule DCL31-C

7-17

double power2 (double val, int exponent) {
 return (pow(val, exponent));
}

In this example, the rule is violated when a function that is not declared is called in the
code. Even if a function definition exists later in the code, the rule violation occurs.

The rule is not violated when the function is declared before it is called in the code. If the
function definition exists in another file and is available only during the link phase, you
can declare the function in one of the following ways:

• Declare the function with the extern keyword in the current file.
• Declare the function in a header file and include the header file in the current file.

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL31-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-18

https://wiki.sei.cmu.edu/confluence/x/8NUxBQ

CERT C: Rule DCL36-C
Do not declare an identifier with conflicting linkage classifications

Description

Rule Definition
Do not declare an identifier with conflicting linkage classifications.

Examples

Inconsistent use of static and extern in object declarations
Description

The issue occurs when you do not use the static storage class specifier consistently in
all declarations of object and functions that have internal linkage.

The rule checker detects situations where:

• The same object is declared multiple times with different storage specifiers.
• The same function is declared and defined with different storage specifiers.

Risk

If you do not use the static specifier consistently in all declarations of objects with
internal linkage, you might declare the same object with external and internal linkage.

In this situation, the linkage follows the earlier specification that is visible (C99 Standard,
Section 6.2.2). For instance, if the earlier specification indicates internal linkage, the
object has internal linkage even though the latter specification indicates external linkage.
If you notice the latter specification alone, you might expect otherwise.

 CERT C: Rule DCL36-C

7-19

Example - Linkage Conflict Between Variable Declarations

static int foo = 0;
extern int foo; /* Non-compliant */

extern int hhh;
static int hhh; /* Non-compliant */

In this example, the first line defines foo with internal linkage. The first line is compliant
because the example uses the static keyword. The second line does not use static in
the declaration, so the declaration is noncompliant. By comparison, the third line declares
hhh with an extern keyword creating external linkage. The fourth line declares hhh with
internal linkage, but this declaration conflicts with the first declaration of hhh.

Correction — Consistent static and extern Use

One possible correction is to use static and extern consistently:

static int foo = 0;
static int foo;

extern int hhh;
extern int hhh;

Example - Linkage Conflict Between Function Declaration and Definition

static int fee(void); /* Compliant - declaration: internal linkage */
int fee(void){ /* Non-compliant */
 return 1;
}

static int ggg(void); /* Compliant - declaration: internal linkage */
extern int ggg(void){ /* Non-compliant */
 return 1 + x;
}

This example shows two internal linkage violations. Because fee and ggg have internal
linkage, you must use a static class specifier to be compliant with MISRA.

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

7 CERT C Rules and Recommendations

7-20

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL36-C

Introduced in R2019a

 CERT C: Rule DCL36-C

7-21

https://wiki.sei.cmu.edu/confluence/x/BNYxBQ

CERT C: Rule DCL37-C
Do not declare or define a reserved identifier

Description

Rule Definition
Do not declare or define a reserved identifier.

Examples

Defining and undefining reserved identifiers or macros
Description

The issue occurs when you use #define and #undef on a reserved identifier or reserved
macro name.

Risk

Reserved identifiers and reserved macro names are intended for use by the
implementation. Removing or changing the meaning of a reserved macro can result in
undefined behavior. This rule applies to the following:

• Identifiers or macro names beginning with an underscore
• Identifiers in file scope described in the C Standard Library (ISO/IEC 9899:1999,

Section 7, "Library")
• Macro names described in the C Standard Library as being defined in a standard

header (ISO/IEC 9899:1999, Section 7, "Library").

Example - Defining or Undefining Reserved Identifiers

#undef __LINE__ /* Non-compliant - begins with _ */
#define _Guard_H 1 /* Non-compliant - begins with _ */

7 CERT C Rules and Recommendations

7-22

#undef _ BUILTIN_sqrt /* Non-compliant - implementation may
 * use _BUILTIN_sqrt for other purposes,
 * e.g. generating a sqrt instruction */
#define defined /* Non-compliant - reserved identifier */
#define errno my_errno /* Non-compliant - library identifier */
#define isneg(x) ((x) < 0) /* Compliant - rule doesn't include
 * future library directions */

Declaring a reserved identifier or macro name
Description

The issue occurs when you declare a reserved identifier or macro name.

If you define a macro name that corresponds to a standard library macro, object, or
function, Polyspace considers this a violation of the rule.

The rule considers tentative definitions as definitions.

Risk

The Standard allows implementations to treat reserved identifiers specially. If you reuse
reserved identifiers, you can cause undefined behavior.

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL37-C

 CERT C: Rule DCL37-C

7-23

https://wiki.sei.cmu.edu/confluence/x/tNYxBQ

Introduced in R2019a

7 CERT C Rules and Recommendations

7-24

CERT C: Rule DCL38-C
Use the correct syntax when declaring a flexible array member

Description

Rule Definition
Use the correct syntax when declaring a flexible array member.

Examples

Incorrect syntax of flexible array member size
Description

Incorrect syntax of flexible array member size occurs when you do not use the
standard C syntax to define a structure with a flexible array member.

Since C99, you can define a flexible array member with an unspecified size. For instance,
desc is a flexible array member in this example:

struct record {
 size_t len;
 double desc[];
};

Prior to C99, you might have used compiler-specific methods to define flexible arrays. For
instance, you used arrays of size one or zero:

struct record {
 size_t len;
 double desc[0];
};

This usage is not compliant with the C standards following C99.

 CERT C: Rule DCL38-C

7-25

Risk

If you define flexible array members by using size zero or one, your implementation is
compiler-dependent. For compilers that do not recognize the syntax, an int array of size
one has buffer for one int variable. If you try to write beyond this buffer, you can run into
issues stemming from array access out of bounds.

If you use the standard C syntax to define a flexible array member, your implementation is
portable across all compilers conforming with the standard.

Fix

To implement a flexible array member in a structure, define an array of unspecified size.
The structure must have one member besides the array and the array must be the last
member of the structure.

Example - Flexible Array Member Defined with Size One

#include <stdlib.h>

struct flexArrayStruct {
 int num;
 int data[1];
};

unsigned int max_size = 100;

void func(unsigned int array_size) {
 if(array_size<= 0 || array_size > max_size)
 exit(1);
 /* Space is allocated for the struct */
 struct flexArrayStruct *structP
 = (struct flexArrayStruct *)
 malloc(sizeof(struct flexArrayStruct)
 + sizeof(int) * (array_size - 1));
 if (structP == NULL) {
 /* Handle malloc failure */
 exit(2);
 }

 structP->num = array_size;

 /*
 * Access data[] as if it had been allocated

7 CERT C Rules and Recommendations

7-26

 * as data[array_size].
 */
 for (unsigned int i = 0; i < array_size; ++i) {
 structP->data[i] = 1;
 }

 free(structP);
}

In this example, the flexible array member data is defined with a size value of one.
Compilers that do not recognize this syntax treat data as a size-one array. The statement
structP->data[i] = 1; can write to data beyond the first array member and cause
out of bounds array issues.

Correction — Use Standard C Syntax to Define Flexible Array

Define flexible array members with unspecified size.

#include <stdlib.h>

struct flexArrayStruct{
 int num;
 int data[];
};

unsigned int max_size = 100;

void func(unsigned int array_size) {
 if(array_size<=0 || array_size > max_size)
 exit(1);

 /* Allocate space for structure */
 struct flexArrayStruct *structP
 = (struct flexArrayStruct *)
 malloc(sizeof(struct flexArrayStruct)
 + sizeof(int) * array_size);

 if (structP == NULL) {
 /* Handle malloc failure */
 exit(2);
 }

 structP->num = array_size;

 CERT C: Rule DCL38-C

7-27

 /*
 * Access data[] as if it had been allocated
 * as data[array_size].
 */
 for (unsigned int i = 0; i < array_size; ++i) {
 structP->data[i] = 1;
 }

 free(structP);
}

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL38-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-28

https://wiki.sei.cmu.edu/confluence/x/GtcxBQ

CERT C: Rule DCL39-C
Avoid information leakage in structure padding

Description

Rule Definition
Avoid information leakage in structure padding.

Examples

Information leak via structure padding
Description

Information leak via structure padding occurs when you do not initialize the padding
data of a structure or union before passing it across a trust boundary. A compiler adds
padding bytes to the structure or union to ensure a proper memory alignment of its
members. The bit-fields of the storage units can also have padding bits.

Information leak via structure padding raises a defect when:

• You call an untrusted function with structure or union pointer type argument
containing uninitialized padding data.

All external functions are considered untrusted.
• You copy or assign a structure or union containing uninitialized padding data to an

untrusted object.

All external structure or union objects, the output parameters of all externally linked
functions, and the return pointer of all external functions are considered untrusted
objects.

 CERT C: Rule DCL39-C

7-29

Risk

The padding bytes of the passed structure or union might contain sensitive information
that an untrusted source can access.

Fix

• Prevent the addition of padding bytes for memory alignment by using the pack
pragma or attribute supported by your compiler.

• Explicitly declare and initialize padding bytes as fields within the structure or union.
• Explicitly declare and initialize bit-fields corresponding to padding bits, even if you use

the pack pragma or attribute supported by your compiler.

Example - Structure with Padding Bytes Passed to External Function

#include <stddef.h>
#include <stdlib.h>
#include <string.h>

typedef struct s_padding
{
 /* Padding bytes may be introduced between
 * 'char c' and 'int i'
 */
 char c;
 int i;

/*Padding bits may be introduced around the bit-fields
* even if you use "#pragma pack" (Windows) or
* __attribute__((__packed__)) (GNU)*/

 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* External function */
extern void copy_object(void *out, void *in, size_t s);

void func(void *out_buffer)
{

7 CERT C Rules and Recommendations

7-30

/*Padding bytes not initialized*/

 S_Padding s = {'A', 10, 1, 3, {}};
/*Structure passed to external function*/

 copy_object((void *)out_buffer, (void *)&s, sizeof(s));
}

void main(void)
{
 S_Padding s1;
 func(&s1);
}

In this example, structure s1 can have padding bytes between the char c and int i
members. The bit-fields of the storage units of the structure can also contain padding bits.
The content of the padding bytes and bits is accessible to an untrusted source when s1 is
passed to func.

Correction — Use pack Pragma to Prevent Padding Bytes

One possible correction in Microsoft Visual Studiois to use #pragma pack() to prevent
padding bytes between the structure members. To prevent padding bits in the bit-fields of
s1, explicitly declare and initialize the bit-fields even if you use #pragma pack().

 #include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>

#define CHAR_BIT 8

#pragma pack(push, 1)

typedef struct s_padding
{
/*No Padding bytes when you use "#pragma pack" (Windows) or
* __attribute__((__packed__)) (GNU)*/
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
/* Padding bits explicitely declared */
 unsigned int bf_filler : sizeof(unsigned) * CHAR_BIT - 3;

 CERT C: Rule DCL39-C

7-31

 unsigned char buffer[20];
}

 S_Padding;

#pragma pack(pop)

/* External function */
extern void copy_object(void *out, void *in, size_t s);

void func(void *out_buffer)
{
 S_Padding s = {'A', 10, 1, 3, 0 /* padding bits */, {}};
 copy_object((void *)out_buffer, (void *)&s, sizeof(s));
}

void main(void)
{
 S_Padding s1;
 func(&s1);
}

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL39-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-32

https://wiki.sei.cmu.edu/confluence/x/atUxBQ

CERT C: Rule DCL40-C
Do not create incompatible declarations of the same function or object

Description
Rule Definition
Do not create incompatible declarations of the same function or object.

Examples
Declaration mismatch
Description

Declaration mismatch occurs when a function or variable declaration does not match
other instances of the function or variable.

Risk

When a mismatch occurs between two variable declarations in different compilation units,
a typical linker follows an algorithm to pick one declaration for the variable. If you expect
a variable declaration that is different from the one chosen by the linker, you can see
unexpected results when the variable is used.

A similar issue can occur with mismatch in function declarations.

Fix

The fix depends on the type of declaration mismatch. If both declarations indeed refer to
the same object, use the same declaration. If the declarations refer to different objects,
change the names of the one of the variables. If you change a variable name, remember to
make the change in all places that use the variable.

Sometimes, declaration mismatches can occur because the declarations are affected by
previous preprocessing directives. For instance, a declaration occurs in a macro, and the

 CERT C: Rule DCL40-C

7-33

macro is defined on one inclusion path but undefined in another. These declaration
mismatches can be tricky to debug. Identify the divergence between the two inclusion
paths and fix the conflicting macro definitions.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Inconsistent Declarations in Two Files

file1.c

int foo(void) {
 return 1;
}

file2.c

double foo(void);

int bar(void) {
 return (int)foo();
}

In this example, file1.c declares foo() as returning an integer. In file2.c, foo() is
declared as returning a double. This difference raises a defect on the second instance of
foo in file2.

Correction — Align the Function Return Values

One possible correction is to change the function declarations so that they match. In this
example, by changing the declaration of foo in file2.c to match file1.c, the defect is fixed.

file1.c

int foo(void) {
 return 1;
}

file2.c

int foo(void);

int bar(void) {
 return foo();
}

7 CERT C Rules and Recommendations

7-34

Example - Inconsistent Structure Alignment

test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

In this example, a declaration mismatch defect is raised on square in square.h because
Polyspace infers that square in square.h does not have the same alignment as square in
test2.c. This error occurs because the #pragma pack(1) statement in circle.h declares
specific alignment. In test2.c, circle.h is included before square.h. Therefore, the
#pragma pack(1) statement from circle.h is not reset to the default alignment after the
aCircle structure. Because of this omission, test2.c infers that the aSquare square
structure also has an alignment of 1 byte.

Correction — Close Packing Statements

One possible correction is to reset the structure alignment after the aCircle struct
declaration. For the GNU or Microsoft Visual compilers, fix the defect by adding a
#pragma pack() statement at the end of circle.h.

 CERT C: Rule DCL40-C

7-35

test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

#pragma pack()

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

Other compilers require different #pragma pack syntax. For your syntax, see the
documentation for your compiler.

Correction — Use the Ignore pragma pack directives Option

One possible correction is to add the Ignore pragma pack directives option to your
Bug Finder analysis. If you want the structure alignment to change for each structure,
and you do not want to see this Declaration mismatch defect, use this correction.

1 On the Configuration pane, select the Advanced Settings pane.
2 In the Other box, enter -ignore-pragma-pack.
3 Rerun your analysis.

The Declaration mismatch defect is resolved.

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

7 CERT C Rules and Recommendations

7-36

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL40-C

Introduced in R2019a

 CERT C: Rule DCL40-C

7-37

https://wiki.sei.cmu.edu/confluence/x/ftUxBQ

CERT C: Rule DCL41-C
Do not declare variables inside a switch statement before the first case label

Description

Rule Definition
Do not declare variables inside a switch statement before the first case label.

Examples

Variable definition before first case label of switch statement
Description

The issue occurs when you define a variable in a switch block before the first case
label.

Risk

In a switch block, control jumps to one of the case labels or a default label,
depending on the control expression of the switch statement. If you define a variable
before the first case label, the definition is ignored and later read operations on the
variable in the switch block can lead to indeterminate values.

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

7 CERT C Rules and Recommendations

7-38

Topics
“Check for Coding Standard Violations”

External Websites
DCL41-C

Introduced in R2019a

 CERT C: Rule DCL41-C

7-39

https://wiki.sei.cmu.edu/confluence/x/s9YxBQ

CERT C: Rule EXP30-C
Do not depend on the order of evaluation for side effects

Description

Rule Definition
Do not depend on the order of evaluation for side effects.

Examples

Expression value depends on order of evaluation or of side
effects
Description

The issue occurs when the value of an expression and its persistent side effects is not the
same under all permitted evaluation orders.

An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and
written.

• The expression allows more than one order of evaluation.

Therefore, this rule forbids expressions where a variable is modified more than once and
can cause different results under different orders of evaluation.

Risk

If an expression results in different values depending on the order of evaluation, its value
becomes implementation-defined.

7 CERT C Rules and Recommendations

7-40

Example - Variable Modified More Than Once in Expression
int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */
 COPY_ELEMENT (i++); /* Noncompliant */
}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++
occurs twice and the order of evaluation of the two expressions is unspecified.

Example - Variable Modified and Used in Multiple Function Arguments
void f (unsigned int param1, unsigned int param2) {}

void main () {
 unsigned int i=0;
 f (i++, i); /* Non-compliant */
}

In this example, the rule is violated because it is unspecified whether the operation i++
occurs before or after the second argument is passed to f. The call f(i++,i) can
translate to either f(0,0) or f(0,1).

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP30-C

 CERT C: Rule EXP30-C

7-41

https://wiki.sei.cmu.edu/confluence/x/StYxBQ

Introduced in R2019a

7 CERT C Rules and Recommendations

7-42

CERT C: Rule EXP32-C
Do not access a volatile object through a nonvolatile reference

Description

Rule Definition
Do not access a volatile object through a nonvolatile reference.

Examples

Cast to pointer that removes volatile qualification
Description

Polyspace flags both implicit and explicit conversions that violate this rule.

Risk

This rule forbids casts from a pointer to a volatile object to a pointer that does not
point to a volatile object. Such casts violate type qualification.

Example - Casts That Remove Qualifiers

void foo(void) {
 volatile unsigned short *pvi; /* pointer to volatile */
 unsigned short *pi;

 pi = (unsigned short *) pvi; /* Non-compliant */

}

In this example, the variable pvi has a volatile qualifier in its type. The rule is violated
when the variable is cast to a type that does not have the volatile qualifier.

 CERT C: Rule EXP32-C

7-43

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP32-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-44

https://wiki.sei.cmu.edu/confluence/x/HNcxBQ

CERT C: Rule EXP33-C
Do not read uninitialized memory

Description

Rule Definition
Do not read uninitialized memory.

Examples

Non-initialized pointer
Description

Non-initialized pointer occurs when a pointer is not assigned an address before
dereference.

Risk

Unless a pointer is explicitly assigned an address, it points to an unpredictable location.

Fix

The fix depends on the root cause of the defect. For instance, you assigned an address to
the pointer but the assignment is unreachable.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below. It is a good practice to initialize a pointer to NULL when
declaring the pointer.

 CERT C: Rule EXP33-C

7-45

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Non-initialized pointer error
#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }

 *pi = j;
 /* Defect: Writing to uninitialized pointer */

 return pi;
}

If prev is not NULL, the pointer pi is not assigned an address. However, pi is
dereferenced on every execution paths, irrespective of whether prev is NULL or not.

Correction — Initialize Pointer on Every Execution Path

One possible correction is to assign an address to pi when prev is not NULL.

#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }
 /* Fix: Initialize pi in branches of if statement */
 else

7 CERT C Rules and Recommendations

7-46

 pi = prev;

 *pi = j;

 return pi;
}

Non-initialized variable
Description

Non-initialized variable occurs when a variable is not initialized before its value is read.

Risk

Unless a variable is explicitly initialized, the variable value is unpredictable. You cannot
rely on the variable having a specific value.

Fix

The fix depends on the root cause of the defect. For instance, you assigned a value to the
variable but the assignment is unreachable or you assigned a value to the variable in one
of two branches of a conditional statement. Fix the unreachable code or missing
assignment.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below. It is a good practice to initialize a variable at declaration.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Non-initialized variable error

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 int val;

 CERT C: Rule EXP33-C

7-47

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 /* Defect: val does not have a value if command is not 2 */
}

If command is not 2, the variable val is unassigned. In this case, the return value of
function get_sensor_value is undetermined.

Correction — Initialize During Declaration

One possible correction is to initialize val during declaration so that the initialization is
not bypassed on some execution paths.

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 /* Fix: Initialize val */
 int val=0;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 }

val is assigned an initial value of 0. When command is not equal to 2, the function
get_sensor_value returns this value.

Check Information
Group: Rule 03. Expressions (EXP)

7 CERT C Rules and Recommendations

7-48

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP33-C

Introduced in R2019a

 CERT C: Rule EXP33-C

7-49

https://wiki.sei.cmu.edu/confluence/x/AdYxBQ

CERT C: Rule EXP34-C
Do not dereference null pointers

Description

Rule Definition
Do not dereference null pointers.

Examples

Null pointer
Description

Null pointer occurs when you use a pointer with a value of NULL as if it points to a valid
memory location.

Risk

Dereferencing a null pointer is undefined behavior. In most implementations, the
dereference can cause your program to crash.

Fix

Check a pointer for NULL before dereference.

If the issue occurs despite an earlier check for NULL, look for intermediate events
between the check and the subsequent dereference. Often the result details show a
sequence of events that led to the defect. You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using
right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

See examples of fixes below.

7 CERT C Rules and Recommendations

7-50

Example - Null pointer error

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 int* p=NULL;

 *p=arr[0];
 /* Defect: Null pointer dereference */

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

The pointer p is initialized with value of NULL. However, when the value arr[0] is
written to *p, p is assumed to point to a valid memory location.

Correction — Assign Address to Null Pointer Before Dereference

One possible correction is to initialize p with a valid memory address before dereference.

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 /* Fix: Assign address to null pointer */
 int* p=&arr[0];

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

 CERT C: Rule EXP34-C

7-51

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP34-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-52

https://wiki.sei.cmu.edu/confluence/x/QdcxBQ

CERT C: Rule EXP35-C
Do not modify objects with temporary lifetime

Description
Rule Definition
Do not modify objects with temporary lifetime.

Examples
Accessing object with temporary lifetime
Description

Accessing object with temporary lifetime occurs when you attempt to read from or
write to an object with temporary lifetime that is returned by a function call. In a
structure or union returned by a function, and containing an array, the array members are
temporary objects. The lifetime of temporary objects ends:

• When the full expression or full declarator containing the call ends, as defined in the
C11 Standard.

• After the next sequence point, as defined in the C90 and C99 Standards. A sequence
point is a point in the execution of a program where all previous evaluations are
complete and no subsequent evaluation has started yet.

For C++ code, Accessing object with temporary lifetime raises a defect only when
you write to an object with a temporary lifetime.

If the temporary lifetime object is returned by address, no defect is raised.

Risk

Modifying objects with temporary lifetime is undefined behavior and can cause abnormal
program termination and portability issues.

 CERT C: Rule EXP35-C

7-53

Fix

Assign the object returned from the function call to a local variable. The content of the
temporary lifetime object is copied to the variable. You can now modify it safely.

Example - Modifying Temporary Lifetime Object Returned by Function Call
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

/* func_temp() returns a struct value containing
* an array with a temporary lifetime.
*/
int func(void) {

/*Writing to temporary lifetime object is
 undefined behavior
 */
 return ++(func_temp().a[0]);
}

void main(void) {
 (void)func();
}

In this example, func_temp() returns by value a structure with an array member a. This
member has temporary lifetime. Incrementing it is undefined behavior.

Correction — Assign Returned Value to Local Variable Before Writing

One possible correction is to assign the return of the call to func_temp() to a local
variable. The content of the temporary object a is copied to the variable, which you can
safely increment.

7 CERT C Rules and Recommendations

7-54

 #include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

int func(void) {

/* Assign object returned by function call to
 *local variable
 */
 struct S_Array s = func_temp();

/* Local variable can safely be
 *incremented
 */
 ++(s.a[0]);
 return s.a[0];
}

void main(void) {
 (void)func();
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rule EXP35-C

7-55

Topics
“Check for Coding Standard Violations”

External Websites
EXP35-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-56

https://wiki.sei.cmu.edu/confluence/x/utUxBQ

CERT C: Rule EXP36-C
Do not cast pointers into more strictly aligned pointer types

Description

Rule Definition
Do not cast pointers into more strictly aligned pointer types.

Examples

Wrong allocated object size for cast
Description

Wrong allocated object size for cast occurs during pointer conversion when the
pointer’s address is misaligned. If a pointer is converted to a different pointer type, the
size of the allocated memory must be a multiple of the size of the destination pointer.

Risk

Dereferencing a misaligned pointer has undefined behavior and can cause your program
to crash.

Fix

Suppose you convert a pointer ptr1 to ptr2. If ptr1 points to a buffer of N bytes and
ptr2 is a type * pointer where sizeof(type) is n bytes, make sure that N is an
integer multiple of n.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 CERT C: Rule EXP36-C

7-57

Example - Dynamic Allocation of Pointers

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(13);
 long *dest;

 dest = (long*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to a long*. The
dynamically allocated memory of ptr, 13 bytes, is not a multiple of the size of dest, 4
bytes. This misalignment causes the Wrong allocated object size for cast defect.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the allocated memory to 12 instead of 13.

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(12);
 long *dest;

 dest = (long*)ptr;
}

Example - Static Allocation of Pointers

void static_non_align(void){
 char arr[13], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to an int* in line
6. ptr has a memory size of 13 bytes because the array arr has a size of 13 bytes. The
size of dest is 4 bytes, which is not a multiple of 13. This misalignment causes the
Wrong allocated object size for cast defect.

7 CERT C Rules and Recommendations

7-58

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the size of the array arr to a multiple of 4.

void static_non_align(void){
 char arr[12], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr;
}

Example - Allocation with a Function

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(13); //defect
 dest2 = (char*)my_alloc(13); //not a defect
}

In this example, the software raises a defect on the conversion of the pointer returned by
my_alloc(13) to an int* in line 11. my_alloc(13) returns a pointer with a
dynamically allocated size of 13 bytes. The size of dest1 is 4 bytes, which is not a divisor
of 13. This misalignment causes the Wrong allocated object size for cast defect. In line
12, the same function call, my_alloc(13), does not call a defect for the conversion to
dest2 because the size of char*, 1 byte, a divisor of 13.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the argument for my_alloc to a multiple of
4.

 CERT C: Rule EXP36-C

7-59

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(12);
 dest2 = (char*)my_alloc(13);
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP36-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-60

https://wiki.sei.cmu.edu/confluence/x/u9UxBQ

CERT C: Rule EXP37-C
Call functions with the correct number and type of arguments

Description

Rule Definition
Call functions with the correct number and type of arguments.

Examples

Bad file access mode or status
Description

Bad file access mode or status occurs when you use functions in the fopen or open
group with invalid or incompatible file access modes, file creation flags, or file status flags
as arguments. For instance, for the open function, examples of valid:

• Access modes include O_RDONLY, O_WRONLY, and O_RDWR
• File creation flags include O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC.
• File status flags include O_APPEND, O_ASYNC, O_CLOEXEC, O_DIRECT, O_DIRECTORY,

O_LARGEFILE, O_NOATIME, O_NOFOLLOW, O_NONBLOCK, O_NDELAY, O_SHLOCK,
O_EXLOCK, O_FSYNC, O_SYNC and so on.

The defect can occur in the following situations.

 CERT C: Rule EXP37-C

7-61

Situation Risk Fix
You pass an empty or invalid
access mode to the fopen
function.

According to the ANSI C
standard, the valid access
modes for fopen are:

• r,r+
• w,w+
• a,a+
• rb, wb, ab
• r+b, w+b, a+b
• rb+, wb+, ab+

fopen has undefined
behavior for invalid access
modes.

Some implementations allow
extension of the access
mode such as:

• GNU: rb
+cmxe,ccs=utf

• Visual C++: a+t, where
t specifies a text mode.

However, your access mode
string must begin with one
of the valid sequences.

Pass a valid access mode to
fopen.

You pass the status flag
O_APPEND to the open
function without combining
it with either O_WRONLY or
O_RDWR.

O_APPEND indicates that
you intend to add new
content at the end of a file.
However, without O_WRONLY
or O_RDWR, you cannot write
to the file.

The open function does not
return -1 for this logical
error.

Pass either O_APPEND|
O_WRONLY or O_APPEND|
O_RDWR as access mode.

You pass the status flags
O_APPEND and O_TRUNC
together to the open
function.

O_APPEND indicates that
you intend to add new
content at the end of a file.
However, O_TRUNC indicates
that you intend to truncate
the file to zero. Therefore,
the two modes cannot
operate together.

The open function does not
return -1 for this logical
error.

Depending on what you
intend to do, pass one of the
two modes.

7 CERT C Rules and Recommendations

7-62

Situation Risk Fix
You pass the status flag
O_ASYNC to the open
function.

On certain implementations,
the mode O_ASYNC does not
enable signal-driven I/O
operations.

Use the fcntl(pathname,
F_SETFL, O_ASYNC);
instead.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Access Mode with fopen
#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "rw");
 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

In this example, the access mode rw is invalid. Because r indicates that you open the file
for reading and w indicates that you create a new file for writing, the two access modes
are incompatible.

Correction — Use Either r or w as Access Mode

One possible correction is to use the access mode corresponding to what you intend to do.

#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "w");

 CERT C: Rule EXP37-C

7-63

 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

Unreliable cast of function pointer
Description

Unreliable cast of function pointer occurs when a function pointer is cast to another
function pointer that has different argument or return type.

This defect applies only if the code language for the project is C.

Risk

If you cast a function pointer to another function pointer with different argument or
return type and then use the latter function pointer to call a function, the behavior is
undefined.

Fix

Avoid a cast between two function pointers with mismatch in argument or return types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Unreliable cast of function pointer error

#include <stdio.h>
#include <math.h>
#include <stdio.h>
#define PI 3.142

double Calculate_Sum(int (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)

7 CERT C Rules and Recommendations

7-64

 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 /* Defect: fp implicitly cast to int(*) (double) */

 printf("sum(sin): %f\n", sum);
 return 0;
}

The function pointer fp is declared as double (*)(double). However in passing it to
function Calculate_Sum, fp is implicitly cast to int (*)(double).

Correction — Avoid Function Pointer Cast

One possible correction is to check that the function pointer in the definition of
Calculate_Sum has the same argument and return type as fp. This step makes sure
that fp is not implicitly cast to a different argument or return type.

#include <stdio.h>
#include <math.h>
#include <stdio.h>
define PI 3.142

/*Fix: fptr has same argument and return type everywhere*/
double Calculate_Sum(double (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;

 CERT C: Rule EXP37-C

7-65

 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 printf("sum(sin): %f\n", sum);

 return 0;
}

Standard function call with incorrect arguments
Description

Standard function call with incorrect arguments occurs when the arguments to
certain standard functions do not meet the requirements for their use in the functions.

For instance, the arguments to these functions can be invalid in the following ways.

Function Type Situation Risk Fix
String manipulation
functions such as
strlen and strcpy

The pointer
arguments do not
point to a NULL-
terminated string.

The behavior of the
function is
undefined.

Pass a NULL-
terminated string to
string manipulation
functions.

File handling
functions in stdio.h
such as fputc and
fread

The FILE* pointer
argument can have
the value NULL.

The behavior of the
function is
undefined.

Test the FILE*
pointer for NULL
before using it as
function argument.

7 CERT C Rules and Recommendations

7-66

Function Type Situation Risk Fix
File handling
functions in
unistd.h such as
lseek and read

The file descriptor
argument can be -1.

The behavior of the
function is
undefined.

Most
implementations of
the open function
return a file
descriptor value of
-1. In addition, they
set errno to indicate
that an error has
occurred when
opening a file.

Test the return value
of the open function
for -1 before using it
as argument for
read or lseek.

If the return value is
-1, check the value of
errno to see which
error has occurred.

The file descriptor
argument represents
a closed file
descriptor.

The behavior of the
function is
undefined.

Close the file
descriptor only after
you have completely
finished using it.
Alternatively, reopen
the file descriptor
before using it as
function argument.

Directory name
generation functions
such as mkdtemp and
mkstemps

The last six
characters of the
string template are
not XXXXXX.

The function
replaces the last six
characters with a
string that makes the
file name unique. If
the last six
characters are not
XXXXXX, the function
cannot generate a
unique enough
directory name.

Test if the last six
characters of a string
are XXXXXX before
using the string as
function argument.

 CERT C: Rule EXP37-C

7-67

Function Type Situation Risk Fix
Functions related to
environment
variables such as
getenv and setenv

The string argument
is "".

The behavior is
implementation-
defined.

Test the string
argument for ""
before using it as
getenv or setenv
argument.

The string argument
terminates with an
equal sign, =. For
instance, "C="
instead of "C".

The behavior is
implementation-
defined.

Do not terminate the
string argument with
=.

String handling
functions such as
strtok and strstr

• strtok: The
delimiter
argument is "".

• strstr: The
search string
argument is "".

Some
implementations do
not handle these
edge cases.

Test the string for ""
before using it as
function argument.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - NULL Pointer Passed as strnlen Argument

#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

7 CERT C Rules and Recommendations

7-68

int func() {
 char* s = NULL;
 return strnlen(s, SIZE20);
}

In this example, a NULL pointer is passed as strnlen argument instead of a NULL-
terminated string.

Before running analysis on the code, specify a GNU compiler. See Compiler (-
compiler).

Correction — Pass NULL-terminated String

Pass a NULL-terminated string as the first argument of strnlen.

#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

int func() {
 char* s = "";
 return strnlen(s, SIZE20);
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rule EXP37-C

7-69

External Websites
EXP37-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-70

https://wiki.sei.cmu.edu/confluence/x/49UxBQ

CERT C: Rule EXP39-C
Do not access a variable through a pointer of an incompatible type

Description

Rule Definition
Do not access a variable through a pointer of an incompatible type.

Examples

Cast to pointer pointing to object of different type
Description

The issue occurs when you perform a cast between a pointer to an object type and a
pointer to a different object type.

Risk

If a pointer to an object is cast into a pointer to a different object, the resulting pointer
can be incorrectly aligned. The incorrect alignment causes undefined behavior.

Even if the conversion produces a pointer that is correctly aligned, the behavior can be
undefined if the pointer is used to access an object.

Exception: You can convert a pointer to object type into a pointer to one of the following
types:

• char
• signed char
• unsigned char

 CERT C: Rule EXP39-C

7-71

Example - Noncompliant: Cast to Pointer Pointing to Object of Wider Type

signed char *p1;
unsigned int *p2;

void foo(void){
 p2 = (unsigned int *) p1; /* Non-compliant */
}

In this example, p1 can point to a signed char object. However, p1 is cast to a pointer
that points to an object of wider type, unsigned int.

Example - Noncompliant: Cast to Pointer Pointing to Object of Narrower Type

extern unsigned int read_value (void);
extern void display (unsigned int n);

void foo (void){
 unsigned int u = read_value ();
 unsigned short *hi_p = (unsigned short *) &u; /* Non-compliant */
 *hi_p = 0;
 display (u);
}

In this example, u is an unsigned int variable. &u is cast to a pointer that points to an
object of narrower type, unsigned short.

On a big-endian machine, the statement *hi_p = 0 attempts to clear the high bits of the
memory location that &u points to. But, from the result of display(u), you might find
that the high bits have not been cleared.

Example - Compliant: Cast Adding a Type Qualifier

const short *p;
const volatile short *q;
void foo (void){
 q = (const volatile short *) p; /* Compliant */
}

In this example, both p and q can point to short objects. The cast between them adds a
volatile qualifier only and is therefore compliant.

7 CERT C Rules and Recommendations

7-72

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP39-C

Introduced in R2019a

 CERT C: Rule EXP39-C

7-73

https://wiki.sei.cmu.edu/confluence/x/ptYxBQ

CERT C: Rule EXP40-C
Do not modify constant objects

Description

Rule Definition
Do not modify constant objects.

Examples

Writing to const qualified object
Description

Writing to const qualified object occurs when you do one of the following:

• Use a const-qualified object as the destination of an assignment.
• Pass a const-qualified object to a function that modifies the argument.

For instance, the defect can occur in the following situations:

• You pass a const-qualified object as first argument of one of the following functions:

• mkstemp
• mkostemp
• mkostemps
• mkdtemp

• You pass a const-qualified object as the destination argument of one of the following
functions:

• strcpy
• strncpy

7 CERT C Rules and Recommendations

7-74

• strcat
• memset

• You perform a write operation on a const-qualified object.

Risk

The risk depends upon the modifications made to the const-qualified object.

Situation Risk
Passing to mkstemp, mkostemp,
mkostemps, mkdtemp, and so on.

These functions replace the last six
characters of their first argument with a
string. Therefore, they expect a modifiable
char array as their first argument.

Passing to strcpy, strncpy, strcat,
memset and so on.

These functions modify their destination
argument. Therefore, they expect a
modifiable char array as their destination
argument.

Writing to the object The const qualifier implies an agreement
that the value of the object will not be
modified. By writing to a const-qualified
object, you break the agreement. The result
of the operation is undefined.

Fix

The fix depends on the modification made to the const-qualified object.

Situation Fix
Passing to mkstemp, mkostemp,
mkostemps, mkdtemp, and so on.

Pass a non-const object as first argument
of the function.

Passing to strcpy, strncpy, strcat,
memset and so on.

Pass a non-const object as destination
argument of the function.

Writing to the object Perform the write operation on a non-
const object.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 CERT C: Rule EXP40-C

7-75

Example - Writing to const-Qualified Object

#include <string.h>

const char* buffer = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

In this example, because buffer is const-qualified, strchr(buffer,'X') returns a
const-qualified char* pointer. When this char* pointer is used as the destination
argument of strcpy, a Writing to const qualified object error appears.

Correction — Copy const-Qualified Object to Non-const Object

One possible correction is to assign the constant string to a non-const object and use the
non-const object as destination argument of strchr.

#include <string.h>

char buffer[] = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

7 CERT C Rules and Recommendations

7-76

External Websites
EXP40-C

Introduced in R2019a

 CERT C: Rule EXP40-C

7-77

https://wiki.sei.cmu.edu/confluence/x/EdcxBQ

CERT C: Rule EXP42-C
Do not compare padding data

Description

Rule Definition
Do not compare padding data.

Examples

Memory comparison of padding data
Description

Memory comparison of padding data occurs when you use the memcmp function to
compare two structures as a whole. In the process, you compare meaningless data stored
in the structure padding.

For instance:

struct structType {
 char member1;
 int member2;
 .
 .
};

structType var1;
structType var2;
.
.
if(memcmp(&var1,&var2,sizeof(var1)))
{...}

7 CERT C Rules and Recommendations

7-78

Risk

If members of a structure have different data types, your compiler introduces additional
padding for data alignment in memory. For an example of padding, see Higher
Estimate of Local Variable Size.

The content of these extra padding bytes is meaningless. The C Standard allows the
content of these bytes to be indeterminate, giving different compilers latitude to
implement their own padding. If you perform a byte-by-byte comparison of structures
with memcmp, you compare even the meaningless data stored in the padding. You might
reach the false conclusion that two data structures are not equal, even if their
corresponding members have the same value.

Fix

Instead of comparing two structures in one attempt, compare the structures member by
member.

For efficient code, write a function that does the comparison member by member. Use this
function for comparing two structures.

You can use memcmp for byte-by-byte comparison of structures only if you know that the
structures do not contain padding. Typically, to prevent padding, you use specific
attributes or pragmas such as #pragma pack. However, these attributes or pragmas are
not supported by all compilers and make your code implementation-dependent. If your
structures contain bit-fields, using these attributes or pragmas cannot prevent padding.

Example - Structures Compared with memcmp

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

 CERT C: Rule EXP42-C

7-79

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{

 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 if (0 == memcmp(left, right, sizeof(S_Padding)))
 {
 return 1;
 }
 else
 return 0;
}

In this example, memcmp compares byte-by-byte the two structures that left and right
point to. Even if the values stored in the structure members are the same, the comparison
can show an inequality if the meaningless values in the padding bytes are not the same.

Correction — Compare Structures Member by Member

One possible correction is to compare individual structure members.

Note You can compare entire arrays by using memcmp. All members of an array have the
same data type. Padding bytes are not required to store arrays.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;

7 CERT C Rules and Recommendations

7-80

 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{
 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 return ((left->c == right->c) &&
 (left->i == right->i) &&
 (left->bf1 == right->bf1) &&
 (left->bf2 == right->bf2) &&
 (memcmp(left->buffer, right->buffer, 20) == 0));
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP42-C

Introduced in R2019a

 CERT C: Rule EXP42-C

7-81

https://wiki.sei.cmu.edu/confluence/x/PtUxBQ

CERT C: Rule EXP43-C
Avoid undefined behavior when using restrict-qualified pointers

Description

Rule Definition
Avoid undefined behavior when using restrict-qualified pointers.

Examples

Copy of overlapping memory
Description

Copy of overlapping memory occurs when there is a memory overlap between the
source and destination argument of a copy function such as memcpy or strcpy. For
instance, the source and destination arguments of strcpy are pointers to different
elements in the same string.

Risk

If there is memory overlap between the source and destination arguments of copy
functions, according to C standards, the behavior is undefined.

Fix

Determine if the memory overlap is what you want. If so, find an alternative function. For
instance:

• If you are using memcpy to copy values from one memory location to another, use
memmove instead of memcpy.

• If you are using strcpy to copy one string to another, use memmove instead of
strcpy, as follows:

7 CERT C Rules and Recommendations

7-82

s = strlen(source);
memmove(destination, source, s + 1);

strlen determines the string length without the null terminator. Therefore, you must
move s+1 bytes instead of s bytes.

Example - Overlapping Copy

#include <string.h>

char str[] = {"ABCDEFGH"};

void my_copy() {
 strcpy(&str[0],(const char*)&str[2]);
}

In this example, because the source and destination argument are pointers to the same
string str, there is memory overlap between their allowed buffers.

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP43-C

Introduced in R2019a

 CERT C: Rule EXP43-C

7-83

https://wiki.sei.cmu.edu/confluence/x/N9UxBQ

CERT C: Rule EXP44-C
Do not rely on side effects in operands to sizeof, _Alignof, or _Generic

Description

Rule Definition
Do not rely on side effects in operands to sizeof, _Alignof, or _Generic.

Examples

Side effect of expression ignored
Description

Side effect of expression ignored occurs when the sizeof, _Alignof, or _Generic
operator operates on an expression with a side effect. When evaluated, an expression with
side effect modifies at least one of the variables in the expression.

For instance, the defect checker does not flag sizeof(n+1) because n+1 does not
modify n. The checker flags sizeof(n++) because n++ is intended to modify n.

The check also applies to the C++ operator alignof and its C extensions, __alignof__
and __typeof__.

Risk

The expression in a _Alignof or _Generic operator is not evaluated. The expression in
a sizeof operator is evaluated only if it is required for calculating the size of a variable-
length array, for instance, sizeof(a[n++]).

When an expression with a side effect is not evaluated, the variable modification from the
side effect does not happen. If you rely on the modification, you can see unexpected
results.

7 CERT C Rules and Recommendations

7-84

Fix

Evaluate the expression with a side effect in a separate statement, and then use the result
in a sizeof, _Alignof, or _Generic operator.

For instance, instead of:

a = sizeof(n++);

perform the operation in two steps:

n++;
a = sizeof(n);

The checker considers a function call as an expression with a side effect. Even if the
function does not have side effects now, it might have side effects on later additions. The
code is more maintainable if you call the function outside the sizeof operator.

Example - Increment Operator in sizeof
#include <stdio.h>

void func(void) {
 unsigned int a = 1U;
 unsigned int b = (unsigned int)sizeof(++a);
 printf ("%u, %u\n", a, b);
}

In this example, sizeof operates on ++a, which is intended to modify a. Because the
expression is not evaluated, the modification does not happen. The printf statement
shows that a still has the value 1.

Correction — Perform Increment Outside sizeof

One possible correction is to perform the increment first, and then provide the result to
the sizeof operator.

#include <stdio.h>

void func(void) {
 unsigned int a = 1U;
 ++a;
 unsigned int b = (unsigned int)sizeof (a);
 printf ("%u, %u\n", a, b);
}

 CERT C: Rule EXP44-C

7-85

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP44-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-86

https://wiki.sei.cmu.edu/confluence/x/_NYxBQ

CERT C: Rule EXP45-C
Do not perform assignments in selection statements

Description

Rule Definition
Do not perform assignments in selection statements.

Examples

Invalid use of = (assignment) operator
Description

Invalid use of = operator occurs when an assignment is made inside the predicate of a
conditional, such as if or while.

In C and C++, a single equal sign is an assignment not a comparison. Using a single
equal sign in a conditional statement can indicate a typo or a mistake.

Risk

• Conditional statement tests the wrong values— The single equal sign operation
assigns the value of the right operand to the left operand. Then, because this
assignment is inside the predicate of a conditional, the program checks whether the
new value of the left operand is nonzero or not NULL.

• Maintenance and readability issues — Even if the assignment is intended, someone
reading or updating the code can misinterpret the assignment as an equality
comparison instead of an assignment.

Fix

• If the assignment is a bug, to check for equality, add a second equal sign (==).

 CERT C: Rule EXP45-C

7-87

• If the assignment inside the conditional statement was intentional, to improve
readability, separate the assignment and the test. Move the assignment outside the
control statement. In the control statement, simply test the result of the assignment.

If you do not want to fix the issue, add comments to your result or code to avoid
another review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Single Equal Sign Inside an if Condition
#include <stdio.h>

void bad_equals_ex(int alpha, int beta)
{
 if(alpha = beta)
 {
 printf("Equal\n");
 }
}

The equal sign is flagged as a defect because the assignment operator is used within the
predicate of the if-statement. The predicate assigns the value beta to alpha, then
implicitly tests whether alpha is true or false.

Correction — Change Expression to Comparison

One possible correction is adding an additional equal sign. This correction changes the
assignment to a comparison. The if condition compares whether alpha and beta are
equal.

#include <stdio.h>

void equality_test(int alpha, int beta)
{
 if(alpha == beta)
 {
 printf("Equal\n");
 }
}

Correction — Assignment and Comparison Inside the if Condition

If an assignment must be made inside the predicate, a possible correction is adding an
explicit comparison. This correction assigns the value of beta to alpha, then explicitly
checks whether alpha is nonzero. The code is clearer.

7 CERT C Rules and Recommendations

7-88

#include <stdio.h>

int assignment_not_zero(int alpha, int beta)
{
 if((alpha = beta) != 0)
 {
 return alpha;
 }
 else
 {
 return 0;
 }
}

Correction — Move Assignment Outside the if Statement

If the assignment can be made outside the control statement, one possible correction is to
separate the assignment and comparison. This correction assigns the value of beta to
alpha before the if. Inside the if-condition, only alpha is given to test if alpha is
nonzero or not NULL.

#include <stdio.h>

void assign_and_print(int alpha, int beta)
{
 alpha = beta;
 if(alpha)
 {
 printf("%d", alpha);
 }
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rule EXP45-C

7-89

External Websites
EXP45-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-90

https://wiki.sei.cmu.edu/confluence/x/ZNYxBQ

CERT C: Rule EXP46-C
Do not use a bitwise operator with a Boolean-like operand

Description

Rule Definition
Do not use a bitwise operator with a Boolean-like operand.

Examples

Possible invalid operation on boolean operand
Description

Possible invalid operation on boolean operand occurs when you use a Boolean
operand in an arithmetic, relational, or bitwise operation and:

• The Boolean operand has a trap representation. The size of a Boolean type in memory
is at least one addressable unit (size of char). A Boolean type requires only one bit to
represent the value true (1) or false (0). The representation of a Boolean
operand in memory contains padding bits. The memory representation can result in
values that are not true or false, a trap representation.

• The result of the operation can exceed the precision of the Boolean operand.

For example, in this code snippet:

bool_v >> 2

• If the value of bool_v is true (1) or false (0), the bitwise shift exceeds the one-
bit precision of bool_v and always results in 0.

• If bool_v has a trap representation, the result of the operation is an arbitrary value.

Possible invalid operation on boolean operand raises no defect when:

 CERT C: Rule EXP46-C

7-91

• The operation does not result in a precision overflow. For instance, bitwise & or |
operations with 0x01 or 0x00.

• The Boolean operand cannot have a trap representation. For instance, a constant
expression that results in 0 or 1, or a comparison evaluated to true or false.

Risk

Arithmetic, relational, or bitwise operations on a Boolean operand can exceed the
operand precision and cause unexpected results when used as a Boolean value.
Operations on Boolean operands with trap representations can return arbitrary values.

Fix

Avoid performing operations on Boolean operands other than these operations:

• Assignment operation (=).
• Equality operations (== or !=).
• Logical operations (&&, ||, or !).

Example - Possible Trap Representation of Boolean Operand
#include <stdio.h>
#include <stdbool.h>

#define BOOL _Bool

int arr[2] = {1, 2};

int func(BOOL b)
{
 return arr[b];
}

int main(void)
{
 BOOL b;
 char* ptr = (char*)&b;
 *ptr = 64;
 return func(b);
}

In this example, Boolean operand b is used as an array index in func for an array with
two elements. Depending on the compiler and optimization flags you use, the value b

7 CERT C Rules and Recommendations

7-92

might not be 0 or 1. For instance, in Linux Debian 8, if you use gcc version 4.9 with
optimization flag -O0, the value of b is 64, which causes a buffer overflow.

Correction — Use Only Last Significant Bit Value of Boolean Operand

One possible correction is to use a variable b0 of type unsigned int to get only the
value of the last significant bit of the Boolean operand. The value of this bit is in the range
[0..1], even if the Boolean operand has a trap representation.

#include <stdio.h>
#include <stdbool.h>

#define BOOL _Bool

int arr[2] = {1, 2};

int func(BOOL b)
{
 unsigned int b0 = (unsigned int)b;
 b0 &= 0x1;
 return arr[b0];
}

int main(void)
{
 BOOL b;
 char* ptr = (char*)&b;
 *ptr = 64;
 return func(b);
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rule EXP46-C

7-93

External Websites
EXP46-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-94

https://wiki.sei.cmu.edu/confluence/x/WNYxBQ

CERT C: Rule EXP47-C
Do not call va_arg with an argument of the incorrect type

Description

Rule Definition
Do not call va_arg with an argument of the incorrect type.

Examples

Incorrect data type passed to va_arg
Description

Incorrect data type passed to va_arg when the data type in a va_arg call does not
match the data type of the variadic function argument that va_arg reads.

For instance, you pass an unsigned char argument to a variadic function func.
Because of default argument promotion, the argument is promoted to int. When you use
a va_arg call that reads an unsigned char argument, a type mismatch occurs.

void func (int n, ...) {
 ...
 va_list args;
 va_arg(args, unsigned char);
 ...
}

void main(void) {
 unsigned char c;
 func(1,c);
}

 CERT C: Rule EXP47-C

7-95

Risk

In a variadic function (function with variable number of arguments), you use va_arg to
read each argument from the variable argument list (va_list). The va_arg use does not
guarantee that there actually exists an argument to read or that the argument data type
matches the data type in the va_arg call. You have to make sure that both conditions are
true.

Reading an incorrect type with a va_arg call can result in undefined behavior. Because
function arguments reside on the stack, you might access an unwanted area of the stack.

Fix

Make sure that the data type of the argument passed to the variadic function matches the
data type in the va_arg call.

Arguments of a variadic function undergo default argument promotions. The argument
data types of a variadic function cannot be determined from a prototype. The arguments
of such functions undergo default argument promotions (see Sec. 6.5.2.2 and 7.15.1.1 in
the C99 Standard). Integer arguments undergo integer promotion and arguments of type
float are promoted to double. For integer arguments, if a data type can be represented
by an int, for instance, char or short, it is promoted to an int. Otherwise, it is
promoted to an unsigned int. All other arguments do not undergo promotion.

To avoid undefined and implementation-defined behavior, minimize the use of variadic
functions. Use the checkers for MISRA C:2012 Rule 17.1 or MISRA C++:2008 Rule
8-4-1 to detect use of variadic functions.

Example - char Used as Function Argument Type and va_arg argument

#include <stdarg.h>
#include <stdio.h>

unsigned char func(size_t count, ...) {
 va_list ap;
 unsigned char result = 0;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, unsigned char);
 }
 va_end(ap);
 return result;
}

7 CERT C Rules and Recommendations

7-96

void func_caller(void) {
 unsigned char c = 0x12;
 (void)func(1, c);
}

In this example, func takes an unsigned char argument, which undergoes default
argument promotion to int. The data type in the va_arg call is still unsigned char,
which does not match the int argument type.

Correction — Use int as va_arg Argument

One possible correction is to read an int argument with va_arg.

#include <stdarg.h>
#include <stdio.h>

unsigned char func(size_t count, ...) {
 va_list ap;
 unsigned char result = 0;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 }
 va_end(ap);
 return result;
}

void func_caller(void) {
 unsigned char c = 0x12;
 (void)func(1, c);
}

Too many va_arg calls for current argument list
Description

Too many va_arg calls for current argument list occurs when the number of calls to
va_arg exceeds the number of arguments passed to the corresponding variadic function.
The analysis raises a defect only when the variadic function is called.

Too many va_arg calls for current argument list does not raise a defect when:

 CERT C: Rule EXP47-C

7-97

• The number of calls to va_arg inside the variadic function is indeterminate. For
example, if the calls are from an external source.

• The va_list used in va_arg is invalid.

Risk

When you call va_arg and there is no next argument available in va_list, the behavior
is undefined. The call to va_arg might corrupt data or return an unexpected result.

Fix

Ensure that you pass the correct number of arguments to the variadic function.

Example - No Argument Available When Calling va_arg

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/
int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {
/* No further argument available
* in va_list when calling va_arg
*/

 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100);

7 CERT C Rules and Recommendations

7-98

}

In this example, the named argument and only one variadic argument are passed to
variadic_func() when it is called inside func(). On the second call to va_arg, no
further variadic argument is available in ap and the behavior is undefined.

Correction — Pass Correct Number of Arguments to Variadic Function

One possible correction is to ensure that you pass the correct number of arguments to the
variadic function.

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/

int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {

/* The correct number of arguments is
* passed to va_list when variadic_func()
* is called inside func()
*/
 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100, 200);

}

 CERT C: Rule EXP47-C

7-99

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP47-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-100

https://wiki.sei.cmu.edu/confluence/x/d9UxBQ

CERT C: Rule INT30-C
Ensure that unsigned integer operations do not wrap

Description

Rule Definition
Ensure that unsigned integer operations do not wrap.

Examples

Unsigned integer overflow
Description

Unsigned integer overflow occurs when an operation on unsigned integer variables can
result in values that cannot be represented by the result data type. The data type of a
variable determines the number of bytes allocated for the variable storage and constrains
the range of allowed values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

The C11 standard states that unsigned integer overflows result in wrap-around behavior.
However, a wrap around behavior might not always be desirable. For instance, if the
result of a computation is used as an array size and the computation overflows, the array
size is much smaller than expected.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click

 CERT C: Rule INT30-C

7-101

options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling. In the error handling code, you can override the default wrap-around
behavior for overflows and implement saturation behavior, for instance.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Add One to Maximum Unsigned Integer

#include <limits.h>

unsigned int plusplus(void) {

 unsigned uvar = UINT_MAX;
 uvar++;
 return uvar;
}

In the third statement of this function, the variable uvar is increased by 1. However, the
value of uvar is the maximum unsigned integer value, so 1 plus the maximum integer
value cannot be represented by an unsigned int. The C programming language
standard does not view unsigned overflow as an error because the program automatically
reduces the result by modulo the maximum value plus 1. In this example, uvar is reduced
by modulo UINT_MAX. The result is uvar = 1.

Correction — Different Storage Type

One possible correction is to store the operation result in a larger data type. In this
example, by returning an unsigned long long instead of an unsigned int, the
overflow error is fixed.

#include <limits.h>

unsigned long long plusplus(void) {

7 CERT C Rules and Recommendations

7-102

 unsigned long long ullvar = UINT_MAX;
 ullvar++;
 return ullvar;
}

Unsigned integer constant overflow
Description

Unsigned integer constant overflow occurs when you assign a compile-time constant
to a unsigned integer variable whose data type cannot accommodate the value. An n-bit
unsigned integer holds values in the range [0, 2n-1].

For instance, c is an 8-bit unsigned char variable that cannot hold the value 256.

unsigned char c = 256;

To determine the sizes of fundamental types, Bug Finder uses your specification for
Target processor type (-target).

Risk

The C standard states that overflowing unsigned integers must be wrapped around (see,
for instance, the C11 standard, section 6.2.5). However, the wrap-around behavior can be
unintended and cause unexpected results.

Fix

Check if the constant value is what you intended. If the value is correct, use a wider data
type for the variable.

Example - Overflowing Constant from Macro Expansion
#define MAX_UNSIGNED_CHAR 255
#define MAX_UNSIGNED_SHORT 65535

void main() {
 unsigned char c1 = MAX_UNSIGNED_CHAR + 1;
 unsigned short c2 = MAX_UNSIGNED_SHORT + 1;
}

In this example, the defect appears on the macros because at least one use of the macro
causes an overflow.

 CERT C: Rule INT30-C

7-103

Correction — Use Wider Data Type

One possible correction is to use a wider data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_UNSIGNED_SHORT 65535

void main() {
 unsigned short c1 = MAX_UNSIGNED_CHAR + 1;
 unsigned int c2 = MAX_UNSIGNED_SHORT + 1;
}

Check Information
Group: Rule 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT30-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-104

https://wiki.sei.cmu.edu/confluence/x/bNYxBQ

CERT C: Rule INT31-C
Ensure that integer conversions do not result in lost or misinterpreted data

Description

Rule Definition
Ensure that integer conversions do not result in lost or misinterpreted data.

Examples

Integer conversion overflow
Description

Integer conversion overflow occurs when converting an integer to a smaller integer
type. If the variable does not have enough bytes to represent the original value, the
conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

Integer conversion overflows result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
overflowing computation acquire their current values. You can implement the fix on any
event in the sequence. If the result details do not show the event history, you can trace
back using right-click options in the source code and see previous related events. See also
“Interpret Polyspace Bug Finder Results”.

 CERT C: Rule INT31-C

7-105

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

In general, avoid conversions to smaller integer types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Converting from int to char

char convert(void) {

 int num = 1000000;

 return (char)num;
}

In the return statement, the integer variable num is converted to a char. However, an 8-
bit or 16-bit character cannot represent 1000000 because it requires at least 20 bits. So
the conversion operation overflows.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the
entire number.

long convert(void) {

 int num = 1000000;

 return (long)num;
}

7 CERT C Rules and Recommendations

7-106

Call to memset with unintended value
Description

Call to memset with unintended value occurs when Polyspace Bug Finder detects a
use of the memset or wmemset function with possibly incorrect arguments.

void *memset (void *ptr, int value, size_t num) fills the first num bytes of
the memory block that ptr points to with the specified value. If the argument value is
incorrect, the memory block is initialized with an unintended value.

The unintended initialization can occur in the following cases.

Issue Risk Possible Fix
The second argument is '0'
instead of 0 or '\0'.

The ASCII value of
character '0' is 48
(decimal), 0x30
(hexadecimal), 069 (octal)
but not 0 (or '\0') .

If you want to initialize with
'0', use one of the ASCII
values. Otherwise, use 0 or
'\0'.

The second and third
arguments are probably
reversed. For instance, the
third argument is a literal
and the second argument is
not a literal.

If the order is reversed, a
memory block of unintended
size is initialized with
incorrect arguments.

Reverse the order of the
arguments.

The second argument
cannot be represented in a
byte.

If the second argument
cannot be represented in a
byte, and you expect each
byte of a memory block to
be filled with that argument,
the initialization does not
occur as intended.

Apply a bit mask to the
argument to produce a
wrapped or truncated result
that can be represented in a
byte. When you apply a bit
mask, make sure that it
produces an expected
result.

For instance, replace
memset(a, -13,
sizeof(a)) with
memset(a, (-13) &
0xFF, sizeof(a)).

 CERT C: Rule INT31-C

7-107

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Value Cannot Be Represented in a Byte

#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, (char)c, sizeof(buf));
}

In this example, (char)c cannot be represented in a byte.

Correction — Apply Cast

One possible correction is to apply a cast so that the result can be represented in a byte.
However, check that the result of the cast is an acceptable initialization value.

#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, (unsigned char)c, sizeof(buf));
}

7 CERT C Rules and Recommendations

7-108

Sign change integer conversion overflow
Description

Sign change integer conversion overflow occurs when converting an unsigned integer
to a signed integer. If the variable does not have enough bytes to represent both the
original constant and the sign bit, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Convert from unsigned char to char

char sign_change(void) {
 unsigned char count = 255;

 return (char)count;
}

In the return statement, the unsigned character variable count is converted to a signed
character. However, char has 8 bits, 1 for the sign of the constant and 7 to represent the
number. The conversion operation overflows because 255 uses 8 bits.

Correction — Change conversion types

One possible correction is using a larger integer type. By using an int, there are enough
bits to represent the sign and the number value.

int sign_change(void) {
 unsigned char count = 255;

 CERT C: Rule INT31-C

7-109

 return (int)count;
}

Tainted sign change conversion
Description

Tainted sign change conversion looks for values from unsecure sources that are
converted, implicitly or explicitly, from signed to unsigned values.

For example, functions that use size_t as arguments implicitly convert the argument to
an unsigned integer. Some functions that implicitly convert size_t are:

bcmp
memcpy
memmove
strncmp
strncpy
calloc
malloc
memalign

Risk

If you convert a small negative number to unsigned, the result is a large positive number.
The large positive number can create security vulnerabilities. For example, if you use the
unsigned value in:

• Memory size routines — causes allocating memory issues.
• String manipulation routines — causes buffer overflow.
• Loop boundaries — causes infinite loops.

Fix

To avoid converting unsigned negative values, check that the value being converted is
within an acceptable range. For example, if the value represents a size, validate that the
value is not negative and less than the maximum value size.

Example - Set Memory Value with Size Argument
#include <stdlib.h>
#include <string.h>

7 CERT C Rules and Recommendations

7-110

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void bug_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size<SIZE128) {
 memset(str, 'c', size);
 }
}

In this example, a char buffer is created and filled using memset. The size argument to
memset is an input argument to the function.

The call to memset implicitly converts size to unsigned integer. If size is a large
negative number, the absolute value could be too large to represent as an integer, causing
a buffer overflow.

Correction — Check Value of size

One possible correction is to check if size is inside the valid range. This correction
checks if size is greater than zero and less than the buffer size before calling memset.

#include <stdlib.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void corrected_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size>0 && size<SIZE128) {
 memset(str, 'c', size);
 }
}

 CERT C: Rule INT31-C

7-111

Unsigned integer conversion overflow
Description

Unsigned integer conversion overflow occurs when converting an unsigned integer to
a smaller unsigned integer type. If the variable does not have enough bytes to represent
the original constant, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

Integer conversion overflows result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

In general, avoid conversions to smaller integer types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Converting from int to char

unsigned char convert(void) {
 unsigned int unum = 1000000U;

7 CERT C Rules and Recommendations

7-112

 return (unsigned char)unum;
}

In the return statement, the unsigned integer variable unum is converted to an unsigned
character type. However, the conversion overflows because 1000000 requires at least 20
bits. The C programming language standard does not view unsigned overflow as an error
because the program automatically reduces the result by modulo the maximum value plus
1. In this example, unum is reduced by modulo 2^8 because a character data type can
only represent 2^8-1.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the
entire number. For example, long.

unsigned long convert(void) {
 unsigned int unum = 1000000U;

 return (unsigned long)unum;
}

Check Information
Group: Rule 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT31-C

Introduced in R2019a

 CERT C: Rule INT31-C

7-113

https://wiki.sei.cmu.edu/confluence/x/U9YxBQ

CERT C: Rule INT32-C
Ensure that operations on signed integers do not result in overflow

Description

Rule Definition
Ensure that operations on signed integers do not result in overflow.

Examples

Integer overflow
Description

Integer overflow occurs when an operation on integer variables can result in values that
cannot be represented by the result data type. The data type of a variable determines the
number of bytes allocated for the variable storage and constrains the range of allowed
values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target). W

Risk

Integer overflows on signed integers result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
overflowing computation acquire their current values. You can implement the fix on any
event in the sequence. If the result details do not show the event history, you can trace
back using right-click options in the source code and see previous related events. See also
“Interpret Polyspace Bug Finder Results”.

7 CERT C Rules and Recommendations

7-114

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

To avoid overflows in general, try one of these techniques:

• Keep integer variable values restricted to within half the range of signed integers.
• In operations that might overflow, check for conditions that can lead to the overflow

and implement wrap around or saturation behavior depending on how the result of the
operation is used. The result then becomes predictable and can be safely used in
subsequent computations.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Addition of Maximum Integer
#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value
of var is the maximum integer value, so an int cannot represent one plus the maximum
integer value.

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a
larger data type (Note that on a 32-bit machine, int and long has the same size). In this
example, on a 32-bit machine, by returning a long long instead of an int, the overflow
error is fixed.

#include <limits.h>

 CERT C: Rule INT32-C

7-115

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;
 return lvar;
}

Tainted division operand
Description

Tainted division operand detects division operations where one or both of the integer
operands is from an unsecure source.

Risk

• If the numerator is the minimum possible value and the denominator is -1, your
division operation overflows because the result cannot be represented by the current
variable size.

• If the denominator is zero, your division operation fails possibly causing your program
to crash.

These risks can be used to execute arbitrary code. This code is usually outside the scope
of a program's implicit security policy.

Fix

Before performing the division, validate the values of the operands. Check for
denominators of 0 or -1, and numerators of the minimum integer value.

Example - Division of Function Arguments

extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = usernum/userden;
 print_int(r);
 return r;
}

This example function divides two argument variables, then prints and returns the result.
The argument values are unknown and can cause division by zero or integer overflow.

7 CERT C Rules and Recommendations

7-116

Correction — Check Values

One possible correction is to check the values of the numerator and denominator before
performing the division.

#include "limits.h"

extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = 0;
 if (userden!=0 && !(usernum=INT_MIN && userden==-1)) {
 r = usernum/userden;
 }
 print_int(r);
 return r;
}

Tainted modulo operand
Description

Tainted modulo operand checks the operands of remainder % operations. Bug Finder
flags modulo operations with one or more tainted operands.

Risk

• If the second remainder operand is zero, your remainder operation fails, causing your
program to crash.

• If the second remainder operand is -1, your remainder operation can overflow if the
remainder operation is implemented based on the division operation that can overflow.

• If one of the operands is negative, the operation result is uncertain. For C89, the
modulo operation is not standardized, so the result from negative operands is
implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in
general.

Fix

Before performing the modulo operation, validate the values of the operands. Check the
second operand for values of 0 and -1. Check both operands for negative values.

 CERT C: Rule INT32-C

7-117

Example - Modulo with Function Arguments

extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 128%userden;
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using an input argument.
The argument is not checked before calculating the remainder for values that can crash
the program, such as 0 and -1.

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the
modulo operation. In this corrected example, the modulo operation continues only if the
second operand is greater than zero.

extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Check Information
Group: Rule 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

7 CERT C Rules and Recommendations

7-118

External Websites
INT32-C

Introduced in R2019a

 CERT C: Rule INT32-C

7-119

https://wiki.sei.cmu.edu/confluence/x/UtYxBQ

CERT C: Rule INT33-C
Ensure that division and remainder operations do not result in divide-by-zero errors

Description

Rule Definition
Ensure that division and remainder operations do not result in divide-by-zero errors.

Examples

Integer division by zero
Description

Integer division by zero occurs when the denominator of a division or modulo operation
can be a zero-valued integer.

Risk

A division by zero can result in a program crash.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the denominator
variable acquires a zero value. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

It is a good practice to check for zero values of a denominator before division and handle
the error. Instead of performing the division directly:

res = num/den;

7 CERT C Rules and Recommendations

7-120

use a library function that handles zero values of the denominator before performing the
division:

res = div(num, den);

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Dividing an Integer by Zero

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 if (denom != 0)
 result = num/denom;

 return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

 CERT C: Rule INT33-C

7-121

int fraction(int num)
{
 int denom = 2;
 int result = 0;

 result = num/denom;

 return result;
}

Example - Modulo Operation with Zero

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % i;
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

In this example, Polyspace flags the modulo operation as a division by zero. Because
modulo is inherently a division operation, the divisor (right hand argument) cannot be
zero. The modulo operation uses the for loop index as the divisor. However, the for loop
starts at zero, which cannot be an iterator.

Correction — Check Divisor Before Operation

One possible correction is checking the divisor before the modulo operation. In this
example, see if the index i is zero before the modulo operation.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 if(i != 0)
 {
 arr[i] = input % i;
 }
 else
 {

7 CERT C Rules and Recommendations

7-122

 arr[i] = input;
 }
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Correction — Change Divisor

Another possible correction is changing the divisor to a nonzero integer. In this example,
add one to the index before the % operation to avoid dividing by zero.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % (i+1);
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Tainted division operand
Description

Tainted division operand detects division operations where one or both of the integer
operands is from an unsecure source.

Risk

• If the numerator is the minimum possible value and the denominator is -1, your
division operation overflows because the result cannot be represented by the current
variable size.

• If the denominator is zero, your division operation fails possibly causing your program
to crash.

These risks can be used to execute arbitrary code. This code is usually outside the scope
of a program's implicit security policy.

 CERT C: Rule INT33-C

7-123

Fix

Before performing the division, validate the values of the operands. Check for
denominators of 0 or -1, and numerators of the minimum integer value.

Example - Division of Function Arguments

extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = usernum/userden;
 print_int(r);
 return r;
}

This example function divides two argument variables, then prints and returns the result.
The argument values are unknown and can cause division by zero or integer overflow.

Correction — Check Values

One possible correction is to check the values of the numerator and denominator before
performing the division.

#include "limits.h"

extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = 0;
 if (userden!=0 && !(usernum=INT_MIN && userden==-1)) {
 r = usernum/userden;
 }
 print_int(r);
 return r;
}

Tainted modulo operand
Description

Tainted modulo operand checks the operands of remainder % operations. Bug Finder
flags modulo operations with one or more tainted operands.

7 CERT C Rules and Recommendations

7-124

Risk

• If the second remainder operand is zero, your remainder operation fails, causing your
program to crash.

• If the second remainder operand is -1, your remainder operation can overflow if the
remainder operation is implemented based on the division operation that can overflow.

• If one of the operands is negative, the operation result is uncertain. For C89, the
modulo operation is not standardized, so the result from negative operands is
implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in
general.

Fix

Before performing the modulo operation, validate the values of the operands. Check the
second operand for values of 0 and -1. Check both operands for negative values.

Example - Modulo with Function Arguments
extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 128%userden;
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using an input argument.
The argument is not checked before calculating the remainder for values that can crash
the program, such as 0 and -1.

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the
modulo operation. In this corrected example, the modulo operation continues only if the
second operand is greater than zero.

extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 0;
 if (userden > 0) {

 CERT C: Rule INT33-C

7-125

 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Check Information
Group: Rule 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT33-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-126

https://wiki.sei.cmu.edu/confluence/x/ftYxBQ

CERT C: Rule INT34-C
Do not shift an expression by a negative number of bits or by greater than or equal to the
number of bits that exist in the operand

Description

Rule Definition
Do not shift an expression by a negative number of bits or by greater than or equal to the
number of bits that exist in the operand.

Examples

Shift of a negative value
Description

Shift of a negative value occurs when a bit-wise shift is used on a variable that can
have negative values.

Risk

Shifts on negative values overwrite the sign bit that identifies a number as negative. The
shift operation can result in unexpected values.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variable being
shifted acquires negative values. You can implement the fix on any event in the sequence.
If the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

 CERT C: Rule INT34-C

7-127

To fix the defect, check for negative values before the bit-wise shift operation and perform
appropriate error handling.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Shifting a negative variable

int shifting(int val)
{
 int res = -1;
 return res << val;
}

In the return statement, the variable res is shifted a certain number of bits to the left.
However, because res is negative, the shift might overwrite the sign bit.

Correction — Change the Data Type

One possible correction is to change the data type of the shifted variable to unsigned.
This correction eliminates the sign bit, so left shifting does not change the sign of the
variable.

int shifting(int val)
{
 unsigned int res = -1;
 return res << val;
}

Shift operation overflow
Description

Shift operation overflow occurs when a shift operation can result in values that cannot
be represented by the result data type. The data type of a variable determines the number
of bytes allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

7 CERT C Rules and Recommendations

7-128

Risk

Shift operation overflows can result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
shift operation acquire their current values. You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using
right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the shift operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Left Shift of Integer
int left_shift(void) {

 int foo = 33;
 return 1 << foo;
}

In the return statement of this function, bit-wise shift operation is performed shifting 1
foo bits to the left. However, an int has only 32 bits, so the range of the shift must be
between 0 and 31. Therefore, this shift operation causes an overflow.

Correction — Different storage type

One possible correction is to store the shift operation result in a larger data type. In this
example, by returning a long long instead of an int, the overflow defect is fixed.

long long left_shift(void) {

 CERT C: Rule INT34-C

7-129

 int foo = 33;
 return 1LL << foo;
}

Check Information
Group: Rule 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT34-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-130

https://wiki.sei.cmu.edu/confluence/x/ItcxBQ

CERT C: Rule INT35-C
Use correct integer precisions

Description

Rule Definition
Use correct integer precisions.

Examples

Integer precision exceeded
Description

Integer precision exceeded occurs when an integer expression uses the integer size in
an operation that exceeds the integer precision. On some architectures, the size of an
integer in memory can include sign and padding bits. On these architectures, the integer
size is larger than the precision which is just the number of bits that represent the value
of the integer.

Risk

Using the size of an integer in an operation on the integer precision can result in integer
overflow, wrap around, or unexpected results. For instance, an unsigned integer can be
stored in memory in 64 bits, but uses only 48 bits to represent its value. A 56 bits left-
shift operation on this integer is undefined behavior.

Assuming that the size of an integer is equal to its precision can also result in program
portability issues between different architectures.

 CERT C: Rule INT35-C

7-131

Fix

Do not use the size of an integer instead of its precision. To determine the integer
precision, implement a precision computation routine or use a builtin function such as
__builtin_popcount().

Example - Using Size of unsigned int for Left Shift Operation
#include <limits.h>

unsigned int func(unsigned int exp)
{
 if (exp >= sizeof(unsigned int) * CHAR_BIT) {
 /* Handle error */
 }
 return 1U << exp;
}

In this example, the function uses a left shift operation to return the value of 2 raised to
the power of exp. The operation shifts the bits of 1U by exp positions to the left. The if
statement ensures that the operation does not shift the bits by a number of positions exp
greater than the size of an unsigned int. However, if unsigned int contains padding
bits, the value returned by sizeof() is larger than the precision of unsigned int. As a
result, some values of exp might be too large, and the shift operation might be undefined
behavior.

Correction — Implement Function to Compute Precision of unsigned int

One possible correction is to implement a function popcount() that computes the
precision of unsigned int by counting the number of set bits.

#include <stddef.h>
#include <stdint.h>
#include <limits.h>

size_t popcount(uintmax_t);
#define PRECISION(umax_value) popcount(umax_value)

unsigned int func(unsigned int exp)
{
 if (exp >= PRECISION(UINT_MAX)) {
 /* Handle error */
 }

7 CERT C Rules and Recommendations

7-132

 return 1 << exp;
}

size_t popcount(uintmax_t num)
{
 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;
 }
 num >>= 1;
 }
 return precision;
}

Check Information
Group: Rule 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT35-C

Introduced in R2019a

 CERT C: Rule INT35-C

7-133

https://wiki.sei.cmu.edu/confluence/x/Q9UxBQ

CERT C: Rule INT36-C
Converting a pointer to integer or integer to pointer

Description

Rule Definition
Converting a pointer to integer or integer to pointer.

Examples

Unsafe conversion between pointer and integer
Description

Unsafe conversion between pointer and integer checks for pointer to integer and
integer to pointers conversions. If you convert between a pointer, intptr_t, or
uintprt_t and an integer type, such as enum, ptrdiff_t, or pid_t, Polyspace raises a
defect.

Risk

The mapping between pointers and integers is not always consistent with the addressing
structure of the environment.

Converting from pointers to integers can create:

• Truncated or out of range integer values.
• Invalid integer types.

Converting from integers to pointers can create:

• Misaligned pointers or misaligned objects.
• Invalid pointer addresses.

7 CERT C Rules and Recommendations

7-134

Fix

Where possible, avoid pointer-to-integer or integer-to-pointer conversions. If you want to
convert a void pointer to an integer, so that you do not change the value, use types:

• C99 — intptr_t or uintptr_t
• C90 — size_t or ssize_t

Example - Integer to Pointer Conversions

unsigned int *badintptrcast(void)
{
 unsigned int *ptr0 = (unsigned int *)0xdeadbeef;
 char *ptr1 = (char *)0xdeadbeef;
 return (unsigned int *)(ptr0 - (unsigned int *)ptr1);
}

In this example, there are three conversions, two unsafe conversions and one safe
conversion. The first conversion of 0xdeadbeef to unsigned int* causes alignment
issues for the pointer. The second conversion of 0xdeadbeef to char * is safe because
there are no alignment issues for char. The third conversion in the return casts
ptrdiff_t to a pointer. This pointer might or might not point to an invalid address.

Correction — Use intptr_t

One possible correction is to use intptr_t types to store the pointer address
0xdeadbeef. Also, you can change the second pointer to an integer offset so that there is
no longer a conversion from ptrdiff_t to a pointer.

#include <stdint.h>

unsigned int *badintptrcast(void)
{
 intptr_t iptr0 = (intptr_t)0xdeadbeef;
 int offset = 0;
 return (unsigned int *)(iptr0 - offset);
}

Check Information
Group: Rule 04. Integers (INT)

 CERT C: Rule INT36-C

7-135

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT36-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-136

https://wiki.sei.cmu.edu/confluence/x/0dUxBQ

CERT C: Rule FLP30-C
Do not use floating-point variables as loop counters

Description

Rule Definition
Do not use floating-point variables as loop counters.

Examples

Use of float variable as loop counter
Description

The issue occurs when a loop counter has a floating type.

If the for index is a variable symbol, Polyspace checks that it is not a float.

Risk

When using a floating-point loop counter, accumulation of rounding errors can result in a
mismatch between the expected and actual number of iterations. This rounding error can
happen when a loop step that is not a power of the floating point radix is rounded to a
value that can be represented by a float.

Even if a loop with a floating-point loop counter appears to behave correctly on one
implementation, it can give a different number of iteration on another implementation.

Example - for Loop Counters

int main(void){
 unsigned int counter = 0u;
 int result = 0;
 float foo;

 CERT C: Rule FLP30-C

7-137

 // Float loop counters
 for(float foo = 0.0f; foo < 1.0f; foo +=0.001f){
 /* Non-compliant - counter = 1000 at the end of the loop */
 ++counter;
 }

 float fff = 0.0f;
 for(fff = 0.0f; fff <12.0f; fff += 1.0f){ /* Non-compliant*/
 result++;
 }

 // Integer loop count
 for(unsigned int count = 0u; count < 1000u; ++count){ /* Compliant */
 foo = (float) count * 0.001f;
 }
}

In this example, the three for loops show three different loop counters. The first and
second for loops use float variables as loop counters, and therefore are not compliant.
The third loop uses the integer count as the loop counter. Even though count is used as
a float inside the loop, the variable remains an integer when acting as the loop index.
Therefore, this for loop is compliant.

Example - while Loop Counters
int main(void){
 unsigned int u32a;
 float foo;

 foo = 0.0f;
 while (foo < 1.0f){
 foo += 0.001f; /* Non-compliant - foo used as a loop counter */
 }

 foo = read_float32();
 do{
 u32a = read_u32();
 }while(((float)u32a - foo) > 10.0f);
 /* Compliant - foo doesn't change in the loop */
 /* so cannot be a counter */
 return 1;
}

This example shows two while loops both of which use foo in the while-loop conditions.

7 CERT C Rules and Recommendations

7-138

The first while loop uses foo in the condition and inside the loop. Because foo changes,
floating-point rounding errors can cause unexpected behavior.

The second while loop does not use foo inside the loop, but does use foo inside the
while-condition. So foo is not the loop counter. The integer u32a is the loop counter
because it changes inside the loop and is part of the while condition. Because u32a is an
integer, the rounding error issue is not a concern, making this while loop compliant.

Check Information
Group: Rule 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP30-C

Introduced in R2019a

 CERT C: Rule FLP30-C

7-139

https://wiki.sei.cmu.edu/confluence/x/HdYxBQ

CERT C: Rule FLP32-C
Prevent or detect domain and range errors in math functions

Description

Rule Definition
Prevent or detect domain and range errors in math functions.

Examples

Invalid use of standard library floating point routine
Description

Invalid use of standard library floating point routine occurs when you use invalid
arguments with a floating point function from the standard library. This defect picks up:

• Rounding and absolute value routines

ceil, fabs, floor, fmod
• Fractions and division routines

fmod, modf
• Exponents and log routines

frexp, ldexp, sqrt, pow, exp, log, log10
• Trigonometry function routines

cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh, acosh,
asinh, atanh

7 CERT C Rules and Recommendations

7-140

Risk

Domain errors on standard library floating point functions result in implementation-
defined values. If you use the function return value in subsequent computations, you can
see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the function
argument acquires invalid values. You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using
right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

It is a good practice to handle for domain errors before using a standard library floating
point function. For instance, before calling the acos function, check if the argument is in
[-1.0, 1.0] and handle the error.

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code,
add comments to your result or code to avoid another review. See “Address Polyspace
Results Through Bug Fixes or Justifications”.

Example - Arc Cosine Operation
#include <math.h>

double arccosine(void) {
 double degree = 5.0;
 return acos(degree);
}

The input value to acos must be in the interval [-1,1]. This input argument, degree, is
outside this range.

Correction — Change Input Argument

One possible correction is to change the input value to fit the specified range. In this
example, change the input value from degrees to radians to fix this defect.

#include <math.h>

 CERT C: Rule FLP32-C

7-141

double arccosine(void) {
 double degree = 5.0;
 double radian = degree * 3.14159 / 180.;
 return acos(radian);
}

Check Information
Group: Rule 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP32-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-142

https://wiki.sei.cmu.edu/confluence/x/DNcxBQ

CERT C: Rule FLP34-C
Ensure that floating-point conversions are within range of the new type

Description

Rule Definition
Ensure that floating-point conversions are within range of the new type.

Examples

Float conversion overflow
Description

Float conversion overflow occurs when converting a floating point number to a smaller
floating point data type. If the variable does not have enough memory to represent the
original number, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

Overflows can result in unpredictable values from computations. The result can be infinity
or the maximum finite value depending on the rounding mode used in the
implementation. If you use the result of an overflowing conversion in subsequent
computations and do not account for the overflow, you can see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variable being
converted acquires its current value You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using

 CERT C: Rule FLP34-C

7-143

right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

In general, avoid conversions to smaller floating point types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Converting from double to float

float convert(void) {

 double diam = 1e100;
 return (float)diam;
}

In the return statement, the variable diam of type double (64 bits) is converted to a
variable of type float (32 bits). However, the value 1^100 requires more than 32 bits to be
precisely represented.

Check Information
Group: Rule 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

7 CERT C Rules and Recommendations

7-144

External Websites
FLP34-C

Introduced in R2019a

 CERT C: Rule FLP34-C

7-145

https://wiki.sei.cmu.edu/confluence/x/xNUxBQ

CERT C: Rule FLP36-C
Preserve precision when converting integral values to floating-point type

Description
Rule Definition
Preserve precision when converting integral values to floating-point type.

Examples
Precision loss in integer to float conversion
Description

Precision loss from integer to float conversion occurs when you cast an integer value
to a floating-point type that cannot represent the original integer value.

For instance, the long int value 1234567890L is too large for a variable of type
float .

Risk

If the floating-point type cannot represent the integer value, the behavior is undefined
(see C11 standard, 6.3.1.4, paragraph 2). For instance, least significant bits of the
variable value can be dropped leading to unexpected results.

Fix

Convert to a floating-point type that can represent the integer value.

For instance, if the float data type cannot represent the integer value, use the double
data type instead.

When writing a function that converts an integer to floating point type, before the
conversion, check if the integer value can be represented in the floating-point type. For

7 CERT C Rules and Recommendations

7-146

instance, DBL_MANT_DIG * log2(FLT_RADIX) represents the number of base-2 digits
in the type double. Before conversion to the type double, check if this number is
greater than or equal to the precision of the integer that you are converting. To determine
the precision of an integer num, use this code:

 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;
 }
 num >>= 1;
 }

Some implementations provide a builtin function to determine the precision of an integer.
For instance, GCC provides the function __builtin_popcount.

Example - Conversion of Large Integer to Floating-Point Type

#include <stdio.h>

int main(void) {
 long int big = 1234567890L;
 float approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

In this example, the long int variable big is converted to float.

Correction — Use a Wider Floating-Point Type

One possible correction is to convert to the double data type instead of float.

#include <stdio.h>

int main(void) {
 long int big = 1234567890L;
 double approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

 CERT C: Rule FLP36-C

7-147

Check Information
Group: Rule 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP36-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-148

https://wiki.sei.cmu.edu/confluence/x/XdYxBQ

CERT C: Rule FLP37-C
Do not use object representations to compare floating-point values

Description

Rule Definition
Do not use object representations to compare floating-point values.

Examples

Memory comparison of float-point values
Description

Memory comparison of float-point values occurs when you compare the object
representation of floating-point values or the object representation of structures
containing floating-point members. When you use the functions memcmp, bcmp, or
wmemcmp to perform the bit pattern comparison, the defect is raised.

Risk

The object representation of floating-point values uses specific bit patterns to encode
those values. Floating-point values that are equal, for instance -0.0 and 0.0 in the IEC
60559 standard, can have different bit patterns in their object representation. Similarly,
floating-point values that are not equal can have the same bit pattern in their object
representation.

Fix

When you compare structures containing floating-point members, compare the structure
members individually.

 CERT C: Rule FLP37-C

7-149

To compare two floating-point values, use the == or != operators. If you follow a standard
that discourages the use of these operators, such as MISRA, ensure that the difference
between the floating-point values is within an acceptable range.

Example - Using memcmp to Compare Structures with Floating-Point Members

#include <string.h>

typedef struct {
 int i;
 float f;
} myStruct;

extern void initialize_Struct(myStruct *);

int func_cmp(myStruct *s1, myStruct *s2) {
/* Comparison between structures containing
* floating-point members */
 return memcmp
 ((const void *)s1, (const void *)s2, sizeof(myStruct));
}

void func(void) {
 myStruct s1, s2;
 initialize_Struct(&s1);
 initialize_Struct(&s2);
 (void)func_cmp(&s1, &s2);
}

In this example, func_cmp() calls memcmp() to compare the object representations of
structures s1 and s2. The comparison might be inaccurate because the structures
contain floating-point members.

Correction — Compare Structure Members Individually

One possible correction is to compare the structure members individually and to ensure
that the difference between the floating-point values is within an acceptable range
defined by ESP.

 #include <string.h>

typedef struct {
 int i;
 float f;

7 CERT C Rules and Recommendations

7-150

} myStruct;

extern void initialize_Struct(myStruct *);

#define ESP 0.00001

int func_cmp(myStruct *s1, myStruct *s2) {

/*Structure members are compared individually */
 return ((s1->i == s2->i) &&
 (fabsf(s1->f - s2->f) <= ESP));
}

void func(void) {
 myStruct s1, s2;
 initialize_Struct(&s1);
 initialize_Struct(&s2);
 (void)func_cmp(&s1, &s2);
}

Check Information
Group: Rule 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP37-C

Introduced in R2019a

 CERT C: Rule FLP37-C

7-151

https://wiki.sei.cmu.edu/confluence/x/kdUxBQ

CERT C: Rule ARR30-C
Do not form or use out-of-bounds pointers or array subscripts

Description

Rule Definition
Do not form or use out-of-bounds pointers or array subscripts.

Examples

Array access out of bounds
Description

Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.

Risk

Accessing an array outside its bounds is undefined behavior. You can read an
unpredictable value or try to access a location that is not allowed and encounter a
segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you accessed an array
inside a loop and one of these situations happened:

• The upper bound of the loop is too large.
• You used an array index that is the same as the loop index instead of being one less

than the loop index.

To fix the issue, you have to modify the loop bound or the array index.

7 CERT C Rules and Recommendations

7-152

Another reason why an array index can exceed array bounds is a prior conversion from
signed to unsigned integers. The conversion can result in a wrap around of the index
value, eventually causing the array index to exceed the array bounds.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Array Access Out of Bounds Error
#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of
[0,1,2,...,9]. The variable i has a value 10 when it comes out of the for-loop.
Therefore, the printf statement attempts to access fib[10] through i.

Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

 CERT C: Rule ARR30-C

7-153

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

Pointer access out of bounds
Description

Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer.
You cannot access memory beyond that block using the pointer.

Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an
unpredictable value or try to access a location that is not allowed and encounter a
segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer
inside a loop and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the

pointer increment.

7 CERT C Rules and Recommendations

7-154

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int).
In the for-loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points
outside the memory block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {

 CERT C: Rule ARR30-C

7-155

 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it,
it is not dereferenced more.

Array access with tainted index
Description

Array access with tainted index detects reading or writing to an array by using a
tainted index that has not been validated.

Risk

The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write operation create to problems in your
program.

Fix

Before using the index to access the array, validate the index value to make sure that it is
inside the array range.

Example - Use Index to Return Buffer Value

#define SIZE100 100
extern int tab[SIZE100];

7 CERT C Rules and Recommendations

7-156

int taintedarrayindex(int num) {
 return tab[num];
}

In this example, the index num accesses the array tab. The function does not check to see
if num is inside the range of tab.

Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex(int num) {
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -9999;
 }
}

Use of tainted pointer
Description

Use of tainted pointer defect is raised when:

• Tainted NULL pointer — the pointer is not validated against NULL.
• Tainted size pointer — the size of the memory zone that a pointer points to is not

validated.

Note On a single pointer, your code can have instances of Use of tainted pointer,
Pointer dereference with tainted offset, and Tainted NULL or non-null-terminated
string. Bug Finder raises only the first tainted pointer defect that it finds.

Risk

An attacker can give your program a pointer that points to unexpected memory locations.
If the pointer is dereferenced to write, the attacker can:

 CERT C: Rule ARR30-C

7-157

• Modify the state variables of a critical program.
• Cause your program to crash.
• Execute unwanted code.

If the pointer is dereferenced to read, the attacker can:

• Read sensitive data.
• Cause your program to crash.
• Modify a program variable to an unexpected value.

Fix

Avoid use of pointers from external sources.

Alternatively, if you trust the external source, sanitize the pointer before dereference. In a
separate sanitization function:

• Check that the pointer is not NULL.
• Check the size of the memory location (if possible). This second check validates

whether the size of the data the pointer points to matches the size your program
expects.

The defect still appears in the body of the sanitization function. However, if you use a
sanitization function, instead of several occurrences, the defect appears only once. You
can justify the defect and hide it in later reviews by using code annotations. See “Address
Polyspace Results Through Bug Fixes or Justifications”.

Example - Function That Dereferences an External Pointer
void taintedptr(int* p, int i) {
 *p = i;
}

In this example, the pointer *p is passed as an argument, and the value is changed. The
pointer can be null or point to unknown memory, which can be vulnerable.

Correction — Avoid Use of External Pointers

One possible correction is to avoid pointers from external sources.

int *taintedptr(int i) {
 /* Use heap memory allocated in the application */

7 CERT C Rules and Recommendations

7-158

 int *p = (int *)malloc(sizeof (int));
 if (p != NULL) { /* Check for success */
 *p = i;
 }
return p;
}

Correction — Check Pointer

Another possible correction is to sanitize the pointer before using it. This example uses a
second function to check if the pointer is null and can be dereferenced.

#include <stdlib.h>

int* sanitize_ptr(int* p) {
 int* res = NULL;
 if (p && *p) { /* Tainted pointer detected here, used as "firewall" */
 /* Pointer is not null and dereference ok */
 res = p;
 }
 return res;
}
void taintedptr(int* p, int i) {
 p = sanitize_ptr(p);
 if (p) {
 *p = i;
 }
}

Pointer dereference with tainted offset
Description

Pointer dereference with tainted offset detects pointer dereferencing, either reading
or writing, using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array
access with tainted index.

Risk

The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

 CERT C: Rule ARR30-C

7-159

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write to compromise your program.

Fix

Validate the index before you use the variable to access the pointer. Check to make sure
that the variable is inside the valid range and does not overflow.

Example - Dereference Pointer Array

#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[i];
 free(pint);
 }
 return c;
}

In this example, the function initializes an integer pointer pint. The pointer is
dereferenced using the input index i. The value of i could be outside the pointer range,
causing an out-of-range error.

7 CERT C Rules and Recommendations

7-160

Correction — Check Index Before Dereference

One possible correction is to validate the value of the index. If the index is inside the valid
range, continue with the pointer dereferencing.

#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (i>0 && i<SIZE10) {
 c = pint[i];
 }
 free(pint);
 }
 return c;
}

Check Information
Group: Rule 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ARR30-C

 CERT C: Rule ARR30-C

7-161

https://wiki.sei.cmu.edu/confluence/x/wtYxBQ

Introduced in R2019a

7 CERT C Rules and Recommendations

7-162

CERT C: Rule ARR32-C
Ensure size arguments for variable length arrays are in a valid range

Description

Rule Definition
Ensure size arguments for variable length arrays are in a valid range.

Examples

Memory allocation with tainted size
Description

Memory allocation with tainted size checks memory allocation functions, such as
calloc or malloc, for size arguments from unsecured sources.

Risk

Uncontrolled memory allocation can cause your program to request too much system
memory. This consequence can lead to a crash due to an out-of-memory condition, or
assigning too many resources.

Fix

Before allocating memory, check the value of your arguments to check that they do not
exceed the bounds.

Example - Allocate Memory Using Input Argument

#include "stdlib.h"

int* bug_taintedmemoryallocsize(size_t size) {

 CERT C: Rule ARR32-C

7-163

 int* p = (int*)malloc(size);
 return p;
}

In this example, malloc allocates size amount of memory for the pointer p. size is an
outside variable, so could be any size value. If the size is larger than the amount of
memory you have available, your program could crash.

Correction — Check Size of Memory to be Allocated

One possible correction is to check the size of the memory that you want to allocate
before performing the malloc operation. This example checks to see if the size is positive
and less than the maximum size.

#include "stdlib.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int* corrected_taintedmemoryallocsize(int size) {
 int* p = NULL;
 if (size>0 && size<SIZE128) { /* Fix: Check entry range before use */
 p = (int*)malloc((unsigned int)size);
 }
 return p;
}

Tainted size of variable length array
Description

Tainted size of variable length array detects variable length arrays (VLA) whose size is
from an unsecure source.

Risk

If an attacker changed the size of your VLA to an unexpected value, it can cause your
program to crash or behave unexpectedly.

7 CERT C Rules and Recommendations

7-164

If the size is non-positive, the behavior of the VLA is undefined. Your program does not
perform as expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.

Fix

Validate your VLA size to make sure that it is positive and less than a maximum value.

Example - Input Argument Used as Size of VLA

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {

 int tabvla[size];
 int res = 0;
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 return res;
}

In this example, a variable length array size is based on an input argument. Because this
input argument value is not checked, the size may be negative or too large.

Correction — Check VLA Size

One possible correction is to check the size variable before creating the variable length
array. This example checks if the size is larger than 10 and less than 100, before creating
the VLA

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {

 CERT C: Rule ARR32-C

7-165

 int res = 0;
 if (size>SIZE10 && size<SIZE100) {
 int tabvla[size];
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 }
 return res;
}

Check Information
Group: Rule 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ARR32-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-166

https://wiki.sei.cmu.edu/confluence/x/AdcxBQ

CERT C: Rule ARR36-C
Do not subtract or compare two pointers that do not refer to the same array

Description

Rule Definition
Do not subtract or compare two pointers that do not refer to the same array.

Examples

Subtraction or comparison between pointers to different
arrays
Description

Subtraction or comparison between pointers to different arrays occurs when you
subtract or compare pointers that are null or that point to elements in different arrays.
The relational operators for the comparison are >, <, >=, and <=.

Risk

When you subtract two pointers to elements in the same array, the result is the difference
between the subscripts of the two array elements. Similarly, when you compare two
pointers to array elements, the result is the positions of the pointers relative to each
other. If the pointers are null or point to different arrays, a subtraction or comparison
operation is undefined. If you use the subtraction result as a buffer index, it can cause a
buffer overflow.

Fix

Before you subtract or use relational operators to compare pointers to array elements,
check that they are non-null and that they point to the same array.

 CERT C: Rule ARR36-C

7-167

Example - Subtraction Between Pointers to Elements in Different Arrays

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

size_t func(void)
{
 int nums[SIZE20];
 int end;
 int *next_num_ptr = nums;
 size_t free_elements;
 /* Increment next_num_ptr as array fills */

 /* Subtraction operation is undefined unless array nums
 is adjacent to variable end in memory. */
 free_elements = &end - next_num_ptr;
 return free_elements;
}

In this example, the array nums is incrementally filled. Pointer subtraction is then used to
determine how many free elements remain. Unless end points to a memory location one
past the last element of nums, the subtraction operation is undefined.

Correction — Subtract Pointers to the Same Array

Subtract the pointer to the last element that was filled from the pointer to the last
element in the array.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

size_t func(void)
{
 int nums[SIZE20];
 int *next_num_ptr = nums;
 size_t free_elements;

7 CERT C Rules and Recommendations

7-168

 /* Increment next_num_ptr as array fills */

 /* Subtraction operation involves pointers to the same array. */
 free_elements = &(nums[SIZE20 - 1]) - next_num_ptr;

 return free_elements + 1;
}

Check Information
Group: Rule 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ARR36-C

Introduced in R2019a

 CERT C: Rule ARR36-C

7-169

https://wiki.sei.cmu.edu/confluence/x/1dYxBQ

CERT C: Rule ARR37-C
Do not add or subtract an integer to a pointer to a non-array object

Description

Rule Definition
Do not add or subtract an integer to a pointer to a non-array object.

Examples

Invalid assumptions about memory organization
Description

Invalid assumptions about memory organization occurs when you compute the
address of a variable in the stack by adding or subtracting from the address of another
non-array variable.

Risk

When you compute the address of a variable in the stack by adding or subtracting from
the address of another variable, you assume a certain memory organization. If your
assumption is incorrect, accessing the computed address can be invalid.

Fix

Do not perform an access that relies on assumptions about memory organization.

Example - Reliance on Memory Organization

void func(void) {
 int var1 = 0x00000011, var2;
 *(&var1 + 1) = 0;
}

7 CERT C Rules and Recommendations

7-170

In this example, the programmer relies on the assumption that &var1 + 1 provides the
address of var2. Therefore, an Invalid assumptions about memory organization
appears on the + operation. In addition, a Pointer access out of bounds error also
appears on the dereference.

Correction — Do Not Rely on Memory Organization

One possible correction is not perform direct computation on addresses to access
separately declared variables.

Check Information
Group: Rule 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ARR37-C

Introduced in R2019a

 CERT C: Rule ARR37-C

7-171

https://wiki.sei.cmu.edu/confluence/x/1dUxBQ

CERT C: Rule ARR38-C
Guarantee that library functions do not form invalid pointers

Description

Rule Definition
Guarantee that library functions do not form invalid pointers.

Examples

Mismatch between data length and size
Description

Mismatch between data length and size looks for memory copying functions such as
memcpy, memset, or memmove. If you do not control the length argument and data buffer
argument properly, Bug Finder raises a defect.

Risk

If an attacker can manipulate the data buffer or length argument, the attacker can cause
buffer overflow by making the actual data size smaller than the length.

This mismatch in length allows the attacker to copy memory past the data buffer to a new
location. If the extra memory contains sensitive information, the attacker can now access
that data.

This defect is similar to the SSL Heartbleed bug.

Fix

When copying or manipulating memory, compute the length argument directly from the
data so that the sizes match.

7 CERT C Rules and Recommendations

7-172

Example - Copy Buffer of Data

#include <stdlib.h>
#include <string.h>

typedef struct buf_mem_st {
 char *data;
 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

 length = *(unsigned short *)os->data;
 memcpy(&(beta.data[num]), os->data + 2, length);

 return(1);
}

This function copies the buffer alpha into a buffer beta. However, the length variable is
not related to data+2.

Correction — Check Buffer Length

One possible correction is to check the length of your buffer against the maximum value
minus 2. This check ensures that you have enough space to copy the data to the beta
structure.

#include <stdlib.h>
#include <string.h>

typedef struct buf_mem_st {
 char *data;
 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

 CERT C: Rule ARR38-C

7-173

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

 length = *(unsigned short *)os->data;
 if (length<(os->max -2)) {
 memcpy(&(beta.data[num]), os->data + 2, length);
 }

 return(1);

}

Invalid use of standard library memory routine
Description

Invalid use of standard library memory routine occurs when a memory library
function is called with invalid arguments. For instance, the memcpy function copies to an
array that cannot accommodate the number of bytes copied.

Risk

Use of a memory library function with invalid arguments can result in issues such as
buffer overflow.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

7 CERT C Rules and Recommendations

7-174

Example - Invalid Use of Standard Library Memory Routine Error

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 char str1[10],str2[5];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

 return str2;
 }

The size of string str2 is 5, but six characters of string str1 are copied into str2 using
the memcpy function.

Correction — Call Function with Valid Arguments

One possible correction is to adjust the size of str2 so that it accommodates the
characters copied with the memcpy function.

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 /* Fix: Declare str2 with size 6 */
 char str1[10],str2[6];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 return str2;
 }

 CERT C: Rule ARR38-C

7-175

Possible misuse of sizeof
Description

Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly
unintended results from the use of sizeof operator. For instance:

• You use the sizeof operator on an array parameter name, expecting the array size.
However, the array parameter name by itself is a pointer. The sizeof operator
returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However,
the operator returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect
because you used the sizeof operator earlier with possibly incorrect expectations.
For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an
incorrect use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the not the
number of wide characters but a size in bytes obtained by using the sizeof
operator. For instance, you use wcsncpy(destination, source,
sizeof(destination) - 1) instead of wcsncpy(destination, source,
(sizeof(desintation)/sizeof(wchar_t)) - 1).

Risk

Incorrect use of the sizeof operator can cause the following issues:

• If you expect the sizeof operator to return array size and use the return value to
constrain a loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is
smaller than what you require. Insufficient buffer can lead to resultant weaknesses
such as buffer overflows.

• If you use the return value of sizeof operator incorrectly in a function call, the
function does not behave as you expect.

Fix

Possible fixes are:

7 CERT C Rules and Recommendations

7-176

• Do not use the sizeof operator on an array parameter name or array element to
determine array size.

The best practice is to pass the array size as a separate function parameter and use
that parameter in the function body.

• Use the sizeof operator carefully to determine the number argument of functions
such as strncmp or wcsncpy. For instance, for wide string functions such as
wcsncpy, use the number of wide characters as argument instead of the number of
bytes.

Example - sizeof Used Incorrectly to Determine Array Size

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {
 a[i] = i + 1;
 }
}

In this example, sizeof(a) returns the size of the pointer a and not the array size.

Correction — Determine Array Size in Another Way

One possible correction is to use another means to determine the array size.

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < MAX_SIZE; i++) {
 a[i] = i + 1;
 }
}

 CERT C: Rule ARR38-C

7-177

Buffer overflow from incorrect string format specifier
Description

Buffer overflow from incorrect string format specifier occurs when the format
specifier argument for functions such as sscanf leads to an overflow or underflow in the
memory buffer argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size, an
overflow occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

Example - Memory Buffer Overflow

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c
causes a buffer overflow.

Correction — Use Smaller Precision in Format Specifier

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

7 CERT C Rules and Recommendations

7-178

Invalid use of standard library string routine
Description

Invalid use of standard library string routine occurs when a string library function is
called with invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy
function with a source argument larger than the destination argument can result in buffer
overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases,
you can constrain the function arguments before the function call. For instance, if the
strcpy function:

char * strcpy(char * destination, const char* source)

tries to copy too many bytes into the destination argument compared to the available
buffer, constrain the source argument before the call to strcpy. In some cases, you can
use an alternative function to avoid the error. For instance, instead of strcpy, you can
use strncpy to control the number of bytes copied. See also “Interpret Polyspace Bug
Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 CERT C: Rule ARR38-C

7-179

 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Destination buffer overflow in string manipulation
Description

Destination buffer overflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at an offset greater
than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char*
format), you use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer overflow also introduces the risk of code injection.

7 CERT C Rules and Recommendations

7-180

Fix

One possible solution is to use alternative functions to constrain the number of characters
written. For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or
sprintf_s instead to enforce length control. Alternatively, use asprintf to
automatically allocate the memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string,
use vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s
instead to enforce length control.

Another possible solution is to increase the buffer size.

Example - Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater
size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

 CERT C: Rule ARR38-C

7-181

Destination buffer underflow in string manipulation
Description

Destination buffer underflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at a negative offset
from the beginning of the buffer.

For instance, for the function sprintf(char* buffer, const char* format), you
obtain the buffer from an operation buffer = (char*)arr; ... buffer +=
offset;. arr is an array and offset is a negative value.

Risk

Buffer underflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer underflow also introduces the risk of code injection.

Fix

If the destination buffer argument results from pointer arithmetic, see if you are
decrementing a pointer. Fix the pointer decrement by modifying either the original value
before decrement or the decrement value.

Example - Buffer Underflow in sprintf Use
#include <stdio.h>
#define offset -2

void func(void) {
 char buffer[20];
 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);
}

In this example, &buffer[offset] is at a negative offset from the memory allocated to
buffer.

Correction — Change Pointer Decrementer

One possible correction is to change the value of offset.

#include <stdio.h>
#define offset 2

7 CERT C Rules and Recommendations

7-182

void func(void) {
 char buffer[20];
 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);
}

Check Information
Group: Rule 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ARR38-C

Introduced in R2019a

 CERT C: Rule ARR38-C

7-183

https://wiki.sei.cmu.edu/confluence/x/W9UxBQ

CERT C: Rule ARR39-C
Do not add or subtract a scaled integer to a pointer

Description

Rule Definition
Do not add or subtract a scaled integer to a pointer.

Examples

Incorrect pointer scaling
Description

Incorrect pointer scaling occurs when Polyspace Bug Finder considers that you are
ignoring the implicit scaling in pointer arithmetic.

For instance, the defect can occur in the following situations.

Situation Risk Possible Fix
You use the sizeof
operator in arithmetic
operations on a pointer.

The sizeof operator
returns the size of a data
type in number of bytes.

Pointer arithmetic is already
implicitly scaled by the size
of the data type of the
pointed variable. Therefore,
the use of sizeof in pointer
arithmetic produces
unintended results.

Do not use sizeof operator
in pointer arithmetic.

7 CERT C Rules and Recommendations

7-184

Situation Risk Possible Fix
You perform arithmetic
operations on a pointer, and
then apply a cast.

Pointer arithmetic is
implicitly scaled. If you do
not consider this implicit
scaling, casting the result of
a pointer arithmetic
produces unintended
results.

Apply the cast before the
pointer arithmetic.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Use of sizeof Operator

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2*(sizeof(int)));
}

In this example, the operation 2*(sizeof(int)) returns twice the size of an int
variable in bytes. However, because pointer arithmetic is implicitly scaled, the number of
bytes by which ptr is offset is 2*(sizeof(int))*(sizeof(int)).

In this example, the incorrect scaling shifts ptr outside the bounds of the array.
Therefore, a Pointer access out of bounds error appears on the * operation.

Correction — Remove sizeof Operator

One possible correction is to remove the sizeof operator.

 CERT C: Rule ARR39-C

7-185

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2);
}

Example - Cast Following Pointer Arithmetic

int func(void) {
 int x = 0;
 char r = *(char *)(&x + 1);
 return r;
}

In this example, the operation &x + 1 offsets &x by sizeof(int). Following the
operation, the resulting pointer points outside the allowed buffer. When you dereference
the pointer, a Pointer access out of bounds error appears on the * operation.

Correction — Apply Cast Before Pointer Arithmetic

If you want to access the second byte of x, first cast &x to a char* pointer and then
perform the pointer arithmetic. The resulting pointer is offset by sizeof(char) bytes
and still points within the allowed buffer, whose size is sizeof(int) bytes.

int func(void) {
 int x = 0;
 char r = *((char *)(&x)+ 1);
 return r;
}

Check Information
Group: Rule 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

7 CERT C Rules and Recommendations

7-186

External Websites
ARR39-C

Introduced in R2019a

 CERT C: Rule ARR39-C

7-187

https://wiki.sei.cmu.edu/confluence/x/ytYxBQ

CERT C: Rule STR30-C
Do not attempt to modify string literals

Description

Rule Definition
Do not attempt to modify string literals.

Examples

Writing to const qualified object
Description

Writing to const qualified object occurs when you do one of the following:

• Use a const-qualified object as the destination of an assignment.
• Pass a const-qualified object to a function that modifies the argument.

For instance, the defect can occur in the following situations:

• You pass a const-qualified object as first argument of one of the following functions:

• mkstemp
• mkostemp
• mkostemps
• mkdtemp

• You pass a const-qualified object as the destination argument of one of the following
functions:

• strcpy
• strncpy

7 CERT C Rules and Recommendations

7-188

• strcat
• memset

• You perform a write operation on a const-qualified object.

Risk

The risk depends upon the modifications made to the const-qualified object.

Situation Risk
Passing to mkstemp, mkostemp,
mkostemps, mkdtemp, and so on.

These functions replace the last six
characters of their first argument with a
string. Therefore, they expect a modifiable
char array as their first argument.

Passing to strcpy, strncpy, strcat,
memset and so on.

These functions modify their destination
argument. Therefore, they expect a
modifiable char array as their destination
argument.

Writing to the object The const qualifier implies an agreement
that the value of the object will not be
modified. By writing to a const-qualified
object, you break the agreement. The result
of the operation is undefined.

Fix

The fix depends on the modification made to the const-qualified object.

Situation Fix
Passing to mkstemp, mkostemp,
mkostemps, mkdtemp, and so on.

Pass a non-const object as first argument
of the function.

Passing to strcpy, strncpy, strcat,
memset and so on.

Pass a non-const object as destination
argument of the function.

Writing to the object Perform the write operation on a non-
const object.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 CERT C: Rule STR30-C

7-189

Example - Writing to const-Qualified Object

#include <string.h>

const char* buffer = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

In this example, because buffer is const-qualified, strchr(buffer,'X') returns a
const-qualified char* pointer. When this char* pointer is used as the destination
argument of strcpy, a Writing to const qualified object error appears.

Correction — Copy const-Qualified Object to Non-const Object

One possible correction is to assign the constant string to a non-const object and use the
non-const object as destination argument of strchr.

#include <string.h>

char buffer[] = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

Check Information
Group: Rule 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

7 CERT C Rules and Recommendations

7-190

External Websites
STR30-C

Introduced in R2019a

 CERT C: Rule STR30-C

7-191

https://wiki.sei.cmu.edu/confluence/x/VtYxBQ

CERT C: Rule STR31-C
Guarantee that storage for strings has sufficient space for character data and the null
terminator

Description

Rule Definition
Guarantee that storage for strings has sufficient space for character data and the null
terminator.

Examples

Use of dangerous standard function
Description

The Use of dangerous standard function check highlights uses of functions that are
inherently dangerous or potentially dangerous given certain circumstances. The following
table lists possibly dangerous functions, the risks of using each function, and what
function to use instead.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You cannot
control the length of input from the
console.

fgets

cin Inherently dangerous — You cannot
control the length of input from the
console.

Avoid or prefaces calls to cin
with cin.width.

7 CERT C Rules and Recommendations

7-192

Dangerous
Function

Risk Level Safer Function

strcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

strncpy

stpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

stpncpy

lstrcpy or
StrCpy

Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

StringCbCopy,
StringCchCopy, strncpy,
strcpy_s, or strlcpy

strcat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

strncat, strlcat, or
strcat_s

lstrcat or
StrCat

Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or
strlcat

wcpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

wcsncat, wcslcat, or
wcncat_s

wcscpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcsncpy

 CERT C: Rule STR31-C

7-193

Dangerous
Function

Risk Level Safer Function

sprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

snprintf

vsprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

vsnprintf

Risk

These functions can cause buffer overflow, which attackers can use to infiltrate your
program.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Using sprintf
#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

7 CERT C Rules and Recommendations

7-194

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

This example function uses sprintf to copy the string str to dst. However, if str is
larger than the buffer, sprintf can cause buffer overflow.

Correction — Use snprintf with Buffer Size

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Missing null in string array
Description

Missing null in string array occurs when a string does not have enough space to
terminate with a null character '\0'.

 CERT C: Rule STR31-C

7-195

This defect applies only for projects in C.

Risk

A buffer overflow can occur if you copy a string to an array without assuming the implicit
null terminator.

Fix

If you initialize a character array with a literal, avoid specifying the array bounds.

char three[] = "THREE";

The compiler automatically allocates space for a null terminator. In the preceding
example, the compiler allocates sufficient space for five characters and a null terminator.

If the issue occurs after initialization, you might have to increase the size of the array by
one to account for the null terminator.

In certain circumstances, you might want to initialize the character array with a sequence
of characters instead of a string. In this situation, add comments to your result or code to
avoid another review. See “Address Polyspace Results Through Bug Fixes or
Justifications”.

Example - Array size is too small

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[5] = "THREE";
}

The character array three has a size of 5 and 5 characters 'T', 'H', 'R', 'E', and 'E'.
There is no room for the null character at the end because three is only five bytes large.

Correction — Increase Array Size

One possible correction is to change the array size to allow for the five characters plus a
null character.

void countdown(int i)
{
 static char one[5] = "ONE";

7 CERT C Rules and Recommendations

7-196

 static char two[5] = "TWO";
 static char three[6] = "THREE";
}

Correction — Change Initialization Method

One possible correction is to initialize the string by leaving the array size blank. This
initialization method allocates enough memory for the five characters and a terminating-
null character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[] = "THREE";
}

Buffer overflow from incorrect string format specifier
Description

Buffer overflow from incorrect string format specifier occurs when the format
specifier argument for functions such as sscanf leads to an overflow or underflow in the
memory buffer argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size, an
overflow occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

Example - Memory Buffer Overflow

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

 CERT C: Rule STR31-C

7-197

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c
causes a buffer overflow.

Correction — Use Smaller Precision in Format Specifier

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

Destination buffer overflow in string manipulation
Description

Destination buffer overflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at an offset greater
than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char*
format), you use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of characters
written. For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or
sprintf_s instead to enforce length control. Alternatively, use asprintf to
automatically allocate the memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string,
use vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s
instead to enforce length control.

7 CERT C Rules and Recommendations

7-198

Another possible solution is to increase the buffer size.

Example - Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater
size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Check Information
Group: Rule 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rule STR31-C

7-199

External Websites
STR31-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-200

https://wiki.sei.cmu.edu/confluence/x/sNUxBQ

CERT C: Rule STR32-C
Do not pass a non-null-terminated character sequence to a library function that expects a
string

Description
Rule Definition
Do not pass a non-null-terminated character sequence to a library function that expects a
string.

Examples
Invalid use of standard library string routine
Description

Invalid use of standard library string routine occurs when a string library function is
called with invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy
function with a source argument larger than the destination argument can result in buffer
overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases,
you can constrain the function arguments before the function call. For instance, if the
strcpy function:

char * strcpy(char * destination, const char* source)

tries to copy too many bytes into the destination argument compared to the available
buffer, constrain the source argument before the call to strcpy. In some cases, you can

 CERT C: Rule STR32-C

7-201

use an alternative function to avoid the error. For instance, instead of strcpy, you can
use strncpy to control the number of bytes copied.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Use of Standard Library String Routine Error
 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

7 CERT C Rules and Recommendations

7-202

Tainted NULL or non-null-terminated string
Description

Tainted NULL or non-null-terminated string looks for strings from unsecure sources
that are being used in string manipulation routines that implicitly dereference the string
buffer. For example, strcpy or sprintf.

Tainted NULL or non-null-terminated string raises no defect for a string returned
from a call to scanf-family variadic functions. Similarly, no defect is raised when you
pass the string with a %s specifier to printf-family variadic functions.

Note If you reference a string using the form ptr[i], *ptr, or pointer arithmetic, Bug
Finder raises a Use of tainted pointer defect instead. The Tainted NULL or non-null-
terminated string defect is raised only when the pointer is used as a string.

Risk

If a string is from an unsecure source, it is possible that an attacker manipulated the
string or pointed the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the
program to crash. If the string is not null-terminated, the string routine might not know
when the string ends. This error can cause you to write out of bounds, causing a buffer
overflow.

Fix

Validate the string before you use it. Check that:

• The string is not NULL.
• The string is null-terminated
• The size of the string matches the expected size.

Example - Getting String from Input Argument

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

 CERT C: Rule STR32-C

7-203

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

In this example, the string str is concatenated with the argument userstr. The value of
userstr is unknown. If the size of userstr is greater than the space available, the
concatenation overflows.

Correction — Validate the Data

One possible correction is to check the size of userstr and make sure that the string is
null-terminated before using it in strncat. This example uses a helper function,
sansitize_str, to validate the string. The defects are concentrated in this function.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

int sanitize_str(char* s) {
 int res = 0;
 if (s && (strlen(s) > 0)) { // TAINTED_STRING only flagged here
 // - string is not null
 // - string has a positive and limited size
 // - TAINTED_STRING on strlen used as a firewall
 res = 1;
 }

7 CERT C Rules and Recommendations

7-204

 return res;
}

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

Correction — Validate the Data

Another possible correction is to call function errorMsg and warningMsg with specific
strings.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

 CERT C: Rule STR32-C

7-205

int manageSensorValue(int sensorValue) {
 int ret = sensorValue;
 if (sensorValue < 0) {
 errorMsg("sensor value should be positive");
 exit(1);
 } else if (sensorValue > 50) {
 warningMsg("sensor value greater than 50 (applying threshold)...");
 sensorValue = 50;
 }

 return sensorValue;
}

Check Information
Group: Rule 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR32-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-206

https://wiki.sei.cmu.edu/confluence/x/r9UxBQ

CERT C: Rule STR34-C
Cast characters to unsigned char before converting to larger integer sizes

Description
Rule Definition
Cast characters to unsigned char before converting to larger integer sizes.

Examples
Misuse of sign-extended character value
Description

Misuse of sign-extended character value occurs when you convert a signed or plain
char data type to a wider integer data type with sign extension. You then use the
resulting sign-extended value as array index, for comparison with EOF or as argument to
a character-handling function.

Risk

Comparison with EOF: Suppose, your compiler implements the plain char type as signed.
In this implementation, the character with the decimal form of 255 (–1 in two’s
complement form) is stored as a signed value. When you convert a char variable to the
wider data type int for instance, the sign bit is preserved (sign extension). This sign
extension results in the character with the decimal form 255 being converted to the
integer –1, which cannot be distinguished from EOF.

Use as array index: By similar reasoning, you cannot use sign-extended plain char
variables as array index. If the sign bit is preserved, the conversion from char to int can
result in negative integers. You must use positive integer values for array index.

Argument to character-handling function: By similar reasoning, you cannot use sign-
extended plain char variables as arguments to character-handling functions declared in

 CERT C: Rule STR34-C

7-207

ctype.h, for instance, isalpha() or isdigit(). According to the C11 standard
(Section 7.4), if you supply an integer argument that cannot be represented as unsigned
char or EOF, the resulting behavior is undefined.

Fix

Before conversion to a wider integer data type, cast the signed or plain char value
explicitly to unsigned char.

Example - Sign-Extended Character Value Compared with EOF

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = *buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

In this example, the function parser can traverse a string input buf. If a character in the
string has the decimal form 255, when converted to the int variable c, its value becomes
–1, which is indistinguishable from EOF. The later comparison with EOF can lead to a false
positive.

Correction — Cast to unsigned char Before Conversion

One possible correction is to cast the plain char value to unsigned char before
conversion to the wider int type.

7 CERT C Rules and Recommendations

7-208

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = (unsigned char)*buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Group: Rule 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR34-C

Introduced in R2019a

 CERT C: Rule STR34-C

7-209

https://wiki.sei.cmu.edu/confluence/x/BdYxBQ

CERT C: Rule STR37-C
Arguments to character-handling functions must be representable as an unsigned char

Description
Rule Definition
Arguments to character-handling functions must be representable as an unsigned char.

Examples
Invalid use of standard library integer routine
Description

Invalid use of standard library integer routine occurs when you use invalid
arguments with an integer function from the standard library. This defect picks up:

• Character Conversion

toupper, tolower
• Character Checks

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit

• Integer Division

div, ldiv
• Absolute Values

abs, labs

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If

7 CERT C Rules and Recommendations

7-210

the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Absolute Value of Large Negative

#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN;
 return abs(neg);
}

The input value to abs is INT_MIN. The absolute value of INT_MIN is INT_MAX+1. This
number cannot be represented by the type int.

Correction — Change Input Argument

One possible correction is to change the input value to fit returned data type. In this
example, change the input value to INT_MIN+1.

#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN+1;
 return abs(neg);
}

Check Information
Group: Rule 07. Characters and Strings (STR)

 CERT C: Rule STR37-C

7-211

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR37-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-212

https://wiki.sei.cmu.edu/confluence/x/BNcxBQ

CERT C: Rule STR38-C
Do not confuse narrow and wide character strings and functions

Description

Rule Definition
Do not confuse narrow and wide character strings and functions.

Examples

Misuse of narrow or wide character string
Description

Misuse of narrow or wide character string occurs when you pass a narrow character
string to a wide string function, or a wide character string to a narrow string function.

Misuse of narrow or wide character string raises no defect on operating systems
where narrow and wide character strings have the same size.

Risk

Using a narrow character string with a wide string function, or vice versa, can result in
unexpected or undefined behavior.

If you pass a wide character string to a narrow string function, you can encounter these
issues:

• Data truncation. If the string contains null bytes, a copy operation using strncpy()
can terminate early.

• Incorrect string length. strlen() returns the number of characters of a string up to
the first null byte. A wide string can have additional characters after its first null byte.

 CERT C: Rule STR38-C

7-213

If you pass a narrow character string to a wide string function, you can encounter this
issue:

• Buffer overflow. In a copy operation using wcsncpy(), the destination string might
have insufficient memory to store the result of the copy.

Fix

Use the narrow string functions with narrow character strings. Use the wide string
functions with wide character strings.

Example - Passing Wide Character Strings to strncpy()

#include <string.h>
#include <wchar.h>

void func(void)
{
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 strncpy(wide_str2, wide_str1, 10);
}

In this example, strncpy() copies 10 wide characters from wide_strt1 to wide_str2.
If wide_str1 contains null bytes, the copy operation can end prematurely and truncate
the wide character string.

Correction — Use wcsncpy() to Copy Wide Character Strings

One possible correction is to use wcsncpy() to copy wide_str1 to wide_str2.

#include <string.h>
#include <wchar.h>

void func(void)
{
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 wcsncpy(wide_str2, wide_str1, 10);
}

7 CERT C Rules and Recommendations

7-214

Check Information
Group: Rule 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR38-C

Introduced in R2019a

 CERT C: Rule STR38-C

7-215

https://wiki.sei.cmu.edu/confluence/x/xtYxBQ

CERT C: Rule MEM30-C
Do not access freed memory

Description

Rule Definition
Do not access freed memory.

Examples

Use of previously freed pointer
Description

Use of previously freed pointer occurs when you access a block of memory after
freeing the block using the free function.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points
to a memory location on the heap. When you use the free function on this pointer, the
associated block of memory is freed for reallocation. Trying to access this block of
memory can result in unpredictable behavior or even a segmentation fault.

Fix

The fix depends on the root cause of the defect. See if you intended to free the memory
later or allocate another memory block to the pointer before access.

As a good practice, after you free a memory block, assign the corresponding pointer to
NULL. Before dereferencing pointers, check them for NULL values and handle the error.
In this way, you are protected against accessing a freed block.

7 CERT C Rules and Recommendations

7-216

Example - Use of Previously Freed Pointer Error

#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;
 free(pi);

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore,
dereferencingpi after the free statement is not valid.

Correction — Free Pointer After Use

One possible correction is to free the pointer pi only after the last instance where it is
accessed.

#include <stdlib.h>

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

 CERT C: Rule MEM30-C

7-217

Check Information
Group: Rule 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM30-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-218

https://wiki.sei.cmu.edu/confluence/x/GdYxBQ

CERT C: Rule MEM31-C
Free dynamically allocated memory when no longer needed

Description

Rule Definition
Free dynamically allocated memory when no longer needed.

Examples

Memory leak
Description

Memory leak occurs when you do not free a block of memory allocated through malloc,
calloc, realloc, or new. If the memory is allocated in a function, the defect does not
occur if:

• Within the function, you free the memory using free or delete.
• The function returns the pointer assigned by malloc, calloc, realloc, or new.
• The function stores the pointer in a global variable or in a parameter.

Risk

Dynamic memory allocation functions such as malloc allocate memory on the heap. If
you do not release the memory after use, you reduce the amount of memory available for
another allocation. On embedded systems with limited memory, you might end up
exhausting available heap memory even during program execution.

Fix

Determine the scope where the dynamically allocated memory is accessed. Free the
memory block at the end of this scope.

 CERT C: Rule MEM31-C

7-219

To free a block of memory, use the free function on the pointer that was used during
memory allocation. For instance:

ptr = (int*)malloc(sizeof(int));
...
free(ptr);

It is a good practice to allocate and free memory in the same module at the same level of
abstraction. For instance, in this example, func allocates and frees memory at the same
level but func2 does not.

void func() {
 ptr = (int*)malloc(sizeof(int));
 {
 ...
 }
 free(ptr);
}

void func2() {
 {
 ptr = (int*)malloc(sizeof(int));
 ...
 }
 free(ptr);
}

See CERT-C Rule MEM00-C.

Example - Dynamic Memory Not Released Before End of Function
#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }

 *pi = 42;

7 CERT C Rules and Recommendations

7-220

https://wiki.sei.cmu.edu/confluence/x/FtYxBQ

 /* Defect: pi is not freed */
}

In this example, pi is dynamically allocated by malloc. The function assign_memory
does not free the memory, nor does it return pi.

Correction — Free Memory

One possible correction is to free the memory referenced by pi using the free function.
The free function must be called before the function assign_memory terminates

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }
 *pi = 42;

 /* Fix: Free the pointer pi*/
 free(pi);
}

Correction — Return Pointer from Dynamic Allocation

Another possible correction is to return the pointer pi. Returning pi allows the function
calling assign_memory to free the memory block using pi.

#include<stdlib.h>
#include<stdio.h>

int* assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return(pi);
 }

 CERT C: Rule MEM31-C

7-221

 *pi = 42;

 /* Fix: Return the pointer pi*/
 return(pi);
}

Example - Memory Leak with New/Delete

#define NULL '\0'

void initialize_arr1(void)
{
 int *p_scalar = new int(5);
}

void initialize_arr2(void)
{
 int *p_array = new int[5];
}

In this example, the functions create two variables, p_scalar and p_array, using the
new keyword. However, the functions end without cleaning up the memory for these
pointers. Because the functions used new to create these variables, you must clean up
their memory by calling delete at the end of each function.

Correction — Add Delete

To correct this error, add a delete statement for every new initialization. If you used
brackets [] to instantiate a variable, you must call delete with brackets as well.

#define NULL '\0'

void initialize_arrs(void)
{
 int *p_scalar = new int(5);
 int *p_array = new int[5];

 delete p_scalar;
 p_scalar = NULL;

 delete[] p_array;
 p_scalar = NULL;
}

7 CERT C Rules and Recommendations

7-222

Check Information
Group: Rule 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM31-C

Introduced in R2019a

 CERT C: Rule MEM31-C

7-223

https://wiki.sei.cmu.edu/confluence/x/GNYxBQ

CERT C: Rule MEM33-C
Allocate and copy structures containing a flexible array member dynamically

Description

Rule Definition
Allocate and copy structures containing a flexible array member dynamically.

Examples

Misuse of structure with flexible array member
Description

Misuse of structure with flexible array member occurs when:

• You define an object with a flexible array member of unknown size at compilation time.
• You make an assignment between structures with a flexible array member without

using memcpy() or a similar function.
• You use a structure with a flexible array member as an argument to a function and

pass the argument by value.
• Your function returns a structure with a flexible array member.

A flexible array member has no array size specified and is the last element of a structure
with at least two named members.

Risk

If the size of the flexible array member is not defined, it is ignored when allocating
memory for the containing structure. Accessing such a structure has undefined behavior.

7 CERT C Rules and Recommendations

7-224

Fix

• Use malloc() or a similar function to allocate memory for a structure with a flexible
array member.

• Use memcpy() or a similar function to copy a structure with a flexible array member.
• Pass a structure with a flexible array member as a function argument by pointer.

Example - Structure Passed By Value to Function
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

struct example_struct
{
 size_t num;
 int data[];
};

extern void arg_by_value(struct example_struct s);

void func(void)
{
 struct example_struct *flex_struct;
 size_t i;
 size_t array_size = 4;
 /* Dynamically allocate memory for the struct */
 flex_struct = (struct example_struct *)
 malloc(sizeof(struct example_struct) + sizeof(int) * array_size);
 if (flex_struct == NULL)
 {
 /* Handle error */
 }
 /* Initialize structure */
 flex_struct->num = array_size;
 for (i = 0; i < array_size; ++i)
 {
 flex_struct->data[i] = 0;
 }
 /* Handle structure */

 CERT C: Rule MEM33-C

7-225

 /* Argument passed by value. 'data' not
 copied to passed value. */
 arg_by_value(*flex_struct);

 /* Free dynamically allocated memory */
 free(flex_struct);
}

In this example, flex_struct is passed by value as an argument to arg_by_value. As a
result, the flexible array member data is not copied to the passed argument.

Correction — Pass Structure by Pointer to Function

To ensure that all the members of the structure are copied to the passed argument, pass
flex_struct to arg_by_pointer by pointer.

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

struct example_struct
{
 size_t num;
 int data[];
};

extern void arg_by_pointer(struct example_struct *s);

void func(void)
{
 struct example_struct *flex_struct;
 size_t i;
 size_t array_size = 4;
 /* Dynamically allocate memory for the struct */
 flex_struct = (struct example_struct *)
 malloc(sizeof(struct example_struct) + sizeof(int) * array_size);
 if (flex_struct == NULL)
 {
 /* Handler error */
 }

7 CERT C Rules and Recommendations

7-226

 /* Initialize structure */
 flex_struct->num = array_size;
 for (i = 0; i < array_size; ++i)
 {
 flex_struct->data[i] = 0;
 }
 /* Handle structure */

 /* Structure passed by pointer */
 arg_by_pointer(flex_struct);

 /* Free dynamically allocated memory */
 free(flex_struct);
}

Check Information
Group: Rule 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM33-C

Introduced in R2019a

 CERT C: Rule MEM33-C

7-227

https://wiki.sei.cmu.edu/confluence/x/N9YxBQ

CERT C: Rule MEM34-C
Only free memory allocated dynamically

Description

Rule Definition
Only free memory allocated dynamically.

Examples

Invalid free of pointer
Description

Invalid free of pointer occurs when a block of memory released using the free function
was not previously allocated using malloc, calloc, or realloc.

Risk

The free function releases a block of memory allocated on the heap. If you try to access
a location on the heap that you did not allocate previously, a segmentation fault can occur.

The issue can highlight coding errors. For instance, you perhaps wanted to use the free
function or a previous malloc function on a different pointer.

Fix

In most cases, you can fix the issue by removing the free statement. If the pointer is not
allocated memory from the heap with malloc or calloc, you do not need to free the
pointer. You can simply reuse the pointer as required.

If the issue highlights a coding error such as use of free or malloc on the wrong
pointer, correct the error.

7 CERT C Rules and Recommendations

7-228

If the issue occurs because you use the free function to free memory allocated with the
new operator, replace the free function with the delete operator.

Example - Invalid Free of Pointer Error

#include <stdlib.h>

void Assign_Ones(void)
{
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;

 free(p);
 /* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points to a memory
location that was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction
is to remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)
 {
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;
 /* Fix: Remove deallocation of p */
 }

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time, one possible
correction is to dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)
{

 CERT C: Rule MEM34-C

7-229

 int *p;
 /* Fix: Allocate memory dynamically to p */
 p=(int*) calloc(10,sizeof(int));
 for(int i=0;i<10;i++)
 *(p+i)=1;
 free(p);
}

Check Information
Group: Rule 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM34-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-230

https://wiki.sei.cmu.edu/confluence/x/HNYxBQ

CERT C: Rule MEM35-C
Allocate sufficient memory for an object

Description

Rule Definition
Allocate sufficient memory for an object.

Examples

Pointer access out of bounds
Description

Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer.
You cannot access memory beyond that block using the pointer.

Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an
unpredictable value or try to access a location that is not allowed and encounter a
segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer
inside a loop and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the

pointer increment.

 CERT C: Rule MEM35-C

7-231

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int).
In the for-loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points
outside the memory block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {

7 CERT C Rules and Recommendations

7-232

 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it,
it is not dereferenced more.

Memory allocation with tainted size
Description

Memory allocation with tainted size checks memory allocation functions, such as
calloc or malloc, for size arguments from unsecured sources.

Risk

Uncontrolled memory allocation can cause your program to request too much system
memory. This consequence can lead to a crash due to an out-of-memory condition, or
assigning too many resources.

Fix

Before allocating memory, check the value of your arguments to check that they do not
exceed the bounds.

Example - Allocate Memory Using Input Argument

#include "stdlib.h"

int* bug_taintedmemoryallocsize(size_t size) {
 int* p = (int*)malloc(size);
 return p;
}

In this example, malloc allocates size amount of memory for the pointer p. size is an
outside variable, so could be any size value. If the size is larger than the amount of
memory you have available, your program could crash.

 CERT C: Rule MEM35-C

7-233

Correction — Check Size of Memory to be Allocated

One possible correction is to check the size of the memory that you want to allocate
before performing the malloc operation. This example checks to see if the size is positive
and less than the maximum size.

#include "stdlib.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int* corrected_taintedmemoryallocsize(int size) {
 int* p = NULL;
 if (size>0 && size<SIZE128) { /* Fix: Check entry range before use */
 p = (int*)malloc((unsigned int)size);
 }
 return p;
}

Check Information
Group: Rule 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM35-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-234

https://wiki.sei.cmu.edu/confluence/x/ANYxBQ

CERT C: Rule MEM36-C
Do not modify the alignment of objects by calling realloc()

Description

Rule Definition
Do not modify the alignment of objects by calling realloc().

Examples

Alignment changed after memory reallocation
Description

Alignment changed after memory reallocation occurs when you use realloc() to
modify the size of objects with strict memory alignment requirements.

Risk

The pointer returned by realloc() can be suitably assigned to objects with less strict
alignment requirements. A misaligned memory allocation can lead to buffer underflow or
overflow, an illegally dereferenced pointer, or access to arbitrary memory locations. In
processors that support misaligned memory, the allocation impacts the performance of
the system.

Fix

To reallocate memory:

1 Resize the memory block.

• In Windows, use _aligned_realloc() with the alignment argument used in
_aligned_malloc() to allocate the original memory block.

 CERT C: Rule MEM36-C

7-235

• In UNIX/Linux, use the same function with the same alignment argument used to
allocate the original memory block.

2 Copy the original content to the new memory block.
3 Free the original memory block.

Note This fix has implementation-defined behavior. The implementation might not
support the requested memory alignment and can have additional constraints for the size
of the new memory.

Example - Memory Reallocated Without Preserving the Original Alignment

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;
 int *ptr1;

 /* Allocate memory with 4096 bytes alignment */

 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */
 }

 /*Reallocate memory without using the original alignment.
 ptr1 may not be 4096 bytes aligned. */

 ptr1 = (int *)realloc(ptr, sizeof(int) * resize);

 if (ptr1 == NULL)
 {
 /* Handle error */
 }

 /* Processing using ptr1 */

7 CERT C Rules and Recommendations

7-236

 /* Free before exit */
 free(ptr1);
}

In this example, the allocated memory is 4096-bytes aligned. realloc() then resizes the
allocated memory. The new pointer ptr1 might not be 4096-bytes aligned.

Correction — Specify the Alignment for the Reallocated Memory

When you reallocate the memory, use posix_memalign() and pass the alignment
argument that you used to allocate the original memory.

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;

 /* Allocate memory with 4096 bytes alignment */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */
 }

 /* Reallocate memory using the original alignment. */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int) * resize) != 0)
 {
 /* Handle error */
 free(ptr);
 ptr = NULL;
 }

 /* Processing using ptr */

 /* Free before exit */

 CERT C: Rule MEM36-C

7-237

 free(ptr);
}

Check Information
Group: Rule 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM36-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-238

https://wiki.sei.cmu.edu/confluence/x/f9YxBQ

CERT C: Rule FIO30-C
Exclude user input from format strings

Description
Rule Definition
Exclude user input from format strings.

Examples
Tainted string format
Description

Tainted string format detects string formatting with printf-style functions that
contain elements from unsecure sources.

Risk

If you use externally controlled elements to format a string, you can cause buffer overflow
or data-representation problems. An attacker can use these string formatting elements to
view the contents of a stack using %x or write to a stack using %n.

Fix

Pass a static string to format string functions. This fix ensures that an external actor
cannot control the string.

Another possible fix is to allow only the expected number of arguments. If possible, use
functions that do not support the vulnerable %n operator in format strings.

Example - Get Elements from User Input
#include "stdio.h"

 CERT C: Rule FIO30-C

7-239

void taintedstringformat(char* userstr) {
 printf(userstr);
}

This example prints the input argument userstr. The string is unknown. If it contains
elements such as %, printf can interpret userstr as a string format instead of a string,
causing your program to crash.

Correction — Print as String

One possible correction is to print userstr explicitly as a string so that there is no
ambiguity.

#include "stdio.h"

void taintedstringformat(char* userstr) {
 printf("%.20s", userstr);
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO30-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-240

https://wiki.sei.cmu.edu/confluence/x/RdYxBQ

CERT C: Rule FIO32-C
Do not perform operations on devices that are only appropriate for files

Description

Rule Definition
Do not perform operations on devices that are only appropriate for files.

Examples

Inappropriate I/O operation on device files
Description

Inappropriate I/O operation on device files occurs when you do not check whether a
file name parameter refers to a device file before you pass it to these functions:

• fopen()
• fopen_s()
• freopen()
• remove()
• rename()
• CreateFile()
• CreateFileA()
• CreateFileW()
• _wfopen()
• _wfopen_s()

Device files are files in a file system that provide an interface to device drivers. You can
use these files to interact with devices.

 CERT C: Rule FIO32-C

7-241

Inappropriate I/O operation on device files does not raise a defect when:

• You use stat or lstat-family functions to check the file name parameter before
calling the previously listed functions.

• You use a string comparison function to compare the file name against a list of device
file names.

Risk

Operations appropriate only for regular files but performed on device files can result in
denial-of-service attacks, other security vulnerabilities, or system failures.

Fix

Before you perform an I/O operation on a file:

• Use stat(), lstat(), or an equivalent function to check whether the file name
parameter refers to a regular file.

• Use a string comparison function to compare the file name against a list of device file
names.

Example - Using fopen() Without Checking file_name

#include <stdio.h>
#include <string.h>

#define SIZE1024 1024

FILE* func()
{

 FILE* f;
 const char file_name[SIZE1024] = "./tmp/file";

 if ((f = fopen(file_name, "w")) == NULL) {
 /*handle error */
 };
 /*operate on file */
}

In this example, func() operates on the file file_name without checking whether it is a
regular file. If file_name is a device file, attempts to access it can result in a system
failure.

7 CERT C Rules and Recommendations

7-242

Correction — Check File with lstat() Before Calling fopen()

One possible correction is to use lstat() and the S_ISREG macro to check whether the
file is a regular file. This solution contains a TOCTOU race condition that can allow an
attacker to modify the file after you check it but before the call to fopen(). To prevent this
vulnerability, ensure that file_name refers to a file in a secure folder.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>

#define SIZE1024 1024

FILE* func()
{

 FILE* f;
 const char file_name[SIZE1024] = "./tmp/file";
 struct stat orig_st;
 if ((lstat(file_name, &orig_st) != 0) ||
 (!S_ISREG(orig_st.st_mode))) {
 exit(0);
 }
 if ((f = fopen(file_name, "w")) == NULL) {
 /*handle error */
 };
 /*operate on file */
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rule FIO32-C

7-243

External Websites
FIO32-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-244

https://wiki.sei.cmu.edu/confluence/x/19YxBQ

CERT C: Rule FIO34-C
Distinguish between characters read from a file and EOF or WEOF

Description
Rule Definition
Distinguish between characters read from a file and EOF or WEOF.

Examples
Character value absorbed into EOF
Description

Character value absorbed into EOF occurs when you perform a data type conversion
that makes a valid character value indistinguishable from EOF (End-of-File). Bug Finder
flags the defect in one of the following situations:

• End-of-File: You perform a data type conversion such as from int to char that
converts a non-EOF character value into EOF.

char ch = (char)getchar()

You then compare the result with EOF.

if((int)ch == EOF)

The conversion can be explicit or implicit.
• Wide End-of-File: You perform a data type conversion that can convert a non-WEOF

wide character value into WEOF, and then compare the result with WEOF.

Risk

The data type char cannot hold the value EOF that indicates the end of a file. Functions
such as getchar have return type int to accommodate EOF. If you convert from int to

 CERT C: Rule FIO34-C

7-245

char, the values UCHAR_MAX (a valid character value) and EOF get converted to the same
value -1 and become indistinguishable from each other. When you compare the result of
this conversion with EOF, the comparison can lead to false detection of EOF. This rationale
also applies to wide character values and WEOF.

Fix

Perform the comparison with EOF or WEOF before conversion.

Example - Return Value of getchar Converted to char

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 char ch;
 ch = getchar();
 if (EOF == (int)ch) {
 fatal_error();
 }
 return ch;
}

In this example, the return value of getchar is implicitly converted to char. If getchar
returns UCHAR_MAX, it is converted to -1, which is indistinguishable from EOF. When you
compare with EOF later, it can lead to a false positive.

Correction — Perform Comparison with EOF Before Conversion

One possible correction is to first perform the comparison with EOF, and then convert
from int to char.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 int i;
 i = getchar();
 if (EOF == i) {
 fatal_error();

7 CERT C Rules and Recommendations

7-246

 }
 else {
 return (char)i;
 }
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO34-C

Introduced in R2019a

 CERT C: Rule FIO34-C

7-247

https://wiki.sei.cmu.edu/confluence/x/TNUxBQ

CERT C: Rule FIO37-C
Do not assume that fgets() or fgetws() returns a nonempty string when successful

Description

Rule Definition
Do not assume that fgets() or fgetws() returns a nonempty string when successful.

Examples

Use of indeterminate string
Description

Use of indeterminate string occurs when you do not check the validity of the buffer
returned from fgets-family functions. The checker raises a defect when such a buffer is
used as:

• An argument in standard functions that print or manipulate strings or wide strings.
• A return value.
• An argument in external functions with parameter type const char * or const

wchar_t *.

Risk

If an fgets-family function fails, the content of its output buffer is indeterminate. Use of
such a buffer has undefined behavior and can result in a program that stops working or
other security vulnerabilities.

Fix

Reset the output buffer of an fgets-family function to a known string value when the
function fails.

7 CERT C Rules and Recommendations

7-248

Example - Output of fgets() Passed to External Function
#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func(void) {
 char buf[SIZE20];

 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* 'buf' may contain an indeterminate string. */
 ;
 }
 /* 'buf passed to external function */
 display_text(buf);
}

In this example, the output buf is passed to the external function display_text(), but
its value is not reset if fgets() fails.

Correction — Reset fgets() Output on Failure

If fgets() fails, reset buf to a known value before you pass it to an external function.

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func1(void) {
 char buf[SIZE20];
 /* Check fgets() error */

 CERT C: Rule FIO37-C

7-249

 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* value of 'buf' reset after fgets() failure. */
 buf[0] = '\0';
 }
 /* 'buf' passed to external function */
 display_text(buf);
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO37-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-250

https://wiki.sei.cmu.edu/confluence/x/JtcxBQ

CERT C: Rule FIO38-C
Do not copy a FILE object

Description

Rule Definition
Do not copy a FILE object.

Examples

Misuse of a FILE object
Description

Misuse of a FILE object occurs when:

• You dereference a pointer to a FILE object, including indirect dereference by using
memcmp().

• You modify an entire FILE object or one of its components through its pointer.
• You take the address of FILE object that was not returned from a call to an fopen-

family function. No defect is raised if a macro defines the pointer as the address of a
built-in FILE object, such as #define ptr (&__stdout).

Risk

In some implementations, the address of the pointer to a FILE object used to control a
stream is significant. A pointer to a copy of a FILE object is interpreted differently than a
pointer to the original object, and can potentially result in operations on the wrong
stream. Therefore, the use of a copy of a FILE object can cause the software to stop
responding, which an attacker might exploit in denial-of-service attacks.

 CERT C: Rule FIO38-C

7-251

Fix

Do not make a copy of a FILE object. Do not use the address of a FILE object that was not
returned from a successful call to an fopen-family function.

Example - Copy of FILE Object Used in fputs()

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>

void fatal_error(void);

int func(void)
{
 /*'stdout' dereferenced and contents
 copied to 'my_stdout'. */
 FILE my_stdout = *stdout;

 /* Address of 'my_stdout' may not point to correct stream. */
 if (fputs("Hello, World!\n", &my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;
}

In this example, FILE object stdout is dereferenced and its contents are copied to
my_stdout. The contents of stdout might not be significant. fputs() is then called
with the address of my_stdout as an argument. Because no call to fopen() or a similar
function was made, the address of my_stdout might not point to the correct stream.

Correction — Copy the FILE Object Pointer

Declare my_stdout to point to the same address as stdout to ensure that you write to
the correct stream when you call fputs().

#include <stdio.h>
#include <unistd.h>

7 CERT C Rules and Recommendations

7-252

#include <stdlib.h>
#include <string.h>
#include <strings.h>

void fatal_error(void);

int func(void)
{
 /* 'my_stdout' and 'stdout' point to the same object. */
 FILE *my_stdout = stdout;
 if (fputs("Hello, World!\n", my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO38-C

Introduced in R2019a

 CERT C: Rule FIO38-C

7-253

https://wiki.sei.cmu.edu/confluence/x/OtcxBQ

CERT C: Rule FIO39-C
Do not alternately input and output from a stream without an intervening flush or
positioning call

Description
Rule Definition
Do not alternately input and output from a stream without an intervening flush or
positioning call.

Examples
Alternating input and output from a stream without flush or
positioning call
Description

Alternating input and output from a stream without flush or positioning call
occurs when:

• You do not perform a flush or function positioning call between an output operation
and a following input operation on a file stream in update mode.

• You do not perform a function positioning call between an input operation and a
following output operation on a file stream in update mode.

Risk

Alternating input and output operations on a stream without an intervening flush or
positioning call is undefined behavior.

Fix

Call fflush() or a file positioning function such as fseek() or fsetpos() between
output and input operations on an update stream.

7 CERT C Rules and Recommendations

7-254

Call a file positioning function between input and output operations on an update stream.

Example - Read After Write Without Intervening Flush

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Read operation after write without
 intervening flush. */
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

 CERT C: Rule FIO39-C

7-255

In this example, the file demo.txt is opened for reading and appending. After the call to
fwrite(), a call to fread() without an intervening flush operation is undefined
behavior.

Correction — Call fflush() Before the Read Operation

After writing data to the file, before calling fread(), perform a flush call.

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Buffer flush after write and before read */
 if (fflush(file) != 0)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;

7 CERT C Rules and Recommendations

7-256

 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO39-C

Introduced in R2019a

 CERT C: Rule FIO39-C

7-257

https://wiki.sei.cmu.edu/confluence/x/L9YxBQ

CERT C: Rule FIO40-C
Reset strings on fgets() or fgetws() failure

Description

Rule Definition
Reset strings on fgets() or fgetws() failure.

Examples

Use of indeterminate string
Description

Use of indeterminate string occurs when you do not check the validity of the buffer
returned from fgets-family functions. The checker raises a defect when such a buffer is
used as:

• An argument in standard functions that print or manipulate strings or wide strings.
• A return value.
• An argument in external functions with parameter type const char * or const

wchar_t *.

Risk

If an fgets-family function fails, the content of its output buffer is indeterminate. Use of
such a buffer has undefined behavior and can result in a program that stops working or
other security vulnerabilities.

Fix

Reset the output buffer of an fgets-family function to a known string value when the
function fails.

7 CERT C Rules and Recommendations

7-258

Example - Output of fgets() Passed to External Function
#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func(void) {
 char buf[SIZE20];

 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* 'buf' may contain an indeterminate string. */
 ;
 }
 /* 'buf passed to external function */
 display_text(buf);
}

In this example, the output buf is passed to the external function display_text(), but
its value is not reset if fgets() fails.

Correction — Reset fgets() Output on Failure

If fgets() fails, reset buf to a known value before you pass it to an external function.

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func1(void) {
 char buf[SIZE20];
 /* Check fgets() error */

 CERT C: Rule FIO40-C

7-259

 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* value of 'buf' reset after fgets() failure. */
 buf[0] = '\0';
 }
 /* 'buf' passed to external function */
 display_text(buf);
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO40-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-260

https://wiki.sei.cmu.edu/confluence/x/JdYxBQ

CERT C: Rule FIO41-C
Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side effects

Description

Rule Definition
Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side
effects.

Examples

Stream argument with possibly unintended side effects
Description

Stream argument with possibly unintended side effects occurs when you call
getc(), putc(), getwc(), or putwc() with a stream argument that has side effects.

Stream argument with possibly unintended side effects considers the following as
stream side effects:

• Any assignment of a variable of a stream, such as FILE *, or any assignment of a
variable of a deeper stream type, such as an array of FILE *.

• Any call to a function that manipulates a stream or a deeper stream type.

The number of defects raised corresponds to the number of side effects detected. When a
stream argument is evaluated multiple times in a function implemented as a macro, a
defect is raised for each evaluation that has a side effect.

A defect is also raised on functions that are not implemented as macros but that can be
implemented as macros on another operating system.

 CERT C: Rule FIO41-C

7-261

Risk

If the function is implemented as an unsafe macro, the stream argument can be evaluated
more than once, and the stream side effect happens multiple times. For instance, a stream
argument calling fopen() might open the same file multiple times, which is unspecified
behavior.

Fix

To ensure that the side effect of a stream happens only once, use a separate statement for
the stream argument.

Example - Stream Argument of getc() Has Side Effect fopen()

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

#define fatal_error() abort()

const char* myfile = "my_file.log";

void func(void)
{
 int c;
 FILE* fptr;
 /* getc() has stream argument fptr with
 * 2 side effects: call to fopen(), and assignment
 * of fptr
 */
 c = getc(fptr = fopen(myfile, "r"));
 if (c == EOF) {
 /* Handle error */
 (void)fclose(fptr);
 fatal_error();
 }
 if (fclose(fptr) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

void main(void)
{

7 CERT C Rules and Recommendations

7-262

 func();

}

In this example, getc() is called with stream argument fptr. The stream argument has
two side effects: the call to fopen() and the assignment of fptr. If getc() is
implemented as an unsafe macro, the side effects happen multiple times.

Correction — Use Separate Statement for fopen()

One possible correction is to use a separate statement for fopen(). The call to fopen()
and the assignment of fptr happen in this statement so there are no side effects when
you pass fptr to getc().

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

#define fatal_error() abort()

const char* myfile = "my_file.log";

void func(void)
{
 int c;
 FILE* fptr;

 /* Separate statement for fopen()
 * before call to getc()
 */
 fptr = fopen(myfile, "r");
 if (fptr == NULL) {
 /* Handle error */
 fatal_error();
 }
 c = getc(fptr);
 if (c == EOF) {
 /* Handle error */
 (void)fclose(fptr);
 fatal_error();
 }
 if (fclose(fptr) == EOF) {
 /* Handle error */

 CERT C: Rule FIO41-C

7-263

 fatal_error();
 }
}

void main(void)
{
 func();

}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO41-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-264

https://wiki.sei.cmu.edu/confluence/x/PdYxBQ

CERT C: Rule FIO42-C
Close files when they are no longer needed

Description

Rule Definition
Close files when they are no longer needed.

Examples

Resource leak
Description

Resource leak occurs when you open a file stream by using a FILE pointer but do not
close it before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk

If you do not release file handles explicitly as soon as possible, a failure can occur due to
exhaustion of resources.

Fix

Close a FILE pointer before the end of its scope, or before you assign the pointer to
another stream.

Example - FILE Pointer Not Released Before End of Scope

#include <stdio.h>

 CERT C: Rule FIO42-C

7-265

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is
explicitly dissociated from the file stream of data1.txt, it is used to access another file
data2.txt.

Correction — Release FILE Pointer

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");
 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

7 CERT C Rules and Recommendations

7-266

External Websites
FIO42-C

Introduced in R2019a

 CERT C: Rule FIO42-C

7-267

https://wiki.sei.cmu.edu/confluence/x/QtUxBQ

CERT C: Rule FIO44-C
Only use values for fsetpos() that are returned from fgetpos()

Description

Rule Definition
Only use values for fsetpos() that are returned from fgetpos().

Examples

Invalid file position
Description

Invalid file position occurs when the file position argument of fsetpos() uses a value
that is not obtained from fgetpos().

Risk

The function fgetpos(FILE *stream, fpos_t *pos) gets the current file position of
the stream. When you use any other value as the file position argument of fsetpos(FILE
*stream, const fpos_t *pos), you might access an unintended location in the
stream.

Fix

Use the value returned from a successful call to fgetpos() as the file position argument
of fsetpos().

Example - memset() Sets File Position Argument

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

7 CERT C Rules and Recommendations

7-268

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */
 }
 /* Store initial position in variable 'offset' */
 (void)memset(&offset, 0, sizeof(offset));

 /* Read data from file */

 /* Return to the initial position. offset was not
 returned from a call to fgetpos() */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

In this example, fsetpos() uses offset as its file position argument. However, the
value of offset is set by memset(). The preceding code might access the wrong location
in the stream.

Correction — Use a File Position Returned From fgetpos()

Call fgetpos(), and if it returns successfully, use the position argument in your call to
fsetpos().

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */

 CERT C: Rule FIO44-C

7-269

 }
 /* Store initial position in variable 'offset'
 using fgetpos() */
 if (fgetpos(file, &offset) != 0)
 {
 /* Handle error */
 }

 /* Read data from file */

 /* Back to the initial position */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO44-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-270

https://wiki.sei.cmu.edu/confluence/x/x9UxBQ

CERT C: Rule FIO45-C
Avoid TOCTOU race conditions while accessing files

Description

Rule Definition
Avoid TOCTOU race conditions while accessing files.

Examples

File access between time of check and use (TOCTOU)
Description

File access between time of check and use (TOCTOU) detects race condition issues
between checking the existence of a file or folder, and using a file or folder.

Risk

An attacker can access and manipulate your file between your check for the file and your
use of a file. Symbolic links are particularly risky because an attacker can change where
your symbolic link points.

Fix

Before using a file, do not check its status. Instead, use the file and check the results
afterward.

Example - Check File Before Using

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

 CERT C: Rule FIO45-C

7-271

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 if (access(log_path, W_OK)==0) {
 FILE* f = fopen(log_path, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

In this example, before opening and using the file, the function checks if the file exists.
However, an attacker can change the file between the first and second lines of the
function.

Correction — Open Then Check

One possible correction is to open the file, and then check the existence and contents
afterward.

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 int fd = open(log_path, O_WRONLY);
 if (fd!=-1) {
 FILE *f = fdopen(fd, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

Check Information
Group: Rule 09. Input Output (FIO)

7 CERT C Rules and Recommendations

7-272

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO45-C

Introduced in R2019a

 CERT C: Rule FIO45-C

7-273

https://wiki.sei.cmu.edu/confluence/x/RdUxBQ

CERT C: Rule FIO46-C
Do not access a closed file

Description

Rule Definition
Do not access a closed file.

Examples

Use of previously closed resource
Description

Use of previously closed resource occurs when a function operates on a stream that
you closed earlier in your code.

Risk

The standard states that the value of a FILE* pointer is indeterminate after you close the
stream associated with it. Operations using the FILE* pointer can produce unintended
results.

Fix

One possible fix is to close the stream only at the end of operations. Another fix is to
reopen the stream before using it again.

Example - Use of FILE* Pointer After Closing Stream

#include <stdio.h>

void func(void) {
 FILE *fp;

7 CERT C Rules and Recommendations

7-274

 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fclose(fp);
 fprintf(fp,"text");
 }
}

In this example, fclose closes the stream associated with fp. When you use fprintf on
fp after fclose, the Use of previously closed resource defect appears.

Correction — Close Stream After All Operations

One possible correction is to reverse the order of the fprintf and fclose operations.

#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fprintf(fp,"text");
 fclose(fp);
 }
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rule FIO46-C

7-275

External Websites
FIO46-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-276

https://wiki.sei.cmu.edu/confluence/x/QdUxBQ

CERT C: Rule FIO47-C
Use valid format strings

Description

Rule Definition
Use valid format strings.

Examples

Format string specifiers and arguments mismatch
Description

Format string specifiers and arguments mismatch occurs when the format specifiers
in the formatted output functions such as printf do not match their corresponding
arguments. For example, an argument of type unsigned long must have a format
specification of %lu.

Risk

Mismatch between format specifiers and the corresponding arguments result in
undefined behavior.

Fix

Make sure that the format specifiers match the corresponding arguments. For instance, in
this example, the %d specifier does not match the string argument message and the %s
specifier does not match the integer argument err_number.

 const char *message = "License not available";
 int err_number = ;-4
 printf("Error: %d (error type %s)\n", message, err_number);

 CERT C: Rule FIO47-C

7-277

Switching the two format specifiers fixes the issue. See the specifications for the printf
function for more information about format specifiers.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Printing a Float

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the
unsigned integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert
fst to an integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

7 CERT C Rules and Recommendations

7-278

https://en.cppreference.com/w/cpp/io/c/fprintf
https://en.cppreference.com/w/cpp/io/c/fprintf

 printf("%d\n", (int)fst);
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO47-C

Introduced in R2019a

 CERT C: Rule FIO47-C

7-279

https://wiki.sei.cmu.edu/confluence/x/J9YxBQ

CERT C: Rule ENV30-C
Do not modify the object referenced by the return value of certain functions

Description
Rule Definition
Do not modify the object referenced by the return value of certain functions.

Examples
Modification of internal buffer returned from nonreentrant
standard function
Description

Modification of internal buffer returned from nonreentrant standard function
occurs when the following happens:

• A nonreentrant standard function returns a pointer.
• You attempt to write to the memory location that the pointer points to.

Nonreentrant standard functions that return a non const-qualified pointer to an internal
buffer include getenv, getlogin, crypt, setlocale, localeconv, strerror and
others.

Risk

Modifying the internal buffer that a nonreentrant standard function returns can cause the
following issues:

• It is possible that the modification does not succeed or alters other internal data.

For instance, getenv returns a pointer to an environment variable value. If you modify
this value, you alter the environment of the process and corrupt other internal data.

7 CERT C Rules and Recommendations

7-280

• Even if the modification succeeds, it is possible that a subsequent call to the same
standard function does not return your modified value.

For instance, you modify the environment variable value that getenv returns. If
another process, thread, or signal handler calls setenv, the modified value is
overwritten. Therefore, a subsequent call to getenv does not return your modified
value.

Fix

Avoid modifying the internal buffer using the pointer returned from the function.

Example - Modification of getenv Return Value

#include <stdlib.h>
#include <string.h>

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 strncpy(env, "C", 1);
 printstr(env);
 }
}

In this example, the first argument of strncpy is the return value from a nonreentrant
standard function getenv. The behavior can be undefined because strncpy modifies this
argument.

Correction - Copy Return Value of getenv and Modify Copy

One possible solution is to copy the return value of getenv and pass the copy to the
strncpy function.

#include <stdlib.h>
#include <string.h>
enum {
 SIZE20 = 20
};

void printstr(const char*);

 CERT C: Rule ENV30-C

7-281

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 char env_cp[SIZE20];
 strncpy(env_cp, env, SIZE20);
 strncpy(env_cp, "C", 1);
 printstr(env_cp);
 }
}

Check Information
Group: Rule 10. Environment (ENV)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ENV30-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-282

https://wiki.sei.cmu.edu/confluence/x/79UxBQ

CERT C: Rule ENV31-C
Do not rely on an environment pointer following an operation that may invalidate it

Description

Rule Definition
Do not rely on an environment pointer following an operation that may invalidate it.

Examples

Environment pointer invalidated by previous operation
Description

Environment pointer invalidated by previous operation occurs when you use the
third argument of main() in a hosted environment to access the environment after an
operation modifies the environment. In a hosted environment, many C implementations
support the nonstandard syntax:

main (int argc, char *argv[], char *envp[])

A call to a setenv or putenv family function modifies the environment pointed to by
*envp.

Risk

When you modify the environment through a call to a setenv or putenv family function,
the environment memory can potentially be reallocated. The hosted environment pointer
is not updated and might point to an incorrect location. A call to this pointer can return
unexpected results or cause an abnormal program termination.

 CERT C: Rule ENV31-C

7-283

Fix

Do not use the hosted environment pointer. Instead, use global external variable environ
in Linux, _environ or _wenviron in Windows, or their equivalent. When you modify the
environment, these variables are updated.

Example - Access Environment Through Pointer envp

#include <stdio.h>
#include <stdlib.h>

extern int check_arguments(int argc, char **argv, char **envp);
extern void use_envp(char **envp);

/* envp is from main function */
int func(char **envp)
{
 /* Call to setenv may cause environment
 *memory to be reallocated
 */
 if (setenv(("MY_NEW_VAR"),("new_value"),1) != 0)
 {
 /* Handle error */
 return -1;
 }
 /* envp not updated after call to setenv, and may
 *point to incorrect location.
 **/
 if (envp != ((void *)0)) {
 use_envp(envp);
/* No defect on second access to
*envp because defect already raised */
 }
 return 0;
}

void main(int argc, char **argv, char **envp)
{
 if (check_arguments(argc, argv, envp))
 {
 (void)func(envp);
 }
}

7 CERT C Rules and Recommendations

7-284

In this example, envp is accessed inside func() after a call to setenv that can
reallocate the environment memory. envp can point to an incorrect location because it is
not updated after setenv modifies the environment. No defect is raised when
use_envp() is called because the defect is already raised on the previous line of code.

Correction — Use Global External Variable environ

One possible correction is to access the environment by using a variable that is always
updated after a call to setenv. For instance, in the following code, the pointer envp is
still available from main(), but the environment is accessed in func() through the
global external variable environ.

#include <stdio.h>
#include <stdlib.h>
extern char **environ;

extern int check_arguments(int argc, char **argv, char **envp);
extern void use_envp(char **envp);

int func(void)
{
 if (setenv(("MY_NEW_VAR"), ("new_value"),1) != 0) {
 /* Handle error */
 return -1;
 }
 /* Use global external variable environ
 *which is always updated after a call to setenv */

 if (environ != NULL) {
 use_envp(environ);
 }
 return 0;
}

void main(int argc, char **argv, char **envp)
{
 if (check_arguments(argc, argv, envp))
 {
 (void)func();
 }
}

 CERT C: Rule ENV31-C

7-285

Check Information
Group: Rule 10. Environment (ENV)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ENV31-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-286

https://wiki.sei.cmu.edu/confluence/x/5NUxBQ

CERT C: Rule ENV32-C
All exit handlers must return normally

Description
Rule Definition
All exit handlers must return normally.

Examples
Abnormal termination of exit handler
Description

Abnormal termination of exit handler looks for registered exit handlers. Exit handlers
are registered with specific functions such as atexit, (WinAPI) _onexit, or
at_quick_exit(). If the exit handler calls a function that interrupts the program’s
expected termination sequence, Polyspace raises a defect. Some functions that can cause
abnormal exits are exit, abort, longjmp, or (WinAPI) _onexit.

Risk

If your exit handler terminates your program, you can have undefined behavior. Abnormal
program termination means other exit handlers are not invoked. These additional exit
handlers may do additional clean up or other required termination steps.

Fix

In inside exit handlers, remove calls to functions that prevent the exit handler from
terminating normally.

Example - Exit Handler With Call to exit
#include <stdlib.h>

 CERT C: Rule ENV32-C

7-287

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;
}
void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 exit(0);
 }
 return;
}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() performs additional cleanup */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

In this example, demo_install_exitabnormalhandler registers two exit handlers,
demo_exit1 and exitabnormalhandler. Exit handlers are invoked in the reverse
order of which they are registered. When the program ends, exitabnormalhandler
runs, then demo_exit1. However, exitabnormalhandler calls exit interrupting the
program exit process. Having this exit inside an exit handler causes undefined behavior
because the program is not finished cleaning up safely.

Correction — Remove exit from Exit Handler

One possible correction is to let your exit handlers terminate normally. For this example,
exit is removed from exitabnormalhandler, allowing the exit termination process to
complete as expected.

7 CERT C Rules and Recommendations

7-288

#include <stdlib.h>

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;
}
void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 /* Return normally */
 }
 return;
}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() continues clean up */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

Check Information
Group: Rule 10. Environment (ENV)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rule ENV32-C

7-289

Topics
“Check for Coding Standard Violations”

External Websites
ENV32-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-290

https://wiki.sei.cmu.edu/confluence/x/KdYxBQ

CERT C: Rule ENV33-C
Do not call system()

Description

Rule Definition
Do not call system().

Examples

Unsafe call to a system function
Description

Unsafe call to a system function occurs when you use a function that invokes an
implementation-defined command processor. These functions include:

• The C standard system() function.
• The POSIX popen() function.
• The Windows _popen() and _wpopen() functions.

Risk

If the argument of a function that invokes a command processor is not sanitized, it can
cause exploitable vulnerabilities. An attacker can execute arbitrary commands or read
and modify data anywhere on the system.

Fix

Do not use a system-family function to invoke a command processor. Instead, use safer
functions such as POSIX execve() and WinAPI CreateProcess().

 CERT C: Rule ENV33-C

7-291

Example - system() Called

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char buf[SIZE512];
 int retval=sprintf(buf, "/usr/bin/any_cmd %s", arg);

 if (retval<=0 || retval>SIZE512){
 /* Handle error */
 abort();
 }
 /* Use of system() to pass any_cmd with
 unsanitized argument to command processor */

 if (system(buf) == -1) {
 /* Handle error */
 }
}

In this example, system() passes its argument to the host environment for the command
processor to execute. This code is vulnerable to an attack by command-injection.

Correction — Sanitize Argument and Use execve()

In the following code, the argument of any_cmd is sanitized, and then passed to
execve() for execution. exec-family functions are not vulnerable to command-injection
attacks.

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,

7 CERT C Rules and Recommendations

7-292

SIZE3=3};

void func(char *arg)
{
 char *const args[SIZE3] = {"any_cmd", arg, NULL};
 char *const env[] = {NULL};

 /* Sanitize argument */

 /* Use execve() to execute any_cmd. */

 if (execve("/usr/bin/time", args, env) == -1) {
 /* Handle error */
 }
}

Check Information
Group: Rule 10. Environment (ENV)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ENV33-C

Introduced in R2019a

 CERT C: Rule ENV33-C

7-293

https://wiki.sei.cmu.edu/confluence/x/MdYxBQ

CERT C: Rule ENV34-C
Do not store pointers returned by certain functions

Description

Rule Definition
Do not store pointers returned by certain functions.

Examples

Misuse of return value from nonreentrant standard function
Description

Misuse of return value from nonreentrant standard function occurs when these
events happen in this sequence:

1 You point to the buffer returned from a nonreentrant standard function such as
getenv or setlocale.

user = getenv("USER");
2 You call that nonreentrant standard function again.

user2 = getenv("USER2");
3 You use or dereference the pointer from the first step expecting the buffer to remain

unmodified since that step. In the meantime, the call in the second step has modified
the buffer.

For instance:

var=*user;

In some cases, the defect might appear even if you do not call the getenv function a
second time but simply return the pointer. For instance:

7 CERT C Rules and Recommendations

7-294

char* func() {
 user=getenv("USER");
 .
 .
 return user;
}

For information on which functions are covered by this defect, see documentation on
nonreentrant standard functions.

Risk

The C Standard allows nonreentrant functions such as getenv to return a pointer to a
static buffer. Because the buffer is static, a second call to getenv modifies the buffer. If
you continue to use the pointer returned from the first call past the second call, you can
see unexpected results. The buffer that it points to no longer has values from the first call.

The defect appears even if you do not call getenv a second time but simply return the
pointer. The reason is that someone calling your function might use the returned pointer
after a second call to getenv. By returning the pointer from your call to getenv, you
make your function unsafe to use.

The same rationale is true for other nonreentrant functions covered by this defect.

Fix

After the first call to getenv, make a copy of the buffer that the returned pointer points
to. After the second call to getenv, use this copy. Even if the second call modifies the
buffer, your copy is untouched.

Example - Return from getenv Used After Second Call to getenv
#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME"); /* First call */
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');

 CERT C: Rule ENV34-C

7-295

https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions
https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions

 if (user_name_from_home != NULL) {
 user = getenv("USER"); /* Second call */
 if ((user != NULL) &&
 (strcmp(user, user_name_from_home) == 0))
 {
 result = 1;
 }
 }
 }
 return result;
}

In this example, the pointer user_name_from_home is derived from the pointer home.
home points to the buffer returned from the first call to getenv. Therefore,
user_name_from_home points to a location in the same buffer.

After the second call to getenv, the buffer is modified. If you continue to use
user_name_from_home, you can get unexpected results.

Correction — Make Copy of Buffer Before Second Call

If you want to access the buffer from the first call to getenv past the second call, make a
copy of the buffer after the first call. One possible correction is to use the strdup
function to make the copy.

#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME");
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');
 if (user_name_from_home != NULL) {
 /* Make copy before second call */
 char *saved_user_name_from_home = strdup(user_name_from_home);
 if (saved_user_name_from_home != NULL) {
 user = getenv("USER");
 if ((user != NULL) &&
 (strcmp(user, saved_user_name_from_home) == 0))
 {

7 CERT C Rules and Recommendations

7-296

 result = 1;
 }
 free(saved_user_name_from_home);
 }
 }
 }
 return result;
}

Check Information
Group: Rule 10. Environment (ENV)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ENV34-C

Introduced in R2019a

 CERT C: Rule ENV34-C

7-297

https://wiki.sei.cmu.edu/confluence/x/8tYxBQ

CERT C: Rule SIG30-C
Call only asynchronous-safe functions within signal handlers

Description

Rule Definition
Call only asynchronous-safe functions within signal handlers.

Examples

Function called from signal handler not asynchronous-safe
Description

Function called from signal handler not asynchronous-safe occurs when a signal
handler calls a function that is not asynchronous-safe according to the POSIX standard.
An asynchronous-safe function can be interrupted at any point in its execution, then
called again without causing an inconsistent state. It can also correctly handle global data
that might be in an inconsistent state.

If a signal handler calls another function that calls an asynchronous-unsafe function, the
defect appears on the function call in the signal handler. The defect traceback shows the
full path from the signal handler to the asynchronous-unsafe function.

Risk

When a signal handler is invoked, the execution of the program is interrupted. After the
handler is finished, program execution resumes at the point of interruption. If a function
is executing at the time of the interruption, calling it from within the signal handler is
undefined behavior, unless it is asynchronous-safe.

7 CERT C Rules and Recommendations

7-298

Fix

The POSIX standard defines these functions as asynchronous-safe. You can call these
functions from a signal handler.

_exit() getpgrp() setsockopt()
_Exit() getpid() setuid()
abort() getppid() shutdown()
accept() getsockname() sigaction()
access() getsockopt() sigaddset()
aio_error() getuid() sigdelset()
aio_return() kill() sigemptyset()
aio_suspend() link() sigfillset()
alarm() linkat() sigismember()
bind() listen() signal()
cfgetispeed() lseek() sigpause()
cfgetospeed() lstat() sigpending()
cfsetispeed() mkdir() sigprocmask()
cfsetospeed() mkdirat() sigqueue()
chdir() mkfifo() sigset()
chmod() mkfifoat() sigsuspend()
chown() mknod() sleep()
clock_gettime() mknodat() sockatmark()
close() open() socket()
connect() openat() socketpair()
creat() pathconf() stat()
dup() pause() symlink()
dup2() pipe() symlinkat()
execl() poll() sysconf()
execle() posix_trace_event() tcdrain()

 CERT C: Rule SIG30-C

7-299

execv() pselect() tcflow()
execve() pthread_kill() tcflush()
faccessat() pthread_self() tcgetattr()
fchdir() pthread_sigmask() tcgetpgrp()
fchmod() quick_exit() tcsendbreak()
fchmodat() raise() tcsetattr()
fchown() read() tcsetpgrp()
fchownat() readlink() time()
fcntl() readlinkat() timer_getoverrun()
fdatasync() recv() timer_gettime()
fexecve() recvfrom() timer_settime()
fork() recvmsg() times()
fpathconf() rename() umask()
fstat() renameat() uname()
fstatat() rmdir() unlink()
fsync() select() unlinkat()
ftruncate() sem_post() utime()
futimens() send() utimensat()
getegid() sendmsg() utimes()
geteuid() sendto() wait()
getgid() setgid() waitpid()
getgroups() setpgid() write()
getpeername() setsid()

Functions not in the previous table are not asynchronous-safe, and should not be called
from a signal hander.

Example - Call to printf() Inside Signal Handler
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

7 CERT C Rules and Recommendations

7-300

#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)
{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler(int signum)
{
 /* Call function printf() that is not
 asynchronous-safe */
 printf("signal %d received.", signum);
 e_flag = 1;
}

int main(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, sizeof(char));
 if (info == NULL)
 {
 /* Handle Error */
 }
 while (!e_flag)
 {
 /* Main loop program code */
 display_info(info);
 /* More program code */
 }
 free(info);
 info = NULL;

 CERT C: Rule SIG30-C

7-301

 return 0;
}

In this example, sig_handler calls printf() when catching a signal. If the handler
catches another signal while printf() is executing, the behavior of the program is
undefined.

Correction — Set Flag Only in Signal Handler

Use your signal handler to set only the value of a flag. e_flag is of type volatile
sig_atomic_t. sig_handler can safely access it asynchronously.

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)
{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler1(int signum)
{
 int s0 = signum;
 e_flag = 1;
}

int func(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler1) == SIG_ERR)

7 CERT C Rules and Recommendations

7-302

 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, 1);
 if (info == NULL)
 {
 /* Handle error */
 }
 while (!e_flag)
 {
 /* Main loop program code */
 display_info(info);
 /* More program code */
 }
 free(info);
 info = NULL;
 return 0;
}

Function called from signal handler not asynchronous-safe
(strict)
Description

Function called from signal handler not asynchronous-safe (strict) occurs when a
signal handler calls a function that is not asynchronous-safe according to the C standard.
An asynchronous-safe function can be interrupted at any point in its execution, then
called again without causing an inconsistent state. It can also correctly handle global data
that might be in an inconsistent state.

When you select the checker Function called from signal handler not asynchronous-
safe, the checker detects calls to functions that are not asynchronous-safe according to
the POSIX standard. Function called from signal handler not asynchronous-safe
(strict) does not raise a defect for these cases. Function called from signal handler
not asynchronous-safe (strict) raises a defect for functions that are asynchronous-safe
according to the POSIX standard but not according to the C standard.

If a signal handler calls another function that calls an asynchronous-unsafe function, the
defect appears on the function call in the signal handler. The defect traceback shows the
full path from the signal handler to the asynchronous-unsafe function.

 CERT C: Rule SIG30-C

7-303

Risk

When a signal handler is invoked, the execution of the program is interrupted. After the
handler is finished, program execution resumes at the point of interruption. If a function
is executing at the time of the interruption, calling it from within the signal handler is
undefined behavior, unless it is asynchronous-safe.

Fix

The C standard defines the following functions as asynchronous-safe. You can call these
functions from a signal handler:

• abort()
• _Exit()
• quick_exit()
• signal()

Example - Call to raise() Inside Signal Handler
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */
}

void sig_handler(int signum)
{
 int s0 = signum;
 /* Call raise() */
 if (raise(SIGTERM) != 0) {
 /* Handle error */
 }
}

int finc(void)

7 CERT C Rules and Recommendations

7-304

{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

In this example, sig_handler calls raise() when catching a signal. If the handler
catches another signal while raise() is executing, the behavior of the program is
undefined.

Correction — Remove Call to raise() in Signal Handler

According to the C standard, the only functions that you can safely call from a signal
handler are abort(), _Exit(), quick_exit(), and signal().

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */
}
void sig_handler(int signum)
{

 CERT C: Rule SIG30-C

7-305

 int s0 = signum;

}

int func(void)
{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

Check Information
Group: Rule 11. Signals (SIG)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
SIG30-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-306

https://wiki.sei.cmu.edu/confluence/x/MtYxBQ

CERT C: Rule SIG31-C
Do not access shared objects in signal handlers

Description

Rule Definition
Do not access shared objects in signal handlers.

Examples

Shared data access within signal handler
Description

Shared data access within signal handler occurs when you access or modify a shared
object inside a signal handler.

Risk

When you define a signal handler function to access or modify a shared object, the
handler accesses or modifies the shared object when it receives a signal. If another
function is already accessing the shared object, that function causes a race condition and
can leave the data in an inconsistent state.

Fix

To access or modify shared objects inside a signal handler, check that the objects are lock-
free atomic, or, if they are integers, declare them as volatile sig_atomic_t.

Example - int Variable Access in Signal Handler

#include <signal.h>
#include <stdlib.h>
#include <string.h>

 CERT C: Rule SIG31-C

7-307

/* declare global variable. */
int e_flag;

void sig_handler(int signum)
{
 /* Signal handler accesses variable that is not
 of type volatile sig_atomic_t. */
 e_flag = signum;
}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

In this example, sig_handler accesses e_flag, a variable of type int. A concurrent
access by another function can leave e_flag in an inconsistent state.

Correction — Declare Variable of Type volatile sig_atomic_t

Before you access a shared variable from a signal handler, declare the variable with type
volatile sig_atomic_t instead of int. You can safely access variables of this type
asynchronously.

#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* Declare variable of type volatile sig_atomic_t. */

7 CERT C Rules and Recommendations

7-308

volatile sig_atomic_t e_flag;
void sig_handler(int signum)
{
 /* Use variable of proper type inside signal handler. */
 e_flag = signum;

}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

Check Information
Group: Rule 11. Signals (SIG)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
SIG31-C

Introduced in R2019a

 CERT C: Rule SIG31-C

7-309

https://wiki.sei.cmu.edu/confluence/x/VdYxBQ

CERT C: Rule SIG34-C
Do not call signal() from within interruptible signal handlers

Description

Rule Definition
Do not call signal() from within interruptible signal handlers.

Examples

Signal call from within signal handler
Description

Signal call from within signal handler occurs when you call signal() from a
nonpersistent signal handler on a Windows platform.

Risk

A nonpersistent signal handler is reset after catching a signal. The handler does not catch
subsequent signals unless the handler is reestablished by calling signal(). A
nonpersistent signal handler on a Windows platform is reset to SIG_DFL. If another signal
interrupts the execution of the handler, that signal can cause a race condition between
SIG_DFL and the existing signal handler. A call to signal() can also result in an infinite
loop inside the handler.

Fix

Do not call signal() from a signal handler on Windows platforms.

Example - signal() Called from Signal Handler

#include <stdio.h>
#include <stdlib.h>

7 CERT C Rules and Recommendations

7-310

#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{
 int s0 = signum;
 e_flag = 1;

 /* Call signal() to reestablish sig_handler
 upon receiving SIG_ERR. */

 if (signal(s0, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
}

void func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
 /* more code */
}

In this example, the definition of sig_handler() includes a call to signal() when the
handler catches SIG_ERR. On Windows platforms, signal handlers are nonpersistent. This
code can result in a race condition.

Correction — Do Not Call signal() from Signal Handler

If your code requires the use of a persistent signal handler on a Windows platform, use a
persistent signal handler after performing a thorough risk analysis.

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

 CERT C: Rule SIG34-C

7-311

#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{
 int s0 = signum;
 e_flag = 1;
 /* No call to signal() */
}

int main(void)
{

 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
}

Check Information
Group: Rule 11. Signals (SIG)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
SIG34-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-312

https://wiki.sei.cmu.edu/confluence/x/NtYxBQ

CERT C: Rule SIG35-C
Do not return from a computational exception signal handler

Description

Rule Definition
Do not return from a computational exception signal handler.

Examples

Return from computational exception signal handler
Description

Return from computational exception signal handler occurs when a signal handler
returns after catching a computational exception signal SIGFPE, SIGILL, or SIGSEGV.

Risk

A signal handler that returns normally from a computational exception is undefined
behavior. Even if the handler attempts to fix the error that triggered the signal, the
program can behave unexpectedly.

Fix

Check the validity of the values of your variables before the computation to avoid using a
signal handler to catch exceptions. If you cannot avoid a handler to catch computation
exception signals, call abort(), quick_exit(), or _Exit() in the handler to stop the
program.

Example - Signal Handler Return from Division by Zero

#include <errno.h>
#include <limits.h>

 CERT C: Rule SIG35-C

7-313

#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */
void sig_handler(int s)
{
 int s0 = s;
 if (denom == 0)
 {
 denom = 1;
 }
 /* Normal return from computation exception
 signal */
 return;
}

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

In this example, sig_handler is declared to handle a division by zero computation error.
The handler changes the value of denom if it is zero and returns, which is undefined
behavior.

Correction — Call abort() to Terminate Program

After catching a computational exception, call abort() from sig_handler to exit the
program without further error.

#include <errno.h>
#include <limits.h>

7 CERT C Rules and Recommendations

7-314

#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */

void sig_handler(int s)
{
 int s0 = s;
 /* call to abort() to exit the program */
 abort();
}

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

Check Information
Group: Rule 11. Signals (SIG)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
SIG35-C

 CERT C: Rule SIG35-C

7-315

https://wiki.sei.cmu.edu/confluence/x/b9YxBQ

Introduced in R2019a

7 CERT C Rules and Recommendations

7-316

CERT C: Rule ERR30-C
Set errno to zero before calling a library function known to set errno, and check errno
only after the function returns a value indicating failure

Description
Rule Definition
Set errno to zero before calling a library function known to set errno, and check errno
only after the function returns a value indicating failure.

Examples
Misuse of errno
Description

Misuse of errno occurs when you check errno for error conditions in situations where
checking errno does not guarantee the absence of errors. In some cases, checking
errno can lead to false positives.

For instance, you check errno following calls to the functions:

• fopen: If you follow the ISO Standard, the function might not set errno on errors.
• atof: If you follow the ISO Standard, the function does not set errno.
• signal: The errno value indicates an error only if the function returns the SIG_ERR

error indicator.

Risk

The ISO C Standard does not enforce that these functions set errno on errors. Whether
the functions set errno or not is implementation-dependent.

To detect errors, if you check errno alone, the validity of this check also becomes
implementation-dependent.

 CERT C: Rule ERR30-C

7-317

In some cases, the errno value indicates an error only if the function returns a specific
error indicator. If you check errno before checking the function return value, you can see
false positives.

Fix

For information on how to detect errors, see the documentation for that specific function.

Typically, the functions return an out-of-band error indicator to indicate errors. For
instance:

• fopen returns a null pointer if an error occurs.
• signal returns the SIG_ERR error indicator and sets errno to a positive value.

Check errno only after you have checked the function return value.

Example - Incorrectly Checking for errno After fopen Call

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 errno = 0;
 fileptr = fopen(temp_filename, "w+b");
 if (errno != 0) {
 if (fileptr != NULL) {
 (void)fclose(fileptr);
 }
 /* Handle error */
 fatal_error();
 }
 return fileptr;
}

In this example, errno is the first variable that is checked after a call to fopen. You
might expect that fopen changes errno to a nonzero value if an error occurs. If you run
this code with an implementation of fopen that does not set errno on errors, you might

7 CERT C Rules and Recommendations

7-318

miss an error condition. In this situation, fopen can return a null pointer that escapes
detection.

Correction — Check Return Value of fopen After Call

One possible correction is to only check the return value of fopen for a null pointer.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 fileptr = fopen(temp_filename, "w+b");
 if (fileptr == NULL) {
 fatal_error();
 }
 return fileptr;
}

Errno not reset
Description

Errno not reset occurs when you do not reset errno before calling a function that sets
errno to indicate error conditions. However, you check errno for those error conditions
after the function call.

Risk

The errno is not clean and can contain values from a previous call. Checking errno for
errors can give the false impression that an error occurred.

errno is set to zero at program startup but subsequently, errno is not reset by a C
standard library function. You must explicitly set errno to zero when required.

 CERT C: Rule ERR30-C

7-319

Fix

Before calling a function that sets errno to indicate error conditions, reset errno to zero
explicitly.

Example - errno Not Reset Before Call to strtod

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

In this example, errno is not reset to 0 before the first call to strtod. Checking errno
for 0 later can lead to a false positive.

Correction — Reset errno Before Call

One possible correction is to reset errno to 0 before calling strtod.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

7 CERT C Rules and Recommendations

7-320

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 errno = 0;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

Check Information
Group: Rule 12. Error Handling (ERR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ERR30-C

Introduced in R2019a

 CERT C: Rule ERR30-C

7-321

https://wiki.sei.cmu.edu/confluence/x/39YxBQ

CERT C: Rule ERR32-C
Do not rely on indeterminate values of errno

Description

Rule Definition
Do not rely on indeterminate values of errno.

Examples

Misuse of errno in a signal handler
Description

Misuse of errno in a signal handler occurs when you call one of these functions in a
signal handler:

• signal: You call the signal function in a signal handler and then read the value of
errno.

For instance, the signal handler function handler calls signal and then calls
perror, which reads errno.

void handler(int signum) {
 pfv old_handler = signal(signum, SIG_DFL);
 if (old_handler == SIG_ERR) {
 perror("SIGINT handler");
 }
}

• errno-setting POSIX function: You call an errno-setting POSIX function in a signal
handler but do not restore errno when returning from the signal handler.

For instance, the signal handler function handler calls waitpid, which changes
errno, but does not restore errno before returning.

7 CERT C Rules and Recommendations

7-322

void handler(int signum) {
 int rc = waitpid(-1, NULL, WNOHANG);
 if (ECHILD != errno) {
 }
}

Risk

In each case that the checker flags, you risk relying on an indeterminate value of errno.

• signal: If the call to signal in a signal handler fails, the value of errno is
indeterminate (see C11 Standard, Sec. 7.14.1.1). If you rely on a specific value of
errno, you can see unexpected results.

• errno-setting POSIX function: An errno-setting function sets errno on failure. If you
read errno after a signal handler is called and the signal handler itself calls an
errno-setting function, you can see unexpected results.

Fix

Avoid situations where you risk relying on an indeterminate value of errno.

• signal: After calling the signal function in a signal handler, do not read errno or
use a function that reads errno.

• errno-setting POSIX function: Before calling an errno-setting function in a signal
handler, save errno to a temporary variable. Restore errno from this variable before
returning from the signal handler.

Example - Reading errno After signal Call in Signal Handler

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

#define fatal_error() abort()

void handler(int signum) {
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 perror("SIGINT handler");
 }
}

int func(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {

 CERT C: Rule ERR32-C

7-323

 /* Handle error */
 fatal_error();
 }
 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 fatal_error();
 }
 return 0;
}

In this example, the function handler is called to handle the SIGINT signal. In the body
of handler, the signal function is called. Following this call, the value of errno is
indeterminate. The checker raises a defect when the perror function is called because
perror relies on the value of errno.

Correction — Avoid Reading errno After signal Call

One possible correction is to not read errno after calling the signal function in a signal
handler. The corrected code here calls the abort function via the fatal_error macro
instead of the perror function.

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

#define fatal_error() abort()

void handler(int signum) {
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 fatal_error();
 }
}

int func(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 fatal_error();
 }
 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 fatal_error();
 }

7 CERT C Rules and Recommendations

7-324

 return 0;
}

Check Information
Group: Rule 12. Error Handling (ERR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ERR32-C

Introduced in R2019a

 CERT C: Rule ERR32-C

7-325

https://wiki.sei.cmu.edu/confluence/x/-dUxBQ

CERT C: Rule ERR33-C
Detect and handle standard library errors

Description

Rule Definition
Detect and handle standard library errors.

Examples

Errno not checked
Description

Errno not checked occurs when you call a function that sets errno to indicate error
conditions, but do not check errno after the call. For these functions, checking errno is
the only reliable way to determine if an error occurred.

Functions that set errno on errors include:

• fgetwc, strtol, and wcstol.

For a comprehensive list of functions, see documentation about errno.
• POSIX errno-setting functions such as encrypt and setkey.

Risk

To see if the function call completed without errors, check errno for error values.

The return values of these errno-setting functions do not indicate errors. The return
value can be one of the following:

• void

7 CERT C Rules and Recommendations

7-326

https://www.securecoding.cert.org/confluence/x/KwBl

• Even if an error occurs, the return value can be the same as the value from a
successful call. Such return values are called in-band error indicators.

You can determine if an error occurred only by checking errno.

For instance, strtol converts a string to a long integer and returns the integer. If the
result of conversion overflows, the function returns LONG_MAX and sets errno to ERANGE.
However, the function can also return LONG_MAX from a successful conversion. Only by
checking errno can you distinguish between an error and a successful conversion.

Fix

Before calling the function, set errno to zero.

After the function call, to see if an error occurred, compare errno to zero. Alternatively,
compare errno to known error indicator values. For instance, strtol sets errno to
ERANGE to indicate errors.

The error message in the Polyspace result shows the error indicator value that you can
compare to.

Example - errno Not Checked After Call to strtol
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 long val = strtol(str, &endptr, base);
 printf("Return value of strtol() = %ld\n", val);
}

You are using the return value of strtol without checking errno.

Correction — Check errno After Call

Before calling strtol, set errno to zero . After a call to strtol, check the return value
for LONG_MIN or LONG_MAX and errno for ERANGE.

 CERT C: Rule ERR33-C

7-327

#include<stdlib.h>
#include<stdio.h>
#include<errno.h>
#include<limits.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 errno = 0;
 long val = strtol(str, &endptr, base);
 if((val == LONG_MIN || val == LONG_MAX) && errno == ERANGE) {
 printf("strtol error");
 exit(EXIT_FAILURE);
 }
 printf("Return value of strtol() = %ld\n", val);
}

Returned value of a sensitive function not checked
Description

Returned value of a sensitive function not checked occurs when you call sensitive
standard functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or
vulnerable tasks:

7 CERT C Rules and Recommendations

7-328

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive or critical
sensitive tasks, your program can behave unexpectedly. Errors from these functions can
propagate throughout the program causing incorrect output, security vulnerabilities, and
possibly system failures.

Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to
void. Polyspace does not raise this defect for sensitive functions cast to void. This
resolution is not accepted for critical sensitive functions because they perform more
vulnerable tasks.

Example - Sensitive Function Return Ignored

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 pthread_attr_init(&attr);
}

This example shows a call to the sensitive function pthread_attr_init. The return
value of pthread_attr_init is ignored, causing a defect.

Correction — Cast Function to (void)

One possible correction is to cast the function to void. This fix informs Polyspace and any
reviewers that you are explicitly ignoring the return value of the sensitive function.

 CERT C: Rule ERR33-C

7-329

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 (void)pthread_attr_init(&attr);
}

Correction — Test Return Value

One possible correction is to test the return value of pthread_attr_init to check for
errors.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

void initialize() {
 pthread_attr_t attr;
 int result;

 result = pthread_attr_init(&attr);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Example - Critical Function Return Ignored
#include <pthread.h>
extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0));
 pthread_join(thread_id, &res);
}

In this example, two critical functions are called: pthread_create and pthread_join.
The return value of the pthread_create is ignored by casting to void, but because

7 CERT C Rules and Recommendations

7-330

pthread_create is a critical function (not just a sensitive function), Polyspace does not
ignore this Return value of a sensitive function not checked defect. The other critical
function, pthread_join, returns value that is ignored implicitly. pthread_join uses
the return value of pthread_create, which was not checked.

Correction — Test the Return Value of Critical Functions

The correction for this defect is to check the return value of these critical functions to
verify the function performed as expected.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Unprotected dynamic memory allocation
Description

Unprotected dynamic memory allocation occurs when you do not check after dynamic
memory allocation whether the memory allocation succeeded.

 CERT C: Rule ERR33-C

7-331

Risk

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a
value NULL if the requested memory is not available. If the code following the allocation
accesses the memory block without checking for this NULL value, this access is not
protected from failures.

Fix

Check the return value of malloc, calloc, or realloc for NULL before accessing the
allocated memory location.

int *ptr = malloc(size * sizeof(int));

if(ptr) /* Check for NULL */
{
 /* Memory access through ptr */
}

Example - Unprotected dynamic memory allocation error

#include <stdlib.h>

void Assign_Value(void)
{
 int* p = (int*)calloc(5, sizeof(int));

 *p = 2;
 /* Defect: p is not checked for NULL value */

 free(p);
}

If the memory allocation fails, the function calloc returns NULL to p. Before accessing
the memory through p, the code does not check whether p is NULL

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

void Assign_Value(void)
 {

7 CERT C Rules and Recommendations

7-332

 int* p = (int*)calloc(5, sizeof(int));

 /* Fix: Check if p is NULL */
 if(p!=NULL) *p = 2;

 free(p);
 }

Check Information
Group: Rule 12. Error Handling (ERR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ERR33-C

Introduced in R2019a

 CERT C: Rule ERR33-C

7-333

https://wiki.sei.cmu.edu/confluence/x/kNYxBQ

CERT C: Rule ERR34-C
Detect errors when converting a string to a number

Description

Rule Definition
Detect errors when converting a string to a number.

Examples

Unsafe conversion from string to numerical value
Description

Unsafe conversion from string to numerical value detects conversions from strings
to integer or floating-point values. If your conversion method does not include robust
error handling, a defect is raised.

Risk

Converting a string to numerical value can cause data loss or misinterpretation. Without
validation of the conversion or error handling, your program continues with invalid
values.

Fix

• Add additional checks to validate the numerical value.
• Use a more robust string-to-numeric conversion function such as strtol, strtoll,

strtoul, or strtoull.

Example - Conversion With atoi

#include <stdio.h>
#include <stdlib.h>

7 CERT C Rules and Recommendations

7-334

#include <string.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)
 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char* argv1)
{
 int s = 0;
 if (demo_check_string_not_empty(argv1))
 {
 s = atoi(argv1);
 }
 return s;
}

In this example, argv1 is converted to an integer with atoi. atoi does not provide
errors for an invalid integer string. The conversion can fail unexpectedly.

Correction — Use strtol instead

One possible correction is to use strtol to validate the input string and the converted
integer.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <errno.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)
 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char *argv1)
{
 char *c_str = argv1;

 CERT C: Rule ERR34-C

7-335

 char *end;
 long sl;

 if (demo_check_string_not_empty(c_str))
 {
 errno = 0; /* set errno for error check */
 sl = strtol(c_str, &end, 10);
 if (end == c_str)
 {
 (void)fprintf(stderr, "%s: not a decimal number\n", c_str);
 }
 else if ('\0' != *end)
 {
 (void)fprintf(stderr, "%s: extra characters: %s\n", c_str, end);
 }
 else if ((LONG_MIN == sl || LONG_MAX == sl) && ERANGE == errno)
 {
 (void)fprintf(stderr, "%s out of range of type long\n", c_str);
 }
 else if (sl > INT_MAX)
 {
 (void)fprintf(stderr, "%ld greater than INT_MAX\n", sl);
 }
 else if (sl < INT_MIN)
 {
 (void)fprintf(stderr, "%ld less than INT_MIN\n", sl);
 }
 else
 {
 return (int)sl;
 }
 }
 return 0;
}

Check Information
Group: Rule 12. Error Handling (ERR)

See Also
Check SEI CERT-C (-cert-c)

7 CERT C Rules and Recommendations

7-336

Topics
“Check for Coding Standard Violations”

External Websites
ERR34-C

Introduced in R2019a

 CERT C: Rule ERR34-C

7-337

https://wiki.sei.cmu.edu/confluence/x/C9cxBQ

CERT C: Rule CON30-C
Clean up thread-specific storage

Description

Rule Definition
Clean up thread-specific storage.

Examples

Thread-specific memory leak
Description

Thread-specific memory leak occurs when you do not free thread-specific dynamically
allocated memory before the end of a thread.

To create thread-specific storage, you generally do these steps:

1 You create a key for thread-specific storage.
2 You create the threads.
3 In each thread, you allocate storage dynamically and then associate the key with this

storage.

After the association, you can read the stored data later using the key.
4 Before the end of the thread, you free the thread-specific memory using the key.

The checker flags execution paths in the thread where the last step is missing.

The checker works on these families of functions:

• tss_get and tss_set (C11)

7 CERT C Rules and Recommendations

7-338

• pthread_getspecific and pthread_setspecific (POSIX)

Risk

The data stored in the memory is available to other processes even after the threads end
(memory leak). Besides security vulnerabilities, memory leaks can shrink the amount of
available memory and reduce performance.

Fix

Free dynamically allocated memory before the end of a thread.

You can explicitly free dynamically allocated memory with functions such as free.

Alternatively, when you create a key, you can associate a destructor function with the key.
The destructor function is called with the key value as argument at the end of a thread. In
the body of the destructor function, you can free any memory associated with the key. If
you use this method, Bug Finder still flags a defect. Ignore this defect with appropriate
comments. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Memory Not Freed at End of Thread

#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int add_data(void) {
 int *data = (int *)malloc(2 * sizeof(int));
 if (data == NULL) {
 return -1; /* Report error */
 }
 data[0] = 0;
 data[1] = 1;

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

 CERT C: Rule CON30-C

7-339

void print_data(void) {
 /* Get this thread's global data from key */
 int *data = tss_get(key);

 if (data != NULL) {
 /* Print data */
 }
}

int func(void *dummy) {
 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 return 0;
}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], func, NULL)) {
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

In this example, the start function of each thread func calls two functions:

7 CERT C Rules and Recommendations

7-340

• add_data: This function allocates storage dynamically and associates the storage
with a key using the tss_set function.

• print_data: This function reads the stored data using the tss_get function.

At the points where func returns, the dynamically allocated storage has not been freed.

Correction — Free Dynamically Allocated Memory Explicitly

One possible correction is to free dynamically allocated memory explicitly before leaving
the start function of a thread. See the highlighted change in the corrected version.

In this corrected version, a defect still appears on the return statement in the error
handling section of func. The defect cannot occur in practice because the error handling
section is entered only if dynamic memory allocation fails. Ignore this remaining defect
with appropriate comments. See “Address Polyspace Results Through Bug Fixes or
Justifications”.

#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int add_data(void) {
 int *data = (int *)malloc(2 * sizeof(int));
 if (data == NULL) {
 return -1; /* Report error */
 }
 data[0] = 0;
 data[1] = 1;

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

void print_data(void) {
 /* Get this thread's global data from key */
 int *data = tss_get(key);

 CERT C: Rule CON30-C

7-341

 if (data != NULL) {
 /* Print data */
 }
}

int func(void *dummy) {
 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 free(tss_get(key));
 return 0;
}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], func, NULL)) {
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

Check Information
Group: Rule 14. Concurrency (CON)

7 CERT C Rules and Recommendations

7-342

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON30-C

Introduced in R2019a

 CERT C: Rule CON30-C

7-343

https://wiki.sei.cmu.edu/confluence/x/gtYxBQ

CERT C: Rule CON31-C
Do not destroy a mutex while it is locked

Description

Rule Definition
Do not destroy a mutex while it is locked.

Examples

Destruction of locked mutex
Description

Destruction of locked mutex occurs when a task destroys a mutex after it is locked
(and before it is unlocked). The locking and destruction can happen in the same task or
different tasks.

Risk

A mutex is locked to protect shared variables from concurrent access. If a mutex is
destroyed in the locked state, the protection does not apply.

Fix

To fix this defect, destroy the mutex only after you unlock it. It is a good design practice
to:

• Initialize a mutex before creating the threads where you use the mutex.
• Destroy a mutex after joining the threads that you created.

On the Result Details pane, you see two events, the locking and destruction of the
mutex, and the tasks that initiated the events. To navigate to the corresponding line in
your source code, click the event.

7 CERT C Rules and Recommendations

7-344

Example - Locking and Destruction in Different Tasks

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
 pthread_mutex_unlock (&lock3);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

In this example, after task t0 locks the mutex lock3, task t1 can destroy it. The
destruction occurs if the following events happen in sequence:

1 t0 acquires lock3.
2 t0 releases lock2.
3 t0 releases lock1.
4 t1 acquires the lock lock1 released by t0.
5 t1 acquires the lock lock2 released by t0.
6 t1 destroys lock3.

For simplicity, this example uses a mix of automatic and manual concurrency detection.
The tasks t0 and t1 are manually specified as entry points by using the option Tasks (-
entry-points). The critical sections are implemented through primitives
pthread_mutex_lock and pthread_mutex_unlock that the software detects

 CERT C: Rule CON31-C

7-345

automatically. In practice, for entry point specification (thread creation), you will use
primitives such as pthread_create. The next example shows how the defect can appear
when you use pthread_create.

Correction — Place Lock-Unlock Pair Together in Same Critical Section as
Destruction

The locking and destruction of lock3 occurs inside the critical section imposed by lock1
and lock2, but the unlocking occurs outside. One possible correction is to place the lock-
unlock pair in the same critical section as the destruction of the mutex. Use one of these
critical sections:

• Critical section imposed by lock1 alone.
• Critical section imposed by lock1 and lock2.

In this corrected code, the lock-unlock pair and the destruction is placed in the critical
section imposed by lock1 and lock2. When t0 acquires lock1 and lock2, t1 has to
wait for their release before it executes the instruction pthread_mutex_destroy
(&lock3);. Therefore, t1 cannot destroy mutex lock3 in the locked state.

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

7 CERT C Rules and Recommendations

7-346

 pthread_mutex_destroy (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

Example - Locking and Destruction in Start Routine of Thread
#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_destroy(&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);

 CERT C: Rule CON31-C

7-347

 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Thread that initializes mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use mutex for atomic operation*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 pthread_exit(NULL);
}

In this example, four threads are created. The threads are assigned different actions.

• The first thread callThd[0] initializes the mutex lock.
• The second and third threads, callThd[1] and callThd[2], perform an atomic

operation protected by the mutex lock.
• The fourth thread callThd[3] destroys the mutex lock.

The threads can interrupt each other. Therefore, immediately after the second or third
thread locks the mutex, the fourth thread can destroy it.

Correction — Initialize and Destroy Mutex Outside Start Routine

One possible correction is to initialize and destroy the mutex in the main function outside
the start routine of the threads. The threads perform only the atomic operation. You need
two fewer threads because the mutex initialization and destruction threads are not
required.

#include <pthread.h>

/* Define globally accessible variables and a mutex */

7 CERT C Rules and Recommendations

7-348

#define NUMTHREADS 2
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_work(void *arg) {
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize mutex */
 pthread_mutex_init(&lock, NULL);

 for(i=0; i<NUMTHREADS; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy mutex */
 pthread_mutex_destroy(&lock);

 pthread_exit(NULL);
}

 CERT C: Rule CON31-C

7-349

Correction — Use A Second Mutex To Protect Lock-Unlock Pair and Destruction

Another possible correction is to use a second mutex and protect the lock-unlock pair
from the destruction. This corrected code uses the mutex lock2 to achieve this
protection. The second mutex is initialized in the main function outside the start routine
of the threads.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
pthread_mutex_t lock2;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy(&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;

7 CERT C Rules and Recommendations

7-350

 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize second mutex */
 pthread_mutex_init(&lock2, NULL);

 /* Thread that initializes first mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use first mutex for atomic operation */
 /* The threads use second mutex to protect first from destruction in locked state*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys first mutex */
 /* The thread uses the second mutex to prevent destruction of locked mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy second mutex */
 pthread_mutex_destroy(&lock2);

 pthread_exit(NULL);
}

Check Information
Group: Rule 14. Concurrency (CON)

 CERT C: Rule CON31-C

7-351

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON31-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-352

https://wiki.sei.cmu.edu/confluence/x/LdYxBQ

CERT C: Rule CON32-C
Prevent data races when accessing bit-fields from multiple threads

Description
Rule Definition
Prevent data races when accessing bit-fields from multiple threads.

Examples
Data race
Description

Data race occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a write operation.
3 At least one operation is nonatomic. For data race on both atomic and nonatomic

operations, see Data race including atomic operations.

See also “Define Atomic Operations in Multitasking Code”.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Configuring Polyspace Multitasking Analysis Manually”.

Risk

Data race can result in unpredictable values of the shared variable because you do not
control the order of the operations in different tasks.

Data races between two write operations are more serious than data races between a
write and read operation. Two write operations can interfere with each other and result in

 CERT C: Rule CON32-C

7-353

indeterminate values. To identify write-write conflicts, use the filters on the Detail
column of the Results List pane. For these conflicts, the Detail column shows the
additional line:

 Variable value may be altered by write-write concurrent access.

See “Filter and Group Results”.

Fix

To fix this defect, protect the operations on the shared variable using critical sections,
temporal exclusion or another means. See “Protections for Shared Variables in
Multitasking Code”.

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access Protections
column shows existing protections on the calls. To see the function call sequence leading

to the conflicts, click the icon. For an example, see below.

Example - Unprotected Operation on Global Variable from Multiple Tasks

int var;
void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 begin_critical_section();
 increment();

7 CERT C Rules and Recommendations

7-354

 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure multitasking
manually on page 1-128
Tasks on page 1-133 task1

task2

task3
Critical section details on
page 1-148

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks task1, task2, and task3 call the function increment.
increment contains the operation var++ that can involve multiple machine instructions
including:

• Reading var.
• Writing an increased value to var.

These machine instructions, when executed from task1 and task2, can occur
concurrently in an unpredictable sequence. For example, reading var from task1 can
occur either before or after writing to var from task2. Therefore the value of var can be
unpredictable.

Though task3 calls increment inside a critical section, other tasks do not use the same
critical section. The operations in the critical section of task3 are not mutually exclusive
with operations in other tasks.

 CERT C: Rule CON32-C

7-355

Therefore, the three tasks are operating on a shared variable without common protection.
In your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point
to the read or write operation. You also see that the operation starting from task3 is in a
critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

Correction — Place Operation in Critical Section

One possible correction is to place the operation in critical section. You can implement
the critical section in multiple ways. For instance:

7 CERT C Rules and Recommendations

7-356

• You can place var++ in a critical section. When task1 enters its critical section, the
other tasks cannot enter their critical sections until task1 leaves its critical section.
The operation var++ from the three tasks cannot interfere with each other.

To implement the critical section, in the function increment, place the operation var
++ between calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 begin_critical_section();
 var++;
 end_critical_section();
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 increment();
}

• You can place the call to increment in the same critical section in the three tasks.
When task1 enters its critical section, the other tasks cannot enter their critical
sections until task1 leaves its critical section. The calls to increment from the three
tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call increment between
calls to begin_critical_section and end_critical_section.

int var;

 CERT C: Rule CON32-C

7-357

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task2(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive tasks
on page 1-153

task1 task2 task3

On the command-line, you can use the following:

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

7 CERT C Rules and Recommendations

7-358

task1 task2 task3

Example - Unprotected Operation in Threads Created with pthread_create

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 count = count + 1;
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 c = count;
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 return 1;
}

In this example, Bug Finder detects the creation of separate threads with
pthread_create. The Data race defect is raised because the operation count =
count + 1 in the thread with id thread_increment conflicts with the operation c =
count in the thread with id thread_get. The variable count is accessed in multiple
threads without a common protection.

 CERT C: Rule CON32-C

7-359

The two conflicting operations are nonatomic. The operation c = count is nonatomic on
32-bit targets. See “Define Atomic Operations in Multitasking Code”.

Correction — Protect Operations with pthread_mutex_lock and
pthread_mutex_unlock Pair

To prevent concurrent access on the variable count, protect operations on count with a
critical section. Use the functions pthread_mutex_lock and pthread_mutex_unlock
to implement the critical section.

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 pthread_mutex_lock(&count_mutex);
 count = count + 1;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 pthread_mutex_lock(&count_mutex);
 c = count;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

7 CERT C Rules and Recommendations

7-360

 return 1;
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON32-C

Introduced in R2019a

 CERT C: Rule CON32-C

7-361

https://wiki.sei.cmu.edu/confluence/x/xdUxBQ

CERT C: Rule CON33-C
Avoid race conditions when using library functions

Description

Rule Definition
Avoid race conditions when using library functions.

Examples

Data race through standard library function call
Description

Data race through standard library function call occurs when:

1 Multiple tasks call the same standard library function.

For instance, multiple tasks call the strerror function.
2 The calls are not protected using a common protection.

For instance, the calls are not protected by the same critical section.

Functions flagged by this defect are not guaranteed to be reentrant. A function is
reentrant if it can be interrupted and safely called again before its previous invocation
completes execution. If a function is not reentrant, multiple tasks calling the function
without protection can cause concurrency issues. For the list of functions that are
flagged, see CON33-C: Avoid race conditions when using library functions.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Configuring Polyspace Multitasking Analysis Manually”.

7 CERT C Rules and Recommendations

7-362

https://www.securecoding.cert.org/confluence/x/xIEzAg

Risk

The functions flagged by this defect are nonreentrant because their implementations can
use global or static variables. When multiple tasks call the function without protection,
the function call from one task can interfere with the call from another task. The two
invocations of the function can concurrently access the global or static variables and
cause unpredictable results.

The calls can also cause more serious security vulnerabilities, such as abnormal
termination, denial-of-service attack, and data integrity violations.

Fix

To fix this defect, do one of the following:

• Use a reentrant version of the standard library function if it exists.

For instance, instead of strerror(), use strerror_r() or strerror_s(). For
alternatives to functions flagged by this defect, see the documentation for CON33-C.

• Protect the function calls using common critical sections or temporal exclusion.

See Critical section details (-critical-section-begin -critical-
section-end) and Temporally exclusive tasks (-temporal-exclusions-
file).

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access
Protections column shows existing protections on the calls. To see the function call

sequence leading to the conflicts, click the icon. For an example, see below.

Example - Unprotected Call to Standard Library Function from Multiple Tasks

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

 CERT C: Rule CON33-C

7-363

https://www.securecoding.cert.org/confluence/x/xIEzAg

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure
multitasking manually
Tasks (-entry-points) task1

task2

task3
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

7 CERT C Rules and Recommendations

7-364

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks, task1, task2 and task3, call the function func. func calls
the nonreentrant standard library function, strerror.

Though task3 calls func inside a critical section, other tasks do not use the same critical
section. Operations in the critical section of task3 are not mutually exclusive with
operations in other tasks.

These three tasks are calling a nonreentrant standard library function without common
protection. In your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point
to the standard library function call. You also see that the call starting from task3 is in a
critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

 CERT C: Rule CON33-C

7-365

Correction — Use Reentrant Version of Standard Library Function

One possible correction is to use a reentrant version of the standard library function
strerror. You can use the POSIX version strerror_r which has the same functionality
but also guarantees thread-safety.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);
enum { BUFFERSIZE = 64 };

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char errmsg[BUFFERSIZE];
 if (strerror_r(errno, errmsg, BUFFERSIZE) != 0) {
 /* Handle error */
 }
 printf("Could not get the file position: %s\n", errmsg);
 }

7 CERT C Rules and Recommendations

7-366

}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

Correction — Place Function Call in Critical Section

One possible correction is to place the call to strerror in critical section. You can
implement the critical section in multiple ways.

For instance, you can place the call to the intermediate function func in the same critical
section in the three tasks. When task1 enters its critical section, the other tasks cannot
enter their critical sections until task1 leaves its critical section. The calls to func and
therefore the calls to strerror from the three tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call func between calls to
begin_critical_section and end_critical_section.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {
 fpos_t pos;

 CERT C: Rule CON33-C

7-367

 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 begin_critical_section();
 func(fptr1);
 end_critical_section();
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 begin_critical_section();
 func(fptr2);
 end_critical_section();
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive
tasks (-temporal-
exclusions-file)

task1 task2 task3

On the command-line, you can use the following:

7 CERT C Rules and Recommendations

7-368

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2 task3

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON33-C

Introduced in R2019a

 CERT C: Rule CON33-C

7-369

https://wiki.sei.cmu.edu/confluence/x/d9YxBQ

CERT C: Rule CON35-C
Avoid deadlock by locking in a predefined order

Description

Rule Definition
Avoid deadlock by locking in a predefined order.

Examples

Deadlock
Description

Deadlock occurs when multiple tasks are stuck in their critical sections (CS) because:

• Each CS waits for another CS to end.
• The critical sections (CS) form a closed cycle. For example:

• CS #1 waits for CS #2 to end, and CS #2 waits for CS #1 to end.
• CS #1 waits for CS #2 to end, CS #2 waits for CS #3 to end and CS #3 waits for

CS #1 to end.

Polyspace expects critical sections of code to follow a specific format. A critical section
lies between a call to a lock function and a call to an unlock function. When a task
my_task calls a lock function my_lock, other tasks calling my_lock must wait until
my_task calls the corresponding unlock function. Both lock and unlock functions must
have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

7 CERT C Rules and Recommendations

7-370

Risk

Each task waits for a critical section in another task to end and is unable to proceed. The
program can freeze indefinitely.

Fix

The fix depends on the root cause of the defect. You can try to break the cyclic order
between the tasks in one of these ways:

• Write down all critical sections involved in the deadlock in a certain sequence.
Whenever you call the lock functions of the critical sections within a task, respect the
order in that sequence. See an example below.

• If one of the critical sections involved in a deadlock occurs in an interrupt, try to
disable all interrupts during critical sections in all tasks. See Disabling all
interrupts (-routine-disable-interrupts -routine-enable-
interrupts).

Reviewing this defect is an opportunity to check if all operations in your critical section
are really meant to be executed as an atomic block. It is a good practice to keep critical
sections at a bare minimum.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Deadlock with Two Tasks

void task1(void);
void task2(void);

int var;
void perform_task_cycle(void) {
 var++;
}

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

 CERT C: Rule CON35-C

7-371

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_2();
 begin_critical_section_1();
 perform_task_cycle();
 end_critical_section_1();
 end_critical_section_2();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure
multitasking
manually
Entry points task1

task2
Critical section
details

Starting routine Ending routine
begin_critical_section_1 end_critical_section_1
begin_critical_section_2 end_critical_section_2

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls begin_critical_section_1.
2 task2 calls begin_critical_section_2.

7 CERT C Rules and Recommendations

7-372

3 task1 reaches the instruction begin_critical_section_2();. Since task2 has
already called begin_critical_section_2, task1 waits for task2 to call
end_critical_section_2.

4 task2 reaches the instruction begin_critical_section_1();. Since task1 has
already called begin_critical_section_1, task2 waits for task1 to call
end_critical_section_1.

Correction-Follow Same Locking Sequence in Both Tasks

One possible correction is to follow the same sequence of calls to lock and unlock
functions in both task1 and task2.

void task1(void);
void task2(void);
void perform_task_cycle(void);

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

 CERT C: Rule CON35-C

7-373

Example - Deadlock with More Than Two Tasks

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {
 while(1) {
 lock3();
 lock1();
 performTaskCycle();

7 CERT C Rules and Recommendations

7-374

 unlock1();
 unlock3();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually
Entry points task1

task2

task3
Critical section details Starting routine Ending routine

lock1 unlock1
lock2 unlock2
lock3 unlock3

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls lock1.
2 task2 calls lock2.
3 task3 calls lock3.
4 task1 reaches the instruction lock2();. Since task2 has already called lock2,

task1 waits for call to unlock2.
5 task2 reaches the instruction lock3();. Since task3 has already called lock3,

task2 waits for call to unlock3.
6 task3 reaches the instruction lock1();. Since task1 has already called lock1,

task3 waits for call to unlock1.

Correction — Break Cyclic Order

To break the cyclic order between critical sections, note every lock function in your code
in a certain sequence, for example:

1 lock1

 CERT C: Rule CON35-C

7-375

2 lock2
3 lock3

If you use more than one lock function in a task, use them in the order in which they
appear in the sequence. For example, you can use lock1 followed by lock2 but not
lock2 followed by lock1.

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {

7 CERT C Rules and Recommendations

7-376

 while(1) {
 lock1();
 lock3();
 performTaskCycle();
 unlock3();
 unlock1();
 }
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON35-C

Introduced in R2019a

 CERT C: Rule CON35-C

7-377

https://wiki.sei.cmu.edu/confluence/x/hdYxBQ

CERT C: Rule CON36-C
Wrap functions that can spuriously wake up in a loop

Description

Rule Definition
Wrap functions that can spuriously wake up in a loop.

Examples

Function that can spuriously wake up not wrapped in loop
Description

Function that can spuriously wake up not wrapped in loop occurs when the
following wait-on-condition functions are called from outside a loop:

• C functions:

• cnd_wait()
• cnd_timedwait()

• POSIX functions:

• pthread_cond_wait()
• pthread_cond_timedwait()

• C++ std::condition_variable and std::condition_variable_any class
member functions:

• wait()
• wait_until()
• wait_for()

7 CERT C Rules and Recommendations

7-378

Wait-on-condition functions pause the execution of the calling thread when a specified
condition is met. The thread wakes up and resumes once another thread notifies it with
cnd_broadcast() or an equivalent function. The wake-up notification can be spurious
or malicious.

Risk

If a thread receives a spurious wake-up notification and the condition of the wait-on-
condition function is not checked, the thread can wake up prematurely. The wake-up can
cause unexpected control flow, indefinite blocking of other threads, or denial of service.

Fix

Wrap wait-on-condition functions that can wake up spuriously in a loop. The loop checks
the wake-up condition after a possible spurious wake-up notification.

Example - cnd_wait() Not Wrapped in Loop

#include <stdio.h>
#include <stddef.h>
#include <threads.h>

#define THRESHOLD 100

static mtx_t lock;
static cnd_t cond;

void func(int input)
{
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }
 /* test condition to pause thread */
 if (input > THRESHOLD) {
 if (thrd_success != cnd_wait(&cond, &lock)) {
 /* Handle error */
 }
 }
 /* Proceed if condition to pause does not hold */

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }

 CERT C: Rule CON36-C

7-379

}

In this example, the thread uses cnd_wait() to pause execution when input is greater
than THRESHOLD. The paused thread can resume if another thread uses
cnd_broadcast(), which notifies all the threads. This notification causes the thread to
wake up even if the pause condition is still true.

Correction — Wrap cnd_wait() in a while Loop

One possible correction is to wrap cnd_wait() in a while loop. The loop checks the
pause condition after the thread receives a possible spurious wake-up notification.

#include <stdio.h>
#include <stddef.h>
#include <threads.h>

#define THRESHOLD 100

static mtx_t lock;
static cnd_t cond;

void func(int input)
{
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }
 /* test condition to pause thread */
 while (input > THRESHOLD) {
 if (thrd_success != cnd_wait(&cond, &lock)) {
 /* Handle error */
 }
 }
 /* Proceed if condition to pause does not hold */

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }
}

7 CERT C Rules and Recommendations

7-380

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON36-C

Introduced in R2019a

 CERT C: Rule CON36-C

7-381

https://wiki.sei.cmu.edu/confluence/x/RNUxBQ

CERT C: Rule CON37-C
Do not call signal() in a multithreaded program

Description

Rule Definition
Do not call signal() in a multithreaded program.

Examples

Signal call in multithreaded program
Description

Signal call in multithreaded program occurs when you use the signal() function in
a program with multiple threads.

Risk

According to the C11 standard (Section 7.14.1.1), use of the signal() function in a
multithreaded program is undefined behavior.

Fix

Depending on your intent, use other ways to perform an asynchronous action on a specific
thread.

Example - Use of signal() Function to Terminate Loop in Thread

#include <signal.h>
#include <stddef.h>
#include <threads.h>

volatile sig_atomic_t flag = 0;

7 CERT C Rules and Recommendations

7-382

void handler(int signum) {
 flag = 1;
}

/* Runs until user sends SIGUSR1 */
int func(void *data) {
 while (!flag) {
 /* ... */
 }
 return 0;
}

int main(void) {
 signal(SIGINT, handler); /* Undefined behavior */
 thrd_t tid;

 if (thrd_success != thrd_create(&tid, func, NULL)) {
 /* Handle error */
 }
 /* ... */
 return 0;
}

In this example, the signal function is used to terminate a while loop in the thread
created with thrd_create.

Correction — Use atomic_bool Variable to Terminate Loop

One possible correction is to use an atomic_bool variable that multiple threads can
access. In the corrected example, the child thread evaluates this variable before every
loop iteration. After completing the program, you can modify this variable so that the
child thread exits the loop.

#include <stdatomic.h>
#include <stdbool.h>
#include <stddef.h>
#include <threads.h>

atomic_bool flag = ATOMIC_VAR_INIT(false);

int func(void *data) {
 while (!flag) {
 /* ... */

 CERT C: Rule CON37-C

7-383

 }
 return 0;
}

int main(void) {
 thrd_t tid;

 if (thrd_success != thrd_create(&tid, func, NULL)) {
 /* Handle error */
 }
 /* ... */
 /* Set flag when done */
 flag = true;

 return 0;
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON37-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-384

https://wiki.sei.cmu.edu/confluence/x/w9YxBQ

CERT C: Rule CON39-C
Do not join or detach a thread that was previously joined or detached

Description
Rule Definition
Do not perform operations that can block while holding a lock.

Examples
Join or detach of a joined or detached thread
Description

Join or detach of a joined or detached thread occurs when:

• A thread that is joined was previously joined or detached
• A thread that is detached was previously joined or detached.

The Result Details pane describes if the thread was previously joined or detached and
also shows previous related events.

For instance, the issue occurs when a thread joined with thrd_join is then detached
with pthread_detach:

thrd_t id;
...
thrd_join(id, NULL);
thrd_detach(id);

Note that a thread is considered as joined only if a previous thread joining is successful.
For instance, the thread is not considered as joined in the if branch here:

thrd_t t;
...

 CERT C: Rule CON39-C

7-385

if (thrd_success != thrd_join(t, 0)) {
 /* Thread not considered joined */
}

The analysis cannot detect cases where a joined thread detaches itself using, for instance,
the thrd_current() function.

Risk

The C11 standard (clauses 7.26.5.3 and 7.26.5.6) states that a thread shall not be joined
or detached once it was previously joined or detached. Violating these clauses of the
standard results in undefined behavior.

Fix

Avoid joining a thread that was already joined or detached previously. Likewise, avoid
detaching a thread that was already joined or detached.

Example – Joining Followed by Detaching of Thread

#include <stddef.h>
#include <threads.h>
#include <stdlib.h>

extern int thread_func(void *arg);

int main (void)
{
 thrd_t t;

 if (thrd_success != thrd_create (&t, thread_func, NULL)) {
 /* Handle error */
 return 0;
 }

 if (thrd_success != thrd_join (t, 0)) {
 /* Handle error */
 return 0;
 }

 if (thrd_success != thrd_detach (t)) {
 /* Handle error */

7 CERT C Rules and Recommendations

7-386

 return 0;
 }

 return 0;
}

In this example, the use of thrd_detach on a thread that was previously joined with
thrd_join leads to undefined behavior.

To avoid compilation errors with this example, specify the C11 standard with the option C
standard version (-c-version).

Correction – Avoid Detaching a Joined Thread

Remove the thrd_join or thrd_detach statement.

#include <stddef.h>
#include <threads.h>
#include <stdlib.h>

extern int thread_func(void *arg);

int main (void)
{
 thrd_t t;

 if (thrd_success != thrd_create (&t, thread_func, NULL)) {
 /* Handle error */
 return 0;
 }

 if (thrd_success != thrd_join (t, 0)) {
 /* Handle error */
 return 0;
 }

 return 0;
}

Example – Joining Thread Created in Detached State
#include <stddef.h>
#include <pthread.h>

 CERT C: Rule CON39-C

7-387

#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_attr_t attr;

 if(thread_success != pthread_attr_init(&attr)) {
 return 0;
 }

 if(thread_success != pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED)) {
 return 0;
 }

 if(thread_success != pthread_create(&id, &attr, thread_func, NULL)) {
 return 0;
 }

 if(thread_success != pthread_join(id, NULL)) {
 return 0;
 }

 return 0;
}

In this example, the thread attribute is assigned the state PTHREAD_CREATE_DETACHED.
A thread created using this attribute is then joined.

Correction – Create Threads as Joinable

One possible correction is to create a thread with thread attribute assigned to the state
PTHREAD_CREATE_JOINABLE and then join the thread.

#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;

7 CERT C Rules and Recommendations

7-388

 pthread_attr_t attr;

 if(thread_success != pthread_attr_init(&attr)) {
 return 0;
 }

 if(thread_success != pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE)) {
 return 0;
 }

 if(thread_success != pthread_create(&id, &attr, thread_func, NULL)) {
 return 0;
 }

 if(thread_success != pthread_join(id, NULL)) {
 return 0;
 }

 return 0;
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON39-C

Introduced in R2019b

 CERT C: Rule CON39-C

7-389

https://wiki.sei.cmu.edu/confluence/x/L9UxBQ

CERT C: Rule CON40-C
Do not refer to an atomic variable twice in an expression

Description

Rule Definition
Do not refer to an atomic variable twice in an expression.

Examples

Atomic variable accessed twice in an expression
Description

Atomic variable accessed twice in an expression occurs when C atomic types or C++
std::atomic class variables appear twice in an expression and there are:

• Two atomic read operations on the variable.
• An atomic read and a distinct atomic write operation on the variable.

The C standard defines certain operations on atomic variables that are thread safe and do
not cause data race conditions. Unlike individual operations, a pair of operations on the
same atomic variable in an expression is not thread safe.

Risk

A thread can modify the atomic variable between the pair of atomic operations, which can
result in a data race condition.

Fix

Do not reference an atomic variable twice in the same expression.

7 CERT C Rules and Recommendations

7-390

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic

Example - Referencing Atomic Variable Twice in an Expression

#include <stdatomic.h>

atomic_int n = ATOMIC_VAR_INIT(0);

int compute_sum(void)
{
 return n * (n + 1) / 2;
}

In this example, the global variable n is referenced twice in the return statement of
compute_sum(). The value of n can change between the two distinct read operations.
compute_sum() can return an incorrect value.

Correction — Pass Variable as Function Argument

One possible correction is to pass the variable as a function argument n. The variable is
copied to memory and the read operations on the copy guarantee that compute_sum()
returns a correct result. If you pass a variable of type int instead of type atomic_int,
the correction is still valid.

#include <stdatomic.h>

int compute_sum(atomic_int n)
{
 return n * (n + 1) / 2;
}

Atomic load and store sequence not atomic
Description

Atomic load and store sequence not atomic occurs when you use these functions to
load, and then store an atomic variable.

• C functions:

• atomic_load()
• atomic_load_explicit()
• atomic_store()

 CERT C: Rule CON40-C

7-391

• atomic_store_explicit()
• C++ functions:

• std::atomic_load()
• std::atomic_load_explicit()
• std::atomic_store()
• std::atomic_store_explicit()
• std::atomic::load()
• std::atomic::store()

A thread cannot interrupt an atomic load or an atomic store operation on a variable, but a
thread can interrupt a store, and then load sequence.

Risk

A thread can modify a variable between the load and store operations, resulting in a data
race condition.

Fix

To read, modify, and store a variable atomically, use a compound assignment operator
such as +=, atomic_compare_exchange() or atomic_fetch_*-family functions.

Example - Loading Then Storing an Atomic Variable

#include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC_VAR_INIT(false);

void init_flag(void)
{
 atomic_init(&flag, false);
}

void toggle_flag(void)
{
 bool temp_flag = atomic_load(&flag);
 temp_flag = !temp_flag;
 atomic_store(&flag, temp_flag);
}

7 CERT C Rules and Recommendations

7-392

bool get_flag(void)
{
 return atomic_load(&flag);
}

In this example, variable flag of type atomic_bool is referenced twice inside the
toggle_flag() function. The function loads the variable, negates its value, then stores
the new value back to the variable. If two threads call toggle_flag(), the second
thread can access flag between the load and store operations of the first thread. flag
can end up in an incorrect state.

Correction — Use Compound Assignment to Modify Variable

One possible correction is to use a compound assignment operator to toggle the value of
flag. The C standard defines the operation by using ^= as atomic.

 #include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC_VAR_INIT(false);

void toggle_flag(void)
{
 flag ^= 1;
}

bool get_flag(void)
{
 return flag;
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rule CON40-C

7-393

External Websites
CON40-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-394

https://wiki.sei.cmu.edu/confluence/x/MtUxBQ

CERT C: Rule CON41-C
Wrap functions that can fail spuriously in a loop

Description

Rule Definition
Wrap functions that can fail spuriously in a loop.

Examples

Function that can spuriously fail not wrapped in loop
Description

Function that can spuriously fail not wrapped in loop occurs when the following
atomic compare and exchange functions that can fail spuriously are called from outside a
loop.

• C atomic functions:

• atomic_compare_exchange_weak()
• atomic_compare_exchange_weak_explicit()

• C++ atomic functions:

• std::atomic<T>::compare_exchange_weak(T* expected, T desired)
• std::atomic<T>::compare_exchange_weak_explicit(T* expected, T

desired, std::memory_order succ, std::memory_order fail)
• std::atomic_compare_exchange_weak(std::atomic<T>* obj, T*

expected, T desired)
• std::atomic_compare_exchange_weak_explicit(volatile

std::atomic<T>* obj, T* expected, T desired, std::memory_order
succ, std::memory_order fail)

 CERT C: Rule CON41-C

7-395

The functions compare the memory contents of the object representations pointed to by
obj and expected. The comparison can spuriously return false even if the memory
contents are equal. This spurious failure makes the functions faster on some platforms.

Risk

An atomic compare and exchange function that spuriously fails can cause unexpected
results and unexpected control flow.

Fix

Wrap atomic compare and exchange functions that can spuriously fail in a loop. The loop
checks the failure condition after a possible spurious failure.

Example - atomic_compare_exchange_weak() Not Wrapped in Loop
#include <stdatomic.h>

extern void reset_count(void);
atomic_int count = ATOMIC_VAR_INIT(0);

void increment_count(void)
{
 int old_count = atomic_load(&count);
 int new_count;
 new_count = old_count + 1;
 if (!atomic_compare_exchange_weak(&count, &old_count, new_count))
 reset_count();

}

In this example, increment_count() uses atomic_compare_exchange_weak() to
compare count and old_count. If the counts are equal, count is incremented to
new_count. If they are not equal, the count is reset. When
atomic_compare_exchange_weak() fails spuriously, the count is reset unnecessarily.

Correction — Wrap atomic_compare_exchange_weak() in a while Loop

One possible correction is to wrap the call to atomic_compare_exchange_weak() in a
while loop. The loop checks the failure condition after a possible spurious failure.

#include <stdatomic.h>

extern void reset_count(void);

7 CERT C Rules and Recommendations

7-396

atomic_int count = ATOMIC_VAR_INIT(0);

void increment_count(void)
{
 int old_count = atomic_load(&count);
 int new_count;
 new_count = old_count + 1;

 do {
 reset_count();

 } while (!atomic_compare_exchange_weak(&count, &old_count, new_count));

}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON41-C

Introduced in R2019a

 CERT C: Rule CON41-C

7-397

https://wiki.sei.cmu.edu/confluence/x/QNUxBQ

CERT C: Rule CON43-C
Do not allow data races in multithreaded code

Description
Rule Definition
Do not allow data races in multithreaded code.

Examples
Data race
Description

Data race occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a write operation.
3 At least one operation is nonatomic. For data race on both atomic and nonatomic

operations, see Data race including atomic operations.

See also “Define Atomic Operations in Multitasking Code”.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Configuring Polyspace Multitasking Analysis Manually”.

Risk

Data race can result in unpredictable values of the shared variable because you do not
control the order of the operations in different tasks.

Data races between two write operations are more serious than data races between a
write and read operation. Two write operations can interfere with each other and result in

7 CERT C Rules and Recommendations

7-398

indeterminate values. To identify write-write conflicts, use the filters on the Detail
column of the Results List pane. For these conflicts, the Detail column shows the
additional line:

 Variable value may be altered by write-write concurrent access.

See “Filter and Group Results”.

Fix

To fix this defect, protect the operations on the shared variable using critical sections,
temporal exclusion or another means. See “Protections for Shared Variables in
Multitasking Code”.

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access Protections
column shows existing protections on the calls. To see the function call sequence leading

to the conflicts, click the icon. For an example, see below.

Example - Unprotected Operation on Global Variable from Multiple Tasks

int var;
void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 begin_critical_section();
 increment();

 CERT C: Rule CON43-C

7-399

 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure multitasking
manually on page 1-128
Tasks on page 1-133 task1

task2

task3
Critical section details on
page 1-148

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks task1, task2, and task3 call the function increment.
increment contains the operation var++ that can involve multiple machine instructions
including:

• Reading var.
• Writing an increased value to var.

These machine instructions, when executed from task1 and task2, can occur
concurrently in an unpredictable sequence. For example, reading var from task1 can
occur either before or after writing to var from task2. Therefore the value of var can be
unpredictable.

Though task3 calls increment inside a critical section, other tasks do not use the same
critical section. The operations in the critical section of task3 are not mutually exclusive
with operations in other tasks.

7 CERT C Rules and Recommendations

7-400

Therefore, the three tasks are operating on a shared variable without common protection.
In your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point
to the read or write operation. You also see that the operation starting from task3 is in a
critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

Correction — Place Operation in Critical Section

One possible correction is to place the operation in critical section. You can implement
the critical section in multiple ways. For instance:

 CERT C: Rule CON43-C

7-401

• You can place var++ in a critical section. When task1 enters its critical section, the
other tasks cannot enter their critical sections until task1 leaves its critical section.
The operation var++ from the three tasks cannot interfere with each other.

To implement the critical section, in the function increment, place the operation var
++ between calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 begin_critical_section();
 var++;
 end_critical_section();
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 increment();
}

• You can place the call to increment in the same critical section in the three tasks.
When task1 enters its critical section, the other tasks cannot enter their critical
sections until task1 leaves its critical section. The calls to increment from the three
tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call increment between
calls to begin_critical_section and end_critical_section.

int var;

7 CERT C Rules and Recommendations

7-402

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task2(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive tasks
on page 1-153

task1 task2 task3

On the command-line, you can use the following:

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

 CERT C: Rule CON43-C

7-403

task1 task2 task3

Example - Unprotected Operation in Threads Created with pthread_create

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 count = count + 1;
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 c = count;
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 return 1;
}

In this example, Bug Finder detects the creation of separate threads with
pthread_create. The Data race defect is raised because the operation count =
count + 1 in the thread with id thread_increment conflicts with the operation c =
count in the thread with id thread_get. The variable count is accessed in multiple
threads without a common protection.

7 CERT C Rules and Recommendations

7-404

The two conflicting operations are nonatomic. The operation c = count is nonatomic on
32-bit targets. See “Define Atomic Operations in Multitasking Code”.

Correction — Protect Operations with pthread_mutex_lock and
pthread_mutex_unlock Pair

To prevent concurrent access on the variable count, protect operations on count with a
critical section. Use the functions pthread_mutex_lock and pthread_mutex_unlock
to implement the critical section.

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 pthread_mutex_lock(&count_mutex);
 count = count + 1;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 pthread_mutex_lock(&count_mutex);
 c = count;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 CERT C: Rule CON43-C

7-405

 return 1;
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON43-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-406

https://wiki.sei.cmu.edu/confluence/x/zNUxBQ

CERT C: Rule MSC30-C
Do not use the rand() function for generating pseudorandom numbers

Description
Rule Definition
Do not use the rand() function for generating pseudorandom numbers.

Examples
Vulnerable pseudo-random number generator
Description

The Vulnerable pseudo-random number generator identifies uses of
cryptographically weak pseudo-random number generator (PRNG) routines.

The list of cryptographically weak routines flagged by this checker include:

• rand, random
• drand48, lrand48, mrand48, erand48, nrand48, jrand48, and their _r equivalents

such as drand48_r
• RAND_pseudo_bytes

Risk

These cryptographically weak routines are predictable and must not be used for security
purposes. When a predictable random value controls the execution flow, your program is
vulnerable to malicious attacks.

Fix

Use more cryptographically sound random number generators, such as CryptGenRandom
(Windows), OpenSSL/RAND_bytes(Linux/UNIX).

 CERT C: Rule MSC30-C

7-407

Example - Random Loop Numbers

#include <stdio.h>
#include <stdlib.h>

volatile int rd = 1;
int main(int argc, char *argv[])
{
 int j, r, nloops;
 struct random_data buf;
 int i = 0;

 nloops = rand();

 for (j = 0; j < nloops; j++) {
 if (random_r(&buf, &i))
 exit(1);
 printf("random_r: %ld\n", (long)i);
 }
 return 0;
}

This example uses rand and random_r to generate random numbers. If you use these
functions for security purposes, these PRNGs can be the source of malicious attacks.

Correction — Use Stronger PRNG

One possible correction is to replace the vulnerable PRNG with a stronger random
number generator.

#include <stdio.h>
#include <stdlib.h>
#include <openssl/rand.h>

volatile int rd = 1;
int main(int argc, char* argv[])
{
 int j, r, nloops;
 unsigned char buf;
 unsigned int seed;
 int i = 0;

 if (argc != 3)

7 CERT C Rules and Recommendations

7-408

 {
 fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 seed = atoi(argv[1]);
 nloops = atoi(argv[2]);

 for (j = 0; j < nloops; j++) {
 if (RAND_bytes(&buf, i) != 1)
 exit(1);
 printf("RAND_bytes: %u\n", (unsigned)buf);
 }
 return 0;
}

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC30-C

Introduced in R2019a

 CERT C: Rule MSC30-C

7-409

https://wiki.sei.cmu.edu/confluence/x/UNcxBQ

CERT C: Rule MSC32-C
Properly seed pseudorandom number generators

Description

Rule Definition
Properly seed pseudorandom number generators.

Examples

Deterministic random output from constant seed
Description

Deterministic random output from constant seed detects random standard functions
that when given a constant seed, have deterministic output.

Risk

When some random functions, such as srand, srandom, and initstate, have constant
seeds, the results produce the same output every time that your program is run. A hacker
can disrupt your program if they know how your program behaves.

Fix

Use a different random standard function or use a nonconstant seed.

Some standard random routines are inherently cryptographically weak on page 3-931,
and should not be used for security purposes.

Example - Random Number Generator Initialization

#include <stdlib.h>

7 CERT C Rules and Recommendations

7-410

void random_num(void)
{
 srand(12345U);
 /* ... */
}

This example initializes a random number generator using srand with a constant seed.
The random number generation is deterministic, making this function cryptographically
weak.

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define _CRT_RAND_S
#include <stdlib.h>
#include <stdio.h>

unsigned int random_num_time(void)
{

 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

 CERT C: Rule MSC32-C

7-411

Predictable random output from predictable seed
Description

Predictable random output from predictable seed looks for random standard
functions that use a nonconstant but predictable seed. Examples of predictable seed
generators are time, gettimeofday, and getpid.

Risk

When you use predictable seed values for random number generation, your random
numbers are also predictable. A hacker can disrupt your program if they know how your
program behaves.

Fix

You can use a different function to generate less predictable seeds.

You can also use a different random number generator that does not require a seed. For
example, the Windows API function rand_s seeds itself by default. It uses information
from the entire system, for example, system time, thread ids, system counter, and memory
clusters. This information is more random and a user cannot access this information.

Some standard random routines are inherently cryptographically weak on page 3-931,
and should not be used for security purposes.

Example - Seed as an Argument

#include <stdlib.h>
#include <time.h>

void seed_rng(int seed)
{
 srand(seed);
}

int generate_num(void)
{
 seed_rng(time(NULL) + 3);
 /* ... */
}

7 CERT C Rules and Recommendations

7-412

This example uses srand to start the random number generator with seed as the seed.
However, seed is predictable because the function time generates it. So, an attacker can
predict the random numbers generated by srand.

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define _CRT_RAND_S

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int generate_num(void)
{
 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rule MSC32-C

7-413

Topics
“Check for Coding Standard Violations”

External Websites
MSC32-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-414

https://wiki.sei.cmu.edu/confluence/x/W9YxBQ

CERT C: Rule MSC33-C
Do not pass invalid data to the asctime() function

Description

Rule Definition
Do not pass invalid data to the asctime() function.

Examples

Use of obsolete standard function
Description

Use of obsolete standard function detects calls to standard function routines that are
considered legacy, removed, deprecated, or obsolete by C/C++ coding standards.

Obsolete Function Standards Risk Replacement
Function

asctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

asctime_r Deprecated in POSIX.1-2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

bcmp Deprecated in 4.3BSD

Marked as legacy in
POSIX.1-2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcmp

 CERT C: Rule MSC33-C

7-415

Obsolete Function Standards Risk Replacement
Function

bcopy Deprecated in 4.3BSD

Marked as legacy in
POSIX.1-2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcpy or
memmove

brk and sbrk Marked as legacy in SUSv2 and
POSIX.1-2001.

 malloc

bsd_signal Removed in POSIX.1-2008 sigaction
bzero Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

 memset

ctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

ctime_r Deprecated in POSIX.1-2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

cuserid Removed in POSIX.1-2001. Not reentrant. Precise
functionality not
standardized causing
portability issues.

getpwuid

ecvt and fcvt Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008

Not reentrant snprintf

ecvt_r and fcvt_r Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008

 snprintf

ftime Removed in POSIX.1-2008 time,
gettimeofday,
clock_gettime

gamma, gammaf,
gammal

Function not specified in any
standard because of historical
variations

Portability issues. tgamma, lgamma

7 CERT C Rules and Recommendations

7-416

Obsolete Function Standards Risk Replacement
Function

gcvt Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 snprintf

getcontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

getdtablesize BSD API function not included
in POSIX.1-2001

Portability issues. sysconf(_SC_OP
EN_MAX)

gethostbyaddr Removed in POSIX.1-2008 Not reentrant getaddrinfo
gethostbyname Removed in POSIX.1-2008 Not reentrant getnameinfo
getpagesize BSD API function not included

in POSIX.1-2001
Portability issues. sysconf(_SC_PA

GESIZE)
getpass Removed in POSIX.1-2001. Not reentrant. getpwuid
getw Not present in POSIX.1-2001. fread
getwd Marked legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

 getcwd

index Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 strchr

makecontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

memalign Appears in SunOS 4.1.3. Not in
4.4 BSD or POSIX.1-2001

 posix_memalign

mktemp Removed in POSIX.1-2008. Generated names are
predictable and can
cause a race condition.

mkstemp removes
race risk

pthread_attr_
getstackaddr and
pthread_attr_
setstackaddr

 Ambiguities in the
specification of the
stackaddr attribute
cause portability
issues

pthread_attr_
getstack and
pthread_attr_
setstack

putw Not present in POSIX.1-2001. Portability issues. fwrite

 CERT C: Rule MSC33-C

7-417

Obsolete Function Standards Risk Replacement
Function

qecvt and qfcvt Marked as legacy in
POSIX.1-2001, removed in
POSIX.1-2008

 snprintf

qecvt_r and
qfcvt_r

Marked as legacy in
POSIX.1-2001, removed in
POSIX.1-2008

 snprintf

rand_r Marked as obsolete in
POSIX.1-2008

re_comp BSD API function Portability issues regcomp
re_exes BSD API function Portability issues regexec
rindex Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

 strrchr

scalb Removed in POSIX.1-2008 scalbln,
scalblnf, or
scalblnl

sigblock 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigmask 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigsetmask 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigstack Interface is obsolete and not
implemented on most
platforms.

Portability issues. sigaltstack

sigvec 4.3BSD signal API whose origin
is unclear

 sigaction

swapcontext Removed in POSIX.1-2008 Portability issues. Use POSIX threads.

7 CERT C Rules and Recommendations

7-418

Obsolete Function Standards Risk Replacement
Function

tmpnam and
tmpnam_r

Marked as obsolete in
POSIX.1-2008.

This function
generates a different
string each time it is
called, up to
TMP_MAX times. If it
is called more than
TMP_MAX times, the
behavior is
implementation-
defined.

mkstemp, tmpfile

ttyslot Removed in POSIX.1-2001.
ualarm Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

Errors are under-
specified

setitimer or
POSIX
timer_create

usleep Removed in POSIX.1-2008. nanosleep
utime SVr4, POSIX.1-2001.

POSIX.1-2008 marks as
obsolete.

valloc Marked as obsolete in 4.3BSD.

Marked as legacy in SUSv2.

Removed from POSIX.1-2001

 posix_memalign

vfork Removed from POSIX.1-2008 Under-specified in
previous standards.

fork

wcswcs This function was not included
in the final ISO/IEC 9899:1990/
Amendment 1:1995 (E).

 wcsstr

WinExec WinAPI provides this function
only for 16-bit Windows
compatibility.

 CreateProcess

LoadModule WinAPI provides this function
only for 16-bit Windows
compatibility.

 CreateProcess

 CERT C: Rule MSC33-C

7-419

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Printing Out Time

#include <stdio.h>
#include <time.h>

void timecheck_bad(int argc, char *argv[])
{
 time_t ticks;

 ticks = time(NULL);
 printf("%.24s\r\n", ctime(&ticks));
}

In this example, the function ctime formats the current time and prints it out. However,
ctime was removed after C99 because it does not work on multithreaded programs.

Correction — Different Time Function

One possible correction is to use strftime instead because this function uses a set
buffer size.

#include <stdio.h>
#include <string.h>
#include <time.h>

void timecheck_good(int argc, char *argv[])
{
 char outBuff[1025];
 time_t ticks;
 struct tm * timeinfo;

7 CERT C Rules and Recommendations

7-420

 memset(outBuff, 0, sizeof(outBuff));

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime(outBuff,sizeof(outBuff),"%I:%M%p.",timeinfo);
 fprintf(stdout, outBuff);
}

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC33-C

Introduced in R2019a

 CERT C: Rule MSC33-C

7-421

https://wiki.sei.cmu.edu/confluence/x/yNYxBQ

CERT C: Rule MSC37-C
Ensure that control never reaches the end of a non-void function

Description

Rule Definition
Ensure that control never reaches the end of a non-void function.

Examples

Missing return statement
Description

Missing return statement occurs when a function does not return a value along at least
one execution path. If the return type of the function is void, this error does not occur.

Risk

If a function has a non-void return value in its signature, it is expected to return a value.
The return value of this function can be used in later computations. If the execution of the
function body goes through a path where a return statement is missing, the function
return value is indeterminate. Computations with this return value can lead to
unpredictable results.

Fix

In most cases, you can fix this defect by placing the return statement at the end of the
function body.

Alternatively, you can identify which execution paths through the function body do not
have a return statement and add a return statement on those paths. Often the result
details show a sequence of events that indicate this execution path. You can add a
return statement at an appropriate point in the path. If the result details do not show

7 CERT C Rules and Recommendations

7-422

the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Missing or invalid return statement error

int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }
 }
/* Defect: No return value if n is not 0*/

If n is equal to 0, the code does not enter the if statement. Therefore, the function
AddSquares does not return a value if n is 0.

Correction — Place Return Statement on Every Execution Path

One possible correction is to return a value in every branch of the if...else statement.

 int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }

 CERT C: Rule MSC37-C

7-423

 return(sum);
 }

 /*Fix: Place a return statement on branches of if-else */
 else
 return 0;
 }

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC37-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-424

https://wiki.sei.cmu.edu/confluence/x/m9YxBQ

CERT C: Rule MSC38-C
Do not treat a predefined identifier as an object if it might only be implemented as a
macro

Description
Rule Definition
Do not treat a predefined identifier as an object if it might only be implemented as a
macro.

Examples
Predefined macro used as an object
Description

Predefined macro used as an object occurs when you use certain identifiers in a way
that requires an underlying object to be present. These identifiers are defined as macros.
The C Standard does not allow you to redefine them as objects. You use the identifiers in
such a way that macro expansion of the identifiers cannot occur.

For instance, you refer to an external variable errno:

extern int errno;

However, errno does not occur as a variable but a macro.

The defect applies to these macros: assert, errno, math_errhandling, setjmp,
va_arg, va_copy, va_end, and va_start. The checker looks for the defect only in
source files (not header files).

Risk

The C11 Standard (Sec. 7.1.4) allows you to redefine most macros as objects. To access
the object and not the macro in a source file, you do one of these:

 CERT C: Rule MSC38-C

7-425

• Redeclare the identifier as an external variable or function.
• For function-like macros, enclose the identifier name in parentheses.

If you try to use these strategies for macros that cannot be redefined as objects, an error
occurs.

Fix

Do not use the identifiers in such a way that a macro expansion is suppressed.

• Do not redeclare the identifiers as external variables or functions.
• For function-like macros, do not enclose the macro name in parentheses.

Example - Use of assert as Function

#include<assert.h>
typedef void (*err_handler_func)(int);

extern void demo_handle_err(err_handler_func, int);

void func(int err_code) {
 extern void assert(int);
 demo_handle_err(&(assert), err_code);
}

In this example, the assert macro is redefined as an external function. When passed as
an argument to demo_handle_err, the identifier assert is enclosed in parentheses,
which suppresses use of the assert macro.

Correction — Use assert as Macro

One possible correction is to directly use the assert macro from assert.h. A different
implementation of the function demo_handle_err directly uses the assert macro
instead of taking the address of an assert function.

#include<assert.h>
void demo_handle_err(int err_code) {
 assert(err_code == 0);
}

void func(int err_code) {
 demo_handle_err(err_code);
}

7 CERT C Rules and Recommendations

7-426

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC38-C

Introduced in R2019a

 CERT C: Rule MSC38-C

7-427

https://wiki.sei.cmu.edu/confluence/x/qdYxBQ

CERT C: Rule MSC39-C
Do not call va_arg() on a va_list that has an indeterminate value

Description

Rule Definition
Do not call va_arg() on a va_list that has an indeterminate value.

Examples

Invalid va_list argument
Description

Invalid va_list argument occurs when you use a va_list variable as an argument to a
function in the vprintf group but:

• You do not initialize the variable previously using va_start or va_copy.
• You invalidate the variable previously using va_end and do not reinitialize it.

For instance, you call the function vsprintf as vsprintf (buffer,format, args).
However, before the function call, you do not initialize the va_list variable args using
either of the following:

• va_start(args, paramName). paramName is the last named argument of a
variable-argument function. For instance, for the function definition void func(int
n, char c, ...) {}, c is the last named argument.

• va_copy(args, anotherList). anotherList is another valid va_list variable.

Risk

The behavior of an uninitialized va_list argument is undefined. Calling a function with
an uninitialized va_list argument can cause stack overflows.

7 CERT C Rules and Recommendations

7-428

Fix

Before using a va_list variable as function argument, initialize it with va_start or
va_copy.

Clean up the variable using va_end only after all uses of the variable.

Example - va_list Variable Used Following Call to va_end
#include <stdarg.h>
#include <stdio.h>

int call_vfprintf(int line, const char *format, ...) {
 va_list ap;
 int r=0;

 va_start(ap, format);
 r = vfprintf(stderr, format, ap);
 va_end(ap);

 r += vfprintf(stderr, format, ap);
 return r;
}

In this example, the va_list variable ap is used in the vfprintf function, after the
va_end macro is called.

Correction — Call va_end After Using va_list Variable

One possible correction is to call va_end only after all uses of the va_list variable.

#include <stdarg.h>
#include <stdio.h>

int call_vfprintf(int line, const char *format, ...) {
 va_list ap;
 int r=0;

 va_start(ap, format);
 r = vfprintf(stderr, format, ap);
 r += vfprintf(stderr, format, ap);
 va_end(ap);

 return r;
}

 CERT C: Rule MSC39-C

7-429

Too many va_arg calls for current argument list
Description

Too many va_arg calls for current argument list occurs when the number of calls to
va_arg exceeds the number of arguments passed to the corresponding variadic function.
The analysis raises a defect only when the variadic function is called.

Too many va_arg calls for current argument list does not raise a defect when:

• The number of calls to va_arg inside the variadic function is indeterminate. For
example, if the calls are from an external source.

• The va_list used in va_arg is invalid.

Risk

When you call va_arg and there is no next argument available in va_list, the behavior
is undefined. The call to va_arg might corrupt data or return an unexpected result.

Fix

Ensure that you pass the correct number of arguments to the variadic function.

Example - No Argument Available When Calling va_arg

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/
int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {
/* No further argument available
* in va_list when calling va_arg
*/

7 CERT C Rules and Recommendations

7-430

 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100);

}

In this example, the named argument and only one variadic argument are passed to
variadic_func() when it is called inside func(). On the second call to va_arg, no
further variadic argument is available in ap and the behavior is undefined.

Correction — Pass Correct Number of Arguments to Variadic Function

One possible correction is to ensure that you pass the correct number of arguments to the
variadic function.

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/

int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {

/* The correct number of arguments is
* passed to va_list when variadic_func()
* is called inside func()
*/

 CERT C: Rule MSC39-C

7-431

 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100, 200);

}

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC39-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-432

https://wiki.sei.cmu.edu/confluence/x/ndYxBQ

CERT C: Rule MSC40-C
Do not violate constraints

Description

Rule Definition
Do not violate constraints.

Examples

Inline constraint not respected
Description

Inline constraint not respected occurs when you refer to a file scope modifiable static
variable or define a local modifiable static variable in a nonstatic inlined function. The
checker considers a variable as modifiable if it is not const-qualified.

For instance, var is a modifiable static variable defined in an inline function func.
g_step is a file scope modifiable static variable referred to in the same inlined function.

static int g_step;
inline void func (void) {
 static int var = 0;
 var += g_step;
}

Risk

When you modify a static variable in multiple function calls, you expect to modify the
same variable in each call. For instance, each time you call func, the same instance of
var1 is incremented but a separate instance of var2 is incremented.

void func(void) {
 static var1 = 0;

 CERT C: Rule MSC40-C

7-433

 var2 = 0;
 var1++;
 var2++;
}

If a function has an inlined and non-inlined definition (in separate files), when you call the
function, the C standard allows compilers to use either the inlined or the non-inlined form
(see ISO/IEC 9899:2011, sec. 6.7.4). If your compiler uses an inlined definition in one call
and the non-inlined definition in another, you are no longer modifying the same variable
in both calls. This behavior defies the expectations from a static variable.

Fix

Use one of these fixes:

• If you do not intend to modify the variable, declare it as const.

If you do not modify the variable, there is no question of unexpected modification.
• Make the variable non-static. Remove the static qualifier from the declaration.

If the variable is defined in the function, it becomes a regular local variable. If defined
at file scope, it becomes an extern variable. Make sure that this change in behavior is
what you intend.

• Make the function static. Add a static qualifier to the function definition.

If you make the function static, the file with the inlined definition always uses the
inlined definition when the function is called. Other files use another definition of the
function. The question of which function definition gets used is not left to the compiler.

Example - Static Variable Use in Inlined and External Definition

/* file1. c : contains inline definition of get_random()*/

inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;

7 CERT C Rules and Recommendations

7-434

}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

In this example, get_random() has an inline definition in file1.c and an external
definition in file2.c. When get_random is called in file1.c, compilers are free to
choose whether to use the inline or the external definition.

Depending on the definition used, you might or might not modify the version of m_z and
m_w in the inlined version of get_random(). This behavior contradicts the usual
expectations from a static variable. When you call get_random(), you expect to always
modify the same m_z and m_w.

Correction — Make Inlined Function Static

One possible correction is to make the inlined get_random() static. Irrespective of your
compiler, calls to get_random() in file1.c then use the inlined definition. Calls to
get_random() in other files use the external definition. This fix removes the ambiguity
about which definition is used and whether the static variables in that definition are
modified.

 CERT C: Rule MSC40-C

7-435

/* file1. c : contains inline definition of get_random()*/

static inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

Check Information
Group: Rule 48. Miscellaneous (MSC)

7 CERT C Rules and Recommendations

7-436

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC40-C

Introduced in R2019a

 CERT C: Rule MSC40-C

7-437

https://wiki.sei.cmu.edu/confluence/x/TtUxBQ

CERT C: Rule POS30-C
Use the readlink() function properly

Description

Rule Definition
Use the readlink() function properly.

Examples

Misuse of readlink()
Description

Misuse of readlink() occurs when you pass a buffer size argument to readlink() that
does not leave space for a null terminator in the buffer.

For instance:

ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf));

The third argument is exactly equal to the size of the second argument. For large enough
symbolic links, this use of readlink() does not leave space to enter a null terminator.

Risk

The readlink() function copies the content of a symbolic link (first argument) to a
buffer (second argument). However, the function does not append a null terminator to the
copied content. After using readlink(), you must explicitly add a null terminator to the
buffer.

If you fill the entire buffer when using readlink, you do not leave space for this null
terminator.

7 CERT C Rules and Recommendations

7-438

Fix

When using the readlink() function, make sure that the third argument is one less than
the buffer size.

Then, append a null terminator to the buffer. To determine where to add the null
terminator, check the return value of readlink(). If the return value is -1, an error has
occurred. Otherwise, the return value is the number of characters (bytes) copied.

Example - Incorrect Size Argument of readlink

#include <unistd.h>

#define SIZE1024 1024

extern void display_path(const char *);

void func() {
 char buf[SIZE1024];
 ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf));
 if (len > 0) {
 buf[len - 1] = '\0';
 }
 display_path(buf);
}

In this example, the third argument of readlink is exactly the size of the buffer (second
argument). If the first argument is long enough, this use of readlink does not leave
space for the null terminator.

Also, if no characters are copied, the return value of readlink is 0. The following
statement leads to a buffer underflow when len is 0.

buf[len - 1] = '\0';

Correction — Make Sure Size Argument is One Less Than Buffer Size

One possible correction is to make sure that the third argument of readlink is one less
than size of the second argument.

The following corrected code also accounts for readlink returning 0.

#include <stdlib.h>
#include <unistd.h>

 CERT C: Rule POS30-C

7-439

#define fatal_error() abort()
#define SIZE1024 1024

extern void display_path(const char *);

void func() {
 char buf[SIZE1024];
 ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf) - 1);
 if (len != -1) {
 buf[len] = '\0';
 display_path(buf);
 }
 else {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS30-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-440

https://wiki.sei.cmu.edu/confluence/x/FNcxBQ

CERT C: Rule POS33-C
Do not use vfork()

Description

Rule Definition
Do not use vfork().

Examples

Use of obsolete standard function
Description

Use of obsolete standard function detects calls to standard function routines that are
considered legacy, removed, deprecated, or obsolete by C/C++ coding standards.

Obsolete Function Standards Risk Replacement
Function

asctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

asctime_r Deprecated in POSIX.1-2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

bcmp Deprecated in 4.3BSD

Marked as legacy in
POSIX.1-2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcmp

 CERT C: Rule POS33-C

7-441

Obsolete Function Standards Risk Replacement
Function

bcopy Deprecated in 4.3BSD

Marked as legacy in
POSIX.1-2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcpy or
memmove

brk and sbrk Marked as legacy in SUSv2 and
POSIX.1-2001.

 malloc

bsd_signal Removed in POSIX.1-2008 sigaction
bzero Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

 memset

ctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

ctime_r Deprecated in POSIX.1-2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

cuserid Removed in POSIX.1-2001. Not reentrant. Precise
functionality not
standardized causing
portability issues.

getpwuid

ecvt and fcvt Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008

Not reentrant snprintf

ecvt_r and fcvt_r Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008

 snprintf

ftime Removed in POSIX.1-2008 time,
gettimeofday,
clock_gettime

gamma, gammaf,
gammal

Function not specified in any
standard because of historical
variations

Portability issues. tgamma, lgamma

7 CERT C Rules and Recommendations

7-442

Obsolete Function Standards Risk Replacement
Function

gcvt Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 snprintf

getcontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

getdtablesize BSD API function not included
in POSIX.1-2001

Portability issues. sysconf(_SC_OP
EN_MAX)

gethostbyaddr Removed in POSIX.1-2008 Not reentrant getaddrinfo
gethostbyname Removed in POSIX.1-2008 Not reentrant getnameinfo
getpagesize BSD API function not included

in POSIX.1-2001
Portability issues. sysconf(_SC_PA

GESIZE)
getpass Removed in POSIX.1-2001. Not reentrant. getpwuid
getw Not present in POSIX.1-2001. fread
getwd Marked legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

 getcwd

index Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 strchr

makecontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

memalign Appears in SunOS 4.1.3. Not in
4.4 BSD or POSIX.1-2001

 posix_memalign

mktemp Removed in POSIX.1-2008. Generated names are
predictable and can
cause a race condition.

mkstemp removes
race risk

pthread_attr_
getstackaddr and
pthread_attr_
setstackaddr

 Ambiguities in the
specification of the
stackaddr attribute
cause portability
issues

pthread_attr_
getstack and
pthread_attr_
setstack

putw Not present in POSIX.1-2001. Portability issues. fwrite

 CERT C: Rule POS33-C

7-443

Obsolete Function Standards Risk Replacement
Function

qecvt and qfcvt Marked as legacy in
POSIX.1-2001, removed in
POSIX.1-2008

 snprintf

qecvt_r and
qfcvt_r

Marked as legacy in
POSIX.1-2001, removed in
POSIX.1-2008

 snprintf

rand_r Marked as obsolete in
POSIX.1-2008

re_comp BSD API function Portability issues regcomp
re_exes BSD API function Portability issues regexec
rindex Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

 strrchr

scalb Removed in POSIX.1-2008 scalbln,
scalblnf, or
scalblnl

sigblock 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigmask 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigsetmask 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigstack Interface is obsolete and not
implemented on most
platforms.

Portability issues. sigaltstack

sigvec 4.3BSD signal API whose origin
is unclear

 sigaction

swapcontext Removed in POSIX.1-2008 Portability issues. Use POSIX threads.

7 CERT C Rules and Recommendations

7-444

Obsolete Function Standards Risk Replacement
Function

tmpnam and
tmpnam_r

Marked as obsolete in
POSIX.1-2008.

This function
generates a different
string each time it is
called, up to
TMP_MAX times. If it
is called more than
TMP_MAX times, the
behavior is
implementation-
defined.

mkstemp, tmpfile

ttyslot Removed in POSIX.1-2001.
ualarm Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

Errors are under-
specified

setitimer or
POSIX
timer_create

usleep Removed in POSIX.1-2008. nanosleep
utime SVr4, POSIX.1-2001.

POSIX.1-2008 marks as
obsolete.

valloc Marked as obsolete in 4.3BSD.

Marked as legacy in SUSv2.

Removed from POSIX.1-2001

 posix_memalign

vfork Removed from POSIX.1-2008 Under-specified in
previous standards.

fork

wcswcs This function was not included
in the final ISO/IEC 9899:1990/
Amendment 1:1995 (E).

 wcsstr

WinExec WinAPI provides this function
only for 16-bit Windows
compatibility.

 CreateProcess

LoadModule WinAPI provides this function
only for 16-bit Windows
compatibility.

 CreateProcess

 CERT C: Rule POS33-C

7-445

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Printing Out Time

#include <stdio.h>
#include <time.h>

void timecheck_bad(int argc, char *argv[])
{
 time_t ticks;

 ticks = time(NULL);
 printf("%.24s\r\n", ctime(&ticks));
}

In this example, the function ctime formats the current time and prints it out. However,
ctime was removed after C99 because it does not work on multithreaded programs.

Correction — Different Time Function

One possible correction is to use strftime instead because this function uses a set
buffer size.

#include <stdio.h>
#include <string.h>
#include <time.h>

void timecheck_good(int argc, char *argv[])
{
 char outBuff[1025];
 time_t ticks;
 struct tm * timeinfo;

7 CERT C Rules and Recommendations

7-446

 memset(outBuff, 0, sizeof(outBuff));

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime(outBuff,sizeof(outBuff),"%I:%M%p.",timeinfo);
 fprintf(stdout, outBuff);
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS33-C

Introduced in R2019a

 CERT C: Rule POS33-C

7-447

https://wiki.sei.cmu.edu/confluence/x/9dYxBQ

CERT C: Rule POS34-C
Do not call putenv() with a pointer to an automatic variable as the argument

Description
Rule Definition
Do not call putenv() with a pointer to an automatic variable as the argument.

Examples
Use of automatic variable as putenv-family function argument
Description

Use of automatic variable as putenv-family function argument occurs when the
argument of a putenv-family function is a local variable with automatic duration.

Risk

The function putenv(char *string) inserts a pointer to its supplied argument into the
environment array, instead of making a copy of the argument. If the argument is an
automatic variable, its memory can be overwritten after the function containing the
putenv() call returns. A subsequent call to getenv() from another function returns the
address of an out-of-scope variable that cannot be dereferenced legally. This out-of-scope
variable can cause environment variables to take on unexpected values, cause the
program to stop responding, or allow arbitrary code execution vulnerabilities.

Fix

Use setenv()/unsetenv() to set and unset environment variables. Alternatively, use
putenv-family function arguments with dynamically allocated memory, or, if your
application has no reentrancy requirements, arguments with static duration. For example,
a single thread execution with no recursion or interrupts does not require reentrancy. It
cannot be called (reentered) during its execution.

7 CERT C Rules and Recommendations

7-448

Example - Automatic Variable as Argument of putenv()

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 char env[SIZE1024];
 int retval = sprintf(env, "TEST=%s", var ? "1" : "0");
 if (retval <= 0) {
 /* Handle error */
 }
 /* Environment variable TEST is set using putenv().
 The argument passed to putenv is an automatic variable. */
 retval = putenv(env);
 if (retval != 0) {
 /* Handle error */
 }
}

In this example, sprintf() stores the character string TEST=var in env. The value of
the environment variable TEST is then set to var by using putenv(). Because env is an
automatic variable, the value of TEST can change once func() returns.

Correction — Use static Variable for Argument of putenv()

Declare env as a static-duration variable. The memory location of env is not overwritten
for the duration of the program, even after func() returns.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024
void func(int var)
{
 /* static duration variable */
 static char env[SIZE1024];
 int retval = sprintf(env,"TEST=%s", var ? "1" : "0");
 if (retval <= 0) {

 CERT C: Rule POS34-C

7-449

 /* Handle error */
 }

 /* Environment variable TEST is set using putenv() */
 retval=putenv(env);
 if (retval != 0) {
 /* Handle error */
 }
}

Correction — Use setenv() to Set Environment Variable Value

To set the value of TEST to var, use setenv().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 /* Environment variable TEST is set using setenv() */
 int retval = setenv("TEST", var ? "1" : "0", 1);

 if (retval != 0) {
 /* Handle error */
 }
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

7 CERT C Rules and Recommendations

7-450

External Websites
POS34-C

Introduced in R2019a

 CERT C: Rule POS34-C

7-451

https://wiki.sei.cmu.edu/confluence/x/6NYxBQ

CERT C: Rule POS35-C
Avoid race conditions while checking for the existence of a symbolic link

Description

Rule Definition
Avoid race conditions while checking for the existence of a symbolic link.

Examples

File access between time of check and use (TOCTOU)
Description

File access between time of check and use (TOCTOU) detects race condition issues
between checking the existence of a file or folder, and using a file or folder.

Risk

An attacker can access and manipulate your file between your check for the file and your
use of a file. Symbolic links are particularly risky because an attacker can change where
your symbolic link points.

Fix

Before using a file, do not check its status. Instead, use the file and check the results
afterward.

Example - Check File Before Using

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

7 CERT C Rules and Recommendations

7-452

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 if (access(log_path, W_OK)==0) {
 FILE* f = fopen(log_path, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

In this example, before opening and using the file, the function checks if the file exists.
However, an attacker can change the file between the first and second lines of the
function.

Correction — Open Then Check

One possible correction is to open the file, and then check the existence and contents
afterward.

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 int fd = open(log_path, O_WRONLY);
 if (fd!=-1) {
 FILE *f = fdopen(fd, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

Check Information
Group: Rule 50. POSIX (POS)

 CERT C: Rule POS35-C

7-453

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS35-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-454

https://wiki.sei.cmu.edu/confluence/x/0tUxBQ

CERT C: Rule POS36-C
Observe correct revocation order while relinquishing privileges

Description

Rule Definition
Observe correct revocation order while relinquishing privileges.

Examples

Bad order of dropping privileges
Description

Bad order of dropping privileges checks the order of privilege drops. If you drop
higher elevated privileges before dropping lower elevated privileges, Polyspace raises a
defect. For example dropping elevated primary group privileges before dropping elevated
ancillary group privileges.

Risk

If you drop privileges in the wrong order, you can potentially drop higher privileges that
you need to drop lower privileges. The incorrect order can mean, privileges are not
dropped, compromising the security of your program.

Fix

Respect this order of dropping elevated privileges:

• Drop (elevated) ancillary group privileges, then drop (elevated) primary group
privileges.

• Drop (elevated) primary group privileges, then drop (elevated) user privileges.

 CERT C: Rule POS36-C

7-455

Example - Dropping User Privileges First

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()

static void sanitize_privilege_drop_check(uid_t olduid, gid_t oldgid)
{
 if (seteuid(olduid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
 if (setegid(oldgid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
}
void badprivilegedroporder(void) {
 uid_t
 newuid = getuid(),
 olduid = geteuid();
 gid_t
 newgid = getgid(),
 oldgid = getegid();

 if (setuid(newuid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (setgid(newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (olduid == 0) {
 /* drop ancillary groups IDs only possible for root */
 if (setgroups(1, &newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }

7 CERT C Rules and Recommendations

7-456

 }

 sanitize_privilege_drop_check(olduid, oldgid);
}

In this example, there are two privilege drops made in the incorrect order. setgid
attempts to drop group privileges. However, setgid requires the user privileges, which
were dropped previously using setuid, to perform this function. After dropping group
privileges, this function attempts to drop ancillary groups privileges by using setgroups.
This task requires the higher primary group privileges that were dropped with setgid.
At the end of this function, it is possible to regain group privileges because the order of
dropping privileges was incorrect.

Correction — Reverse Privilege Drop Order

One possible correction is to drop the lowest level privileges first. In this correction,
ancillary group privileges are dropped, then primary group privileges are dropped, and
finally user privileges are dropped.

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()

static void sanitize_privilege_drop_check(uid_t olduid, gid_t oldgid)
{
 if (seteuid(olduid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
 if (setegid(oldgid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
}
void badprivilegedroporder(void) {
 uid_t
 newuid = getuid(),
 olduid = geteuid();
 gid_t

 CERT C: Rule POS36-C

7-457

 newgid = getgid(),
 oldgid = getegid();

 if (olduid == 0) {
 /* drop ancillary groups IDs only possible for root */
 if (setgroups(1, &newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 }
 if (setgid(getgid()) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (setuid(getuid()) == -1) {
 /* handle error condition */
 fatal_error();
 }

 sanitize_privilege_drop_check(olduid, oldgid);
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS36-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-458

https://wiki.sei.cmu.edu/confluence/x/p9YxBQ

CERT C: Rule POS37-C
Ensure that privilege relinquishment is successful

Description

Rule Definition
Ensure that privilege relinquishment is successful.

Examples

Privilege drop not verified
Description

Privilege drop not verified detects calls to functions that relinquish privileges. If you do
not verify that the privileges were dropped before the end of your function, a defect is
raised.

Risk

If privilege relinquishment fails, an attacker can regain elevated privileges and have more
access to your program than intended. This security hole can cause unexpected behavior
in your code if left open.

Fix

Before the end of scope, verify that the privileges that you dropped were actually
dropped.

Example - Drop Privileges Within a Function

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>

 CERT C: Rule POS37-C

7-459

#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()
extern int need_more_privileges;

void missingprivilegedropcheck()
{
 /* Code intended to run with elevated privileges */

 /* Temporarily drop elevated privileges */
 if (seteuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */

 if (need_more_privileges) {
 /* Restore elevated privileges */
 if (seteuid(0) != 0) {
 /* Handle error */
 fatal_error();
 }
 /* Code intended to run with elevated privileges */
 }

 /* ... */

 /* Permanently drop elevated privileges */
 if (setuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */
}

In this example, privileges are elevated and dropped to run code with the intended
privilege level. When privileges are dropped, the privilege level before exiting the
function body is not verified. A malicious attacker can regain their elevated privileges.

Correction — Verify Privilege Drop

One possible correction is to use setuid to verify that the privileges were dropped.

7 CERT C Rules and Recommendations

7-460

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()
extern int need_more_privileges;

void missingprivilegedropcheck()
{
 /* Store the privileged ID for later verification */
 uid_t privid = geteuid();

 /* Code intended to run with elevated privileges */

 /* Temporarily drop elevated privileges */
 if (seteuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */

 if (need_more_privileges) {
 /* Restore elevated Privileges */
 if (seteuid(privid) != 0) {
 /* Handle error */
 fatal_error();
 }
 /* Code intended to run with elevated privileges */
 }

 /* ... */

 /* Restore privileges if needed */
 if (geteuid() != privid) {
 if (seteuid(privid) != 0) {
 /* Handle error */
 fatal_error();
 }
 }

 /* Permanently drop privileges */
 if (setuid(getuid()) != 0) {

 CERT C: Rule POS37-C

7-461

 /* Handle error */
 fatal_error();
 }

 if (setuid(0) != -1) {
 /* Privileges can be restored, handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges; */
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS37-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-462

https://wiki.sei.cmu.edu/confluence/x/Q9YxBQ

CERT C: Rule POS38-C
Beware of race conditions when using fork and file descriptors

Description

Rule Definition
Beware of race conditions when using fork and file descriptors.

Examples

File descriptor exposure to child process
Description

File descriptor exposure to child process occurs when a process is forked and the
child process uses file descriptors inherited from the parent process.

Risk

When you fork a child process, file descriptors are copied from the parent process, which
means that you can have concurrent operations on the same file. Use of the same file
descriptor in the parent and child processes can lead to race conditions that may not be
caught during standard debugging. If you do not properly manage the file descriptor
permissions and privileges, the file content is vulnerable to attacks targeting the child
process.

Fix

Check that the file has not been modified before forking the process. Close all inherited
file descriptors and reopen them with stricter permissions and privileges, such as read-
only permission.

 CERT C: Rule POS38-C

7-463

Example - File Descriptor Accessed from Forked Process

include <stdio.h>
include <stdlib.h>
include <string.h>
include <unistd.h>
include <fcntl.h>
include <sys/types.h>
include <sys/stat.h>

const char *test_file="/home/user/test.txt";

void func(void)
{
 char c;
 pid_t pid;
 /* create file descriptor in read and write mode */
 int fd = open(test_file, O_RDWR);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }
 /* fork process */
 pid = fork();
 if (pid == -1)
 {
 /* Handle error */
 abort();
 }
 else if (pid == 0)
 { /* Child process accesses file descriptor inherited
 from parent process */
 (void)read(fd, &c, 1);
 }
 else
 { /* Parent process access same file descriptor as
 child process */
 (void)read(fd, &c, 1);
 }
}

7 CERT C Rules and Recommendations

7-464

In this example, a file descriptor fd is created in read and write mode. The process is
then forked. The child process inherits and accesses fd with the same permissions as the
parent process. A race condition exists between the parent and child processes. The
contents of the file is vulnerable to attacks through the child process.

Correction — Close and Reopen Inherited File Descriptor

After you create the file descriptor, check the file for tampering. Then, close the inherited
file descriptor in the child process and reopen it in read-only mode.

include <stdio.h>
include <stdlib.h>
include <string.h>
include <unistd.h>
include <fcntl.h>
include <sys/types.h>
include <sys/stat.h>

const char *test_file="/home/user/test.txt";

void func(void)
{
 char c;
 pid_t pid;

 /* Get the state of file for further file tampering checking */

 /* create file descriptor in read and write mode */
 int fd = open(test_file, O_RDWR);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }

 /* Be sure the file was not tampered with while opening */

 /* fork process */

 pid = fork();
 if (pid == -1)
 {
 /* Handle error */

 CERT C: Rule POS38-C

7-465

 (void)close(fd);
 abort();
 }
 else if (pid == 0)
 { /* Close file descriptor in child process and repoen
 it in read only mode */

 (void)close(fd);
 fd = open(test_file, O_RDONLY);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }

 (void)read(fd, &c, 1);
 (void)close(fd);
 }
 else
 { /* Parent acceses original file descriptor */
 (void)read(fd, &c, 1);
 (void)close(fd);
 }
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS38-C

7 CERT C Rules and Recommendations

7-466

https://wiki.sei.cmu.edu/confluence/x/q9YxBQ

Introduced in R2019a

 CERT C: Rule POS38-C

7-467

CERT C: Rule POS39-C
Use the correct byte ordering when transferring data between systems

Description

Rule Definition
Use the correct byte ordering when transferring data between systems.

Examples

Missing byte reordering when transferring data
Description

Missing byte reordering when transferring data occurs when you do not use a byte
ordering function:

• Before sending data to a network socket.
• After receiving data from a network socket.

Risk

Some system architectures implement little endian byte ordering (least significant byte
first), and other systems implement big endian (most significant byte first). If the
endianness of the sent data does not match the endianness of the receiving system, the
value returned when reading the data is incorrect.

Fix

After receiving data from a socket, use a byte ordering function such as ntohl(). Before
sending data to a socket, use a byte ordering function such as htonl() .

7 CERT C Rules and Recommendations

7-468

Example - Data Transferred Without Byte Reordering

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <byteswap.h>
#include <unistd.h>
#include <string.h>

unsigned int func(int sock, int server)
{
 unsigned int num; /* assume int is 32-bits */
 if (server)
 {
 /* Server side */
 num = 0x17;
 /* Endianness of server host may not match endianness of network. */
 if (send(sock, (void *)&num, sizeof(num), 0) < (int)sizeof(num))
 {
 /* Handle error */
 }
 return 0;
 }
 else {
 /* Endianness of client host may not match endianness of network. */
 if (recv (sock, (void *)&num, sizeof(num), 0) < (int) sizeof(num))
 {
 /* Handle error */
 }

 /* Comparison may be inaccurate */
 if (num> 255)
 {
 return 255;
 }
 else
 {
 return num;
 }
 }

 CERT C: Rule POS39-C

7-469

}

In this example, variable num is assigned hexadecimal value 0x17 and is sent over a
network to the client from the server. If the server host is little endian and the network is
big endian, num is transferred as 0x17000000. The client then reads an incorrect value
for num and compares it to a local numeric value.

Correction — Use Byte Ordering Function

Before sending num from the server host, use htonl() to convert from host to network
byte ordering. Similarly, before reading num on the client host, use ntohl() to convert
from network to host byte ordering.

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <byteswap.h>
#include <unistd.h>
#include <string.h>

unsigned int func(int sock, int server)
{
 unsigned int num; /* assume int is 32-bits */
 if (server)
 {
 /* Server side */
 num = 0x17;

 /* Convert to network byte order. */
 num = htonl(num);
 if (send(sock, (void *)&num, sizeof(num), 0) < (int)sizeof(num))
 {
 /* Handle error */
 }
 return 0;
 }
 else {
 if (recv (sock, (void *)&num, sizeof(num), 0) < (int) sizeof(num))
 {

7 CERT C Rules and Recommendations

7-470

 /* Handle error */
 }

 /* Convert to host byte order. */
 num = ntohl(num);
 if (num > 255)
 {
 return 255;
 }
 else
 {
 return num;
 }
 }
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS39-C

Introduced in R2019a

 CERT C: Rule POS39-C

7-471

https://wiki.sei.cmu.edu/confluence/x/ydYxBQ

CERT C: Rule POS44-C
Do not use signals to terminate threads

Description

Rule Definition
Do not use signals to terminate threads.

Examples

Use of signal to kill thread
Description

Use of signal to kill thread occurs when you use an uncaught signal to kill a thread.
For instance, you use the POSIX function pthread_kill and send the signal SIGTERM to
kill a thread.

Risk

Sending a signal kills the entire process instead of just the thread that you intend to kill.

For instance, the pthread_kill specifications state that if the disposition of a signal is
to terminate, this action affects the entire process.

Fix

Use other mechanisms that are intended to kill specific threads.

For instance, use the POSIX function pthread_cancel to terminate a specific thread.

Example - Use of pthread_kill to Terminate Threads
#include <signal.h>
#include <pthread.h>

7 CERT C Rules and Recommendations

7-472

http://man7.org/linux/man-pages/man3/pthread_kill.3.html

void* func(void *foo) {
 /* Execution of thread */
}

int main(void) {
 int result;
 pthread_t thread;

 if ((result = pthread_create(&thread, NULL, func, 0)) != 0) {
 }
 if ((result = pthread_kill(thread, SIGTERM)) != 0) {
 }

 /* This point is not reached because the process terminates in pthread_kill() */

 return 0;
}

In this example, the pthread_kill function sends the signal SIGTERM to kill a thread.
The signal kills the entire process instead of the thread previously created with
pthread_create.

Correction — Use pthread_cancel to Terminate Threads

One possible correction is to use the pthread_cancel function. The pthread_cancel
terminates a thread specified by its first argument at a specific cancellation point or
immediately, depending on the thread's cancellation type.

#include <signal.h>
#include <pthread.h>

void* func(void *foo) {
 /* Execution of thread */
}

int main(void) {
 int result;
 pthread_t thread;

 if ((result = pthread_create(&thread, NULL, func, 0)) != 0) {
 /* Handle Error */
 }
 if ((result = pthread_cancel(thread)) != 0) {

 CERT C: Rule POS44-C

7-473

 /* Handle Error */
 }

 /* Continue executing */

 return 0;
}

See also:

• pthread_cancel for more information on cancellation types.
• Pthreads for functions that are allowed to be cancellation points.

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS44-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-474

http://man7.org/linux/man-pages/man3/pthread_cancel.3.html
http://man7.org/linux/man-pages/man7/pthreads.7.html
https://wiki.sei.cmu.edu/confluence/x/otUxBQ

CERT C: Rule POS48-C
Do not unlock or destroy another POSIX thread's mutex

Description

Rule Definition
Do not unlock or destroy another POSIX thread's mutex.

Examples

Destruction of locked mutex
Description

Destruction of locked mutex occurs when a task destroys a mutex after it is locked
(and before it is unlocked). The locking and destruction can happen in the same task or
different tasks.

Risk

A mutex is locked to protect shared variables from concurrent access. If a mutex is
destroyed in the locked state, the protection does not apply.

Fix

To fix this defect, destroy the mutex only after you unlock it. It is a good design practice
to:

• Initialize a mutex before creating the threads where you use the mutex.
• Destroy a mutex after joining the threads that you created.

On the Result Details pane, you see two events, the locking and destruction of the
mutex, and the tasks that initiated the events. To navigate to the corresponding line in
your source code, click the event.

 CERT C: Rule POS48-C

7-475

Example - Locking and Destruction in Different Tasks

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
 pthread_mutex_unlock (&lock3);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

In this example, after task t0 locks the mutex lock3, task t1 can destroy it. The
destruction occurs if the following events happen in sequence:

1 t0 acquires lock3.
2 t0 releases lock2.
3 t0 releases lock1.
4 t1 acquires the lock lock1 released by t0.
5 t1 acquires the lock lock2 released by t0.
6 t1 destroys lock3.

For simplicity, this example uses a mix of automatic and manual concurrency detection.
The tasks t0 and t1 are manually specified as entry points by using the option Tasks (-
entry-points). The critical sections are implemented through primitives
pthread_mutex_lock and pthread_mutex_unlock that the software detects

7 CERT C Rules and Recommendations

7-476

automatically. In practice, for entry point specification (thread creation), you will use
primitives such as pthread_create. The next example shows how the defect can appear
when you use pthread_create.

Correction — Place Lock-Unlock Pair Together in Same Critical Section as
Destruction

The locking and destruction of lock3 occurs inside the critical section imposed by lock1
and lock2, but the unlocking occurs outside. One possible correction is to place the lock-
unlock pair in the same critical section as the destruction of the mutex. Use one of these
critical sections:

• Critical section imposed by lock1 alone.
• Critical section imposed by lock1 and lock2.

In this corrected code, the lock-unlock pair and the destruction is placed in the critical
section imposed by lock1 and lock2. When t0 acquires lock1 and lock2, t1 has to
wait for their release before it executes the instruction pthread_mutex_destroy
(&lock3);. Therefore, t1 cannot destroy mutex lock3 in the locked state.

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 CERT C: Rule POS48-C

7-477

 pthread_mutex_destroy (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

Example - Locking and Destruction in Start Routine of Thread
#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_destroy(&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);

7 CERT C Rules and Recommendations

7-478

 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Thread that initializes mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use mutex for atomic operation*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 pthread_exit(NULL);
}

In this example, four threads are created. The threads are assigned different actions.

• The first thread callThd[0] initializes the mutex lock.
• The second and third threads, callThd[1] and callThd[2], perform an atomic

operation protected by the mutex lock.
• The fourth thread callThd[3] destroys the mutex lock.

The threads can interrupt each other. Therefore, immediately after the second or third
thread locks the mutex, the fourth thread can destroy it.

Correction — Initialize and Destroy Mutex Outside Start Routine

One possible correction is to initialize and destroy the mutex in the main function outside
the start routine of the threads. The threads perform only the atomic operation. You need
two fewer threads because the mutex initialization and destruction threads are not
required.

#include <pthread.h>

/* Define globally accessible variables and a mutex */

 CERT C: Rule POS48-C

7-479

#define NUMTHREADS 2
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_work(void *arg) {
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize mutex */
 pthread_mutex_init(&lock, NULL);

 for(i=0; i<NUMTHREADS; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy mutex */
 pthread_mutex_destroy(&lock);

 pthread_exit(NULL);
}

7 CERT C Rules and Recommendations

7-480

Correction — Use A Second Mutex To Protect Lock-Unlock Pair and Destruction

Another possible correction is to use a second mutex and protect the lock-unlock pair
from the destruction. This corrected code uses the mutex lock2 to achieve this
protection. The second mutex is initialized in the main function outside the start routine
of the threads.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
pthread_mutex_t lock2;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy(&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;

 CERT C: Rule POS48-C

7-481

 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize second mutex */
 pthread_mutex_init(&lock2, NULL);

 /* Thread that initializes first mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use first mutex for atomic operation */
 /* The threads use second mutex to protect first from destruction in locked state*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys first mutex */
 /* The thread uses the second mutex to prevent destruction of locked mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy second mutex */
 pthread_mutex_destroy(&lock2);

 pthread_exit(NULL);
}

Check Information
Group: Rule 50. POSIX (POS)

7 CERT C Rules and Recommendations

7-482

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS48-C

Introduced in R2019a

 CERT C: Rule POS48-C

7-483

https://wiki.sei.cmu.edu/confluence/x/ltUxBQ

CERT C: Rule POS49-C
When data must be accessed by multiple threads, provide a mutex and guarantee no
adjacent data is also accessed

Description

Rule Definition
When data must be accessed by multiple threads, provide a mutex and guarantee no
adjacent data is also accessed.

Examples

Data race
Description

Data race occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a write operation.
3 At least one operation is nonatomic. For data race on both atomic and nonatomic

operations, see Data race including atomic operations.

See also “Define Atomic Operations in Multitasking Code”.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Configuring Polyspace Multitasking Analysis Manually”.

Risk

Data race can result in unpredictable values of the shared variable because you do not
control the order of the operations in different tasks.

7 CERT C Rules and Recommendations

7-484

Data races between two write operations are more serious than data races between a
write and read operation. Two write operations can interfere with each other and result in
indeterminate values. To identify write-write conflicts, use the filters on the Detail
column of the Results List pane. For these conflicts, the Detail column shows the
additional line:

 Variable value may be altered by write-write concurrent access.

See “Filter and Group Results”.

Fix

To fix this defect, protect the operations on the shared variable using critical sections,
temporal exclusion or another means. See “Protections for Shared Variables in
Multitasking Code”.

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access Protections
column shows existing protections on the calls. To see the function call sequence leading

to the conflicts, click the icon. For an example, see below.

Example - Unprotected Operation on Global Variable from Multiple Tasks

int var;
void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {

 CERT C: Rule POS49-C

7-485

 begin_critical_section();
 increment();
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure
multitasking manually
Tasks (-entry-points) task1

task2

task3
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks task1, task2, and task3 call the function increment.
increment contains the operation var++ that can involve multiple machine instructions
including:

• Reading var.
• Writing an increased value to var.

These machine instructions, when executed from task1 and task2, can occur
concurrently in an unpredictable sequence. For example, reading var from task1 can
occur either before or after writing to var from task2. Therefore the value of var can be
unpredictable.

Though task3 calls increment inside a critical section, other tasks do not use the same
critical section. The operations in the critical section of task3 are not mutually exclusive
with operations in other tasks.

7 CERT C Rules and Recommendations

7-486

Therefore, the three tasks are operating on a shared variable without common protection.
In your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point
to the read or write operation. You also see that the operation starting from task3 is in a
critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

Correction — Place Operation in Critical Section

One possible correction is to place the operation in critical section. You can implement
the critical section in multiple ways. For instance:

 CERT C: Rule POS49-C

7-487

• You can place var++ in a critical section. When task1 enters its critical section, the
other tasks cannot enter their critical sections until task1 leaves its critical section.
The operation var++ from the three tasks cannot interfere with each other.

To implement the critical section, in the function increment, place the operation var
++ between calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 begin_critical_section();
 var++;
 end_critical_section();
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 increment();
}

• You can place the call to increment in the same critical section in the three tasks.
When task1 enters its critical section, the other tasks cannot enter their critical
sections until task1 leaves its critical section. The calls to increment from the three
tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call increment between
calls to begin_critical_section and end_critical_section.

int var;

7 CERT C Rules and Recommendations

7-488

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task2(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive
tasks (-temporal-
exclusions-file)

task1 task2 task3

On the command-line, you can use the following:

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

 CERT C: Rule POS49-C

7-489

task1 task2 task3

Example - Unprotected Operation in Threads Created with pthread_create

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 count = count + 1;
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 c = count;
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 return 1;
}

In this example, Bug Finder detects the creation of separate threads with
pthread_create. The Data race defect is raised because the operation count =
count + 1 in the thread with id thread_increment conflicts with the operation c =
count in the thread with id thread_get. The variable count is accessed in multiple
threads without a common protection.

7 CERT C Rules and Recommendations

7-490

The two conflicting operations are nonatomic. The operation c = count is nonatomic on
32-bit targets. See “Define Atomic Operations in Multitasking Code”.

Correction — Protect Operations with pthread_mutex_lock and
pthread_mutex_unlock Pair

To prevent concurrent access on the variable count, protect operations on count with a
critical section. Use the functions pthread_mutex_lock and pthread_mutex_unlock
to implement the critical section.

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 pthread_mutex_lock(&count_mutex);
 count = count + 1;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 pthread_mutex_lock(&count_mutex);
 c = count;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 CERT C: Rule POS49-C

7-491

 return 1;
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS49-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-492

https://wiki.sei.cmu.edu/confluence/x/jtUxBQ

CERT C: Rule POS51-C
Avoid deadlock with POSIX threads by locking in predefined order

Description

Rule Definition
Avoid deadlock with POSIX threads by locking in predefined order.

Examples

Deadlock
Description

Deadlock occurs when multiple tasks are stuck in their critical sections (CS) because:

• Each CS waits for another CS to end.
• The critical sections (CS) form a closed cycle. For example:

• CS #1 waits for CS #2 to end, and CS #2 waits for CS #1 to end.
• CS #1 waits for CS #2 to end, CS #2 waits for CS #3 to end and CS #3 waits for

CS #1 to end.

Polyspace expects critical sections of code to follow a specific format. A critical section
lies between a call to a lock function and a call to an unlock function. When a task
my_task calls a lock function my_lock, other tasks calling my_lock must wait until
my_task calls the corresponding unlock function. Both lock and unlock functions must
have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

 CERT C: Rule POS51-C

7-493

Risk

Each task waits for a critical section in another task to end and is unable to proceed. The
program can freeze indefinitely.

Fix

The fix depends on the root cause of the defect. You can try to break the cyclic order
between the tasks in one of these ways:

• Write down all critical sections involved in the deadlock in a certain sequence.
Whenever you call the lock functions of the critical sections within a task, respect the
order in that sequence. See an example below.

• If one of the critical sections involved in a deadlock occurs in an interrupt, try to
disable all interrupts during critical sections in all tasks. See Disabling all
interrupts (-routine-disable-interrupts -routine-enable-
interrupts).

Reviewing this defect is an opportunity to check if all operations in your critical section
are really meant to be executed as an atomic block. It is a good practice to keep critical
sections at a bare minimum.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Deadlock with Two Tasks

void task1(void);
void task2(void);

int var;
void perform_task_cycle(void) {
 var++;
}

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

7 CERT C Rules and Recommendations

7-494

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_2();
 begin_critical_section_1();
 perform_task_cycle();
 end_critical_section_1();
 end_critical_section_2();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure
multitasking
manually
Entry points task1

task2
Critical section
details

Starting routine Ending routine
begin_critical_section_1 end_critical_section_1
begin_critical_section_2 end_critical_section_2

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls begin_critical_section_1.
2 task2 calls begin_critical_section_2.

 CERT C: Rule POS51-C

7-495

3 task1 reaches the instruction begin_critical_section_2();. Since task2 has
already called begin_critical_section_2, task1 waits for task2 to call
end_critical_section_2.

4 task2 reaches the instruction begin_critical_section_1();. Since task1 has
already called begin_critical_section_1, task2 waits for task1 to call
end_critical_section_1.

Correction-Follow Same Locking Sequence in Both Tasks

One possible correction is to follow the same sequence of calls to lock and unlock
functions in both task1 and task2.

void task1(void);
void task2(void);
void perform_task_cycle(void);

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

7 CERT C Rules and Recommendations

7-496

Example - Deadlock with More Than Two Tasks

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {
 while(1) {
 lock3();
 lock1();
 performTaskCycle();

 CERT C: Rule POS51-C

7-497

 unlock1();
 unlock3();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually
Entry points task1

task2

task3
Critical section details Starting routine Ending routine

lock1 unlock1
lock2 unlock2
lock3 unlock3

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls lock1.
2 task2 calls lock2.
3 task3 calls lock3.
4 task1 reaches the instruction lock2();. Since task2 has already called lock2,

task1 waits for call to unlock2.
5 task2 reaches the instruction lock3();. Since task3 has already called lock3,

task2 waits for call to unlock3.
6 task3 reaches the instruction lock1();. Since task1 has already called lock1,

task3 waits for call to unlock1.

Correction — Break Cyclic Order

To break the cyclic order between critical sections, note every lock function in your code
in a certain sequence, for example:

1 lock1

7 CERT C Rules and Recommendations

7-498

2 lock2
3 lock3

If you use more than one lock function in a task, use them in the order in which they
appear in the sequence. For example, you can use lock1 followed by lock2 but not
lock2 followed by lock1.

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {

 CERT C: Rule POS51-C

7-499

 while(1) {
 lock1();
 lock3();
 performTaskCycle();
 unlock3();
 unlock1();
 }
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS51-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-500

https://wiki.sei.cmu.edu/confluence/x/ktUxBQ

CERT C: Rule POS52-C
Do not perform operations that can block while holding a POSIX lock

Description

Rule Definition
Do not perform operations that can block while holding a POSIX lock.

Examples

Blocking operation while holding lock
Description

Blocking operation while holding lock occurs when a task (thread) performs a
potentially lengthy operation while holding a lock.

The checker considers calls to these functions as potentially lengthy:

• Functions that access a network such as recv
• System call functions such as fork, pipe and system
• Functions for I/O operations such as getchar and scanf
• File handling functions such as fopen, remove and lstat
• Directory manipulation functions such as mkdir and rmdir

The checker automatically detects certain primitives that hold and release a lock, for
instance, pthread_mutex_lock and pthread_mutex_unlock. For the full list of
primitives that are automatically detected, see “Auto-Detection of Thread Creation and
Critical Section in Polyspace”.

 CERT C: Rule POS52-C

7-501

Risk

If a thread performs a lengthy operation when holding a lock, other threads that use the
lock have to wait for the lock to be available. As a result, system performance can slow
down or deadlocks can occur.

Fix

Perform the blocking operation before holding the lock or after releasing the lock.

Some functions detected by this checker can be called in a way that does not make them
potentially lengthy. For instance, the function recv can be called with the parameter
O_NONBLOCK which causes the call to fail if no message is available. When called with this
parameter, recv does not wait for a message to become available.

Example - Network I/O Operations with recv While Holding Lock

#include <pthread.h>
#include <sys/socket.h>

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

void thread_foo(void *ptr) {
 unsigned int num;
 int result;
 int sock;

 /* sock is a connected TCP socket */

 if ((result = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle Error */
 }

 if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
 /* Handle Error */
 }

 /* ... */

 if ((result = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle Error */
 }
}

7 CERT C Rules and Recommendations

7-502

int main() {
 pthread_t thread;
 int result;

 if ((result = pthread_mutexattr_settype(
 &attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle Error */
 }

 if (pthread_create(&thread, NULL,(void*(*)(void*))& thread_foo, NULL) != 0) {
 /* Handle Error */
 }

 /* ... */

 pthread_join(thread, NULL);

 if ((result = pthread_mutex_destroy(&mutex)) != 0) {
 /* Handle Error */
 }

 return 0;
}

In this example, in each thread created with pthread_create, the function thread_foo
performs a network I/O operation with recv after acquiring a lock with
pthread_mutex_lock. Other threads using the same lock variable mutex have to wait
for the operation to complete and the lock to become available.

Correction — Perform Blocking Operation Before Acquiring Lock

One possible correction is to call recv before acquiring the lock.

#include <pthread.h>
#include <sys/socket.h>

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

 CERT C: Rule POS52-C

7-503

void thread_foo(void *ptr) {
 unsigned int num;
 int result;
 int sock;

 /* sock is a connected TCP socket */
 if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle Error */
 }

 /* ... */

 if ((result = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle Error */
 }
}

int main() {
 pthread_t thread;
 int result;

 if ((result = pthread_mutexattr_settype(
 &attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle Error */
 }

 if (pthread_create(&thread, NULL,(void*(*)(void*))& thread_foo, NULL) != 0) {
 /* Handle Error */
 }

 /* ... */

 pthread_join(thread, NULL);

 if ((result = pthread_mutex_destroy(&mutex)) != 0) {
 /* Handle Error */

7 CERT C Rules and Recommendations

7-504

 }

 return 0;
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS52-C

Introduced in R2019a

 CERT C: Rule POS52-C

7-505

https://wiki.sei.cmu.edu/confluence/x/mdUxBQ

CERT C: Rule POS54-C
Detect and handle POSIX library errors

Description

Rule Definition
Detect and handle POSIX library errors.

Examples

Returned value of a sensitive function not checked
Description

Returned value of a sensitive function not checked occurs when you call sensitive
standard functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or
vulnerable tasks:

7 CERT C Rules and Recommendations

7-506

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive or critical
sensitive tasks, your program can behave unexpectedly. Errors from these functions can
propagate throughout the program causing incorrect output, security vulnerabilities, and
possibly system failures.

Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to
void. Polyspace does not raise this defect for sensitive functions cast to void. This
resolution is not accepted for critical sensitive functions because they perform more
vulnerable tasks.

Example - Sensitive Function Return Ignored

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 pthread_attr_init(&attr);
}

This example shows a call to the sensitive function pthread_attr_init. The return
value of pthread_attr_init is ignored, causing a defect.

Correction — Cast Function to (void)

One possible correction is to cast the function to void. This fix informs Polyspace and any
reviewers that you are explicitly ignoring the return value of the sensitive function.

 CERT C: Rule POS54-C

7-507

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 (void)pthread_attr_init(&attr);
}

Correction — Test Return Value

One possible correction is to test the return value of pthread_attr_init to check for
errors.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

void initialize() {
 pthread_attr_t attr;
 int result;

 result = pthread_attr_init(&attr);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Example - Critical Function Return Ignored
#include <pthread.h>
extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0));
 pthread_join(thread_id, &res);
}

In this example, two critical functions are called: pthread_create and pthread_join.
The return value of the pthread_create is ignored by casting to void, but because

7 CERT C Rules and Recommendations

7-508

pthread_create is a critical function (not just a sensitive function), Polyspace does not
ignore this Return value of a sensitive function not checked defect. The other critical
function, pthread_join, returns value that is ignored implicitly. pthread_join uses
the return value of pthread_create, which was not checked.

Correction — Test the Return Value of Critical Functions

The correction for this defect is to check the return value of these critical functions to
verify the function performed as expected.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rule POS54-C

7-509

Topics
“Check for Coding Standard Violations”

External Websites
POS54-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-510

https://wiki.sei.cmu.edu/confluence/x/MdUxBQ

CERT C: Rule WIN30-C
Properly pair allocation and deallocation functions

Description

Rule Definition
Properly pair allocation and deallocation functions.

Examples

Mismatched alloc/dealloc functions on Windows
Description

Mismatched alloc/dealloc functions on Windows occurs when you use a Windows
deallocation function that is not properly paired to its corresponding allocation function.

Risk

Deallocating memory with a function that does not match the allocation function can
cause memory corruption or undefined behavior. If you are using an older version of
Windows, the improper function can also cause compatibility issues with newer versions.

Fix

Properly pair your allocation and deallocation functions according to the functions listed
in this table.

Allocation Function Deallocation Function
malloc() free()
realloc() free()
calloc() free()

 CERT C: Rule WIN30-C

7-511

Allocation Function Deallocation Function
_aligned_malloc() _aligned_free()
_aligned_offset_malloc() _aligned_free()
_aligned_realloc() _aligned_free()
_aligned_offset_realloc() _aligned_free()
_aligned_recalloc() _aligned_free()
_aligned_offset_recalloc() _aligned_free()
_malloca() _freea()
LocalAlloc() LocalFree()
LocalReAlloc() LocalFree()
GlobalAlloc() GlobalFree()
GlobalReAlloc() GlobalFree()
VirtualAlloc() VirtualFree()
VirtualAllocEx() VirtualFreeEx()
VirtualAllocExNuma() VirtualFreeEx()
HeapAlloc() HeapFree()
HeapReAlloc() HeapFree()

Example - Memory Deallocated with Incorrect Function
#ifdef _WIN32_
#include <windows.h>
#else
#define _WIN32_
typedef void *HANDLE;
typedef HANDLE HGLOBAL;
typedef HANDLE HLOCAL;
typedef unsigned int UINT;
extern HLOCAL LocalAlloc(UINT uFlags, UINT uBytes);
extern HLOCAL LocalFree(HLOCAL hMem);
extern HGLOBAL GlobalFree(HGLOBAL hMem);
#endif

#define SIZE9 9

7 CERT C Rules and Recommendations

7-512

void func(void)
{
 /* Memory allocation */
 HLOCAL p = LocalAlloc(0x0000, SIZE9);

 if (p) {
 /* Memory deallocation. */
 GlobalFree(p);

 }
}

In this example, memory is allocated with LocallAlloc(). The program then
erroneously uses GlobalFree() to deallocate the memory.

Correction — Properly Pair Windows Allocation and Deallocation Functions

When you allocate memory with LocalAllocate(), use LocalFree() to deallocate the
memory.

#ifdef _WIN32_
#include <windows.h>
#else
#define _WIN32_
typedef void *HANDLE;
typedef HANDLE HGLOBAL;
typedef HANDLE HLOCAL;
typedef unsigned int UINT;
extern HLOCAL LocalAlloc(UINT uFlags, UINT uBytes);
extern HLOCAL LocalFree(HLOCAL hMem);
extern HGLOBAL GlobalFree(HGLOBAL hMem);
#endif

#define SIZE9 9
void func(void)
{
 /* Memory allocation */
 HLOCAL p = LocalAlloc(0x0000, SIZE9);
 if (p) {
 /* Memory deallocation. */
 LocalFree(p);
 }
}

 CERT C: Rule WIN30-C

7-513

Check Information
Group: Rule 51. Microsoft Windows (WIN)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
WIN30-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-514

https://wiki.sei.cmu.edu/confluence/x/LtUxBQ

CERT C: Rec. PRE00-C
Prefer inline or static functions to function-like macros

Description

Rule Definition
Prefer inline or static functions to function-like macros.

Examples

Use of function-like macro instead of function
Description

The issue occurs when you use a function-like macro instead of a function when the two
are interchangeable.

Polyspace considers all function-like macro definitions.

Risk

In most circumstances, use functions instead of macros. Functions perform argument
type-checking and evaluate their arguments once, avoiding problems with potential
multiple side effects.

Check Information
Group: Rec. 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rec. PRE00-C

7-515

Topics
“Check for Coding Standard Violations”

External Websites
PRE00-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-516

https://wiki.sei.cmu.edu/confluence/x/INcxBQ

CERT C: Rec. PRE01-C
Use parentheses within macros around parameter names

Description

Rule Definition
Use parentheses within macros around parameter names.

Examples

Expanded macro parameters not enclosed in parentheses
Description

The issue occurs when expressions resulting from the expansion of macro parameters are
not enclosed in parentheses.

Risk

If you do not use parentheses, then it is possible that operator precedence does not give
the results that you want when macro substitution occurs.

If you are not using a macro parameter as an expression, then the parentheses are not
necessary because no operators are involved in the macro.

Example - Macro Expressions

#define mac1(x, y) (x * y)
#define mac2(x, y) ((x) * (y))

void foo(void){
 int r;

 r = mac1(1 + 2, 3 + 4); /* Non-compliant */
 r = mac1((1 + 2), (3 + 4)); /* Compliant */

 CERT C: Rec. PRE01-C

7-517

 r = mac2(1 + 2, 3 + 4); /* Compliant */
}

In this example, mac1 and mac2 are two defined macro expressions. The definition of
mac1 does not enclose the arguments in parentheses. In line 7, the macro expands to r =
(1 + 2 * 3 + 4); This expression can be (1 + (2 * 3) + 4) or (1 + 2) * (3 +
4). However, without parentheses, the program does not know the intended expression.
Line 8 uses parentheses, so the line expands to (1 + 2) * (3 + 4). This macro
expression is compliant.

The definition of mac2 does enclose the argument in parentheses. Line 10 (the same
macro arguments in line 7) expands to (1 + 2) * (3 + 4). This macro and macro
expression are compliant.

Check Information
Group: Rec. 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE01-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-518

https://wiki.sei.cmu.edu/confluence/x/CdcxBQ

CERT C: Rec. PRE06-C
Enclose header files in an inclusion guard

Description
Rule Definition
Enclose header files in an inclusion guard.

Examples
Contents of header file not guarded from multiple inclusions
Description

The issue occurs when you do not take precautions order to prevent the contents of a
header file being included more than once.

If you include a header file whose contents are not guarded from multiple inclusion, the
analysis raises a violation of this directive. The violation is shown at the beginning of the
header file.

You can guard the contents of a header file from multiple inclusion by using one of the
following methods:

<start-of-file>
#ifndef <control macro>
#define <control macro>
 /* Contents of file */
#endif
<end-of-file>

or

<start-of-file>

 CERT C: Rec. PRE06-C

7-519

#ifdef <control macro>
#error ...
#else
#define <control macro>
 /* Contents of file */
#endif
<end-of-file>

Unless you use one of these methods, Polyspace flags the header file inclusion as
noncompliant.

Risk

When a translation unit contains a complex hierarchy of nested header files, it is possible
for a particular header file to be included more than once, leading to confusion. If this
multiple inclusion produces multiple or conflicting definitions, then your program can
have undefined or erroneous behavior.

For instance, suppose that a header file contains:

#ifdef _WIN64
 int env_var;
#elseif
 long int env_var;
#endif

If the header file is contained in two inclusion paths, one that defines the macro _WIN64
and another that undefines it, you can have conflicting definitions of env_var.

Example - Code After Macro Guard

#ifndef __MY_MACRO__
#define __MY_MACRO__
 void func(void);
#endif
void func2(void);

If a header file contains this code, it is noncompliant because the macro guard does not
cover the entire content of the header file. The line void func2(void) is outside the
guard.

Note You can have comments outside the macro guard.

7 CERT C Rules and Recommendations

7-520

Example - Code Before Macro Guard

void func(void);
#ifndef __MY_MACRO__
#define __MY_MACRO__
 void func2(void);
#endif

If a header file contains this code, it is noncompliant because the macro guard does not
cover the entire content of the header file. The line void func(void) is outside the
guard.

Note You can have comments outside the macro guard.

Example - Mismatch in Macro Guard
#ifndef __MY_MACRO__
#define __MY_MARCO__
 void func(void);
 void func2(void);
#endif

If a header file contains this code, it is noncompliant because the macro name in the
#ifndef statement is different from the name in the following #define statement.

Check Information
Group: Rec. 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE06-C

 CERT C: Rec. PRE06-C

7-521

https://wiki.sei.cmu.edu/confluence/x/G9YxBQ

Introduced in R2019a

7 CERT C Rules and Recommendations

7-522

CERT C: Rec. PRE07-C
Avoid using repeated question marks

Description

Rule Definition
Avoid using repeated question marks.

Examples

Use of trigraphs
Description

The issue occurs when you use trigraphs in your code.

The Polyspace analysis converts trigraphs to the equivalent character for the defect
analysis. However, Polyspace also raises a MISRA violation.

The standard requires that trigraphs must be transformed before comments are removed
during preprocessing. Therefore, Polyspace raises a violation of this rule even if a
trigraph appears in code comments.

Risk

You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These
trigraphs can cause accidental confusion with other uses of two question marks.

Note Digraphs (<: :>, <% %>, %:, %:%:) are permitted because they are tokens.

 CERT C: Rec. PRE07-C

7-523

Check Information
Group: Rec. 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE07-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-524

https://wiki.sei.cmu.edu/confluence/x/uNUxBQ

CERT C: Rec. PRE09-C
Do not replace secure functions with deprecated or obsolescent functions

Description

Rule Definition
Do not replace secure functions with deprecated or obsolescent functions.

Examples

Use of dangerous standard function
Description

The Use of dangerous standard function check highlights uses of functions that are
inherently dangerous or potentially dangerous given certain circumstances. The following
table lists possibly dangerous functions, the risks of using each function, and what
function to use instead.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You cannot
control the length of input from the
console.

fgets

cin Inherently dangerous — You cannot
control the length of input from the
console.

Avoid or prefaces calls to cin
with cin.width.

strcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

strncpy

 CERT C: Rec. PRE09-C

7-525

Dangerous
Function

Risk Level Safer Function

stpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

stpncpy

lstrcpy or
StrCpy

Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

StringCbCopy,
StringCchCopy, strncpy,
strcpy_s, or strlcpy

strcat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

strncat, strlcat, or
strcat_s

lstrcat or
StrCat

Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or
strlcat

wcpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

wcsncat, wcslcat, or
wcncat_s

wcscpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcsncpy

sprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

snprintf

7 CERT C Rules and Recommendations

7-526

Dangerous
Function

Risk Level Safer Function

vsprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

vsnprintf

Risk

These functions can cause buffer overflow, which attackers can use to infiltrate your
program.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Using sprintf

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;

 CERT C: Rec. PRE09-C

7-527

 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

This example function uses sprintf to copy the string str to dst. However, if str is
larger than the buffer, sprintf can cause buffer overflow.

Correction — Use snprintf with Buffer Size

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Check Information
Group: Rec. 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

7 CERT C Rules and Recommendations

7-528

Topics
“Check for Coding Standard Violations”

External Websites
PRE09-C

Introduced in R2019a

 CERT C: Rec. PRE09-C

7-529

https://wiki.sei.cmu.edu/confluence/x/JtYxBQ

CERT C: Rec. DCL01-C
Do not reuse variable names in subscopes

Description

Rule Definition
Do not reuse variable names in subscopes.

Examples

Variable shadowing
Description

Variable shadowing occurs when a variable hides another variable of the same name in
an outer scope.

For instance, if a local variable has the same name as a global variable, the local variable
hides the global variable during its lifetime.

Risk

When two variables with the same name exist in an inner and outer scope, any reference
to the variable name uses the variable in the inner scope. However, a developer or
reviewer might incorrectly expect that the variable in the outer scope was used.

Fix

The fix depends on the root cause of the defect. For instance, suppose you refactor a
function such that you use a local static variable in place of a global variable. In this case,
the global variable is redundant and you can remove its declaration. Alternatively, if you
are not sure if the global variable is used elsewhere, you can modify the name of the local
static variable and all references within the function.

7 CERT C Rules and Recommendations

7-530

If the shadowing is intended and you do not want to fix the issue, add comments to your
result or code to avoid another review. See “Address Polyspace Results Through Bug Fixes
or Justifications”.

Example - Variable Shadowing Error

#include <stdio.h>

int fact[5]={1,2,6,24,120};

int factorial(int n)
 {
 int fact=1;
 /*Defect: Local variable hides global array with same name */

 for(int i=1;i<=n;i++)
 fact*=i;

 return(fact);
 }

Inside the factorial function, the integer variable fact hides the global integer array
fact.

Correction — Change Variable Name

One possible correction is to change the name of one of the variables, preferably the one
with more local scope.

#include <stdio.h>

int fact[5]={1,2,6,24,120};

int factorial(int n)
 {
 /* Fix: Change name of local variable */
 int f=1;

 for(int i=1;i<=n;i++)
 f*=i;

 return(f);
 }

 CERT C: Rec. DCL01-C

7-531

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL01-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-532

https://wiki.sei.cmu.edu/confluence/x/QNYxBQ

CERT C: Rec. DCL02-C
Use visually distinct identifiers

Description

Rule Definition
Use visually distinct identifiers.

Examples

Use of typographically ambiguous identifiers
Description

The issue occurs when you use identifiers in the same name space with overlapping
visibility and the identifiers are not typographically unambiguous.

Risk

What “unambiguous” means depends on the alphabet and language in which source code
is written. When you use identifiers that are typographically close, you can confuse
between them.

For the Latin alphabet as used in English words, at a minimum, the identifiers should not
differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.

 CERT C: Rec. DCL02-C

7-533

• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

Example - Typographically Ambiguous Identifiers

void func(void) {
 int id1_numval;
 int id1_num_val; /* Non-compliant */

 int id2_numval;
 int id2_numVal; /* Non-compliant */

 int id3_lvalue;
 int id3_Ivalue; /* Non-compliant */

 int id4_xyz;
 int id4_xy2; /* Non-compliant */

 int id5_zerO;
 int id5_zer0; /* Non-compliant */

 int id6_rn;
 int id6_m; /* Non-compliant */
}

In this example, the rule is violated when identifiers that can be confused for each other
are used.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

7 CERT C Rules and Recommendations

7-534

External Websites
DCL02-C

Introduced in R2019a

 CERT C: Rec. DCL02-C

7-535

https://wiki.sei.cmu.edu/confluence/x/F9cxBQ

CERT C: Rec. DCL06-C
Use meaningful symbolic constants to represent literal values

Description

Rule Definition
Use meaningful symbolic constants to represent literal values.

Examples

Hard-coded buffer size
Description

Hard-coded buffer size occurs when you use a numerical value instead of a symbolic
constant when declaring a memory buffer such as an array.

Risk

Hard-coded buffer size causes the following issues:

• Hard-coded buffer size increases the likelihood of mistakes and therefore maintenance
costs. If a policy change requires developers to change the buffer size, they must
change every occurrence of the buffer size in the code.

• Hard-constant constants can be exposed to attack if the code is disclosed.

Fix

Use a symbolic name instead of a hard-coded constant for buffer size. Symbolic names
include const-qualified variables, enum constants, or macros.

enum constants are recommended.

7 CERT C Rules and Recommendations

7-536

• Macros are replaced by their constant values after preprocessing. Therefore, they can
expose the loop boundary.

• enum constants are known at compilation time. Therefore, compilers can optimize the
loops more efficiently.

const-qualified variables are usually known at run time.

Example - Hard-Coded Buffer Size

int table[100];

void read(int);

void func(void) {
 for (int i=0; i<100; i++)
 read(table[i]);
}

In this example, the size of the array table is hard-coded.

Correction — Use Symbolic Name

One possible correction is to replace the hard-coded size with a symbolic name.

const int MAX_1 = 100;
#define MAX_2 100
enum { MAX_3 = 100 };

int table_1[MAX_1];
int table_2[MAX_2];
int table_3[MAX_3];

void read(int);

void func(void) {
 for (int i=0; i < MAX_1; i++)
 read(table_1[i]);
 for (int i=0; i < MAX_2; i++)
 read(table_2[i]);
 for (int i=0; i < MAX_3; i++)
 read(table_3[i]);
}

 CERT C: Rec. DCL06-C

7-537

Hard-coded loop boundary
Description

Hard-coded loop boundary occurs when you use a numerical value instead of symbolic
constant for the boundary of a for, while or do-while loop.

Risk

Hard-coded loop boundary causes the following issues:

• Hard-coded loop boundary makes the code vulnerable to denial of service attacks
when the loop involves time-consuming computation or resource allocation.

• Hard-coded loop boundary increases the likelihood of mistakes and maintenance costs.
If a policy change requires developers to change the loop boundary, they must change
every occurrence of the boundary in the code.

For instance, the loop boundary is 10000 and represents the maximum number of
client connections supported in a network server application. If the server supports
more clients, you must change all instances of the loop boundary in your code. Even if
the loop boundary occurs once, you have to search for a numerical value of 10000 in
your code. The numerical value can occur in places other than the loop boundary. You
must browse through those places before you find the loop boundary.

Fix

Use a symbolic name instead of a hard-coded constant for loop boundary. Symbolic names
include const-qualified variables, enum constants or macros.enum constants are
recommended because:

• Macros are replaced by their constant values after preprocessing. Therefore, they can
expose the buffer size.

• enum constants are known at compilation time. Therefore, compilers can allocate
storage for them more efficiently.

const-qualified variables are usually known at run time.

Example - Hard-Coded Loop Boundary

void performOperation(int);

void func(void) {

7 CERT C Rules and Recommendations

7-538

 for (int i=0; i<100; i++)
 performOperation(i);
}

In this example, the boundary of the for loop is hard-coded.

Correction — Use Symbolic Name

One possible correction is to replace the hard-coded loop boundary with a symbolic name.

const int MAX_1 = 100;
#define MAX_2 100
enum { MAX_3 = 100 };

void performOperation_1(int);
void performOperation_2(int);
void performOperation_3(int);

void func(void) {
 for (int i=0; i<MAX_1; i++)
 performOperation_1(i);
 for (int i=0; i<MAX_2; i++)
 performOperation_2(i);
 for (int i=0; i<MAX_3; i++)
 performOperation_3(i);
}

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL06-C

 CERT C: Rec. DCL06-C

7-539

https://wiki.sei.cmu.edu/confluence/x/AtYxBQ

Introduced in R2019a

7 CERT C Rules and Recommendations

7-540

CERT C: Rec. DCL07-C
Include the appropriate type information in function declarators

Description

Rule Definition
Include the appropriate type information in function declarators.

Examples

Cast between function pointers with different types
Description

The issues occurs when you perform a conversion between a pointer to a function and any
other type.

Polyspace considers both explicit and implicit casts when checking this rule. However,
casts from NULL or (void*)0 do not violate this rule.

Risk

The rule forbids the following two conversions:

• Conversion from a function pointer to any other type. This conversion causes
undefined behavior.

• Conversion from a function pointer to another function pointer, if the function pointers
have different argument and return types.

The conversion is forbidden because calling a function through a pointer with
incompatible type results in undefined behavior.

 CERT C: Rec. DCL07-C

7-541

Example - Cast between two function pointers
typedef void (*fp16) (short n);
typedef void (*fp32) (int n);

#include <stdlib.h> /* To obtain macro NULL */

void func(void) { /* Exception 1 - Can convert a null pointer
 * constant into a pointer to a function */
 fp16 fp1 = NULL; /* Compliant - exception */
 fp16 fp2 = (fp16) fp1; /* Compliant */
 fp32 fp3 = (fp32) fp1; /* Non-compliant */
 if (fp2 != NULL) {} /* Compliant - exception */
 fp16 fp4 = (fp16) 0x8000; /* Non-compliant - integer to
 * function pointer */}

In this example, the rule is violated when:

• The pointer fp1 of type fp16 is cast to type fp32. The function pointer types fp16
and fp32 have different argument types.

• An integer is cast to type fp16.

The rule is not violated when function pointers fp1 and fp2 are cast to NULL.

Function declared implicitly
Description

The issue occurs when you declare a function implicitly.

Risk

An implicit declaration occurs when you call a function before declaring or defining it.
When you declare a function explicitly before calling it, the compiler can match the
argument and return types with the parameter types in the declaration. If an implicit
declaration occurs, the compiler makes assumptions about the argument and return
types. For instance, it assumes a return type of int. The assumptions might not agree
with what you expect and cause undesired type conversions.

Example - Function Not Declared Before Call
#include <math.h>

7 CERT C Rules and Recommendations

7-542

extern double power3 (double val, int exponent);
int getChoice(void);

double func() {
 double res;
 int ch = getChoice();
 if(ch == 0) {
 res = power(2.0, 10); /* Non-compliant */
 }
 else if(ch==1) {
 res = power2(2.0, 10); /* Non-compliant */
 }
 else {
 res = power3(2.0, 10); /* Compliant */
 return res;
 }
}

double power2 (double val, int exponent) {
 return (pow(val, exponent));
}

In this example, the rule is violated when a function that is not declared is called in the
code. Even if a function definition exists later in the code, the rule violation occurs.

The rule is not violated when the function is declared before it is called in the code. If the
function definition exists in another file and is available only during the link phase, you
can declare the function in one of the following ways:

• Declare the function with the extern keyword in the current file.
• Declare the function in a header file and include the header file in the current file.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rec. DCL07-C

7-543

External Websites
DCL07-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-544

https://wiki.sei.cmu.edu/confluence/x/7NYxBQ

CERT C: Rec. DCL10-C
Maintain the contract between the writer and caller of variadic functions

Description

Rule Definition
Maintain the contract between the writer and caller of variadic functions.

Examples

Format string specifiers and arguments mismatch
Description

Format string specifiers and arguments mismatch occurs when the format specifiers
in the formatted output functions such as printf do not match their corresponding
arguments. For example, an argument of type unsigned long must have a format
specification of %lu.

Risk

Mismatch between format specifiers and the corresponding arguments result in
undefined behavior.

Fix

Make sure that the format specifiers match the corresponding arguments. For instance, in
this example, the %d specifier does not match the string argument message and the %s
specifier does not match the integer argument err_number.

 const char *message = "License not available";
 int err_number = ;-4
 printf("Error: %d (error type %s)\n", message, err_number);

 CERT C: Rec. DCL10-C

7-545

Switching the two format specifiers fixes the issue. See the specifications for the printf
function for more information about format specifiers.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Printing a Float

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the
unsigned integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert
fst to an integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

7 CERT C Rules and Recommendations

7-546

https://en.cppreference.com/w/cpp/io/c/fprintf
https://en.cppreference.com/w/cpp/io/c/fprintf

 printf("%d\n", (int)fst);
}

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL10-C

Introduced in R2019a

 CERT C: Rec. DCL10-C

7-547

https://wiki.sei.cmu.edu/confluence/x/3dUxBQ

CERT C: Rec. DCL11-C
Understand the type issues associated with variadic functions

Description

Rule Definition
Understand the type issues associated with variadic functions.

Examples

Format string specifiers and arguments mismatch
Description

Format string specifiers and arguments mismatch occurs when the format specifiers
in the formatted output functions such as printf do not match their corresponding
arguments. For example, an argument of type unsigned long must have a format
specification of %lu.

Risk

Mismatch between format specifiers and the corresponding arguments result in
undefined behavior.

Fix

Make sure that the format specifiers match the corresponding arguments. For instance, in
this example, the %d specifier does not match the string argument message and the %s
specifier does not match the integer argument err_number.

 const char *message = "License not available";
 int err_number = ;-4
 printf("Error: %d (error type %s)\n", message, err_number);

7 CERT C Rules and Recommendations

7-548

Switching the two format specifiers fixes the issue. See the specifications for the printf
function for more information about format specifiers.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Printing a Float

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the
unsigned integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert
fst to an integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 CERT C: Rec. DCL11-C

7-549

https://en.cppreference.com/w/cpp/io/c/fprintf
https://en.cppreference.com/w/cpp/io/c/fprintf

 printf("%d\n", (int)fst);
}

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL11-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-550

https://wiki.sei.cmu.edu/confluence/x/5dYxBQ

CERT C: Rec. DCL12-C
Implement abstract data types using opaque types

Description

Rule Definition
Implement abstract data types using opaque types.

Examples

Structure or union object implementation visible in file where
pointer to this object is not dereferenced
Description

The issue occurs when a pointer to a structure or union is never dereferenced within a
translation unit, but the implementation of the object is not hidden.

If a structure or union is defined in a file or a header file included in the file, a pointer to
this structure or union declared but the pointer never dereferenced in the file, the
checker flags a coding rule violation. The structure or union definition should not be
visible to this file.

If you see a violation of this rule on a structure definition, identify if you have defined a
pointer to the structure in the same file or in a header file included in the file. Then check
if you dereference the pointer anywhere in the file. If you do not dereference the pointer,
the structure definition should be hidden from this file and included header files.

file.h: Contains structure implementation.

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct {

 CERT C: Rec. DCL12-C

7-551

 int a;
} myStruct;

#endif

file.c: Includes file.h but does not dereference structure.

#include "file.h"

myStruct* getObj(void);
void useObj(myStruct*);

void func() {
 myStruct *sPtr = getObj();
 useObj(sPtr);
}

In this example, the pointer to the type myStruct is not dereferenced. The pointer is
simply obtained from the getObj function and passed to the useObj function.

The implementation of myStruct is visible in the translation unit consisting of file.c
and file.h.

One possible correction is to define an opaque data type in the header file file.h. The
opaque data type ptrMyStruct points to the myStruct structure without revealing what
the structure contains. The structure myStruct itself can be defined in a separate
translation unit, in this case, consisting of the file file2.c. The common header file
file.h must be included in both file.c and file2.c for linking the structure
definition to the opaque type definition.

file.h: Does not contain structure implementation.

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct myStruct *ptrMyStruct;

ptrMyStruct getObj(void);
void useObj(ptrMyStruct);

#endif

file.c: Includes file.h but does not dereference structure.

7 CERT C Rules and Recommendations

7-552

#include "file.h"

void func() {
 ptrMyStruct sPtr = getObj();
 useObj(sPtr);
}

file2.c: Includes file.h and dereferences structure.

#include "file.h"

struct myStruct {
 int a;
};

void useObj(ptrMyStruct ptr) {
 (ptr->a)++;
}

Risk

If a pointer to a structure or union is not dereferenced in a file, the implementation
details of the structure or union need not be available in the translation unit for the file.
You can hide the implementation details such as structure members and protect them
from unintentional changes.

Define an opaque type that can be referenced via pointers but whose contents cannot be
accessed.

Example - Object Implementation Revealed

file.h: Contains structure implementation.

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct {
 int a;
} myStruct;

#endif

file.c: Includes file.h but does not dereference structure.

 CERT C: Rec. DCL12-C

7-553

#include "file.h"

myStruct* getObj(void);
void useObj(myStruct*);

void func() {
 myStruct *sPtr = getObj();
 useObj(sPtr);
}

In this example, the pointer to the type myStruct is not dereferenced. The pointer is
simply obtained from the getObj function and passed to the useObj function.

The implementation of myStruct is visible in the translation unit consisting of file.c
and file.h.

Correction — Define Opaque Type

One possible correction is to define an opaque data type in the header file file.h. The
opaque data type ptrMyStruct points to the myStruct structure without revealing what
the structure contains. The structure myStruct itself can be defined in a separate
translation unit, in this case, consisting of the file file2.c. The common header file
file.h must be included in both file.c and file2.c for linking the structure
definition to the opaque type definition.

file.h: Does not contain structure implementation.

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct myStruct *ptrMyStruct;

ptrMyStruct getObj(void);
void useObj(ptrMyStruct);

#endif

file.c: Includes file.h but does not dereference structure.

#include "file.h"

void func() {
 ptrMyStruct sPtr = getObj();
 useObj(sPtr);
}

7 CERT C Rules and Recommendations

7-554

file2.c: Includes file.h and dereferences structure.

#include "file.h"

struct myStruct {
 int a;
};

void useObj(ptrMyStruct ptr) {
 (ptr->a)++;
}

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL12-C

Introduced in R2019a

 CERT C: Rec. DCL12-C

7-555

https://wiki.sei.cmu.edu/confluence/x/4tUxBQ

CERT C: Rec. DCL13-C
Declare function parameters that are pointers to values not changed by the function as
const

Description
Rule Definition
Declare function parameters that are pointers to values not changed by the function as
const.

Examples
Pointer to non-cont qualified function parameter
Description

The rule checker flags a pointer to a non-const function parameter if the pointer does
not modify the addressed object. The assumption is that the pointer is not meant to
modify the object and so must point to a const-qualified type.

Risk

This rule ensures that you do not inadvertently use pointers to modify objects.

Example - Pointer That Should Point to const-Qualified Types
#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(uint16_t *p) { /* Non-compliant */
 return *p;
}

char last_char(char * const s){ /* Non-compliant */

7 CERT C Rules and Recommendations

7-556

 return s[strlen(s) - 1u];
}

uint16_t first(uint16_t a[5]){ /* Non-compliant */
 return a[0];
}

This example shows three different noncompliant pointer parameters.

• In the ptr_ex function, p does not modify an object. However, the type to which p
points is not const-qualified, so it is noncompliant.

• In last_char, the pointer s is const-qualified but the type it points to is not. This
parameter is noncompliant because s does not modify an object.

• The function first does not modify the elements of the array a. However, the element
type is not const-qualified, so a is also noncompliant.

Correction — Use const Keywords

One possible correction is to add const qualifiers to the definitions.

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(const uint16_t *p){ /* Compliant */
 return *p;
}

char last_char(const char * const s){ /* Compliant */
 return s[strlen(s) - 1u];
}

uint16_t first(const uint16_t a[5]) { /* Compliant */
 return a[0];
}

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

 CERT C: Rec. DCL13-C

7-557

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL13-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-558

https://wiki.sei.cmu.edu/confluence/x/rdYxBQ

CERT C: Rec. DCL15-C
Declare file-scope objects or functions that do not need external linkage as static

Description
Rule Definition
Declare file-scope objects or functions that do not need external linkage as static.

Examples
Function or object with external linkage referenced in only
one translation unit
Description

The rule checker flags:

• Objects that are defined at file scope without the static specifier but used only in
one file.

• Functions that are defined without the static specifier but called only in one file.

If you intend to use the object or function in one file only, declare it static.

Objects that are defined at file scope without the static specifier but used only in one
file.

Functions that are defined without the static specifier but called only in one file.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Risk

Compliance with this rule avoids confusion between your identifier and an identical
identifier in another translation unit or library. If you restrict or reduce the visibility of an

 CERT C: Rec. DCL15-C

7-559

object by giving it internal linkage or no linkage, you or someone else is less likely to
access the object inadvertently.

Example - Variable with External Linkage Used in One File

Header file:

/* file.h */
extern int var;

First source file:

/* file1.c */
#include "file.h"

int var; /* Compliant */
int var2; /* Non compliant */
static int var3; /* Compliant */

void reset(void);

void reset(void) {
 var = 0;
 var2 = 0;
 var3 = 0;
}

Second source file:

/* file2.c */
#include "file.h"

void increment(int var2);

void increment(int var2) {
 var++;
 var2++;
}

In this example:

• The declaration of var is compliant because var is declared with external linkage and
used in multiple files.

• The declaration of var2 is noncompliant because var2 is declared with external
linkage but used in one file only.

7 CERT C Rules and Recommendations

7-560

It might appear that var2 is defined in both files. However, in the second file, var2 is
a parameter with no linkage and is not the same as the var2 in the first file.

• The declaration of var3 is compliant because var3 is declared with internal linkage
(with the static specifier) and used in one file only.

Example - Function with External Linkage Used in One File

Header file:

/* file.h */
extern int var;
extern void increment1 (void);

First source file:

/* file1.c */
#include "file.h"

int var;

void increment2(void);
static void increment3(void);
void func(void);

void increment2(void) { /* Non compliant */
 var+=2;
}

static void increment3(void) { /* Compliant */
 var+=3;
}

void func(void) {
 increment1();
 increment2();
 increment3();
}

Second source file:

/* file2.c */
#include "file.h"

void increment1(void) { /* Compliant */

 CERT C: Rec. DCL15-C

7-561

 var++;
}

In this example:

• The definition of increment1 is compliant because increment1 is defined with
external linkage and called in a different file.

• The declaration of increment2 is noncompliant because increment2 is defined with
external linkage but called in the same file and nowhere else.

• The declaration of increment3 is compliant because increment3 is defined with
internal linkage (with the static specifier) and called in the same file and nowhere
else.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL15-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-562

https://wiki.sei.cmu.edu/confluence/x/ltYxBQ

CERT C: Rec. DCL16-C
Use 'L,' not 'l,' to indicate a long value

Description

Rule Definition
Use 'L,' not 'l,' to indicate a long value.

Examples

Use of lowercase "l" in literal suffix
Description

The issue occurs when you use the lowercase character “l” in a literal suffix.

Risk

The lowercase character “l” can be confused with the digit “1”. Use the uppercase “L”
instead.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rec. DCL16-C

7-563

External Websites
DCL16-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-564

https://wiki.sei.cmu.edu/confluence/x/cdYxBQ

CERT C: Rec. DCL18-C
Do not begin integer constants with 0 when specifying a decimal value

Description

Rule Definition
Do not begin integer constants with 0 when specifying a decimal value.

Examples

Use of octal constants
Description

If you use octal constants in a macro definition, the rule checker flags the issue even if
the macro is not used.

Risk

Octal constants are denoted by a leading zero. Developers can mistake an octal constant
as a decimal constant with a redundant leading zero.

Example - Use of octal constants

#define CST 021
#define VALUE 010 /* Compliant - constant not used */
#if 010 == 01 /* Non-Compliant - constant used */
#define CST 021 /* Non-Compliant - constant not used */
#endif

extern short code[5];
static char* str2 = "abcd\0efg"; /* Compliant */

void main(void) {
 int value1 = 0; /* Compliant */

 CERT C: Rec. DCL18-C

7-565

 int value2 = 01; /* Non-Compliant - decimal 01 */
 int value3 = 1; /* Compliant */
 int value4 = '\109'; /* Compliant */

 code[1] = 109; /* Compliant - decimal 109 */
 code[2] = 100; /* Compliant - decimal 100 */
 code[3] = 052; /* Non-Compliant - decimal 42 */
 code[4] = 071; /* Non-Compliant - decimal 57 */

 if (value1 != CST) { /* Non-Compliant - decimal 17 */
 value1 = !(value1 != 0); /* Compliant */
 }
}

In this example, the rule is not violated when octal constants are used to define macros
CST and VALUE. The rule is violated only when the macros are used.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL18-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-566

https://wiki.sei.cmu.edu/confluence/x/atYxBQ

CERT C: Rec. DCL19-C
Minimize the scope of variables and functions

Description
Rule Definition
Minimize the scope of variables and functions.

Examples
Function or object declared without static specifier and
referenced in only one file
Description

The rule checker flags:

• Objects that are defined at file scope without the static specifier but used only in
one file.

• Functions that are defined without the static specifier but called only in one file.

If you intend to use the object or function in one file only, declare it static.

Objects that are defined at file scope without the static specifier but used only in one
file.

Functions that are defined without the static specifier but called only in one file.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Risk

Compliance with this rule avoids confusion between your identifier and an identical
identifier in another translation unit or library. If you restrict or reduce the visibility of an

 CERT C: Rec. DCL19-C

7-567

object by giving it internal linkage or no linkage, you or someone else is less likely to
access the object inadvertently.

Example - Variable with External Linkage Used in One File

Header file:

/* file.h */
extern int var;

First source file:

/* file1.c */
#include "file.h"

int var; /* Compliant */
int var2; /* Non compliant */
static int var3; /* Compliant */

void reset(void);

void reset(void) {
 var = 0;
 var2 = 0;
 var3 = 0;
}

Second source file:

/* file2.c */
#include "file.h"

void increment(int var2);

void increment(int var2) {
 var++;
 var2++;
}

In this example:

• The declaration of var is compliant because var is declared with external linkage and
used in multiple files.

• The declaration of var2 is noncompliant because var2 is declared with external
linkage but used in one file only.

7 CERT C Rules and Recommendations

7-568

It might appear that var2 is defined in both files. However, in the second file, var2 is
a parameter with no linkage and is not the same as the var2 in the first file.

• The declaration of var3 is compliant because var3 is declared with internal linkage
(with the static specifier) and used in one file only.

Example - Function with External Linkage Used in One File

Header file:

/* file.h */
extern int var;
extern void increment1 (void);

First source file:

/* file1.c */
#include "file.h"

int var;

void increment2(void);
static void increment3(void);
void func(void);

void increment2(void) { /* Non compliant */
 var+=2;
}

static void increment3(void) { /* Compliant */
 var+=3;
}

void func(void) {
 increment1();
 increment2();
 increment3();
}

Second source file:

/* file2.c */
#include "file.h"

void increment1(void) { /* Compliant */

 CERT C: Rec. DCL19-C

7-569

 var++;
}

In this example:

• The definition of increment1 is compliant because increment1 is defined with
external linkage and called in a different file.

• The declaration of increment2 is noncompliant because increment2 is defined with
external linkage but called in the same file and nowhere else.

• The declaration of increment3 is compliant because increment3 is defined with
internal linkage (with the static specifier) and called in the same file and nowhere
else.

Object defined beyond necessary scope
Description

The issue occurs when the identifier of an object only appears in a single function but the
object is defined beyond the block scope.

The rule checker flags static objects that are accessed in one function only but declared
at file scope.

Risk

If you define an object at block scope, you or someone else is less likely to access the
object inadvertently outside the block.

Example - Object Declared at File Scope but Used in One Function

static int ctr; /* Non compliant */

int checkStatus(void);
void incrementCount(void);

void incrementCount(void) {
 ctr=0;
 while(1) {
 if(checkStatus())
 ctr++;
 }
}

7 CERT C Rules and Recommendations

7-570

In this example, the declaration of ctr is noncompliant because it is declared at file scope
but used only in the function incrementCount. Declare ctr in the body of
incrementCount to be MISRA C-compliant.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL19-C

Introduced in R2019a

 CERT C: Rec. DCL19-C

7-571

https://wiki.sei.cmu.edu/confluence/x/z9YxBQ

CERT C: Rec. DCL22-C
Use volatile for data that cannot be cached

Description

Rule Definition
Use volatile for data that cannot be cached.

Examples

Write without a further read
Description

Write without a further read occurs when a value assigned to a variable is never read.

For instance, you write a value to a variable and then write a second value before reading
the previous value. The first write operation is redundant.

Risk

Redundant write operations often indicate programming errors. For instance, you forgot
to read the variable between two successive write operations or unintentionally read a
different variable.

Fix

Identify the reason why you write to the variable but do not read it later. Look for
common programming errors such as accidentally reading a different variable with a
similar name.

If you determine that the write operation is redundant, remove the operation.

7 CERT C Rules and Recommendations

7-572

Example - Write Without Further Read Error

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();
 /* Defect: Useless write */
}

After the variable level gets assigned the value 4 * getsensor(), it is not read.

Correction — Use Value After Assignment

One possible correction is to use the variable level after the assignment.

#include <stdio.h>

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();

 /* Fix: Use level after assignment */
 printf("The value is %d", level);

}

The variable level is printed, reading the new value.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rec. DCL22-C

7-573

Topics
“Check for Coding Standard Violations”

External Websites
DCL22-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-574

https://wiki.sei.cmu.edu/confluence/x/sdUxBQ

CERT C: Rec. DCL23-C
Guarantee that mutually visible identifiers are unique

Description

Rule Definition
Guarantee that mutually visible identifiers are unique.

Examples

External identifiers not distinct
Description

The issue occurs when external identifiers have the same first six characters for C90 or
the same first 31 characters for C99.

Risk

External identifiers are ones declared with global scope or storage class extern.

Polyspace considers two names as distinct if there is a difference between their first 31
characters. If the difference between two names occurs only beyond the first 31
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first six characters. To use the
C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Example - C90: First Six Characters of Identifiers Not Unique

int engine_temperature_raw;
int engine_temperature_scaled; /* Non-compliant */
int engin2_temperature; /* Compliant */

 CERT C: Rec. DCL23-C

7-575

In this example, the identifier engine_temperature_scaled has the same first six
characters as a previous identifier, engine_temperature_raw.

Example - C99: First 31 Characters of Identifiers Not Unique

int engine_exhaust_gas_temperature_raw;
int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

int eng_exhaust_gas_temp_raw;
int eng_exhaust_gas_temp_scaled; /* Compliant */

In this example, the identifier engine_exhaust_gas_temperature_scaled has the
same first 31 characters as a previous identifier,
engine_exhaust_gas_temperature_raw.

Example - C90: First Six Characters Identifiers in Different Translation Units
Differ in Case Alone

/* file1.c */
int abc = 0;

/* file2.c */
int ABC = 0; /* Non-compliant */

In this example, the implementation supports six significant case-insensitive characters in
external identifiers. The identifiers in the two translations are different but are not
distinct in their significant characters.

Identifier in same scope and namespace not distinct
Description

The issue occurs when you declare identifiers in the same scope and namespace and the
identifiers have the same first 31 characters in C90 or the same first 63 characters in
C99.

Risk

Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the

7 CERT C Rules and Recommendations

7-576

C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Example - C90: First 31 Characters of Identifiers Not Unique

extern int engine_exhaust_gas_temperature_raw;
static int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

extern double engine_exhaust_gas_temperature_raw;
static double engine_exhaust_gas_temperature2_scaled; /* Compliant */

void func (void)
{
 /* Not in the same scope */
 int engine_exhaust_gas_temperature_local; /* Compliant */
}

In this example, the identifier engine_exhaust_gas_temperature_scaled has the
same 31 characters as a previous identifier, engine_exhaust_gas_temperature_raw.

The rule does not apply if the two identifiers have the same 31 characters but have
different scopes. For instance, engine_exhaust_gas_temperature_local has the
same 31 characters as engine_exhaust_gas_temperature_raw but different scope.

Example - C99: First 63 Characters of Identifiers Not Unique

extern int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_raw;
static int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_scale;
 /* Non-compliant */

extern int engine_gas_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx__raw;
static int engine_gas_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx__scale;
 /* Compliant */

void func (void)
{
/* Not in the same scope */
 int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_local;
 /* Compliant */
}

In this example, the identifier
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_scale

 CERT C: Rec. DCL23-C

7-577

has the same 63 characters as a previous identifier,
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_raw.

Macro identifier not distinct
Description

The issue occurs when you use macro identifiers that have the same first 31 characters in
C90 or the same first 63 characters in C99.

Risk

The names of macro identifiers must be distinct from both other macro identifiers and
their parameters.

Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Example - C90: First 31 Characters of Macro Names Not Unique

#define engine_exhaust_gas_temperature_raw egt_r
#define engine_exhaust_gas_temperature_scaled egt_s /* Non-compliant */

#define engine_exhaust_gas_temp_raw egt_r
#define engine_exhaust_gas_temp_scaled egt_s /* Compliant */

In this example, the macro engine_exhaust_gas_temperature_scaled egt_s has
the same first 31 characters as a previous macro
engine_exhaust_gas_temperature_scaled.

Example - C99: First 63 Characters of Macro Names Not Unique

#define engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw egt_r
#define engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw_scaled egt_s
 /* Non-compliant */

/* 63 significant case-sensitive characters in macro identifiers */
#define new_engine_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw egt_r

7 CERT C Rules and Recommendations

7-578

#define new_engine_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_scaled egt_s
 /* Compliant */

In this example, the macro
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx___gaz_s
caled has the same first 63 characters as a previous macro
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx___raw.

Name for macros and identifiers not distinct
Description

The issue occurs when identifiers are not distinct from macro names.

Risk

The rule requires that macro names that exist only prior to processing must be different
from identifier names that also exist after preprocessing. Keeping macro names and
identifiers distinct help avoid confusion.

Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Example - Macro Names Same as Identifier Names

#define Sum_1(x, y) ((x) + (y))
short Sum_1; /* Non-compliant */

#define Sum_2(x, y) ((x) + (y))
short x = Sum_2 (1, 2); /* Compliant */

In this example, Sum_1 is both the name of an identifier and a macro. Sum_2 is used only
as a macro.

Example - C90: First 31 Characters of Macro Name Same as Identifier Name

#define low_pressure_turbine_temperature_1 lp_tb_temp_1
static int low_pressure_turbine_temperature_2; /* Non-compliant */

 CERT C: Rec. DCL23-C

7-579

In this example, the identifier low_pressure_turbine_temperature_2 has the same
first 31 characters as a previous macro low_pressure_turbine_temperature_1.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL23-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-580

https://wiki.sei.cmu.edu/confluence/x/FtcxBQ

CERT C: Rec. EXP00-C
Use parentheses for precedence of operation

Description

Rule Definition
Use parentheses for precedence of operation.

Examples

Possibly unintended evaluation of expression because of
operator precedence rules
Description

Possibly unintended evaluation of expression because of operator precedence
rules occurs when an arithmetic expression result is possibly unintended because
operator precedence rules dictate an evaluation order that you do not expect.

The defect highlights expressions of the form x op_1 y op_2 z. Here, op_1 and op_2
are operator combinations that commonly induce this error. For instance, x == y | z.

The checker does not flag all operator combinations. For instance, x == y || z is not
flagged because you most likely intended to perform a logical OR between x == y and z.
Specifically, the checker flags these combinations:

• && and ||: For instance, x || y && z or x && y || z.
• Assignment and bitwise operations: For instance, x = y | z.
• Assignment and comparison operations: For instance, x = y != z or x = y > z.
• Comparison operations: For instance, x > y > z (except when one of the

comparisons is an equality x == y > z).

 CERT C: Rec. EXP00-C

7-581

• Shift and numerical operation: For instance, x << y + 2.
• Pointer dereference and arithmetic: For instance, *p++.

Risk

The defect can cause the following issues:

• If you or another code reviewer reviews the code, the intended order of evaluation is
not immediately clear.

• It is possible that the result of the evaluation does not meet your expectations. For
instance:

• In the operation *p++, it is possible that you expect the dereferenced value to be
incremented. However, the pointer p is incremented before the dereference.

• In the operation (x == y | z), it is possible that you expect x to be compared
with y | z. However, the == operation happens before the | operation.

Fix

See if the order of evaluation is what you intend. If not, apply parentheses to implement
the evaluation order that you want.

For better readability of your code, it is good practice to apply parenthesis to implement
an evaluation order even when operator precedence rules impose that order.

Example - Expressions with Possibly Unintended Evaluation Order

int test(int a, int b, int c) {
 return(a & b == c);
}

In this example, the == operation happens first, followed by the & operation. If you
intended the reverse order of operations, the result is not what you expect.

Correction — Parenthesis For Intended Order

One possible correction is to apply parenthesis to implement the intended evaluation
order.

int test(int a, int b, int c) {
 return((a & b) == c);
}

7 CERT C Rules and Recommendations

7-582

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP00-C

Introduced in R2019a

 CERT C: Rec. EXP00-C

7-583

https://wiki.sei.cmu.edu/confluence/x/YdYxBQ

CERT C: Rec. EXP05-C
Do not cast away a const qualification

Description

Rule Definition
Do not cast away a const qualification.

Examples

Cast to pointer that removes const qualification
Description

Polyspace flags both implicit and explicit conversions that violate this rule.

Risk

This rule forbids casts from a pointer to a const object to a pointer that does not point to
a const object.

Such casts violate type qualification. For example, the const qualifier indicates the read-
only status of an object. If a cast removes the qualifier, the object is no longer read-only.

Example - Casts That Remove Qualifiers

void foo(void) {

 /* Cast on simple type */
 unsigned short x;
 unsigned short * const cpi = &x; /* const pointer */
 unsigned short * const *pcpi; /* pointer to const pointer */
 unsigned short **ppi;
 const unsigned short *pci; /* pointer to const */
 unsigned short *pi;

7 CERT C Rules and Recommendations

7-584

 pi = cpi; /* Compliant - no cast required */
 pi = (unsigned short *) pci; /* Non-compliant */
 ppi = (unsigned short **)pcpi; /* Non-compliant */
}

In this example, the variables pci and pcpi have the const qualifier in their type. The
rule is violated when the variables are cast to types that do not have the const qualifier.

Even though cpi has a const qualifier in its type, the rule is not violated in the
statement p=cpi;. The assignment does not cause a type conversion because both p and
cpi have type unsigned short.

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP05-C

Introduced in R2019a

 CERT C: Rec. EXP05-C

7-585

https://wiki.sei.cmu.edu/confluence/x/P9YxBQ

CERT C: Rec. EXP08-C
Ensure pointer arithmetic is used correctly

Description

Rule Definition
Ensure pointer arithmetic is used correctly.

Examples

Pointer points outside array after arithmetic on pointer
operand
Description

This issue occurs when a pointer resulting from arithmetic on a pointer operand points to
an element outside the array of that pointer operand.

Risk

Using an invalid array subscript can lead to erroneous behavior of the program. Run-time
derived array subscripts are especially troublesome because they cannot be easily
checked by manual review or static analysis.

The C Standard defines the creation of a pointer to one beyond the end of the array. The
rule permits the C Standard. Dereferencing a pointer to one beyond the end of an array
causes undefined behavior and is noncompliant.

7 CERT C Rules and Recommendations

7-586

Subtraction between pointers to different arrays
Description

This rule is raised whenever the analysis detects a Subtraction or comparison
between pointers to different arrays.

Risk

This rule applies to expressions of the form pointer_expression1 -
pointer_expression2. The behavior is undefined if pointer_expression1 and
pointer_expression2:

• Do not point to elements of the same array,
• Or do not point to the element one beyond the end of the array.

Example - Subtracting Pointers

#include <stddef.h>

void f1 (int32_t *ptr)
{
 int32_t a1[10];
 int32_t a2[10];
 int32_t *p1 = &a1[1];
 int32_t *p2 = &a2[10];
 ptrdiff_t diff1, diff2, diff3;

 diff1 = p1 - a1; // Compliant
 diff2 = p2 - a2; // Compliant
 diff3 = p1 - p2; // Non-compliant
}

In this example, the three subtraction expressions show the difference between compliant
and noncompliant pointer subtractions. The diff1 and diff2 subtractions are compliant
because the pointers point to the same array. The diff3 subtraction is not compliant
because p1 and p2 point to different arrays.

 CERT C: Rec. EXP08-C

7-587

Incorrect pointer scaling
Description

Incorrect pointer scaling occurs when Polyspace Bug Finder considers that you are
ignoring the implicit scaling in pointer arithmetic.

For instance, the defect can occur in the following situations.

Situation Risk Possible Fix
You use the sizeof
operator in arithmetic
operations on a pointer.

The sizeof operator
returns the size of a data
type in number of bytes.

Pointer arithmetic is already
implicitly scaled by the size
of the data type of the
pointed variable. Therefore,
the use of sizeof in pointer
arithmetic produces
unintended results.

Do not use sizeof operator
in pointer arithmetic.

You perform arithmetic
operations on a pointer, and
then apply a cast.

Pointer arithmetic is
implicitly scaled. If you do
not consider this implicit
scaling, casting the result of
a pointer arithmetic
produces unintended
results.

Apply the cast before the
pointer arithmetic.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

7 CERT C Rules and Recommendations

7-588

Example - Use of sizeof Operator

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2*(sizeof(int)));
}

In this example, the operation 2*(sizeof(int)) returns twice the size of an int
variable in bytes. However, because pointer arithmetic is implicitly scaled, the number of
bytes by which ptr is offset is 2*(sizeof(int))*(sizeof(int)).

In this example, the incorrect scaling shifts ptr outside the bounds of the array.
Therefore, a Pointer access out of bounds error appears on the * operation.

Correction — Remove sizeof Operator

One possible correction is to remove the sizeof operator.

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2);
}

Example - Cast Following Pointer Arithmetic

int func(void) {
 int x = 0;
 char r = *(char *)(&x + 1);
 return r;
}

In this example, the operation &x + 1 offsets &x by sizeof(int). Following the
operation, the resulting pointer points outside the allowed buffer. When you dereference
the pointer, a Pointer access out of bounds error appears on the * operation.

Correction — Apply Cast Before Pointer Arithmetic

If you want to access the second byte of x, first cast &x to a char* pointer and then
perform the pointer arithmetic. The resulting pointer is offset by sizeof(char) bytes
and still points within the allowed buffer, whose size is sizeof(int) bytes.

 CERT C: Rec. EXP08-C

7-589

int func(void) {
 int x = 0;
 char r = *((char *)(&x)+ 1);
 return r;
}

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP08-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-590

https://wiki.sei.cmu.edu/confluence/x/-tUxBQ

CERT C: Rec. EXP09-C
Use sizeof to determine the size of a type or variable

Description

Rule Definition
Use sizeof to determine the size of a type or variable.

Examples

Hard-coded object size used to manipulate memory
Description

Hard-coded object size used to manipulate memory occurs on constants that are
memory size arguments for memory functions such as malloc or memset.

Risk

If you hard code object size, your code is not portable to architectures with different type
sizes. If the constant value is not the same as the object size, the buffer might or might
not overflow.

Fix

For the size argument of memory functions, use sizeof(object).

Example - Assume 4-Byte Integer Pointers

#include <stddef.h>
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};

 CERT C: Rec. EXP09-C

7-591

extern void fill_ints(int **matrix, size_t nb, size_t s);

void bug_hardcodedmemsize()
{
 size_t i, s;

 s = 4;
 int **matrix = (int **)calloc(SIZE20, s);
 if (matrix == NULL) {
 return; /* Indicate calloc() failure */
 }
 fill_ints(matrix, SIZE20, s);
 free(matrix);
}

In this example, the memory allocation function calloc is called with a memory size of 4.
The memory is allocated for an integer pointer, which can be a more or less than 4 bytes
depending on your target. If the integer pointer is not 4 bytes, your program can fail.

Correction — Use sizeof(int *)

When calling calloc, replace the hard-coded size with a call to sizeof. This change
makes your code more portable.

#include <stddef.h>
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};
extern void fill_ints(int **matrix, size_t nb, size_t s);

void corrected_hardcodedmemsize()
{
 size_t i, s;

 s = sizeof(int *);
 int **matrix = (int **)calloc(SIZE20, s);
 if (matrix == NULL) {
 return; /* Indicate calloc() failure */
 }
 fill_ints(matrix, SIZE20, s);
 free(matrix);
}

7 CERT C Rules and Recommendations

7-592

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP09-C

Introduced in R2019a

 CERT C: Rec. EXP09-C

7-593

https://wiki.sei.cmu.edu/confluence/x/ydUxBQ

CERT C: Rec. EXP10-C
Do not depend on the order of evaluation of subexpressions or the order in which side
effects take place

Description

Rule Definition
Do not depend on the order of evaluation of subexpressions or the order in which side
effects take place.

Examples

Expression value depends on order of evaluation or of side
effects
Description

The issue occurs when the value of an expression and its persistent side effects is not the
same under all permitted evaluation orders.

An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and
written.

• The expression allows more than one order of evaluation.

Therefore, this rule forbids expressions where a variable is modified more than once and
can cause different results under different orders of evaluation.

Risk

If an expression results in different values depending on the order of evaluation, its value
becomes implementation-defined.

7 CERT C Rules and Recommendations

7-594

Example - Variable Modified More Than Once in Expression
int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */
 COPY_ELEMENT (i++); /* Noncompliant */
}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++
occurs twice and the order of evaluation of the two expressions is unspecified.

Example - Variable Modified and Used in Multiple Function Arguments
void f (unsigned int param1, unsigned int param2) {}

void main () {
 unsigned int i=0;
 f (i++, i); /* Non-compliant */
}

In this example, the rule is violated because it is unspecified whether the operation i++
occurs before or after the second argument is passed to f. The call f(i++,i) can
translate to either f(0,0) or f(0,1).

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP10-C

 CERT C: Rec. EXP10-C

7-595

https://wiki.sei.cmu.edu/confluence/x/T9YxBQ

Introduced in R2019a

7 CERT C Rules and Recommendations

7-596

CERT C: Rec. EXP12-C
Do not ignore values returned by functions

Description

Rule Definition
Do not ignore values returned by functions.

Examples

Returned value of a sensitive function not checked
Description

Returned value of a sensitive function not checked occurs when you call sensitive
standard functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or
vulnerable tasks:

 CERT C: Rec. EXP12-C

7-597

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive or critical
sensitive tasks, your program can behave unexpectedly. Errors from these functions can
propagate throughout the program causing incorrect output, security vulnerabilities, and
possibly system failures.

Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to
void. Polyspace does not raise this defect for sensitive functions cast to void. This
resolution is not accepted for critical sensitive functions because they perform more
vulnerable tasks.

Example - Sensitive Function Return Ignored

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 pthread_attr_init(&attr);
}

This example shows a call to the sensitive function pthread_attr_init. The return
value of pthread_attr_init is ignored, causing a defect.

Correction — Cast Function to (void)

One possible correction is to cast the function to void. This fix informs Polyspace and any
reviewers that you are explicitly ignoring the return value of the sensitive function.

7 CERT C Rules and Recommendations

7-598

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 (void)pthread_attr_init(&attr);
}

Correction — Test Return Value

One possible correction is to test the return value of pthread_attr_init to check for
errors.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

void initialize() {
 pthread_attr_t attr;
 int result;

 result = pthread_attr_init(&attr);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Example - Critical Function Return Ignored
#include <pthread.h>
extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0));
 pthread_join(thread_id, &res);
}

In this example, two critical functions are called: pthread_create and pthread_join.
The return value of the pthread_create is ignored by casting to void, but because

 CERT C: Rec. EXP12-C

7-599

pthread_create is a critical function (not just a sensitive function), Polyspace does not
ignore this Return value of a sensitive function not checked defect. The other critical
function, pthread_join, returns value that is ignored implicitly. pthread_join uses
the return value of pthread_create, which was not checked.

Correction — Test the Return Value of Critical Functions

The correction for this defect is to check the return value of these critical functions to
verify the function performed as expected.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

7 CERT C Rules and Recommendations

7-600

Topics
“Check for Coding Standard Violations”

External Websites
EXP12-C

Introduced in R2019a

 CERT C: Rec. EXP12-C

7-601

https://wiki.sei.cmu.edu/confluence/x/mtYxBQ

CERT C: Rec. EXP13-C
Treat relational and equality operators as if they were nonassociative

Description

Rule Definition
Treat relational and equality operators as if they were nonassociative.

Examples

Possibly unintended evaluation of expression because of
operator precedence rules
Description

Possibly unintended evaluation of expression because of operator precedence
rules occurs when an arithmetic expression result is possibly unintended because
operator precedence rules dictate an evaluation order that you do not expect.

The defect highlights expressions of the form x op_1 y op_2 z. Here, op_1 and op_2
are operator combinations that commonly induce this error. For instance, x == y | z.

The checker does not flag all operator combinations. For instance, x == y || z is not
flagged because you most likely intended to perform a logical OR between x == y and z.
Specifically, the checker flags these combinations:

• && and ||: For instance, x || y && z or x && y || z.
• Assignment and bitwise operations: For instance, x = y | z.
• Assignment and comparison operations: For instance, x = y != z or x = y > z.
• Comparison operations: For instance, x > y > z (except when one of the

comparisons is an equality x == y > z).

7 CERT C Rules and Recommendations

7-602

• Shift and numerical operation: For instance, x << y + 2.
• Pointer dereference and arithmetic: For instance, *p++.

Risk

The defect can cause the following issues:

• If you or another code reviewer reviews the code, the intended order of evaluation is
not immediately clear.

• It is possible that the result of the evaluation does not meet your expectations. For
instance:

• In the operation *p++, it is possible that you expect the dereferenced value to be
incremented. However, the pointer p is incremented before the dereference.

• In the operation (x == y | z), it is possible that you expect x to be compared
with y | z. However, the == operation happens before the | operation.

Fix

See if the order of evaluation is what you intend. If not, apply parentheses to implement
the evaluation order that you want.

For better readability of your code, it is good practice to apply parenthesis to implement
an evaluation order even when operator precedence rules impose that order.

Example - Expressions with Possibly Unintended Evaluation Order

int test(int a, int b, int c) {
 return(a & b == c);
}

In this example, the == operation happens first, followed by the & operation. If you
intended the reverse order of operations, the result is not what you expect.

Correction — Parenthesis For Intended Order

One possible correction is to apply parenthesis to implement the intended evaluation
order.

int test(int a, int b, int c) {
 return((a & b) == c);
}

 CERT C: Rec. EXP13-C

7-603

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP13-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-604

https://wiki.sei.cmu.edu/confluence/x/iNYxBQ

CERT C: Rec. EXP19-C
Use braces for the body of an if, for, or while statement

Description

Rule Definition
Use braces for the body of an if, for, or while statement.

Examples

Iteration or selection statement body not enclosed in braces
Description

The issue occurs when you do not enclose the body of an iteration-statement or a
selection-statement in braces.

Risk

The rule applies to:

• Iteration statements such as while, do ... while or for.
• Selection statements such as if ... else or switch.

If the block of code associated with an iteration or selection statement is not contained in
braces, you can make mistakes about the association. For example:

• You can wrongly associate a line of code with an iteration or selection statement
because of its indentation.

• You can accidentally place a semicolon following the iteration or selection statement.
Because of the semicolon, the line following the statement is no longer associated with
the statement even though you intended otherwise.

 CERT C: Rec. EXP19-C

7-605

Example - Iteration Block

int data_available = 1;
void f1(void) {
 while(data_available) /* Non-compliant */
 process_data();

 while(data_available) { /* Compliant */
 process_data();
 }
}

In this example, the second while block is enclosed in braces and does not violate the
rule.

Example - Nested Selection Statements

void f1(void) {
 if(flag_1) /* Non-compliant */
 if(flag_2) /* Non-compliant */
 action_1();
 else /* Non-compliant */
 action_2();
}

In this example, the rule is violated because the if or else blocks are not enclosed in
braces. Unless indented as above, it is easy to associate the else statement with the
inner if.

Correction — Place Selection Statement Block in Braces

One possible correction is to enclose each block associated with an if or else statement
in braces.

void f1(void) {
 if(flag_1) { /* Compliant */
 if(flag_2) { /* Compliant */
 action_1();
 }
 }
 else { /* Compliant */
 action_2();
 }
}

7 CERT C Rules and Recommendations

7-606

Example - Spurious Semicolon After Iteration Statement

void f1(void) {
 while(flag_1); /* Non-compliant */
 {
 flag_1 = action_1();
 }
}

In this example, the rule is violated even though the while statement is followed by a
block in braces. The semicolon following the while statement causes the block to
dissociated from the while statement.

The rule helps detect such spurious semicolons.

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP19-C

Introduced in R2019a

 CERT C: Rec. EXP19-C

7-607

https://wiki.sei.cmu.edu/confluence/x/g9YxBQ

CERT C: Rec. INT00-C
Understand the data model used by your implementation(s)

Description
Rule Definition
Understand the data model used by your implementation(s).

Examples
Use of basic types declarations and definitions of variables or
functions
Description

The issue occurs when you use basic numerical types instead of typedefs that indicate
size and signedness.

The rule checker flags use of basic data types in variable or function declarations and
definitions. The rule enforces use of typedefs instead.

The rule checker does not flag the use of basic types in the typedef statements
themselves.

Risk

When the amount of memory being allocated is important, using specific-length types
makes it clear how much storage is being reserved for each object.

Example - Direct Use of Basic Types in Definitions
typedef unsigned int uint32_t;

int x = 0; /* Non compliant */
uint32_t y = 0; /* Compliant */

7 CERT C Rules and Recommendations

7-608

In this example, the declaration of x is noncompliant because it uses a basic type directly.

Integer overflow
Description

Integer overflow occurs when an operation on integer variables can result in values that
cannot be represented by the result data type. The data type of a variable determines the
number of bytes allocated for the variable storage and constrains the range of allowed
values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

Integer overflows on signed integers result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
overflowing computation acquire their current values. You can implement the fix on any
event in the sequence. If the result details do not show the event history, you can trace
back using right-click options in the source code and see previous related events. See also
“Interpret Polyspace Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

To avoid overflows in general, try one of these techniques:

• Keep integer variable values restricted to within half the range of signed integers.
• In operations that might overflow, check for conditions that can lead to the overflow

and implement wrap around or saturation behavior depending on how the result of the
operation is used. The result then becomes predictable and can be safely used in
subsequent computations.

 CERT C: Rec. INT00-C

7-609

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Addition of Maximum Integer

#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value
of var is the maximum integer value, so an int cannot represent one plus the maximum
integer value.

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a
larger data type (Note that on a 32-bit machine, int and long has the same size). In this
example, on a 32-bit machine, by returning a long long instead of an int, the overflow
error is fixed.

#include <limits.h>

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;
 return lvar;
}

Integer constant overflow
Description

Integer constant overflow occurs when you assign a compile-time constant to a signed
integer variable whose data type cannot accommodate the value. An n-bit signed integer
holds values in the range [-2n-1, 2n-1-1].

7 CERT C Rules and Recommendations

7-610

For instance, c is an 8-bit signed char variable that cannot hold the value 255.

signed char c = 255;

To determine the sizes of fundamental types, Bug Finder uses your specification for
Target processor type (-target).

Risk

The default behavior for constant overflows can vary between compilers and platforms.
Retaining constant overflows can reduce the portability of your code.

Even if your compilers wraps around overflowing constants with a warning, the wrap-
around behavior can be unintended and cause unexpected results.

Fix

Check if the constant value is what you intended. If the value is correct, use a different,
possibly wider, data type for the variable.

Example - Overflowing Constant from Macro Expansion
#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {
 char c1 = MAX_UNSIGNED_CHAR;
 char c2 = MAX_SIGNED_CHAR+1;
}

In this example, the defect appears on the macros because at least one use of the macro
causes an overflow. To reproduce these defects, use a Target processor type (-
target) where char is signed by default.

Correction — Use Different Data Type

One possible correction is to use a different data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {
 unsigned char c1 = MAX_UNSIGNED_CHAR;
 unsigned char c2 = MAX_SIGNED_CHAR+1;
}

 CERT C: Rec. INT00-C

7-611

Format string specifiers and arguments mismatch
Description

Format string specifiers and arguments mismatch occurs when the format specifiers
in the formatted output functions such as printf do not match their corresponding
arguments. For example, an argument of type unsigned long must have a format
specification of %lu.

Risk

Mismatch between format specifiers and the corresponding arguments result in
undefined behavior.

Fix

Make sure that the format specifiers match the corresponding arguments. For instance, in
this example, the %d specifier does not match the string argument message and the %s
specifier does not match the integer argument err_number.

 const char *message = "License not available";
 int err_number = ;-4
 printf("Error: %d (error type %s)\n", message, err_number);

Switching the two format specifiers fixes the issue. See the specifications for the printf
function for more information about format specifiers.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Printing a Float

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

7 CERT C Rules and Recommendations

7-612

https://en.cppreference.com/w/cpp/io/c/fprintf
https://en.cppreference.com/w/cpp/io/c/fprintf

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the
unsigned integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert
fst to an integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", (int)fst);
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT00-C

 CERT C: Rec. INT00-C

7-613

https://wiki.sei.cmu.edu/confluence/x/IdcxBQ

Introduced in R2019a

7 CERT C Rules and Recommendations

7-614

CERT C: Rec. INT02-C
Understand integer conversion rules

Description

Rule Definition
Understand integer conversion rules.

Examples

Sign change integer conversion overflow
Description

Sign change integer conversion overflow occurs when converting an unsigned integer
to a signed integer. If the variable does not have enough bytes to represent both the
original constant and the sign bit, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 CERT C: Rec. INT02-C

7-615

Example - Convert from unsigned char to char

char sign_change(void) {
 unsigned char count = 255;

 return (char)count;
}

In the return statement, the unsigned character variable count is converted to a signed
character. However, char has 8 bits, 1 for the sign of the constant and 7 to represent the
number. The conversion operation overflows because 255 uses 8 bits.

Correction — Change conversion types

One possible correction is using a larger integer type. By using an int, there are enough
bits to represent the sign and the number value.

int sign_change(void) {
 unsigned char count = 255;

 return (int)count;
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT02-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-616

https://wiki.sei.cmu.edu/confluence/x/TtYxBQ

CERT C: Rec. INT04-C
Enforce limits on integer values originating from tainted sources

Description

Rule Definition
Enforce limits on integer values originating from tainted sources.

Examples

Array access with tainted index
Description

Array access with tainted index detects reading or writing to an array by using a
tainted index that has not been validated.

Risk

The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write operation create to problems in your
program.

 CERT C: Rec. INT04-C

7-617

Fix

Before using the index to access the array, validate the index value to make sure that it is
inside the array range.

Example - Use Index to Return Buffer Value

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex(int num) {
 return tab[num];
}

In this example, the index num accesses the array tab. The function does not check to see
if num is inside the range of tab.

Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex(int num) {
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -9999;
 }
}

Loop bounded with tainted value
Description

Loop bounded with tainted value detects loops that are bounded by values from an
unsecure source.

Risk

A tainted value can cause over looping or infinite loops. Attackers can use this
vulnerability to crash your program or cause other unintended behavior.

7 CERT C Rules and Recommendations

7-618

Fix

Before starting the loop, validate unknown boundary and iterator values.

Example - Loop Boundary From Input Argument
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(int count) {
 int res = 0;
 for (int i=0 ; i < count; ++i) {
 res += i;
 }
 return res;
}

In this example, the function uses the input argument to loop count times. count could
be any number because the value is not checked before starting the for-loop.

Correction — Check Loop Control

One possible correction is to check the value of the variable controlling the loop before
starting the for-loop. This example checks if count is greater than zero and less than the
maximum size.

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(int count) {
 int res = 0;

 if (count>0 && count<SIZE128) {
 for (int i=0 ; i<count ; ++i) {
 res += i;
 }
 }
 return res;
}

 CERT C: Rec. INT04-C

7-619

Memory allocation with tainted size
Description

Memory allocation with tainted size checks memory allocation functions, such as
calloc or malloc, for size arguments from unsecured sources.

Risk

Uncontrolled memory allocation can cause your program to request too much system
memory. This consequence can lead to a crash due to an out-of-memory condition, or
assigning too many resources.

Fix

Before allocating memory, check the value of your arguments to check that they do not
exceed the bounds.

Example - Allocate Memory Using Input Argument

#include "stdlib.h"

int* bug_taintedmemoryallocsize(size_t size) {
 int* p = (int*)malloc(size);
 return p;
}

In this example, malloc allocates size amount of memory for the pointer p. size is an
outside variable, so could be any size value. If the size is larger than the amount of
memory you have available, your program could crash.

Correction — Check Size of Memory to be Allocated

One possible correction is to check the size of the memory that you want to allocate
before performing the malloc operation. This example checks to see if the size is positive
and less than the maximum size.

#include "stdlib.h"

enum {
 SIZE10 = 10,

7 CERT C Rules and Recommendations

7-620

 SIZE100 = 100,
 SIZE128 = 128
};

int* corrected_taintedmemoryallocsize(int size) {
 int* p = NULL;
 if (size>0 && size<SIZE128) { /* Fix: Check entry range before use */
 p = (int*)malloc((unsigned int)size);
 }
 return p;
}

Tainted size of variable length array
Description

Tainted size of variable length array detects variable length arrays (VLA) whose size is
from an unsecure source.

Risk

If an attacker changed the size of your VLA to an unexpected value, it can cause your
program to crash or behave unexpectedly.

If the size is non-positive, the behavior of the VLA is undefined. Your program does not
perform as expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.

Fix

Validate your VLA size to make sure that it is positive and less than a maximum value.

Example - Input Argument Used as Size of VLA

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {

 CERT C: Rec. INT04-C

7-621

 int tabvla[size];
 int res = 0;
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 return res;
}

In this example, a variable length array size is based on an input argument. Because this
input argument value is not checked, the size may be negative or too large.

Correction — Check VLA Size

One possible correction is to check the size variable before creating the variable length
array. This example checks if the size is larger than 10 and less than 100, before creating
the VLA

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {
 int res = 0;
 if (size>SIZE10 && size<SIZE100) {
 int tabvla[size];
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 }
 return res;
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

7 CERT C Rules and Recommendations

7-622

Topics
“Check for Coding Standard Violations”

External Websites
INT04-C

Introduced in R2019a

 CERT C: Rec. INT04-C

7-623

https://wiki.sei.cmu.edu/confluence/x/ddYxBQ

CERT C: Rec. INT07-C
Use only explicitly signed or unsigned char type for numeric values

Description

Rule Definition
Use only explicitly signed or unsigned char type for numeric values.

Examples

Use of plain char type for numerical value
Description

Use of plain char type for numerical value detects char variables without explicit
signedness that are being used in these ways:

• To store non-char constants
• In an arithmetic operation when the char is:

• A negative value.
• The result of a sign changing overflow.

• As a buffer offset.

char variables without a signed or unsigned qualifier can be either signed or unsigned
depending on your compiler.

Risk

Operations on a plain char can result in unexpected numerical values. If the char is used
as an offset, the char can cause buffer overflow or underflow.

7 CERT C Rules and Recommendations

7-624

Fix

When initializing a char variable, to avoid implementation-defined confusion, explicitly
state whether the char is signed or unsigned.

Example - Divide by char Variable

#include <stdio.h>

void badplaincharuse(void)
{
 char c = 200;
 int i = 1000;
 (void)printf("i/c = %d\n", i/c);
}

In this example, the char variable c can be signed or unsigned depending on your
compiler. Assuming 8-bit, two's complement character types, the result is either i/c = 5
(unsigned char) or i/c = -17 (signed char). The correct result is unknown without
knowing the signedness of char.

Correction — Add signed Qualifier

One possible correction is to add a signed qualifier to char. This clarification makes the
operation defined.

#include <stdio.h>

void badplaincharuse(void)
{
 signed char c = -56;
 int i = 1000;
 (void)printf("i/c = %d\n", i/c);
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rec. INT07-C

7-625

Topics
“Check for Coding Standard Violations”

External Websites
INT07-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-626

https://wiki.sei.cmu.edu/confluence/x/AtcxBQ

CERT C: Rec. INT08-C
Verify that all integer values are in range

Description

Rule Definition
Verify that all integer values are in range.

Examples

Integer overflow
Description

Integer overflow occurs when an operation on integer variables can result in values that
cannot be represented by the result data type. The data type of a variable determines the
number of bytes allocated for the variable storage and constrains the range of allowed
values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

Integer overflows on signed integers result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
overflowing computation acquire their current values. You can implement the fix on any
event in the sequence. If the result details do not show the event history, you can trace
back using right-click options in the source code and see previous related events. See also
“Interpret Polyspace Bug Finder Results”.

 CERT C: Rec. INT08-C

7-627

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

To avoid overflows in general, try one of these techniques:

• Keep integer variable values restricted to within half the range of signed integers.
• In operations that might overflow, check for conditions that can lead to the overflow

and implement wrap around or saturation behavior depending on how the result of the
operation is used. The result then becomes predictable and can be safely used in
subsequent computations.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Addition of Maximum Integer
#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value
of var is the maximum integer value, so an int cannot represent one plus the maximum
integer value.

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a
larger data type (Note that on a 32-bit machine, int and long has the same size). In this
example, on a 32-bit machine, by returning a long long instead of an int, the overflow
error is fixed.

#include <limits.h>

7 CERT C Rules and Recommendations

7-628

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;
 return lvar;
}

Integer constant overflow
Description

Integer constant overflow occurs when you assign a compile-time constant to a signed
integer variable whose data type cannot accommodate the value. An n-bit signed integer
holds values in the range [-2n-1, 2n-1-1].

For instance, c is an 8-bit signed char variable that cannot hold the value 255.

signed char c = 255;

To determine the sizes of fundamental types, Bug Finder uses your specification for
Target processor type (-target).

Risk

The default behavior for constant overflows can vary between compilers and platforms.
Retaining constant overflows can reduce the portability of your code.

Even if your compilers wraps around overflowing constants with a warning, the wrap-
around behavior can be unintended and cause unexpected results.

Fix

Check if the constant value is what you intended. If the value is correct, use a different,
possibly wider, data type for the variable.

Example - Overflowing Constant from Macro Expansion
#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {
 char c1 = MAX_UNSIGNED_CHAR;
 char c2 = MAX_SIGNED_CHAR+1;
}

 CERT C: Rec. INT08-C

7-629

In this example, the defect appears on the macros because at least one use of the macro
causes an overflow. To reproduce these defects, use a Target processor type (-
target) where char is signed by default.

Correction — Use Different Data Type

One possible correction is to use a different data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {
 unsigned char c1 = MAX_UNSIGNED_CHAR;
 unsigned char c2 = MAX_SIGNED_CHAR+1;
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT08-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-630

https://wiki.sei.cmu.edu/confluence/x/QtcxBQ

CERT C: Rec. INT09-C
Ensure enumeration constants map to unique values

Description

Rule Definition
Ensure enumeration constants map to unique values.

Examples

Enumeration constants map to same value
Description

The issue occurs when, within an enumerator list, the value of an implicitly-specified
enumeration constants are not unique.

The rule checker flags an enumeration if it has an implicitly specified enumeration
constant with the same value as another enumeration constant.

Risk

An implicitly specified enumeration constant has a value one greater than its predecessor.
If the first enumeration constant is implicitly specified, then its value is 0. An explicitly
specified enumeration constant has the specified value.

If implicitly and explicitly specified constants are mixed within an enumeration list, it is
possible for your program to replicate values. Such replications can be unintentional and
can cause unexpected behavior.

Example - Replication of Value in Implicitly Specified Enum Constants

enum color1 {red_1, blue_1, green_1}; /* Compliant */
enum color2 {red_2 = 1, blue_2 = 2, green_2 = 3}; /* Compliant */

 CERT C: Rec. INT09-C

7-631

enum color3 {red_3 = 1, blue_3, green_3}; /* Compliant */
enum color4 {red_4, blue_4, green_4 = 1}; /* Non Compliant */
enum color5 {red_5 = 2, blue_5, green_5 = 2}; /* Compliant */
enum color6 {red_6 = 2, blue_6, green_6 = 2, yellow_6}; /* Non Compliant */

Compliant situations:

• color1: All constants are implicitly specified.
• color2: All constants are explicitly specified.
• color3: Though there is a mix of implicit and explicit specification, all constants have

unique values.
• color5: The implicitly specified constants have unique values.

Noncompliant situations:

• color4: The implicitly specified constant blue_4 has the same value as green_4.
• color6: The implicitly specified constant blue_6 has the same value as yellow_6.

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT09-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-632

https://wiki.sei.cmu.edu/confluence/x/U9cxBQ

CERT C: Rec. INT10-C
Do not assume a positive remainder when using the % operator

Description
Rule Definition
Do not assume a positive remainder when using the % operator.

Examples
Tainted modulo operand
Description

Tainted modulo operand checks the operands of remainder % operations. Bug Finder
flags modulo operations with one or more tainted operands.

Risk

• If the second remainder operand is zero, your remainder operation fails, causing your
program to crash.

• If the second remainder operand is -1, your remainder operation can overflow if the
remainder operation is implemented based on the division operation that can overflow.

• If one of the operands is negative, the operation result is uncertain. For C89, the
modulo operation is not standardized, so the result from negative operands is
implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in
general.

Fix

Before performing the modulo operation, validate the values of the operands. Check the
second operand for values of 0 and -1. Check both operands for negative values.

 CERT C: Rec. INT10-C

7-633

Example - Modulo with Function Arguments

extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 128%userden;
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using an input argument.
The argument is not checked before calculating the remainder for values that can crash
the program, such as 0 and -1.

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the
modulo operation. In this corrected example, the modulo operation continues only if the
second operand is greater than zero.

extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

7 CERT C Rules and Recommendations

7-634

External Websites
INT10-C

Introduced in R2019a

 CERT C: Rec. INT10-C

7-635

https://wiki.sei.cmu.edu/confluence/x/_NUxBQ

CERT C: Rec. INT12-C
Do not make assumptions about the type of a plain int bit-field when used in an
expression

Description

Rule Definition
Do not make assumptions about the type of a plain int bit-field when used in an
expression.

Examples

Bit-field declared without appropriate type
Description

The issue occurs when you declare a bit-filed without an appropriate type.

Risk

Using int is implementation-defined because bit-fields of type int can be either signed
or unsigned.

The use of enum, short char, or any other type of bit-field is not permitted in C90
because the behavior is undefined.

In C99, the implementation can potentially define other integer types that are permitted
in bit-field declarations.

Check Information
Group: Rec. 04. Integers (INT)

7 CERT C Rules and Recommendations

7-636

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT12-C

Introduced in R2019a

 CERT C: Rec. INT12-C

7-637

https://wiki.sei.cmu.edu/confluence/x/VNYxBQ

CERT C: Rec. INT13-C
Use bitwise operators only on unsigned operands

Description

Rule Definition
Use bitwise operators only on unsigned operands.

Examples

Bitwise operation on negative value
Description

Bitwise operation on negative value detects bitwise operators (>>, ^, |, ~, but, not,
&) used on signed integer variables with negative values.

Risk

If the value of the signed integer is negative, bitwise operation results can be unexpected
because:

• Bitwise operations on negative values are compiler-specific.
• Unexpected calculations can lead to additional vulnerabilities, such as buffer overflow.

Fix

When performing bitwise operations, use unsigned integers to avoid unexpected results.

Example - Right-Shift of Negative Integer

#include <stdio.h>
#include <stdarg.h>

7 CERT C Rules and Recommendations

7-638

static void demo_sprintf(const char *format, ...)
{
 int rc;
 va_list ap;
 char buf[sizeof("256")];

 va_start(ap, format);
 rc = vsprintf(buf, format, ap);
 if (rc == -1 || rc >= sizeof(buf)) {
 /* Handle error */
 }
 va_end(ap);
}

void bug_bitwiseneg()
{
 int stringify = 0x80000000;
 demo_sprintf("%u", stringify >> 24);
}

In this example, the statement demo_sprintf("%u", stringify >> 24) stops the
program unexpectedly. You expect the result of stringify >> 24 to be 0x80. However,
the actual result is 0xffffff80 because stringify is signed and negative. The sign bit
is also shifted.

Correction — Add unsigned Keyword

By adding the unsigned keyword, stringify is not negative and the right-shift
operation gives the expected result of 0x80.

#include <stdio.h>
#include <stdarg.h>

static void demo_sprintf(const char *format, ...)
{
 int rc;
 va_list ap;
 char buf[sizeof("256")];

 va_start(ap, format);
 rc = vsprintf(buf, format, ap);
 if (rc == -1 || rc >= sizeof(buf)) {
 /* Handle error */
 }

 CERT C: Rec. INT13-C

7-639

 va_end(ap);
}

void corrected_bitwiseneg()
{
 unsigned int stringify = 0x80000000;
 demo_sprintf("%u", stringify >> 24);
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT13-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-640

https://wiki.sei.cmu.edu/confluence/x/9tYxBQ

CERT C: Rec. INT14-C
Avoid performing bitwise and arithmetic operations on the same data

Description

Rule Definition
Avoid performing bitwise and arithmetic operations on the same data.

Examples

Bitwise and arithmetic operation on the same data
Description

Bitwise and arithmetic operation on a same data detects statements with bitwise and
arithmetic operations on the same variable or expression.

Risk

Mixed bitwise and arithmetic operations do compile. However, the size of integer types
affects the result of these mixed operations. Mixed operations also reduce readability and
maintainability.

Fix

Separate bitwise and arithmetic operations, or use only one type of operation per
statement.

Example - Shift and Addition

unsigned int bitwisearithmix()
{
 unsigned int var = 50;
 var += (var << 2) + 1;

 CERT C: Rec. INT14-C

7-641

 return var;
}

This example shows bitwise and arithmetic operations on the variable var. var is shifted
by two (bitwise), then increased by 1 and added to itself (arithmetic).

Correction — Arithmetic Operations Only

You can reduce this expression to arithmetic-only operations: var + (var << 2) is
equivalent to var * 5.

unsigned int bitwisearithmix()
{
 unsigned int var = 50;
 var = var * 5 +1;
 return var;
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT14-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-642

https://wiki.sei.cmu.edu/confluence/x/y9UxBQ

CERT C: Rec. INT18-C
Evaluate integer expressions in a larger size before comparing or assigning to that size

Description

Rule Definition
Evaluate integer expressions in a larger size before comparing or assigning to that size.

Examples

Integer overflow
Description

Integer overflow occurs when an operation on integer variables can result in values that
cannot be represented by the result data type. The data type of a variable determines the
number of bytes allocated for the variable storage and constrains the range of allowed
values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

Integer overflows on signed integers result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
overflowing computation acquire their current values. You can implement the fix on any
event in the sequence. If the result details do not show the event history, you can trace
back using right-click options in the source code and see previous related events. See also
“Interpret Polyspace Bug Finder Results”.

 CERT C: Rec. INT18-C

7-643

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

To avoid overflows in general, try one of these techniques:

• Keep integer variable values restricted to within half the range of signed integers.
• In operations that might overflow, check for conditions that can lead to the overflow

and implement wrap around or saturation behavior depending on how the result of the
operation is used. The result then becomes predictable and can be safely used in
subsequent computations.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Addition of Maximum Integer
#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value
of var is the maximum integer value, so an int cannot represent one plus the maximum
integer value.

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a
larger data type (Note that on a 32-bit machine, int and long has the same size). In this
example, on a 32-bit machine, by returning a long long instead of an int, the overflow
error is fixed.

#include <limits.h>

7 CERT C Rules and Recommendations

7-644

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;
 return lvar;
}

Unsigned integer overflow
Description

Unsigned integer overflow occurs when an operation on unsigned integer variables can
result in values that cannot be represented by the result data type. The data type of a
variable determines the number of bytes allocated for the variable storage and constrains
the range of allowed values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

The C11 standard states that unsigned integer overflows result in wrap-around behavior.
However, a wrap around behavior might not always be desirable. For instance, if the
result of a computation is used as an array size and the computation overflows, the array
size is much smaller than expected.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling. In the error handling code, you can override the default wrap-around
behavior for overflows and implement saturation behavior, for instance.

 CERT C: Rec. INT18-C

7-645

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Add One to Maximum Unsigned Integer

#include <limits.h>

unsigned int plusplus(void) {

 unsigned uvar = UINT_MAX;
 uvar++;
 return uvar;
}

In the third statement of this function, the variable uvar is increased by 1. However, the
value of uvar is the maximum unsigned integer value, so 1 plus the maximum integer
value cannot be represented by an unsigned int. The C programming language
standard does not view unsigned overflow as an error because the program automatically
reduces the result by modulo the maximum value plus 1. In this example, uvar is reduced
by modulo UINT_MAX. The result is uvar = 1.

Correction — Different Storage Type

One possible correction is to store the operation result in a larger data type. In this
example, by returning an unsigned long long instead of an unsigned int, the
overflow error is fixed.

#include <limits.h>

unsigned long long plusplus(void) {

 unsigned long long ullvar = UINT_MAX;
 ullvar++;
 return ullvar;
}

Check Information
Group: Rec. 04. Integers (INT)

7 CERT C Rules and Recommendations

7-646

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT18-C

Introduced in R2019a

 CERT C: Rec. INT18-C

7-647

https://wiki.sei.cmu.edu/confluence/x/I9cxBQ

CERT C: Rec. FLP00-C
Understand the limitations of floating-point numbers

Description

Rule Definition
Understand the limitations of floating-point numbers.

Examples

Absorption of float operand
Description

Absorption of float operand occurs when one operand of an addition or subtraction
operation is always negligibly small compared to the other operand. Therefore, the result
of the operation is always equal to the value of the larger operand, making the operation
redundant.

Risk

Redundant operations waste execution cycles of your processor.

The absorption of a float operand can indicate design issues elsewhere in the code. It is
possible that the developer expected a different range for one of the operands and did not
expect the redundancy of the operation. However, the operand range is different from
what the developer expects because of issues elsewhere in the code.

Fix

See if the operand ranges are what you expect. To see the ranges, place your cursor on
the operation.

7 CERT C Rules and Recommendations

7-648

• If the ranges are what you expect, justify why you have the redundant operation in
place. For instance, the code is only partially written and you anticipate other values
for one or both of the operands from future unwritten code.

If you cannot justify the redundant operation, remove it.
• If the ranges are not what you expect, in your code, trace back to see where the

ranges come from. To begin your traceback, search for instances of the operand in
your code. Browse through previous instances of the operand and determine where
the unexpected range originates.

To determine when one operand is negligible compared to the other operand, the defect
uses rules based on IEEE 754 standards. To fix the defect, instead of using the actual
rules, you can use this heuristic: the ratio of the larger to the smaller operand must be
less than 2p-1 at least for some values. Here, p is equal to 24 for 32-bit precision and 53
for 64-bit precision. To determine the precision, the defect uses your specification for
Target processor type (-target).

This defect appears only if one operand is always negligibly smaller than the other
operand. To see instances of subnormal operands or results, use the check Subnormal
Float in Polyspace Code Prover.

Example - One Addition Operand Negligibly Smaller Than The Other Operand
#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-30)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

float input_signal2(void) {
 float temp = get_signal();
 if(temp > 1.)
 return temp;
 else {

 CERT C: Rec. FLP00-C

7-649

 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 float signal2 = input_signal2();
 float super_signal = signal1 + signal2;
 do_operation(super_signal);
}

In this example, the defect appears on the addition because the operand signal1 is in
the range (0,1e-30) but signal2 is greater than 1.

Correction — Remove Redundant Operation

One possible correction is to remove the redundant addition operation. In the following
corrected code, the operand signal2 and its associated code is also removed from
consideration.

#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-30)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 do_operation(signal1);
}

Correction — Verify Operand Range

Another possible correction is to see if the operand ranges are what you expect. For
instance, if one of the operand range is not supposed to be negligibly small, fix the issue

7 CERT C Rules and Recommendations

7-650

causing the small range. In the following corrected code, the range (0,1e-2) is imposed
on signal2 so that it is not always negligibly small as compared to signal1.

#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-2)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

float input_signal2(void) {
 float temp = get_signal();
 if(temp > 1.)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 float signal2 = input_signal2();
 float super_signal = signal1 + signal2;
 do_operation(super_signal);
}

Check Information
Group: Rec. 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rec. FLP00-C

7-651

Topics
“Check for Coding Standard Violations”

External Websites
FLP00-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-652

https://wiki.sei.cmu.edu/confluence/x/ttYxBQ

CERT C: Rec. FLP02-C
Avoid using floating-point numbers when precise computation is needed

Description

Rule Definition
Avoid using floating-point numbers when precise computation is needed.

Examples

Floating point comparison with equality operators
Description

Floating point comparison with equality operators occurs when you use an equality
(==) or inequality (!=) operation with floating-point numbers.

Polyspace does not raise a defect for an equality or inequality operation with floating-
point numbers when:

• The comparison is between two float constants.

 float flt = 1.0;
 if (flt == 1.1)

• The comparison is between a constant and a variable that can take a finite, reasonably
small number of values.

float x;

int rand = random();
switch(rand) {
case 1: x = 0.0; break;
case 2: x = 1.3; break;
case 3: x = 1.7; break;

 CERT C: Rec. FLP02-C

7-653

case 4: x = 2.0; break;
default: x = 3.5; break; }
…
if (x==1.3)

• The comparison is between floating-point expressions that contain only integer values.

float x = 0.0;
for (x=0.0;x!=100.0;x+=1.0) {
…
if (random) break;
}

if (3*x+4==2*x-1)
…
if (3*x+4 == 1.3)

• One of the operands is 0.0, unless you use the option flag -detect-bad-float-op-
on-zero.

/* Defect detected when
you use the option flag */

if (x==0.0f)

If you are running an analysis through the user interface, you can enter this option in
the Other field, under the Advanced Settings node on the Configuration pane. See
Other.

At the command line, add the flag to your analysis command.

polyspace-bug-finder -sources filename ^
-checkers BAD_FLOAT_OP -detect-bad-float-op-on-zero

Risk

Checking for equality or inequality of two floating-point values might return unexpected
results because floating-point representations are inexact and involve rounding errors.

Fix

Instead of checking for equality of floating-point values:

if (val1 == val2)

7 CERT C Rules and Recommendations

7-654

check if their difference is less than a predefined tolerance value (for instance, the value
FLT_EPSILON defined in float.h):

#include <float.h>
if(fabs(val1-val2) < FLT_EPSILON)

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Floats Inequality in for-loop

#include <stdio.h>
#include <math.h>
#include <float.h>

void func(void)
{
 float f;
 for (f = 1.0; f != 2.0; f = f + 0.1)
 (void)printf("Value: %f\n", f);
}

In this function, the for-loop tests the inequality of f and the number 2.0 as a stopping
mechanism. The number of iterations is difficult to determine, or might be infinite,
because of the imprecision in floating-point representation.

Correction — Change the Operator

One possible correction is to use a different operator that is not as strict. For example, an
inequality like >= or <=.

#include <stdio.h>
#include <math.h>
#include <float.h>

void func(void)
{
 float f;
 for (f = 1.0; f <= 2.0; f = f + 0.1)
 (void)printf("Value: %f\n", f);
}

 CERT C: Rec. FLP02-C

7-655

Check Information
Group: Rec. 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP02-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-656

https://wiki.sei.cmu.edu/confluence/x/CtcxBQ

CERT C: Rec. FLP03-C
Detect and handle floating-point errors

Description

Rule Definition
Detect and handle floating-point errors.

Examples

Float conversion overflow
Description

Float conversion overflow occurs when converting a floating point number to a smaller
floating point data type. If the variable does not have enough memory to represent the
original number, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

Overflows can result in unpredictable values from computations. The result can be infinity
or the maximum finite value depending on the rounding mode used in the
implementation. If you use the result of an overflowing conversion in subsequent
computations and do not account for the overflow, you can see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variable being
converted acquires its current value You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using

 CERT C: Rec. FLP03-C

7-657

right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

In general, avoid conversions to smaller floating point types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Converting from double to float

float convert(void) {

 double diam = 1e100;
 return (float)diam;
}

In the return statement, the variable diam of type double (64 bits) is converted to a
variable of type float (32 bits). However, the value 1^100 requires more than 32 bits to be
precisely represented.

Float overflow
Description

Float overflow occurs when an operation on floating point variables can result in values
that cannot be represented by the result data type. The data type of a variable determines
the number of bytes allocated for the variable storage and constrains the range of allowed
values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

7 CERT C Rules and Recommendations

7-658

Risk

Overflows can result in unpredictable values from computations. The result can be infinity
or the maximum finite value depending on the rounding mode used in the
implementation. If you use the result of an overflowing computation in subsequent
computations and do not account for the overflow, you can see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
overflowing computation acquire their current values. You can implement the fix on any
event in the sequence. If the result details do not show the event history, you can trace
back using right-click options in the source code and see previous related events. See also
“Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code,
add comments to your result or code to avoid another review. See “Address Polyspace
Results Through Bug Fixes or Justifications”.

Example - Multiplication of Floats

#include <float.h>

float square(void) {

 float val = FLT_MAX;
 return val * val;
}

In the return statement, the variable val is multiplied by itself. The square of the
maximum float value cannot be represented by a float (the return type for this function)
because the value of val is the maximum float value.

Correction — Different Storage Type

One possible correction is to store the result of the operation in a larger data type. In this
example, by returning a double instead of a float, the overflow defect is fixed.

#include <float.h>

 CERT C: Rec. FLP03-C

7-659

double square(void) {
 float val = FLT_MAX;

 return (double)val * (double)val;
}

Float division by zero
Description

Float division by zero occurs when the denominator of a division operation can be a
zero-valued floating point number.

Risk

A division by zero can result in a program crash.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the denominator
variable acquires a zero value. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

It is a good practice to check for zero values of a denominator before division and handle
the error. Instead of performing the division directly:

res = num/den;

use a library function that handles zero values of the denominator before performing the
division:

res = div(num, den);

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code,
add comments to your result or code to avoid another review. See “Address Polyspace
Results Through Bug Fixes or Justifications”.

7 CERT C Rules and Recommendations

7-660

Example - Dividing a Floating Point Number by Zero

float fraction(float num)
{
 float denom = 0.0;
 float result = 0.0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

float fraction(float num)
{
 float denom = 0.0;
 float result = 0.0;

 if(((int)denom) != 0)
 result = num/denom;

 return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

float fraction(float num)
{
 float denom = 2.0;
 float result = 0.0;

 result = num/denom;

 return result;
}

 CERT C: Rec. FLP03-C

7-661

Check Information
Group: Rec. 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP03-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-662

https://wiki.sei.cmu.edu/confluence/x/vNUxBQ

CERT C: Rec. FLP06-C
Convert integers to floating point for floating-point operations

Description

Rule Definition
Convert integers to floating point for floating-point operations.

Examples

Float overflow
Description

Float overflow occurs when an operation on floating point variables can result in values
that cannot be represented by the result data type. The data type of a variable determines
the number of bytes allocated for the variable storage and constrains the range of allowed
values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

Overflows can result in unpredictable values from computations. The result can be infinity
or the maximum finite value depending on the rounding mode used in the
implementation. If you use the result of an overflowing computation in subsequent
computations and do not account for the overflow, you can see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
overflowing computation acquire their current values. You can implement the fix on any

 CERT C: Rec. FLP06-C

7-663

event in the sequence. If the result details do not show the event history, you can trace
back using right-click options in the source code and see previous related events. See also
“Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code,
add comments to your result or code to avoid another review. See “Address Polyspace
Results Through Bug Fixes or Justifications”.

Example - Multiplication of Floats

#include <float.h>

float square(void) {

 float val = FLT_MAX;
 return val * val;
}

In the return statement, the variable val is multiplied by itself. The square of the
maximum float value cannot be represented by a float (the return type for this function)
because the value of val is the maximum float value.

Correction — Different Storage Type

One possible correction is to store the result of the operation in a larger data type. In this
example, by returning a double instead of a float, the overflow defect is fixed.

#include <float.h>

double square(void) {
 float val = FLT_MAX;

 return (double)val * (double)val;
}

Check Information
Group: Rec. 05. Floating Point (FLP)

7 CERT C Rules and Recommendations

7-664

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP06-C

Introduced in R2019a

 CERT C: Rec. FLP06-C

7-665

https://wiki.sei.cmu.edu/confluence/x/z9UxBQ

CERT C: Rec. ARR01-C
Do not apply the sizeof operator to a pointer when taking the size of an array

Description

Rule Definition
Do not apply the sizeof operator to a pointer when taking the size of an array.

Examples

Wrong type used in sizeof
Description

Wrong type used in sizeof occurs when both of the following conditions hold:

• You assign the address of a block of memory to a pointer, or transfer data between two
blocks of memory. The assignment or copy uses the sizeof operator.

For instance, you initialize a pointer using malloc(sizeof(type)) or copy data
between two addresses using memcpy(destination_ptr, source_ptr,
sizeof(type)).

• You use an incorrect type as argument of the sizeof operator. You use the pointer
type instead of the type that the pointer points to.

For instance, to initialize a type* pointer, you use malloc(sizeof(type*)) instead
of malloc(sizeof(type)).

Risk

Irrespective of what type stands for, the expression sizeof(type*) always returns a
fixed size. The size returned is the pointer size on your platform in bytes. The appearance
of sizeof(type*) often indicates an unintended usage. The error can cause allocation

7 CERT C Rules and Recommendations

7-666

of a memory block that is much smaller than what you need and lead to weaknesses such
as buffer overflows.

For instance, assume that structType is a structure with ten int variables. If you
initialize a structType* pointer using malloc(sizeof(structType*)) on a 32-bit
platform, the pointer is assigned a memory block of four bytes. However, to be allocated
completely for one structType variable, the structType* pointer must point to a
memory block of sizeof(structType) = 10 * sizeof(int) bytes. The required
size is much greater than the actual allocated size of four bytes.

Fix

To initialize a type* pointer, replace sizeof(type*) in your pointer initialization
expression with sizeof(type).

Example - Allocate a Char Array With sizeof

#include <stdlib.h>

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char*) * 5);
 free(str);

}

In this example, memory is allocated for the character pointer str using a malloc of five
char pointers. However, str is a pointer to a character, not a pointer to a character
pointer. Therefore the sizeof argument, char*, is incorrect.

Correction — Match Pointer Type to sizeof Argument

One possible correction is to match the argument to the pointer type. In this example,
str is a character pointer, therefore the argument must also be a character.

#include <stdlib.h>

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char) * 5);
 free(str);

 CERT C: Rec. ARR01-C

7-667

}

Possible misuse of sizeof
Description

Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly
unintended results from the use of sizeof operator. For instance:

• You use the sizeof operator on an array parameter name, expecting the array size.
However, the array parameter name by itself is a pointer. The sizeof operator
returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However,
the operator returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect
because you used the sizeof operator earlier with possibly incorrect expectations.
For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an
incorrect use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the not the
number of wide characters but a size in bytes obtained by using the sizeof
operator. For instance, you use wcsncpy(destination, source,
sizeof(destination) - 1) instead of wcsncpy(destination, source,
(sizeof(desintation)/sizeof(wchar_t)) - 1).

Risk

Incorrect use of the sizeof operator can cause the following issues:

• If you expect the sizeof operator to return array size and use the return value to
constrain a loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is
smaller than what you require. Insufficient buffer can lead to resultant weaknesses
such as buffer overflows.

• If you use the return value of sizeof operator incorrectly in a function call, the
function does not behave as you expect.

7 CERT C Rules and Recommendations

7-668

Fix

Possible fixes are:

• Do not use the sizeof operator on an array parameter name or array element to
determine array size.

The best practice is to pass the array size as a separate function parameter and use
that parameter in the function body.

• Use the sizeof operator carefully to determine the number argument of functions
such as strncmp or wcsncpy. For instance, for wide string functions such as
wcsncpy, use the number of wide characters as argument instead of the number of
bytes.

Example - sizeof Used Incorrectly to Determine Array Size

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {
 a[i] = i + 1;
 }
}

In this example, sizeof(a) returns the size of the pointer a and not the array size.

Correction — Determine Array Size in Another Way

One possible correction is to use another means to determine the array size.

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < MAX_SIZE; i++) {
 a[i] = i + 1;
 }
}

 CERT C: Rec. ARR01-C

7-669

Check Information
Group: Rec. 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ARR01-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-670

https://wiki.sei.cmu.edu/confluence/x/CdYxBQ

CERT C: Rec. ARR02-C
Explicitly specify array bounds, even if implicitly defined by an initializer

Description
Rule Definition
Explicitly specify array bounds, even if implicitly defined by an initializer.

Examples
Size of extern array not specified
Description

The issue occurs when you declare an array with external linkage but you do not explicitly
specify the its size.

The rule checker flags arrays declared with the extern specifier if the declaration does
not explicitly specify the array size.

Risk

Although it is possible to declare an array with an incomplete type and access its
elements, it is safer to state the size of the array explicitly. If you provide size information
for each declaration, a code reviewer can check multiple declarations for their
consistency. With size information, a static analysis tool can perform array bounds
analysis without analyzing more than one unit.

Example - Array Declarations
extern int32_t array1[10]; /* Compliant */
extern int32_t array2[]; /* Non-compliant */

In this example, two arrays are declared array1 and array2. array1 has external
linkage (the extern keyword) and a size of 10. array2 also has external linkage, but no

 CERT C: Rec. ARR02-C

7-671

specified size. array2 is noncompliant because for arrays with external linkage, you must
explicitly specify a size.

Array size not specified with designated initializer
Description

The issue occurs when you use designated initializers to initialize an array object but you
do not explicitely specify the size of the array.

Risk

If the size of an array is not specified explicitly, it is determined by the highest index of
the elements that are initialized. When using long designated initializers, it might not be
immediately apparent which element has the highest index.

Example - Using Designated Initializers Without Specifying Array Size

int a[5] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Compliant */
int b[] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Non-compliant */
int c[] = {[0]= 1, [1] = 1, [2]= 1, [3]=0, [4] = 1}; /* Non-compliant */

void display(int);

void main() {
 func(a,5);
 func(b,5);
 func(c,5);
}

void func(int* arr, int size) {
 for(int i=0; i<size; i++)
 display(arr[i]);
}

In this example, the rule is violated when the arrays b and c are initialized using
designated initializers but the array size is not specified.

7 CERT C Rules and Recommendations

7-672

Improper array initialization
Description

Improper array initialization occurs when Polyspace Bug Finder considers that an
array initialization using initializers is incorrect.

This defect applies to normal and designated initializers. In C99, with designated
initializers, you can place the elements of an array initializer in any order and implicitly
initialize some array elements. The designated initializers use the array index to establish
correspondence between an array element and an array initializer element. For instance,
the statement int arr[6] = { [4] = 29, [2] = 15 } is equivalent to int arr[6]
= { 0, 0, 15, 0, 29, 0 }.

You can use initializers incorrectly in one of the following ways.

Issue Risk Possible Fix
In your initializer for a one-
dimensional array, you have
more elements than the
array size.

Unused array initializer
elements indicate a possible
coding error.

Increase the array size or
remove excess elements.

You place the braces
enclosing initializer values
incorrectly.

Because of the incorrect
placement of braces, some
array initializer elements
are not used.

Unused array initializer
elements indicate a possible
coding error.

Place braces correctly.

In your designated
initializer, you do not
initialize the first element of
the array explicitly.

The implicit initialization of
the first array element
indicates a possible coding
error. You possibly
overlooked the fact that
array indexing starts from 0.

Initialize all elements
explicitly.

 CERT C: Rec. ARR02-C

7-673

Issue Risk Possible Fix
In your designated
initializer, you initialize an
element twice.

The first initialization is
overridden.

The redundant first
initialization indicates a
possible coding error.

Remove the redundant
initialization.

You use designated and
nondesignated initializers in
the same initialization.

You or another reviewer of
your code cannot determine
the size of the array by
inspection.

Use either designated or
nondesignated initializers.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Incorrectly Placed Braces (C Only)

int arr[2][3]
= {{1, 2},
 {3, 4},
 {5, 6}
};

In this example, the array arr is initialized as {1,2,0,3,4,0}. Because the initializer
contains {5,6}, you might expect the array to be initialized {1,2,3,4,5,6}.

Correction — Place Braces Correctly

One possible correction is to place the braces correctly so that all elements are explicitly
initialized.

7 CERT C Rules and Recommendations

7-674

int a1[2][3]
= {{1, 2, 3},
 {4, 5, 6}
};

Example - First Element Not Explicitly Initialized

int arr[5]
= {
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

In this example, arr[0] is not explicitly initialized. It is possible that the programmer did
not consider that the array indexing starts from 0.

Correction — Explicitly Initialize All Elements

One possible correction is to initialize all elements explicitly.

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

Example - Element Initialized Twice

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [2] = 4,
 [4] = 5
};

 CERT C: Rec. ARR02-C

7-675

In this example, arr[2] is initialized twice. The first initialization is overridden. In this
case, because arr[3] was not explicitly initialized, it is possible that the programmer
intended to initialize arr[3] when arr[2] was initialized a second time.

Correction — Fix Redundant Initialization

One possible correction is to eliminate the redundant initialization.

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

Example - Mix of Designated and Nondesignated Initializers

int arr[]
= {
 [0] = 1,
 [3] = 3,
 4,
 [5] = 5,
 6
 };

In this example, because a mix of designated and nondesignated initializers are used, it is
difficult to determine the size of arr by inspection.

Correction — Use Only Designated Initializers

One possible correction is to use only designated initializers for array initialization.

int arr[]
= {
 [0] = 1,
 [3] = 3,
 [4] = 4,
 [5] = 5,
 [6] = 6
};

7 CERT C Rules and Recommendations

7-676

Check Information
Group: Rec. 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ARR02-C

Introduced in R2019a

 CERT C: Rec. ARR02-C

7-677

https://wiki.sei.cmu.edu/confluence/x/6dUxBQ

CERT C: Rec. STR02-C
Sanitize data passed to complex subsystems

Description

Rule Definition
Sanitize data passed to complex subsystems.

Examples

Execution of externally controlled command
Description

Execution of externally controlled command checks for commands that are fully or
partially constructed from externally controlled input.

Risk

Attackers can use the externally controlled input as operating system commands, or
arguments to the application. An attacker could read or modify sensitive data can be read
or modified, execute unintended code, or gain access to other aspects of the program.

Fix

Validate the inputs to allow only intended input values. For example, create a whitelist of
acceptable inputs and compare the input against this list.

Example - Call Argument Command

#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include "stdlib.h"

7 CERT C Rules and Recommendations

7-678

#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void taintedexternalcmd(char* usercmd)
{
 char cmd[SIZE128] = "/usr/bin/cat ";
 strcat(cmd, usercmd);
 system(cmd);
}

This example function calls a command from a user argument without checking the
command variable.

Correction — Use a Predefined Command

One possible correction is to use a switch statement to run a predefined command,
using the user input as the switch variable.

#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
enum { CMD0 = 1, CMD1, CMD2 };

void taintedexternalcmd(int usercmd)

 CERT C: Rec. STR02-C

7-679

{
 char cmd[SIZE128] = "/usr/bin/cat ";

 switch(usercmd) {
 case CMD0:
 strcat(cmd, "*.c");
 break;
 case CMD1:
 strcat(cmd, "*.h");
 break;
 case CMD2:
 strcat(cmd, "*.cpp");
 break;
 default:
 strcat(cmd, "*.c");
 }
 system(cmd);
}

Command executed from externally controlled path
Description

Command executed from externally controlled path checks the path of commands
that the application controls. If the path of a command is from or constructed from
external sources, Bug Finder flags the command function.

Risk

An attacker can:

• Change the command that the program executes, possibly to a command that only the
attack can control.

• Change the environment in which the command executes, by which the attacker
controls what the command means and does.

Fix

Before calling the command, validate the path to make sure that it is the intended
location.

7 CERT C Rules and Recommendations

7-680

Example - Executing Path from Environment Variable

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void bug_taintedpathcmd() {
 char cmd[SIZE128] = "";
 char* userpath = getenv("MYAPP_PATH");

 strncpy(cmd, userpath, SIZE100);
 strcat(cmd, "/ls *");
 /* Launching command */
 system(cmd);
}

This example obtains a path from an environment variable MYAPP_PATH. system runs a
command from that path without checking the value of the path. If the path is not the
intended path, your program executes in the wrong location.

Correction — Use Trusted Path

One possible correction is to use a list of allowed paths to match against the environment
variable path.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

/* Function to sanitize a string */
int sanitize_str(char* s, size_t n) {
 int res = 0;

 CERT C: Rec. STR02-C

7-681

 /* String is ok if */
 if (s && n>0 && n<SIZE128) {
 /* - string is not null */
 /* - string has a positive and limited size */
 s[n-1] = '\0'; /* Add a security \0 char at end of string */
 /* Tainted pointer detected above, used as "firewall" */
 res = 1;
 }
 return res;
}

/* Authorized path ids */
enum { PATH0=1, PATH1, PATH2 };

void taintedpathcmd() {
 char cmd[SIZE128] = "";

 char* userpathid = getenv("MYAPP_PATH_ID");
 if (sanitize_str(userpathid, SIZE100)) {
 int pathid = atoi(userpathid);

 char path[SIZE128] = "";
 switch(pathid) {
 case PATH0:
 strcpy(path, "/usr/local/my_app0");
 break;
 case PATH1:
 strcpy(path, "/usr/local/my_app1");
 break;
 case PATH2:
 strcpy(path, "/usr/local/my_app2");
 break;
 default:
 /* do nothing */
 break;
 }
 if (strlen(path)>0) {
 strncpy(cmd, path, SIZE100);
 strcat(cmd, "/ls *");
 system(cmd);
 }
 }
}

7 CERT C Rules and Recommendations

7-682

Library loaded from externally controlled path
Description

Library loaded from externally controlled path looks for libraries loaded from fixed or
controlled paths. If unintended actors can control one or more locations on this fixed
path, Bug Finder raises a defect.

Risk

If an attacker knows or controls the path that you use to load a library, the attacker can
change:

• The library that the program loads, replacing the intended library and commands.
• The environment in which the library executes, giving unintended permissions and

capabilities to the attacker.

Fix

When possible, use hard-coded or fully qualified path names to load libraries. It is
possible the hard-coded paths do not work on other systems. Use a centralized location
for hard-coded paths, so that you can easily modify the path within the source code.

Another solution is to use functions that require explicit paths. For example, system()
does not require a full path because it can use the PATH environment variable. However,
execl() and execv() do require the full path.

Example - Call Custom Library

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void* taintedpathlib() {

 CERT C: Rec. STR02-C

7-683

 void* libhandle = NULL;
 char lib[SIZE128] = "";
 char* userpath = getenv("LD_LIBRARY_PATH");
 strncpy(lib, userpath, SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, 0x00001);
 return libhandle;
}

This example loads the library libX.so from an environment variable
LD_LIBRARY_PATH. An attacker can change the library path in this environment variable.
The actual library you load could be a different library from the one that you intend.

Correction — Change and Check Path

One possible correction is to change how you get the library path and check the path of
the library before opening the library. This example receives the path as an input
argument. Then the path is checked to make sure the library is not under /usr/.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

/* Function to sanitize a string */
int sanitize_str(char* s, size_t n) {
 /* strlen is used here as a kind of firewall for tainted string errors */
 int res = (strlen(s) > 0 && strlen(s) < n);
 return res;
}
void* taintedpathlib(char* userpath) {
 void* libhandle = NULL;
 if (sanitize_str(userpath, SIZE128)) {
 char lib[SIZE128] = "";

 if (strncmp(userpath, "/usr", 4)!=0) {

7 CERT C Rules and Recommendations

7-684

 strncpy(lib, userpath, SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, RTLD_LAZY);
 }
 }
 return libhandle;
}

Check Information
Group: Rec. 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR02-C

Introduced in R2019a

 CERT C: Rec. STR02-C

7-685

https://wiki.sei.cmu.edu/confluence/x/GdcxBQ

CERT C: Rec. STR03-C
Do not inadvertently truncate a string

Description

Rule Definition
Do not inadvertently truncate a string.

Examples

Invalid use of standard library string routine
Description

Invalid use of standard library string routine occurs when a string library function is
called with invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy
function with a source argument larger than the destination argument can result in buffer
overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases,
you can constrain the function arguments before the function call. For instance, if the
strcpy function:

char * strcpy(char * destination, const char* source)

tries to copy too many bytes into the destination argument compared to the available
buffer, constrain the source argument before the call to strcpy. In some cases, you can
use an alternative function to avoid the error. For instance, instead of strcpy, you can

7 CERT C Rules and Recommendations

7-686

use strncpy to control the number of bytes copied. See also “Interpret Polyspace Bug
Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Use of Standard Library String Routine Error
 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

 CERT C: Rec. STR03-C

7-687

Check Information
Group: Rec. 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR03-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-688

https://wiki.sei.cmu.edu/confluence/x/D9cxBQ

CERT C: Rec. STR07-C
Use the bounds-checking interfaces for string manipulation

Description

Rule Definition
Use the bounds-checking interfaces for string manipulation.

Examples

Use of dangerous standard function
Description

The Use of dangerous standard function check highlights uses of functions that are
inherently dangerous or potentially dangerous given certain circumstances. The following
table lists possibly dangerous functions, the risks of using each function, and what
function to use instead.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You cannot
control the length of input from the
console.

fgets

cin Inherently dangerous — You cannot
control the length of input from the
console.

Avoid or prefaces calls to cin
with cin.width.

strcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

strncpy

 CERT C: Rec. STR07-C

7-689

Dangerous
Function

Risk Level Safer Function

stpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

stpncpy

lstrcpy or
StrCpy

Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

StringCbCopy,
StringCchCopy, strncpy,
strcpy_s, or strlcpy

strcat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

strncat, strlcat, or
strcat_s

lstrcat or
StrCat

Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or
strlcat

wcpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

wcsncat, wcslcat, or
wcncat_s

wcscpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcsncpy

sprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

snprintf

7 CERT C Rules and Recommendations

7-690

Dangerous
Function

Risk Level Safer Function

vsprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

vsnprintf

Risk

These functions can cause buffer overflow, which attackers can use to infiltrate your
program.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Using sprintf

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;

 CERT C: Rec. STR07-C

7-691

 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

This example function uses sprintf to copy the string str to dst. However, if str is
larger than the buffer, sprintf can cause buffer overflow.

Correction — Use snprintf with Buffer Size

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Destination buffer overflow in string manipulation
Description

Destination buffer overflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at an offset greater
than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char*
format), you use a constant string format of greater size than buffer.

7 CERT C Rules and Recommendations

7-692

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of characters
written. For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or
sprintf_s instead to enforce length control. Alternatively, use asprintf to
automatically allocate the memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string,
use vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s
instead to enforce length control.

Another possible solution is to increase the buffer size.

Example - Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater
size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 CERT C: Rec. STR07-C

7-693

 snprintf(buffer, 20, fmt_string);
}

Check Information
Group: Rec. 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR07-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-694

https://wiki.sei.cmu.edu/confluence/x/HdcxBQ

CERT C: Rec. STR11-C
Do not specify the bound of a character array initialized with a string literal

Description

Rule Definition
Do not specify the bound of a character array initialized with a string literal.

Examples

Missing null in string array
Description

Missing null in string array occurs when a string does not have enough space to
terminate with a null character '\0'.

This defect applies only for projects in C.

Risk

A buffer overflow can occur if you copy a string to an array without assuming the implicit
null terminator.

Fix

If you initialize a character array with a literal, avoid specifying the array bounds.

char three[] = "THREE";

The compiler automatically allocates space for a null terminator. In the preceding
example, the compiler allocates sufficient space for five characters and a null terminator.

If the issue occurs after initialization, you might have to increase the size of the array by
one to account for the null terminator.

 CERT C: Rec. STR11-C

7-695

In certain circumstances, you might want to initialize the character array with a sequence
of characters instead of a string. In this situation, add comments to your result or code to
avoid another review. See “Address Polyspace Results Through Bug Fixes or
Justifications”.

Example - Array size is too small

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[5] = "THREE";
}

The character array three has a size of 5 and 5 characters 'T', 'H', 'R', 'E', and 'E'.
There is no room for the null character at the end because three is only five bytes large.

Correction — Increase Array Size

One possible correction is to change the array size to allow for the five characters plus a
null character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[6] = "THREE";
}

Correction — Change Initialization Method

One possible correction is to initialize the string by leaving the array size blank. This
initialization method allocates enough memory for the five characters and a terminating-
null character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[] = "THREE";
}

7 CERT C Rules and Recommendations

7-696

Check Information
Group: Rec. 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR11-C

Introduced in R2019a

 CERT C: Rec. STR11-C

7-697

https://wiki.sei.cmu.edu/confluence/x/4NUxBQ

CERT C: Rec. MEM00-C
Allocate and free memory in the same module, at the same level of abstraction

Description

Rule Definition
Allocate and free memory in the same module, at the same level of abstraction.

Examples

Invalid free of pointer
Description

Invalid free of pointer occurs when a block of memory released using the free function
was not previously allocated using malloc, calloc, or realloc.

Risk

The free function releases a block of memory allocated on the heap. If you try to access
a location on the heap that you did not allocate previously, a segmentation fault can occur.

The issue can highlight coding errors. For instance, you perhaps wanted to use the free
function or a previous malloc function on a different pointer.

Fix

In most cases, you can fix the issue by removing the free statement. If the pointer is not
allocated memory from the heap with malloc or calloc, you do not need to free the
pointer. You can simply reuse the pointer as required.

If the issue highlights a coding error such as use of free or malloc on the wrong
pointer, correct the error.

7 CERT C Rules and Recommendations

7-698

If the issue occurs because you use the free function to free memory allocated with the
new operator, replace the free function with the delete operator.

Example - Invalid Free of Pointer Error

#include <stdlib.h>

void Assign_Ones(void)
{
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;

 free(p);
 /* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points to a memory
location that was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction
is to remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)
 {
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;
 /* Fix: Remove deallocation of p */
 }

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time, one possible
correction is to dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)
{

 CERT C: Rec. MEM00-C

7-699

 int *p;
 /* Fix: Allocate memory dynamically to p */
 p=(int*) calloc(10,sizeof(int));
 for(int i=0;i<10;i++)
 *(p+i)=1;
 free(p);
}

Deallocation of previously deallocated pointer
Description

Deallocation of previously deallocated pointer occurs when a block of memory is
freed more than once using the free function without an intermediate allocation.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points
to a memory location on the heap. When you use the free function on this pointer, the
associated block of memory is freed for reallocation. Trying to free this block of memory
can result in a segmentation fault.

Fix

The fix depends on the root cause of the defect. See if you intended to allocate a memory
block to the pointer between the first deallocation and the second. Otherwise, remove the
second free statement.

As a good practice, after you free a memory block, assign the corresponding pointer to
NULL. Before freeing pointers, check them for NULL values and handle the error. In this
way, you are protected against freeing an already freed block.

Example - Deallocation of Previously Deallocated Pointer Error

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;

7 CERT C Rules and Recommendations

7-700

 free(pi);
 free (pi);
 /* Defect: pi has already been freed */
}

The first free statement releases the block of memory that pi refers to. The second free
statement on pi releases a block of memory that has been freed already.

Correction — Remove Duplicate Deallocation

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 /* Fix: remove second deallocation */
 }

Use of previously freed pointer
Description

Use of previously freed pointer occurs when you access a block of memory after
freeing the block using the free function.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points
to a memory location on the heap. When you use the free function on this pointer, the
associated block of memory is freed for reallocation. Trying to access this block of
memory can result in unpredictable behavior or even a segmentation fault.

Fix

The fix depends on the root cause of the defect. See if you intended to free the memory
later or allocate another memory block to the pointer before access.

 CERT C: Rec. MEM00-C

7-701

As a good practice, after you free a memory block, assign the corresponding pointer to
NULL. Before dereferencing pointers, check them for NULL values and handle the error.
In this way, you are protected against accessing a freed block.

Example - Use of Previously Freed Pointer Error

#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;
 free(pi);

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore,
dereferencingpi after the free statement is not valid.

Correction — Free Pointer After Use

One possible correction is to free the pointer pi only after the last instance where it is
accessed.

#include <stdlib.h>

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

7 CERT C Rules and Recommendations

7-702

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM00-C

Introduced in R2019a

 CERT C: Rec. MEM00-C

7-703

https://wiki.sei.cmu.edu/confluence/x/FtYxBQ

CERT C: Rec. MEM01-C
Store a new value in pointers immediately after free()

Description
Rule Definition
Store a new value in pointers immediately after free().

Examples
Missing reset of a freed pointer
Description

Missing reset of a freed pointer detects pointers that have been freed and not
reassigned another value. After freeing a pointer, the memory data is still accessible. To
clear this data, the pointer must also be set to NULL or another value.

Risk

Not resetting pointers can cause dangling pointers. Dangling pointers can cause:

• Freeing already freed memory.
• Reading from or writing to already freed memory.
• Hackers executing code stored in freed pointers or with vulnerable permissions.

Fix

After freeing a pointer, if it is not immediately assigned to another valid address, set the
pointer to NULL.

Example - Free Without Reset
#include <stdlib.h>
enum {

7 CERT C Rules and Recommendations

7-704

 SIZE3 = 3,
 SIZE20 = 20
};

void missingfreedptrreset()
{
 static char *str = NULL;

 if (str == NULL)
 str = (char *)malloc(SIZE20);

 if (str != NULL)
 free(str);
}

In this example, the pointer str is freed at the end of the program. The next call to
bug_missingfreedptrrese can fail because str is not NULL and the initialization to
NULL can be invalid.

Correction — Redefine free to Free and Reset

One possible correction is to customize free so that when you free a pointer, it is
automatically reset.

#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};

static void sanitize_free(void **p)
{
 if ((p != NULL) && (*p != NULL))
 {
 free(*p);
 *p = NULL;
 }
}

#define free(X) sanitize_free((void **)&X)

void missingfreedptrreset()
{
 static char *str = NULL;

 CERT C: Rec. MEM01-C

7-705

 if (str == NULL)
 str = (char *)malloc(SIZE20);

 if (str != ((void *)0))
 {
 free(str);
 }
}

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM01-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-706

https://wiki.sei.cmu.edu/confluence/x/FNYxBQ

CERT C: Rec. MEM02-C
Immediately cast the result of a memory allocation function call into a pointer to the
allocated type

Description

Rule Definition
Immediately cast the result of a memory allocation function call into a pointer to the
allocated type.

Examples

Wrong allocated object size for cast
Description

Wrong allocated object size for cast occurs during pointer conversion when the
pointer’s address is misaligned. If a pointer is converted to a different pointer type, the
size of the allocated memory must be a multiple of the size of the destination pointer.

Risk

Dereferencing a misaligned pointer has undefined behavior and can cause your program
to crash.

Fix

Suppose you convert a pointer ptr1 to ptr2. If ptr1 points to a buffer of N bytes and
ptr2 is a type * pointer where sizeof(type) is n bytes, make sure that N is an
integer multiple of n.

See examples of fixes below.

 CERT C: Rec. MEM02-C

7-707

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Dynamic Allocation of Pointers

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(13);
 long *dest;

 dest = (long*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to a long*. The
dynamically allocated memory of ptr, 13 bytes, is not a multiple of the size of dest, 4
bytes. This misalignment causes the Wrong allocated object size for cast defect.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the allocated memory to 12 instead of 13.

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(12);
 long *dest;

 dest = (long*)ptr;
}

Example - Static Allocation of Pointers

void static_non_align(void){
 char arr[13], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to an int* in line
6. ptr has a memory size of 13 bytes because the array arr has a size of 13 bytes. The

7 CERT C Rules and Recommendations

7-708

size of dest is 4 bytes, which is not a multiple of 13. This misalignment causes the
Wrong allocated object size for cast defect.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the size of the array arr to a multiple of 4.

void static_non_align(void){
 char arr[12], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr;
}

Example - Allocation with a Function

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(13); //defect
 dest2 = (char*)my_alloc(13); //not a defect
}

In this example, the software raises a defect on the conversion of the pointer returned by
my_alloc(13) to an int* in line 11. my_alloc(13) returns a pointer with a
dynamically allocated size of 13 bytes. The size of dest1 is 4 bytes, which is not a divisor
of 13. This misalignment causes the Wrong allocated object size for cast defect. In line
12, the same function call, my_alloc(13), does not call a defect for the conversion to
dest2 because the size of char*, 1 byte, a divisor of 13.

 CERT C: Rec. MEM02-C

7-709

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the argument for my_alloc to a multiple of
4.

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(12);
 dest2 = (char*)my_alloc(13);
}

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM02-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-710

https://wiki.sei.cmu.edu/confluence/x/99YxBQ

CERT C: Rec. MEM03-C
Clear sensitive information stored in reusable resources

Description

Rule Definition
Clear sensitive information stored in reusable resources.

Examples

Sensitive heap memory not cleared before release
Description

Sensitive heap memory not cleared before release detects dynamically allocated
memory containing sensitive data. If you do not clear the sensitive data when you free the
memory, Bug Finder raises a defect on the free function.

Risk

If the memory zone is reallocated, an attacker can still inspect the sensitive data in the
old memory zone.

Fix

Before calling free, clear out the sensitive data using memset or SecureZeroMemory.

Example - Sensitive Buffer Freed, Not Cleared

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>

 CERT C: Rec. MEM03-C

7-711

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 free(buf);
}

In this example, the function uses a buffer of passwords and frees the memory before the
end of the function. However, the data in the memory is not cleared by using the free
command.

Correction — Nullify Data

One possible correction is to write over the data to clear out the sensitive information.
This example uses memset to write over the data with zeros.

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0;i<(sizeof(arr)/sizeof(arr[0]));i++) assert(arr[i]==0)

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);

 if (buf) {
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
 free(buf);
 }
}

7 CERT C Rules and Recommendations

7-712

Uncleared sensitive data in stack
Description

Uncleared sensitive data in stack detects static memory containing sensitive data. If
you do not clear the sensitive data from your stack before exiting the function or
program, Bug Finder raises a defect on the last curly brace.

Risk

Leaving sensitive information in your stack, such as passwords or user information,
allows an attacker additional access to the information after your program has ended.

Fix

Before exiting a function or program, clear out the memory zones that contain sensitive
data by using memset or SecureZeroMemory.

Example - Static Buffer of Password Information

#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

void bug_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
}

In this example, a static buffer is filled with password information. The program frees the
stack memory at the end of the program. However, the data is still accessible from the
memory.

Correction — Clear Memory

One possible correction is to write over the memory before exiting the function. This
example uses memset to clear the data from the buffer memory.

#include <unistd.h>
#include <string.h>
#include <sys/types.h>

 CERT C: Rec. MEM03-C

7-713

#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0; i<(sizeof(arr)/sizeof(arr[0])); i++) assert(arr[i]==0)

void corrected_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
}

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM03-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-714

https://wiki.sei.cmu.edu/confluence/x/VNcxBQ

CERT C: Rec. MEM04-C
Beware of zero-length allocations

Description

Rule Definition
Beware of zero-length allocations.

Examples

Variable length array with nonpositive size
Description

Variable length array with non-positive size occurs when size of a variable-length
array is zero or negative.

Risk

If the size of a variable-length array is zero or negative, unexpected behavior can occur,
such as stack overflow.

Fix

When you declare a variable-length array as a local variable in a function:

• If you use a function parameter as the array size, check that the parameter is positive.
• If you use the result of a computation on a function parameter as the array size, check

that the result is positive.

You can place a test for positive value either before the function call or the array
declaration in the function body.

 CERT C: Rec. MEM04-C

7-715

Example - Nonpositive Array Size

int input(void);

void add_scalar(int n, int m) {
 int r=0;
 int arr[m][n];
 for (int i=0; i<m; i++) {
 for (int j=0; j<n; j++) {
 arr[i][j] = input();
 r += arr[i][j];
 }
 }
}

void main() {
 add_scalar(2,2);
 add_scalar(-1,2);
 add_scalar(2,0);
}

In this example, the second and third calls to add_scalar result in a negative and zero
size of arr.

Correction — Make Array Size Positive

One possible correction is fix or remove calls that result in a nonpositive array size.

Tainted sign change conversion
Description

Tainted sign change conversion looks for values from unsecure sources that are
converted, implicitly or explicitly, from signed to unsigned values.

For example, functions that use size_t as arguments implicitly convert the argument to
an unsigned integer. Some functions that implicitly convert size_t are:

bcmp
memcpy
memmove
strncmp
strncpy

7 CERT C Rules and Recommendations

7-716

calloc
malloc
memalign

Risk

If you convert a small negative number to unsigned, the result is a large positive number.
The large positive number can create security vulnerabilities. For example, if you use the
unsigned value in:

• Memory size routines — causes allocating memory issues.
• String manipulation routines — causes buffer overflow.
• Loop boundaries — causes infinite loops.

Fix

To avoid converting unsigned negative values, check that the value being converted is
within an acceptable range. For example, if the value represents a size, validate that the
value is not negative and less than the maximum value size.

Example - Set Memory Value with Size Argument
#include <stdlib.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void bug_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size<SIZE128) {
 memset(str, 'c', size);
 }
}

In this example, a char buffer is created and filled using memset. The size argument to
memset is an input argument to the function.

The call to memset implicitly converts size to unsigned integer. If size is a large
negative number, the absolute value could be too large to represent as an integer, causing
a buffer overflow.

 CERT C: Rec. MEM04-C

7-717

Correction — Check Value of size

One possible correction is to check if size is inside the valid range. This correction
checks if size is greater than zero and less than the buffer size before calling memset.

#include <stdlib.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void corrected_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size>0 && size<SIZE128) {
 memset(str, 'c', size);
 }
}

Tainted size of variable length array
Description

Tainted size of variable length array detects variable length arrays (VLA) whose size is
from an unsecure source.

Risk

If an attacker changed the size of your VLA to an unexpected value, it can cause your
program to crash or behave unexpectedly.

If the size is non-positive, the behavior of the VLA is undefined. Your program does not
perform as expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.

Fix

Validate your VLA size to make sure that it is positive and less than a maximum value.

7 CERT C Rules and Recommendations

7-718

Example - Input Argument Used as Size of VLA
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {

 int tabvla[size];
 int res = 0;
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 return res;
}

In this example, a variable length array size is based on an input argument. Because this
input argument value is not checked, the size may be negative or too large.

Correction — Check VLA Size

One possible correction is to check the size variable before creating the variable length
array. This example checks if the size is larger than 10 and less than 100, before creating
the VLA

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {
 int res = 0;
 if (size>SIZE10 && size<SIZE100) {
 int tabvla[size];
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 }
 return res;
}

 CERT C: Rec. MEM04-C

7-719

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM04-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-720

https://wiki.sei.cmu.edu/confluence/x/29UxBQ

CERT C: Rec. MEM05-C
Avoid large stack allocations

Description

Rule Definition
Avoid large stack allocations.

Examples

Direct or indirect function call to itself
Description

The issue occurs when your code contains functions that call themselves directly or
indirectly.

Risk

Variables local to a function are stored in the call stack. If a function calls itself directly or
indirectly several times, the available stack space can be exceeded, causing serious
failure. Unless the recursion is tightly controlled, it is difficult to determine the maximum
stack space required.

Example - Direct and Indirect Recursion

void foo1(void) { /* Non-compliant - Indirect recursion foo1->foo2->foo1... */
 foo2();
 foo1(); /* Non-compliant - Direct recursion */
}

void foo2(void) {
 foo1();
}

 CERT C: Rec. MEM05-C

7-721

In this example, the rule is violated because of:

• Direct recursion foo1 → foo1.
• Indirect recursion foo1 → foo2 → foo1.

Variable length array with nonpositive size
Description

Variable length array with non-positive size occurs when size of a variable-length
array is zero or negative.

Risk

If the size of a variable-length array is zero or negative, unexpected behavior can occur,
such as stack overflow.

Fix

When you declare a variable-length array as a local variable in a function:

• If you use a function parameter as the array size, check that the parameter is positive.
• If you use the result of a computation on a function parameter as the array size, check

that the result is positive.

You can place a test for positive value either before the function call or the array
declaration in the function body.

Example - Nonpositive Array Size

int input(void);

void add_scalar(int n, int m) {
 int r=0;
 int arr[m][n];
 for (int i=0; i<m; i++) {
 for (int j=0; j<n; j++) {
 arr[i][j] = input();
 r += arr[i][j];
 }
 }
}

7 CERT C Rules and Recommendations

7-722

void main() {
 add_scalar(2,2);
 add_scalar(-1,2);
 add_scalar(2,0);
}

In this example, the second and third calls to add_scalar result in a negative and zero
size of arr.

Correction — Make Array Size Positive

One possible correction is fix or remove calls that result in a nonpositive array size.

Tainted size of variable length array
Description

Tainted size of variable length array detects variable length arrays (VLA) whose size is
from an unsecure source.

Risk

If an attacker changed the size of your VLA to an unexpected value, it can cause your
program to crash or behave unexpectedly.

If the size is non-positive, the behavior of the VLA is undefined. Your program does not
perform as expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.

Fix

Validate your VLA size to make sure that it is positive and less than a maximum value.

Example - Input Argument Used as Size of VLA

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

 CERT C: Rec. MEM05-C

7-723

int taintedvlasize(int size) {

 int tabvla[size];
 int res = 0;
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 return res;
}

In this example, a variable length array size is based on an input argument. Because this
input argument value is not checked, the size may be negative or too large.

Correction — Check VLA Size

One possible correction is to check the size variable before creating the variable length
array. This example checks if the size is larger than 10 and less than 100, before creating
the VLA

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {
 int res = 0;
 if (size>SIZE10 && size<SIZE100) {
 int tabvla[size];
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 }
 return res;
}

Check Information
Group: Rec. 08. Memory Management (MEM)

7 CERT C Rules and Recommendations

7-724

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM05-C

Introduced in R2019a

 CERT C: Rec. MEM05-C

7-725

https://wiki.sei.cmu.edu/confluence/x/ztUxBQ

CERT C: Rec. MEM06-C
Ensure that sensitive data is not written out to disk

Description

Rule Definition
Ensure that sensitive data is not written out to disk.

Examples

Sensitive data printed out
Description

Sensitive data printed out detects print functions, such as stdout or stderr, that
print sensitive information.

The checker considers the following as sensitive information:

• Return values of password manipulation functions such as getpw, getpwnam or
getpwuid.

• Input values of functions such as the Windows-specific function LogonUser.

Risk

Printing sensitive information, such as passwords or user information, allows an attacker
additional access to the information.

Fix

One fix for this defect is to not print out sensitive information.

If you are saving your logfile to an external file, set the file permissions so that attackers
cannot access the logfile information.

7 CERT C Rules and Recommendations

7-726

Example - Printing Passwords
#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

extern void verify_null(const char* buf);
void bug_sensitivedataprint(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 puts("Name\n");
 puts(pwd.pw_name);
 puts("PassWord\n");
 puts(pwd.pw_passwd);
 memset(buf, 0, sizeof(buf));
 verify_null(buf);
}

In this example, Bug Finder flags puts for printing out the password pwd.pw_passwd.

Correction — Obfuscate the Password

One possible correction is to obfuscate the password information so that the information
is not visible.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

extern void verify_null(const char* buf);

void sensitivedataprint(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 puts("Name\n");
 puts(pwd.pw_name);
 puts("PassWord\n");

 CERT C: Rec. MEM06-C

7-727

 puts("XXXXXXXX\n");
 memset(buf, 0, sizeof(buf));
 verify_null(buf);
}

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM06-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-728

https://wiki.sei.cmu.edu/confluence/x/89UxBQ

CERT C: Rec. MEM11-C
Do not assume infinite heap space

Description
Rule Definition
Do not assume infinite heap space.

Examples
Unprotected dynamic memory allocation
Description

Unprotected dynamic memory allocation occurs when you do not check after dynamic
memory allocation whether the memory allocation succeeded.

Risk

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a
value NULL if the requested memory is not available. If the code following the allocation
accesses the memory block without checking for this NULL value, this access is not
protected from failures.

Fix

Check the return value of malloc, calloc, or realloc for NULL before accessing the
allocated memory location.

int *ptr = malloc(size * sizeof(int));

if(ptr) /* Check for NULL */
{
 /* Memory access through ptr */
}

 CERT C: Rec. MEM11-C

7-729

Example - Unprotected dynamic memory allocation error

#include <stdlib.h>

void Assign_Value(void)
{
 int* p = (int*)calloc(5, sizeof(int));

 *p = 2;
 /* Defect: p is not checked for NULL value */

 free(p);
}

If the memory allocation fails, the function calloc returns NULL to p. Before accessing
the memory through p, the code does not check whether p is NULL

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

void Assign_Value(void)
 {
 int* p = (int*)calloc(5, sizeof(int));

 /* Fix: Check if p is NULL */
 if(p!=NULL) *p = 2;

 free(p);
 }

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

7 CERT C Rules and Recommendations

7-730

Topics
“Check for Coding Standard Violations”

External Websites
MEM11-C

Introduced in R2019a

 CERT C: Rec. MEM11-C

7-731

https://wiki.sei.cmu.edu/confluence/x/XNYxBQ

CERT C: Rec. MEM12-C
Consider using a goto chain when leaving a function on error when using and releasing
resources

Description

Rule Definition
Consider using a goto chain when leaving a function on error when using and releasing
resources.

Examples

Memory leak
Description

Memory leak occurs when you do not free a block of memory allocated through malloc,
calloc, realloc, or new. If the memory is allocated in a function, the defect does not
occur if:

• Within the function, you free the memory using free or delete.
• The function returns the pointer assigned by malloc, calloc, realloc, or new.
• The function stores the pointer in a global variable or in a parameter.

Risk

Dynamic memory allocation functions such as malloc allocate memory on the heap. If
you do not release the memory after use, you reduce the amount of memory available for
another allocation. On embedded systems with limited memory, you might end up
exhausting available heap memory even during program execution.

7 CERT C Rules and Recommendations

7-732

Fix

Determine the scope where the dynamically allocated memory is accessed. Free the
memory block at the end of this scope.

To free a block of memory, use the free function on the pointer that was used during
memory allocation. For instance:

ptr = (int*)malloc(sizeof(int));
...
free(ptr);

It is a good practice to allocate and free memory in the same module at the same level of
abstraction. For instance, in this example, func allocates and frees memory at the same
level but func2 does not.

void func() {
 ptr = (int*)malloc(sizeof(int));
 {
 ...
 }
 free(ptr);
}

void func2() {
 {
 ptr = (int*)malloc(sizeof(int));
 ...
 }
 free(ptr);
}

See CERT-C Rule MEM00-C.

Example - Dynamic Memory Not Released Before End of Function
#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");

 CERT C: Rec. MEM12-C

7-733

https://wiki.sei.cmu.edu/confluence/x/FtYxBQ

 return;
 }

 *pi = 42;
 /* Defect: pi is not freed */
}

In this example, pi is dynamically allocated by malloc. The function assign_memory
does not free the memory, nor does it return pi.

Correction — Free Memory

One possible correction is to free the memory referenced by pi using the free function.
The free function must be called before the function assign_memory terminates

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }
 *pi = 42;

 /* Fix: Free the pointer pi*/
 free(pi);
}

Correction — Return Pointer from Dynamic Allocation

Another possible correction is to return the pointer pi. Returning pi allows the function
calling assign_memory to free the memory block using pi.

#include<stdlib.h>
#include<stdio.h>

int* assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));

7 CERT C Rules and Recommendations

7-734

 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return(pi);
 }
 *pi = 42;

 /* Fix: Return the pointer pi*/
 return(pi);
}

Example - Memory Leak with New/Delete

#define NULL '\0'

void initialize_arr1(void)
{
 int *p_scalar = new int(5);
}

void initialize_arr2(void)
{
 int *p_array = new int[5];
}

In this example, the functions create two variables, p_scalar and p_array, using the
new keyword. However, the functions end without cleaning up the memory for these
pointers. Because the functions used new to create these variables, you must clean up
their memory by calling delete at the end of each function.

Correction — Add Delete

To correct this error, add a delete statement for every new initialization. If you used
brackets [] to instantiate a variable, you must call delete with brackets as well.

#define NULL '\0'

void initialize_arrs(void)
{
 int *p_scalar = new int(5);
 int *p_array = new int[5];

 CERT C: Rec. MEM12-C

7-735

 delete p_scalar;
 p_scalar = NULL;

 delete[] p_array;
 p_scalar = NULL;
}

Resource leak
Description

Resource leak occurs when you open a file stream by using a FILE pointer but do not
close it before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk

If you do not release file handles explicitly as soon as possible, a failure can occur due to
exhaustion of resources.

Fix

Close a FILE pointer before the end of its scope, or before you assign the pointer to
another stream.

Example - FILE Pointer Not Released Before End of Scope

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

7 CERT C Rules and Recommendations

7-736

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is
explicitly dissociated from the file stream of data1.txt, it is used to access another file
data2.txt.

Correction — Release FILE Pointer

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");
 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM12-C

Introduced in R2019a

 CERT C: Rec. MEM12-C

7-737

https://wiki.sei.cmu.edu/confluence/x/odYxBQ

CERT C: Rec. FIO02-C
Canonicalize path names originating from tainted sources

Description
Rule Definition
Canonicalize path names originating from tainted sources.

Examples
Vulnerable path manipulation
Description

Vulnerable path manipulation detects relative or absolute path traversals. If the path
traversal contains a tainted source, or you use the path to open/create files, Bug Finder
raises a defect.

Risk

Relative path elements, such as ".." can resolve to locations outside the intended folder.
Absolute path elements, such as "/abs/path" can also resolve to locations outside the
intended folder.

An attacker can use these types of path traversal elements to traverse to the rest of the
file system and access other files or folders.

Fix

Avoid vulnerable path traversal elements such as /../ and /abs/path/. Use fixed file
names and locations wherever possible.

Example - Relative Path Traversal
include <stdio.h>
include <string.h>

7 CERT C Rules and Recommendations

7-738

include <wchar.h>
include <sys/types.h>
include <sys/stat.h>
include <fcntl.h>
include <unistd.h>
include <stdlib.h>
define BASEPATH "/tmp/"
define FILENAME_MAX 512

static void Relative_Path_Traversal(void)
{
 char * data;
 char data_buf[FILENAME_MAX] = BASEPATH;
 char sub_buf[FILENAME_MAX];

 if (fgets(sub_buf, FILENAME_MAX, stdin) == NULL) exit (1);
 data = data_buf;
 strcat(data, sub_buf);

 FILE *file = NULL;
 file = fopen(data, "wb+");
 if (file != NULL) fclose(file);
}

int path_call(void){
 Relative_Path_Traversal();
}

This example opens a file from "/tmp/", but uses a relative path to the file. An external
user can manipulate this relative path when fopen opens the file.

Correction — Use Fixed File Name

One possible correction is to use a fixed file name instead of a relative path. This example
uses file.txt.

include <stdio.h>
include <string.h>
include <wchar.h>
include <sys/types.h>
include <sys/stat.h>
include <fcntl.h>
include <unistd.h>
include <stdlib.h>
define BASEPATH "/tmp/"

 CERT C: Rec. FIO02-C

7-739

define FILENAME_MAX 512

static void Relative_Path_Traversal(void)
{
 char * data;
 char data_buf[FILENAME_MAX] = BASEPATH;
 data = data_buf;

 /* FIX: Use a fixed file name */
 strcat(data, "file.txt");
 FILE *file = NULL;
 file = fopen(data, "wb+");
 if (file != NULL) fclose(file);
}

int path_call(void){
 Relative_Path_Traversal();
}

Check Information
Group: Rec. 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO02-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-740

https://wiki.sei.cmu.edu/confluence/x/DtcxBQ

CERT C: Rec. FIO11-C
Take care when specifying the mode parameter of fopen()

Description

Rule Definition
Take care when specifying the mode parameter of fopen().

Examples

Bad file access mode or status
Description

Bad file access mode or status occurs when you use functions in the fopen or open
group with invalid or incompatible file access modes, file creation flags, or file status flags
as arguments. For instance, for the open function, examples of valid:

• Access modes include O_RDONLY, O_WRONLY, and O_RDWR
• File creation flags include O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC.
• File status flags include O_APPEND, O_ASYNC, O_CLOEXEC, O_DIRECT, O_DIRECTORY,

O_LARGEFILE, O_NOATIME, O_NOFOLLOW, O_NONBLOCK, O_NDELAY, O_SHLOCK,
O_EXLOCK, O_FSYNC, O_SYNC and so on.

The defect can occur in the following situations.

 CERT C: Rec. FIO11-C

7-741

Situation Risk Fix
You pass an empty or invalid
access mode to the fopen
function.

According to the ANSI C
standard, the valid access
modes for fopen are:

• r,r+
• w,w+
• a,a+
• rb, wb, ab
• r+b, w+b, a+b
• rb+, wb+, ab+

fopen has undefined
behavior for invalid access
modes.

Some implementations allow
extension of the access
mode such as:

• GNU: rb
+cmxe,ccs=utf

• Visual C++: a+t, where
t specifies a text mode.

However, your access mode
string must begin with one
of the valid sequences.

Pass a valid access mode to
fopen.

You pass the status flag
O_APPEND to the open
function without combining
it with either O_WRONLY or
O_RDWR.

O_APPEND indicates that
you intend to add new
content at the end of a file.
However, without O_WRONLY
or O_RDWR, you cannot write
to the file.

The open function does not
return -1 for this logical
error.

Pass either O_APPEND|
O_WRONLY or O_APPEND|
O_RDWR as access mode.

You pass the status flags
O_APPEND and O_TRUNC
together to the open
function.

O_APPEND indicates that
you intend to add new
content at the end of a file.
However, O_TRUNC indicates
that you intend to truncate
the file to zero. Therefore,
the two modes cannot
operate together.

The open function does not
return -1 for this logical
error.

Depending on what you
intend to do, pass one of the
two modes.

7 CERT C Rules and Recommendations

7-742

Situation Risk Fix
You pass the status flag
O_ASYNC to the open
function.

On certain implementations,
the mode O_ASYNC does not
enable signal-driven I/O
operations.

Use the fcntl(pathname,
F_SETFL, O_ASYNC);
instead.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Access Mode with fopen
#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "rw");
 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

In this example, the access mode rw is invalid. Because r indicates that you open the file
for reading and w indicates that you create a new file for writing, the two access modes
are incompatible.

Correction — Use Either r or w as Access Mode

One possible correction is to use the access mode corresponding to what you intend to do.

#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "w");

 CERT C: Rec. FIO11-C

7-743

 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

Check Information
Group: Rec. 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO11-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-744

https://wiki.sei.cmu.edu/confluence/x/LtYxBQ

CERT C: Rec. FIO21-C
Do not create temporary files in shared directories

Description
Rule Definition
Do not create temporary files in shared directories.

Examples
Use of non-secure temporary file
Description

Use of non-secure temporary file looks for temporary file routines that are not secure.

Risk

If an attacker guesses the file name generated by a standard temporary file routine, the
attacker can:

• Cause a race condition when you generate the file name.
• Precreate a file of the same name, filled with malicious content. If your program reads

the file, the attacker’s file can inject the malicious code.
• Create a symbolic link to a file storing sensitive data. When your program writes to the

temporary file, the sensitive data is deleted.

Fix

To create temporary files, use a more secure standard temporary file routine, such as
mkstemp from POSIX.1-2001.

Also, when creating temporary files with routines that allow flags, such as mkostemp, use
the exclusion flag O_EXCL to avoid race conditions.

 CERT C: Rec. FIO21-C

7-745

Example - Temp File Created With tempnam

#define _BSD_SOURCE
#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int test_temp()
{
 char tpl[] = "abcXXXXXX";
 char suff_tpl[] = "abcXXXXXXsuff";
 char *filename = NULL;
 int fd;

 filename = tempnam("/var/tmp", "foo_");

 if (filename != NULL)
 {
 printf("generated tmp name (%s) in (%s:%s:%s)\n",
 filename, getenv("TMPDIR") ? getenv("TMPDIR") : "$TMPDIR",
 "/var/tmp", P_tmpdir);

 fd = open(filename, O_CREAT, S_IRWXU|S_IRUSR);
 if (fd != -1)
 {
 close(fd);
 unlink(filename);
 return 1;
 }
 }
 return 0;
}

In this example, Bug Finder flags open because it tries to use an unsecure temporary file.
The file is opened without exclusive privileges. An attacker can access the file causing
various risks on page 3-579.

7 CERT C Rules and Recommendations

7-746

Correction — Add O_EXCL Flag

One possible correction is to add the O_EXCL flag when you open the temporary file.

#define _BSD_SOURCE
#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int test_temp()
{
 char tpl[] = "abcXXXXXX";
 char suff_tpl[] = "abcXXXXXXsuff";
 char *filename = NULL;
 int fd;

 filename = tempnam("/var/tmp", "foo_");

 if (filename != NULL)
 {
 printf("generated tmp name (%s) in (%s:%s:%s)\n",
 filename, getenv("TMPDIR") ? getenv("TMPDIR") : "$TMPDIR",
 "/var/tmp", P_tmpdir);

 fd = open(filename, O_CREAT|O_EXCL, S_IRWXU|S_IRUSR);
 if (fd != -1)
 {
 close(fd);
 unlink(filename);
 return 1;
 }
 }
 return 0;
}

 CERT C: Rec. FIO21-C

7-747

Check Information
Group: Rec. 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO21-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-748

https://wiki.sei.cmu.edu/confluence/x/KdcxBQ

CERT C: Rec. FIO24-C
Do not open a file that is already open

Description

Rule Definition
Do not open a file that is already open.

Examples

Opening previously opened resource
Description

Opening previously opened resource checks for file opening functions that are
opening an already opened file.

Risk

If you open a resource multiple times, you can encounter:

• A race condition when accessing the file.
• Undefined or unexpected behavior for that file.
• Portability issues when you run your program on different targets.

Fix

Once a resource is open, close the resource before reopening.

Example - File Reopened With New Permissions

#include <stdio.h>
const char* logfile = "my_file.log";

 CERT C: Rec. FIO24-C

7-749

void doubleresourceopen()
{
 FILE* fpa = fopen(logfile, "w");
 if (fpa == NULL) {
 return;
 }
 (void)fprintf(fpa, "Writing");
 FILE* fpb = fopen(logfile, "r");
 (void)fclose(fpa);
 (void)fclose(fpb);
}

In this example, a logfile is opened in the first line of this function with write
privileges. Halfway through the function, the logfile is opened again with read
privileges.

Correction — Close Before Reopening

One possible correction is to close the file before reopening the file with different
privileges.

#include <stdio.h>
const char* logfile = "my_file.log";

void doubleresourceopen()
{
 FILE* fpa = fopen(logfile, "w");
 if (fpa == NULL) {
 return;
 }
 (void)fprintf(fpa, "Writing");
 (void)fclose(fpa);
 FILE* fpb = fopen(logfile, "r");
 (void)fclose(fpb);
}

Check Information
Group: Rec. 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

7 CERT C Rules and Recommendations

7-750

Topics
“Check for Coding Standard Violations”

External Websites
FIO24-C

Introduced in R2019a

 CERT C: Rec. FIO24-C

7-751

https://wiki.sei.cmu.edu/confluence/x/CtYxBQ

CERT C: Rec. ENV01-C
Do not make assumptions about the size of an environment variable

Description
Rule Definition
Do not make assumptions about the size of an environment variable.

Examples
Tainted NULL or non-null-terminated string
Description

Tainted NULL or non-null-terminated string looks for strings from unsecure sources
that are being used in string manipulation routines that implicitly dereference the string
buffer. For example, strcpy or sprintf.

Tainted NULL or non-null-terminated string raises no defect for a string returned
from a call to scanf-family variadic functions. Similarly, no defect is raised when you
pass the string with a %s specifier to printf-family variadic functions.

Note If you reference a string using the form ptr[i], *ptr, or pointer arithmetic, Bug
Finder raises a Use of tainted pointer defect instead. The Tainted NULL or non-null-
terminated string defect is raised only when the pointer is used as a string.

Risk

If a string is from an unsecure source, it is possible that an attacker manipulated the
string or pointed the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the
program to crash. If the string is not null-terminated, the string routine might not know

7 CERT C Rules and Recommendations

7-752

when the string ends. This error can cause you to write out of bounds, causing a buffer
overflow.

Fix

Validate the string before you use it. Check that:

• The string is not NULL.
• The string is null-terminated
• The size of the string matches the expected size.

Example - Getting String from Input Argument
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

In this example, the string str is concatenated with the argument userstr. The value of
userstr is unknown. If the size of userstr is greater than the space available, the
concatenation overflows.

Correction — Validate the Data

One possible correction is to check the size of userstr and make sure that the string is
null-terminated before using it in strncat. This example uses a helper function,
sansitize_str, to validate the string. The defects are concentrated in this function.

 CERT C: Rec. ENV01-C

7-753

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

int sanitize_str(char* s) {
 int res = 0;
 if (s && (strlen(s) > 0)) { // TAINTED_STRING only flagged here
 // - string is not null
 // - string has a positive and limited size
 // - TAINTED_STRING on strlen used as a firewall
 res = 1;
 }
 return res;
}

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

Correction — Validate the Data

Another possible correction is to call function errorMsg and warningMsg with specific
strings.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

7 CERT C Rules and Recommendations

7-754

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

int manageSensorValue(int sensorValue) {
 int ret = sensorValue;
 if (sensorValue < 0) {
 errorMsg("sensor value should be positive");
 exit(1);
 } else if (sensorValue > 50) {
 warningMsg("sensor value greater than 50 (applying threshold)...");
 sensorValue = 50;
 }

 return sensorValue;
}

Check Information
Group: Rec. 10. Environment (ENV)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rec. ENV01-C

7-755

External Websites
ENV01-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-756

https://wiki.sei.cmu.edu/confluence/x/3NUxBQ

CERT C: Rec. ERR00-C
Adopt and implement a consistent and comprehensive error-handling policy

Description

Rule Definition
Adopt and implement a consistent and comprehensive error-handling policy.

Examples

Error information not checked
Description

The issue occurs when you do not test the error information returned by a function.

The checking of this directive follows the same specifications as the defect checker
Returned value of a sensitive function not checked.

This directive is only partially supported.

Risk

Typically a function indicates whether an error occurred during execution, via a special
return value or by another means.

If a function provides a mechanism to determine errors, before you use the function
return value, you must check for such errors.

Check Information
Group: Rec. 12. Error Handling (ERR)

 CERT C: Rec. ERR00-C

7-757

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ERR00-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-758

https://wiki.sei.cmu.edu/confluence/x/3dYxBQ

CERT C: Rec. API04-C
Provide a consistent and usable error-checking mechanism

Description

Rule Definition
Provide a consistent and usable error-checking mechanism.

Examples

Error information not checked
Description

The issue occurs when you do not test the error information returned by a function.

The checking of this directive follows the same specifications as the defect checker
Returned value of a sensitive function not checked.

This directive is only partially supported.

Risk

Typically a function indicates whether an error occurred during execution, via a special
return value or by another means.

If a function provides a mechanism to determine errors, before you use the function
return value, you must check for such errors.

Check Information
Group: Rec. 13. Application Programming Interfaces (API)

 CERT C: Rec. API04-C

7-759

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
API04-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-760

https://wiki.sei.cmu.edu/confluence/x/dNYxBQ

CERT C: Rec. CON01-C
Acquire and release synchronization primitives in the same module, at the same level of
abstraction

Description

Rule Definition
Acquire and release synchronization primitives in the same module, at the same level of
abstraction.

Examples

Missing lock
Description

Missing lock occurs when a task calls an unlock function before calling the
corresponding lock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task my_task calls a lock function my_lock, other tasks calling
my_lock must wait till my_task calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Risk

A call to an unlock function without a corresponding lock function can indicate a coding
error. For instance, perhaps the unlock function does not correspond to the lock function
that begins the critical section.

 CERT C: Rec. CON01-C

7-761

Fix

The fix depends on the root cause of the defect. For instance, if the defect occurs because
of a mismatch between lock and unlock function, check the lock-unlock function pair in
your Polyspace analysis configuration and fix the mismatch.

See examples of fixes below. To avoid the issue, you can follow the practice of calling the
lock and unlock functions in the same module at the same level of abstraction. For
instance, in this example, func calls the lock and unlock function at the same level but
func2 does not.

void func() {
 my_lock();
 {
 ...
 }
 my_unlock();
}

void func2() {
 {
 my_lock();
 ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Missing lock

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)
{
 begin_critical_section();
 global_var = 0;

7 CERT C Rules and Recommendations

7-762

 end_critical_section();
}

void my_task(void)
{
 global_var += 1;
 end_critical_section();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually on page 1-128
Tasks on page 1-133 my_task, reset
Critical section details on
page 1-148

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset. my_task calls
end_critical_section before calling begin_critical_section.

Correction — Provide Lock

One possible correction is to call the lock function begin_critical_section before
the instructions in the critical section.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

 CERT C: Rec. CON01-C

7-763

void reset(void)
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
 end_critical_section();
}

Example - Lock in Condition

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 if(index%10==0) {
 begin_critical_section();
 global_var ++;
 }
 end_critical_section();
 index++;
 }
}

7 CERT C Rules and Recommendations

7-764

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually on page 1-128
Tasks on page 1-133 my_task, reset
Critical section details on
page 1-148

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset.

In the while loop, my_task leaves a critical section through the call
end_critical_section();. In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section begins through a call to
begin_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the
critical section does not begin. Therefore, a Missing lock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration
of the while loop, the unlock function end_critical_section is called again. A
Double unlock defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases
above are possible. Therefore, a Missing lock defect and a Double unlock defect
appear on the call end_critical_section.

Missing unlock
Description

Missing unlock occurs when:

 CERT C: Rec. CON01-C

7-765

• A task calls a lock function.
• The task ends without a call to an unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task, my_task, calls a lock function, my_lock, other tasks
calling my_lock must wait until my_task calls the corresponding unlock function.
Polyspace requires that both lock and unlock functions must have the form void
func(void).

To find this defect, before analysis, you must specify the multitasking options. On the
Configuration pane, select Multitasking.

Risk

An unlock function ends a critical section so that other waiting tasks can enter the critical
section. A missing unlock function can result in tasks blocked for an unnecessary length
of time.

Fix

Identify the critical section of code, that is, the section that you want to be executed as an
atomic block. At the end of this section, call the unlock function that corresponds to the
lock function used at the beginning of the section.

There can be other reasons and corresponding fixes for the defect. Perhaps you called the
incorrect unlock function. Check the lock-unlock function pair in your Polyspace analysis
configuration and fix the mismatch.

See examples of fixes below. To avoid the issue, you can follow the practice of calling the
lock and unlock functions in the same module at the same level of abstraction. For
instance, in this example, func calls the lock and unlock function at the same level but
func2 does not.

void func() {
 my_lock();
 {
 ...
 }
 my_unlock();
}

void func2() {

7 CERT C Rules and Recommendations

7-766

 {
 my_lock();
 ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Missing Unlock

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset()
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure multitasking
manually on page 1-128
Tasks on page 1-133 my_task, reset
Critical section details on
page 1-148

Starting routine Ending routine

 CERT C: Rec. CON01-C

7-767

Option Specification
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset. my_task enters a critical section
through the call begin_critical_section();. my_task ends without calling
end_critical_section.

Correction — Provide Unlock

One possible correction is to call the unlock function end_critical_section after the
instructions in the critical section.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
 end_critical_section();
}

7 CERT C Rules and Recommendations

7-768

Example - Unlock in Condition

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var = 0;
 end_critical_section();
 }
 index++;
 }
}

In this example, to emulate multitasking behavior, specify the following options.

Option Specification
Configure multitasking
manually on page 1-128
Tasks on page 1-133 my_task, reset
Critical section details on
page 1-148

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

 CERT C: Rec. CON01-C

7-769

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset.

In the while loop, my_task enters a critical section through the call
begin_critical_section();. In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section ends through a call to
end_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the
critical section does not end. Therefore, a Missing unlock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration
of the while loop, the lock function begin_critical_section is called again. A
Double lock defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases
above is possible. Therefore, a Missing unlock defect and a Double lock defect appear
on the call begin_critical_section.

Correction — Place Unlock Outside Condition

One possible correction is to call the unlock function end_critical_section outside
the if condition.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {

7 CERT C Rules and Recommendations

7-770

 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var=0;
 }
 end_critical_section();
 index++;
 }
}

Correction — Place Unlock in Every Conditional Branch

Another possible correction is to call the unlock function end_critical_section in
every branches of the if condition.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var=0;
 end_critical_section();
 }
 else

 CERT C: Rec. CON01-C

7-771

 end_critical_section();
 index++;
 }
}

Double lock
Description

Double lock occurs when:

• A task calls a lock function my_lock.
• The task calls my_lock again before calling the corresponding unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task task1 calls a lock function lock, other tasks calling lock
must wait until task calls the corresponding unlock function. Polyspace requires that
both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Risk

A call to a lock function begins a critical section so that other tasks have to wait to enter
the same critical section. If the same lock function is called again within the critical
section, the task blocks itself.

Fix

The fix depends on the root cause of the defect. A double lock defect often indicates a
coding error. Perhaps you omitted the call to an unlock function to end a previous critical
section and started the next critical section. Perhaps you wanted to use a different lock
function for the second critical section.

Identify each critical section of code, that is, the section that you want to be executed as
an atomic block. Call a lock function at the beginning of the section. Within the critical
section, make sure that you do not call the lock function again. At the end of the section,
call the unlock function that corresponds to the lock function.

See examples of fixes below. To avoid the issue, you can follow the practice of calling the
lock and unlock functions in the same module at the same level of abstraction. For

7 CERT C Rules and Recommendations

7-772

instance, in this example, func calls the lock and unlock function at the same level but
func2 does not.

void func() {
 my_lock();
 {
 ...
 }
 my_unlock();
}

void func2() {
 {
 my_lock();
 ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Double Lock

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 lock();
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;

 CERT C: Rec. CON01-C

7-773

 unlock();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually on page 1-128
Tasks on page 1-133 my_task, reset
Critical section details on
page 1-148

Starting routine Ending routine
lock unlock

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin lock:cs1
 -critical-section-end unlock:cs1

task1 enters a critical section through the call lock();. task1 calls lock again before
it leaves the critical section through the call unlock();.

Correction — Remove First Lock

If you want the first global_var+=1; to be outside the critical section, one possible
correction is to remove the first call to lock. However, if other tasks are using
global_var, this code can produce a Data race error.

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 global_var += 1;
 lock();
 global_var += 1;
 unlock();

7 CERT C Rules and Recommendations

7-774

}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

Correction — Remove Second Lock

If you want the first global_var+=1; to be inside the critical section, one possible
correction is to remove the second call to lock.

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

Correction — Add Another Unlock

If you want the second global_var+=1; to be inside a critical section, another possible
correction is to add another call to unlock.

 CERT C: Rec. CON01-C

7-775

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 unlock();
 lock();
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

Example - Double Lock with Function Call

int global_var;

void lock(void);
void unlock(void);

void performOperation(void) {
 lock();
 global_var++;
}

void task1(void)
{
 lock();
 global_var += 1;
 performOperation();
 unlock();
}

7 CERT C Rules and Recommendations

7-776

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually on page 1-128
Tasks on page 1-133 my_task, reset
Critical section details on
page 1-148

Starting routine Ending routine
lock unlock

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin lock:cs1
 -critical-section-end unlock:cs1

task1 enters a critical section through the call lock();. task1 calls the function
performOperation. In performOperation, lock is called again even though task1
has not left the critical section through the call unlock();.

In the result details for the defect, you see the sequence of instructions leading to the
defect. For instance, you see that following the first entry into the critical section, the
execution path:

• Enters function performOperation.
• Inside performOperation, attempts to enter the same critical section once again.

 CERT C: Rec. CON01-C

7-777

You can click each event to navigate to the corresponding line in the source code.

Correction — Remove Second Lock

One possible correction is to remove the call to lock in task1.

int global_var;

void lock(void);
void unlock(void);

void performOperation(void) {
 global_var++;
}

void task1(void)
{
 lock();
 global_var += 1;
 performOperation();
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

7 CERT C Rules and Recommendations

7-778

Double unlock
Description

Double unlock occurs when:

• A task calls a lock function my_lock.
• The task calls the corresponding unlock function my_unlock.
• The task calls my_unlock again. The task does not call my_lock a second time

between the two calls to my_unlock.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task task1 calls a lock function my_lock, other tasks calling
my_lock must wait until task1 calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Risk

A double unlock defect can indicate a coding error. Perhaps you wanted to call a different
unlock function to end a different critical section. Perhaps you called the unlock function
prematurely the first time and only the second call indicates the end of the critical
section.

Fix

The fix depends on the root cause of the defect.

Identify each critical section of code, that is, the section that you want to be executed as
an atomic block. Call a lock function at the beginning of the section. Only at the end of
the section, call the unlock function that corresponds to the lock function. Remove any
other redundant call to the unlock function.

See examples of fixes below. To avoid the issue, you can follow the practice of calling the
lock and unlock functions in the same module at the same level of abstraction. For
instance, in this example, func calls the lock and unlock function at the same level but
func2 does not.

void func() {
 my_lock();

 CERT C: Rec. CON01-C

7-779

 {
 ...
 }
 my_unlock();
}

void func2() {
 {
 my_lock();
 ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Double Unlock

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

In this example, to emulate multitasking behavior, you must specify the following options:

7 CERT C Rules and Recommendations

7-780

Option Value
Configure multitasking
manually on page 1-128
Tasks on page 1-133 task1

task2
Critical section details on
page 1-148

Starting routine Ending routine
BEGIN_CRITICAL_SECTIO
N

END_CRITICAL_SECTION

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin BEGIN_CRITICAL_SECTION:cs1
 -critical-section-end END_CRITICAL_SECTION:cs1

task1 enters a critical section through the call BEGIN_CRITICAL_SECTION();. task1
leaves the critical section through the call END_CRITICAL_SECTION();. task1 calls
END_CRITICAL_SECTION again without an intermediate call to
BEGIN_CRITICAL_SECTION.

Correction — Remove Second Unlock

If you want the second global_var+=1; to be outside the critical section, one possible
correction is to remove the second call to END_CRITICAL_SECTION. However, if other
tasks are using global_var, this code can produce a Data race error.

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();

 CERT C: Rec. CON01-C

7-781

 global_var += 1;
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

Correction — Remove First Unlock

If you want the second global_var+=1; to be inside the critical section, one possible
correction is to remove the first call to END_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

Correction — Add Another Lock

If you want the second global_var+=1; to be inside a critical section, another possible
correction is to add another call to BEGIN_CRITICAL_SECTION.

7 CERT C Rules and Recommendations

7-782

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

Check Information
Group: Rec. 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON01-C

Introduced in R2019a

 CERT C: Rec. CON01-C

7-783

https://wiki.sei.cmu.edu/confluence/x/r9YxBQ

CERT C: Rec. CON05-C
Do not perform operations that can block while holding a lock

Description

Rule Definition
Do not perform operations that can block while holding a lock.

Examples

Blocking operation while holding lock
Description

Blocking operation while holding lock occurs when a task (thread) performs a
potentially lengthy operation while holding a lock.

The checker considers calls to these functions as potentially lengthy:

• Functions that access a network such as recv
• System call functions such as fork, pipe and system
• Functions for I/O operations such as getchar and scanf
• File handling functions such as fopen, remove and lstat
• Directory manipulation functions such as mkdir and rmdir

The checker automatically detects certain primitives that hold and release a lock, for
instance, pthread_mutex_lock and pthread_mutex_unlock. For the full list of
primitives that are automatically detected, see “Auto-Detection of Thread Creation and
Critical Section in Polyspace”.

7 CERT C Rules and Recommendations

7-784

Risk

If a thread performs a lengthy operation when holding a lock, other threads that use the
lock have to wait for the lock to be available. As a result, system performance can slow
down or deadlocks can occur.

Fix

Perform the blocking operation before holding the lock or after releasing the lock.

Some functions detected by this checker can be called in a way that does not make them
potentially lengthy. For instance, the function recv can be called with the parameter
O_NONBLOCK which causes the call to fail if no message is available. When called with this
parameter, recv does not wait for a message to become available.

Example - Network I/O Operations with recv While Holding Lock

#include <pthread.h>
#include <sys/socket.h>

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

void thread_foo(void *ptr) {
 unsigned int num;
 int result;
 int sock;

 /* sock is a connected TCP socket */

 if ((result = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle Error */
 }

 if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
 /* Handle Error */
 }

 /* ... */

 if ((result = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle Error */
 }
}

 CERT C: Rec. CON05-C

7-785

int main() {
 pthread_t thread;
 int result;

 if ((result = pthread_mutexattr_settype(
 &attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle Error */
 }

 if (pthread_create(&thread, NULL,(void*(*)(void*))& thread_foo, NULL) != 0) {
 /* Handle Error */
 }

 /* ... */

 pthread_join(thread, NULL);

 if ((result = pthread_mutex_destroy(&mutex)) != 0) {
 /* Handle Error */
 }

 return 0;
}

In this example, in each thread created with pthread_create, the function thread_foo
performs a network I/O operation with recv after acquiring a lock with
pthread_mutex_lock. Other threads using the same lock variable mutex have to wait
for the operation to complete and the lock to become available.

Correction — Perform Blocking Operation Before Acquiring Lock

One possible correction is to call recv before acquiring the lock.

#include <pthread.h>
#include <sys/socket.h>

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

7 CERT C Rules and Recommendations

7-786

void thread_foo(void *ptr) {
 unsigned int num;
 int result;
 int sock;

 /* sock is a connected TCP socket */
 if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle Error */
 }

 /* ... */

 if ((result = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle Error */
 }
}

int main() {
 pthread_t thread;
 int result;

 if ((result = pthread_mutexattr_settype(
 &attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle Error */
 }

 if (pthread_create(&thread, NULL,(void*(*)(void*))& thread_foo, NULL) != 0) {
 /* Handle Error */
 }

 /* ... */

 pthread_join(thread, NULL);

 if ((result = pthread_mutex_destroy(&mutex)) != 0) {
 /* Handle Error */

 CERT C: Rec. CON05-C

7-787

 }

 return 0;
}

Check Information
Group: Rec. 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON05-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-788

https://wiki.sei.cmu.edu/confluence/x/bdUxBQ

CERT C: Rec. MSC01-C
Strive for logical completeness

Description
Rule Definition
Strive for logical completeness.

Examples
Missing case for switch condition
Description

Missing case for switch condition occurs when the switch variable can take values
that are not covered by a case statement.

Note Bug Finder only raises a defect if the switch variable is not full range.

Risk

If the switch variable takes a value that is not covered by a case statement, your
program can have unintended behavior.

A switch-statement that makes a security decision is particularly vulnerable when all
possible values are not explicitly handled. An attacker can use this situation to deviate the
normal execution flow.

Fix

It is good practice to use a default statement as a catch-all for values that are not
covered by a case statement. Even if the switch variable takes an unintended value, the
resulting behavior can be anticipated.

 CERT C: Rec. MSC01-C

7-789

Example - Missing Default Condition

#include <stdio.h>
#include <string.h>

typedef enum E
{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {
 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 }

 printf("Welcome!\n");
 return r;
}

In this example, the enum parameter User can take a value UNKNOWN that is not covered
by a case statement.

7 CERT C Rules and Recommendations

7-790

Correction — Add a Default Condition

One possible correction is to add a default condition for possible values that are not
covered by a case statement.

#include <stdio.h>
#include <string.h>

typedef enum E
{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {
 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 break;
 default:
 printf("Invalid login credentials!\n");
 }

 printf("Welcome!\n");

 CERT C: Rec. MSC01-C

7-791

 return r;
}

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC01-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-792

https://wiki.sei.cmu.edu/confluence/x/RtYxBQ

CERT C: Rec. MSC04-C
Use comments consistently and in a readable fashion

Description

Rule Definition
Use comments consistently and in a readable fashion.

Examples

Use of /* and // within a comment
Description

The issue occurs when you use the character sequences /* and // within a comment.

You cannot annotate this rule in the source code. For information on annotations, see
“Annotate Code and Hide Known or Acceptable Results”.

Risk

These character sequences are not allowed in code comments because:

• If your code contains a /* or a // in a /* */ comment, it typically means that you
have inadvertently commented out code.

• If your code contains a /* in a // comment, it typically means that you have
inadvertently uncommented a /* */ comment.

Example - /* Used in // Comments

int x;
int y;
int z;

 CERT C: Rec. MSC04-C

7-793

void non_compliant_comments (void)
{
 x = y // /* Non-compliant
 + z
 // */
 ;
 z++; // Compliant with exception: // permitted within a // comment
}

void compliant_comments (void)
{
 x = y /* Compliant
 + z
 */
 ;
 z++; // Compliant with exception: // is permitted within a // comment
}

In this example, in the non_compliant_comments function, the /* character occurs in
what appears to be a // comment, violating the rule. Because of the comment structure,
the operation that takes place is x = y + z;. However, without the two //-s, an entirely
different operation x=y; takes place. It is not clear which operation is intended.

Use a comment format that makes your intention clear. For instance, in the
compliant_comments function, it is clear that the operation x=y; is intended.

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC04-C

7 CERT C Rules and Recommendations

7-794

https://wiki.sei.cmu.edu/confluence/x/k9YxBQ

Introduced in R2019a

 CERT C: Rec. MSC04-C

7-795

CERT C: Rec. MSC12-C
Detect and remove code that has no effect or is never executed

Description
Rule Definition
Detect and remove code that has no effect or is never executed.

Examples
Unreachable code
Description

The issue occurs when your project contains code that is unreachable.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

The Code Prover run-time check for unreachable code shows more cases than the MISRA
checker for this rule. See also Unreachable code. The run-time check performs a more
exhaustive analysis. In the process, the check can show some instances that are not
strictly unreachable code but unreachable only in the context of the analysis. For
instance, in the following code, the run-time check shows a potential division by zero in
the first line and then removes the zero value of flag for the rest of the analysis.
Therefore, it considers the if block unreachable.

val=1.0/flag;
if(!flag) {}

The MISRA checker is designed to prevent these kinds of results.

Risk

Unless a program exhibits any undefined behavior, unreachable code cannot execute. The
unreachable code cannot affect the program output. The presence of unreachable code

7 CERT C Rules and Recommendations

7-796

can indicate an error in the program logic. Unreachable code that the compiler does not
remove wastes resources, for example:

• It occupies space in the target machine memory.
• Its presence can cause a compiler to select longer, slower jump instructions when

transferring control around the unreachable code.
• Within a loop, it can prevent the entire loop from residing in an instruction cache.

Example - Code Following return Statement

enum light { red, amber, red_amber, green };

enum light next_light (enum light color)
{
 enum light res;

 switch (color)
 {
 case red:
 res = red_amber;
 break;
 case red_amber:
 res = green;
 break;
 case green:
 res = amber;
 break;
 case amber:
 res = red;
 break;
 default:
 {
 error_handler ();
 break;
 }
 }

 res = color;
 return res;
 res = color; /* Non-compliant */
}

 CERT C: Rec. MSC12-C

7-797

In this example, the rule is violated because there is an unreachable operation following
the return statement.

Dead code
Description

The issue occurs when the analysis detects a reachable operation that does not affect
program behavior if the operation is removed.

Polyspace Bug Finder detects useless write operations during analysis.

Polyspace Code Prover does not detect useless write operations. For instance, if you
assign a value to a local variable but do not read it later, Polyspace Code Prover does not
detect this useless assignment. Use Polyspace Bug Finder to detect such useless write
operations. For more information, see MISRA C:2012 in Polyspace Bug Finder on page 5-
184.

In Code Prover, you can also see a difference in results based on your choice for the
option Verification level (-to). See “Check for Coding Standard Violations”.

Risk

If an operation is reachable but removing the operation does not affect program behavior,
the operation constitutes dead code.

The presence of dead code can indicate an error in the program logic. Because a compiler
can remove dead code, its presence can cause confusion for code reviewers.

Operations involving language extensions such as __asm ("NOP"); are not
considered dead code.

Example - Redundant Operations

extern volatile unsigned int v;
extern char *p;

void f (void) {
 unsigned int x;

 (void) v; /* Compliant - Exception*/

7 CERT C Rules and Recommendations

7-798

 (int) v; /* Non-compliant */
 v >> 3; /* Non-compliant */

 x = 3; /* Non-compliant - Detected in Bug Finder only */

 p++; / Non-compliant */
 (*p)++; /* Compliant */
}

In this example, the rule is violated when an operation is performed on a variable, but the
result of that operation is not used. For instance,

• The operations (int) and >> on the variable v are redundant because the results are
not used.

• The operation = is redundant because the local variable x is not read after the
operation.

• The operation * on p++ is redundant because the result is not used.

The rule is not violated when:

• A variable is cast to void. The cast indicates that you are intentionally not using the
value.

• The result of an operation is used. For instance, the operation * on p is not redundant,
because *p is incremented.

Example - Redundant Function Call

void g (void) {
 /* Compliant */
}

void h (void) {
 g(); /* Non-compliant */
}

In this example, g is an empty function. Though the function itself does not violate the
rule, a call to the function violates the rule.

Check Information
Group: Rec. 48. Miscellaneous (MSC)

 CERT C: Rec. MSC12-C

7-799

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC12-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-800

https://wiki.sei.cmu.edu/confluence/x/5dUxBQ

CERT C: Rec. MSC13-C
Detect and remove unused values

Description

Rule Definition
Detect and remove unused values.

Examples

Unused parameter
Description

Unused parameter occurs when a function parameter is neither read nor written in the
function body.

Risk

Unused function parameters cause the following issues:

• Indicate that the code is possibly incomplete. The parameter is possibly intended for
an operation that you forgot to code.

• If the copied objects are large, redundant copies can slow down performance.

Fix

Determine if you intend to use the parameters. Otherwise, remove parameters that you
do not use in the function body.

You can intentionally have unused parameters. For instance, you have parameters that
you intend to use later when you add enhancements to the function. Add a code comment
indicating your intention for later use. The code comment helps you or a code reviewer
understand why your function has unused parameters.

 CERT C: Rec. MSC13-C

7-801

Alternatively, add a statement such as (void)var; in the function body. var is the
unused parameter. You can define a macro that expands to this statement and add the
macro to the function body.

Example - Unused Parameter

void func(int* xptr, int* yptr, int flag) {
 if(flag==1) {
 *xptr=0;
 }
 else {
 *xptr=1;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

In this example, the parameter yptr is not used in the body of func.

Correction — Use Parameter

One possible correction is to check if you intended to use the parameter. Fix your code if
you intended to use the parameter.

void func(int* xptr, int* yptr, int flag) {
 if(flag==1) {
 *xptr=0;
 *yptr=1;
 }
 else {
 *xptr=1;
 *yptr=0;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

7 CERT C Rules and Recommendations

7-802

Correction — Explicitly Indicate Unused Parameter

Another possible correction is to explicitly indicate that you are aware of the unused
parameter.

#define UNUSED(x) (void)x

void func(int* xptr, int* yptr, int flag) {
 UNUSED(yptr);
 if(flag==1) {
 *xptr=0;
 }
 else {
 *xptr=1;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

Write without a further read
Description

Write without a further read occurs when a value assigned to a variable is never read.

For instance, you write a value to a variable and then write a second value before reading
the previous value. The first write operation is redundant.

Risk

Redundant write operations often indicate programming errors. For instance, you forgot
to read the variable between two successive write operations or unintentionally read a
different variable.

Fix

Identify the reason why you write to the variable but do not read it later. Look for
common programming errors such as accidentally reading a different variable with a
similar name.

 CERT C: Rec. MSC13-C

7-803

If you determine that the write operation is redundant, remove the operation.

Example - Write Without Further Read Error

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();
 /* Defect: Useless write */
}

After the variable level gets assigned the value 4 * getsensor(), it is not read.

Correction — Use Value After Assignment

One possible correction is to use the variable level after the assignment.

#include <stdio.h>

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();

 /* Fix: Use level after assignment */
 printf("The value is %d", level);

}

The variable level is printed, reading the new value.

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

7 CERT C Rules and Recommendations

7-804

Topics
“Check for Coding Standard Violations”

External Websites
MSC13-C

Introduced in R2019a

 CERT C: Rec. MSC13-C

7-805

https://wiki.sei.cmu.edu/confluence/x/39UxBQ

CERT C: Rec. MSC15-C
Do not depend on undefined behavior

Description

Rule Definition
Do not depend on undefined behavior.

Examples

Undefined behavior
Description

The issue occurs when the analysis detects undefined or critical unspecified behaviour.

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC15-C

7 CERT C Rules and Recommendations

7-806

https://wiki.sei.cmu.edu/confluence/x/stUxBQ

Introduced in R2019a

 CERT C: Rec. MSC15-C

7-807

CERT C: Rec. MSC17-C
Finish every set of statements associated with a case label with a break statement

Description
Rule Definition
Finish every set of statements associated with a case label with a break statement.

Examples
Missing break of switch case
Description

Missing break of switch case looks for switch cases that do not end in a break
statement. If the case does not have a code comment after it, Polyspace assumes the
missing break is not intentional and raises a defect.

Risk

Switch cases without break statements fall through to the next switch case. If this fall-
through is not intended, the switch case can unintentionally execute code and end the
switch with unexpected results.

Fix

If you do not want a break for the highlighted switch case, add a comment to your code to
document why this case falls through to the next case. This comment removes the defect
from your results and makes your code more maintainable.

If you forgot the break, add it before the end of the switch case.

Example - Switch Without Break Statements
enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z } widget_type;

7 CERT C Rules and Recommendations

7-808

extern void demo_do_something_for_WE_W(void);
extern void demo_do_something_for_WE_X(void);
extern void demo_report_error(void);

void bug_missingswitchbreak(enum WidgetEnum wt)
{
 /*
 In this non-compliant code example, the case where widget_type is WE_W lacks a
 break statement. Consequently, statements that should be executed only when
 widget_type is WE_X are executed even when widget_type is WE_W.
 */
 switch (wt)
 {
 case WE_W:
 demo_do_something_for_WE_W();
 case WE_X:
 demo_do_something_for_WE_X();
 default:
 /* Handle error condition */
 demo_report_error();
 }
}

In this example, there are two cases without break statements. When wt is WE_W, the
statements for WE_W, WE_X, and the default case execute because the program falls
through the two cases without a break. No defect is raised on the default case or last
case because it does not need a break statement.

Correction — Add a Comment or break

To fix this example, either add a comment to mark and document the acceptable fall-
through or add a break statement to avoid fall-through. In this example, case WE_W is
supposed to fall through, so a comment is added to explicitly state this action. For the
second case, a break statement is added to avoid falling through to the default case.

enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z } widget_type;

extern void demo_do_something_for_WE_W(void);
extern void demo_do_something_for_WE_X(void);
extern void demo_report_error(void);

void corrected_missingswitchbreak(enum WidgetEnum wt)
{
 switch (wt)

 CERT C: Rec. MSC17-C

7-809

 {
 case WE_W:
 demo_do_something_for_WE_W();
 /* fall through to WE_X*/
 case WE_X:
 demo_do_something_for_WE_X();
 break;
 default:
 /* Handle error condition */
 demo_report_error();
 }
}

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC17-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-810

https://wiki.sei.cmu.edu/confluence/x/ldYxBQ

CERT C: Rec. MSC18-C
Be careful while handling sensitive data, such as passwords, in program code

Description

Rule Definition
Be careful while handling sensitive data, such as passwords, in program code.

Examples

Constant block cipher initialization vector
Description

Constant block cipher initialization vector occurs when you use a constant for the
initialization vector (IV) during encryption.

Risk

Using a constant IV is equivalent to not using an IV. Your encrypted data is vulnerable to
dictionary attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC
(Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with the
encrypted output from the previous block. To protect the first block, these modes use a
random initialization vector (IV). If you use a constant IV to encrypt multiple data streams
that have a common beginning, your data becomes vulnerable to dictionary attacks.

Fix

Produce a random IV by using a strong random number generator.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

 CERT C: Rec. MSC18-C

7-811

Example - Constants Used for Initialization Vector

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

/* Using the cryptographic routines */

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16] = {'1', '2', '3', '4','5','6','b','8','9',
 '1','2','3','4','5','6','7'};
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the initialization vector iv has constants only. The constant initialization
vector makes your cipher vulnerable to dictionary attacks.

Correction — Use Random Initialization Vector

One possible correction is to use a strong random number generator to produce the
initialization vector. The corrected code here uses the function RAND_bytes declared in
openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

/* Using the cryptographic routines */

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

7 CERT C Rules and Recommendations

7-812

Constant cipher key
Description

Constant cipher key occurs when you use a constant for the encryption or decryption
key.

Risk

If you use a constant for the encryption or decryption key, an attacker can retrieve your
key easily.

You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data
encrypted using that key is not secure.

Fix

Produce a random key by using a strong random number generator.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Example - Constants Used for Key

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16] = {'1', '2', '3', '4','5','6','b','8','9',
 '1','2','3','4','5','6','7'};
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the cipher key, key, has constants only. An attacker can easily retrieve a
constant key.

Correction — Use Random Key

Use a strong random number generator to produce the cipher key. The corrected code
here uses the function RAND_bytes declared in openssl/rand.h.

 CERT C: Rec. MSC18-C

7-813

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Predictable block cipher initialization vector
Description

Predictable block cipher initialization vector occurs when you use a weak random
number generator for the block cipher initialization vector.

Risk

If you use a weak random number generator for the initiation vector, your data is
vulnerable to dictionary attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC
(Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with the
encrypted output from the previous block. To protect the first block, these modes use a
random initialization vector (IV). If you use a weak random number generator for your IV,
your data becomes vulnerable to dictionary attacks.

Fix

Use a strong pseudo-random number generator (PRNG) for the initialization vector. For
instance, use:

• OS-level PRNG such as /dev/random on UNIX or CryptGenRandom() on Windows
• Application-level PRNG such as Advanced Encryption Standard (AES) in Counter

(CTR) mode, HMAC-SHA1, etc.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

7 CERT C Rules and Recommendations

7-814

Example - Predictable Initialization Vector

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_pseudo_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the function RAND_pseudo_bytes declared in openssl/rand.h
produces the initialization vector. The byte sequences that RAND_pseudo_bytes
generates are not necessarily unpredictable.

Correction — Use Strong Random Number Generator

Use a strong random number generator to produce the initialization vector. The corrected
code here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Predictable cipher key
Description

Predictable cipher key occurs when you use a weak random number generator for the
encryption or decryption key.

 CERT C: Rec. MSC18-C

7-815

Risk

If you use a weak random number generator for the encryption or decryption key, an
attacker can retrieve your key easily.

You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data
encrypted using that key is not secure.

Fix

Use a strong pseudo-random number generator (PRNG) for the key. For instance:

• Use an OS-level PRNG such as /dev/random on UNIX or CryptGenRandom() on
Windows

• Use an application-level PRNG such as Advanced Encryption Standard (AES) in
Counter (CTR) mode, HMAC-SHA1, etc.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Example - Predictable Cipher Key

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_pseudo_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the function RAND_pseudo_bytes declared in openssl/rand.h
produces the cipher key. However, the byte sequences that RAND_pseudo_bytes
generates are not necessarily unpredictable.

Correction — Use Strong Random Number Generator

One possible correction is to use a strong random number generator to produce the
cipher key. The corrected code here uses the function RAND_bytes declared in openssl/
rand.h.

7 CERT C Rules and Recommendations

7-816

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Sensitive heap memory not cleared before release
Description

Sensitive heap memory not cleared before release detects dynamically allocated
memory containing sensitive data. If you do not clear the sensitive data when you free the
memory, Bug Finder raises a defect on the free function.

Risk

If the memory zone is reallocated, an attacker can still inspect the sensitive data in the
old memory zone.

Fix

Before calling free, clear out the sensitive data using memset or SecureZeroMemory.

Example - Sensitive Buffer Freed, Not Cleared

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);

 CERT C: Rec. MSC18-C

7-817

 free(buf);
}

In this example, the function uses a buffer of passwords and frees the memory before the
end of the function. However, the data in the memory is not cleared by using the free
command.

Correction — Nullify Data

One possible correction is to write over the data to clear out the sensitive information.
This example uses memset to write over the data with zeros.

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0;i<(sizeof(arr)/sizeof(arr[0]));i++) assert(arr[i]==0)

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);

 if (buf) {
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
 free(buf);
 }
}

Uncleared sensitive data in stack
Description

Uncleared sensitive data in stack detects static memory containing sensitive data. If
you do not clear the sensitive data from your stack before exiting the function or
program, Bug Finder raises a defect on the last curly brace.

7 CERT C Rules and Recommendations

7-818

Risk

Leaving sensitive information in your stack, such as passwords or user information,
allows an attacker additional access to the information after your program has ended.

Fix

Before exiting a function or program, clear out the memory zones that contain sensitive
data by using memset or SecureZeroMemory.

Example - Static Buffer of Password Information

#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

void bug_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
}

In this example, a static buffer is filled with password information. The program frees the
stack memory at the end of the program. However, the data is still accessible from the
memory.

Correction — Clear Memory

One possible correction is to write over the memory before exiting the function. This
example uses memset to clear the data from the buffer memory.

#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0; i<(sizeof(arr)/sizeof(arr[0])); i++) assert(arr[i]==0)

void corrected_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";

 CERT C: Rec. MSC18-C

7-819

 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
}

Unsafe standard encryption function
Description

Unsafe standard encryption function detects use of functions with a broken or weak
cryptographic algorithm. For example, crypt is not reentrant and is based on the risky
Data Encryption Standard (DES).

Risk

The use of a broken, weak, or nonstandard algorithm can expose sensitive information to
an attacker. A determined hacker can access the protected data using various techniques.

If the weak function is nonreentrant, when you use the function in concurrent programs,
there is an additional race condition risk.

Fix

Avoid functions that use these encryption algorithms. Instead, use a reentrant function
that uses a stronger encryption algorithm.

Note Some implementations of crypt support additional, possibly more secure,
encryption algorithms.

Example - Decrypting Password Using crypt

#define _GNU_SOURCE
#include <pwd.h>
#include <string.h>
#include <crypt.h>

volatile int rd = 1;

const char *salt = NULL;
struct crypt_data input, output;

7 CERT C Rules and Recommendations

7-820

int verif_pwd(const char *pwd, const char *cipher_pwd, int safe)
{
 int r = 0;
 char *decrypted_pwd = NULL;

 switch(safe)
 {
 case 1:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 case 2:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 default:
 decrypted_pwd = crypt(pwd, cipher_pwd);
 break;
 }

 r = (strcmp(cipher_pwd, decrypted_pwd) == 0);

 return r;
}

In this example, crypt_r and crypt decrypt a password. However, crypt is
nonreentrant and uses the unsafe Data Encryption Standard algorithm.

Correction — Use crypt_r

One possible correction is to replace crypt with crypt_r.

#define _GNU_SOURCE
#include <pwd.h>
#include <string.h>
#include <crypt.h>

volatile int rd = 1;

const char *salt = NULL;
struct crypt_data input, output;

int verif_pwd(const char *pwd, const char *cipher_pwd, int safe)
{
 int r = 0;

 CERT C: Rec. MSC18-C

7-821

 char *decrypted_pwd = NULL;

 switch(safe)
 {
 case 1:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 case 2:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 default:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;
 }

 r = (strcmp(cipher_pwd, decrypted_pwd) == 0);

 return r;
}

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC18-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-822

https://wiki.sei.cmu.edu/confluence/x/stYxBQ

CERT C: Rec. MSC20-C
Do not use a switch statement to transfer control into a complex block

Description
Rule Definition
Do not use a switch statement to transfer control into a complex block.

Examples
Switch label not at outermost level of body of switch
statement
Description

The issue occurs when you use a switch label and the most closely-enclosing compound
statement is not the body of the switch statement. For instance a case label is enclosed
inside a for loop that is enclosed inside the switch statement.

Risk

The C Standard permits placing a switch label (for instance, case or default) before
any statement contained in the body of a switch statement. This flexibility can lead to
unstructured code. To prevent unstructured code, make sure a switch label appears only
at the outermost level of the body of a switch statement.

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rec. MSC20-C

7-823

Topics
“Check for Coding Standard Violations”

External Websites
MSC20-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-824

https://wiki.sei.cmu.edu/confluence/x/zdYxBQ

CERT C: Rec. MSC21-C
Use robust loop termination conditions

Description

Rule Definition
Use robust loop termination conditions.

Examples

Loop bounded with tainted value
Description

Loop bounded with tainted value detects loops that are bounded by values from an
unsecure source.

Risk

A tainted value can cause over looping or infinite loops. Attackers can use this
vulnerability to crash your program or cause other unintended behavior.

Fix

Before starting the loop, validate unknown boundary and iterator values.

Example - Loop Boundary From Input Argument

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(int count) {

 CERT C: Rec. MSC21-C

7-825

 int res = 0;
 for (int i=0 ; i < count; ++i) {
 res += i;
 }
 return res;
}

In this example, the function uses the input argument to loop count times. count could
be any number because the value is not checked before starting the for-loop.

Correction — Check Loop Control

One possible correction is to check the value of the variable controlling the loop before
starting the for-loop. This example checks if count is greater than zero and less than the
maximum size.

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(int count) {
 int res = 0;

 if (count>0 && count<SIZE128) {
 for (int i=0 ; i<count ; ++i) {
 res += i;
 }
 }
 return res;
}

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

7 CERT C Rules and Recommendations

7-826

Topics
“Check for Coding Standard Violations”

External Websites
MSC21-C

Introduced in R2019a

 CERT C: Rec. MSC21-C

7-827

https://wiki.sei.cmu.edu/confluence/x/x9YxBQ

CERT C: Rec. MSC22-C
Use the setjmp(), longjmp() facility securely

Description

Rule Definition
Use the setjmp(), longjmp() facility securely.

Examples

Use of setjmp/longjmp
Description

Use of setjmp/longjmp occurs when you use a combination of setjmp and longjmp or
sigsetjmp and siglongjmp to deviate from normal control flow and perform non-local
jumps in your code.

Risk

Using setjmp and longjmp, or sigsetjmp and siglongjmp has the following risks:

• Nonlocal jumps are vulnerable to attacks that exploit common errors such as buffer
overflows. Attackers can redirect the control flow and potentially execute arbitrary
code.

• Resources such as dynamically allocated memory and open files might not be closed,
causing resource leaks.

• If you use setjmp and longjmp in combination with a signal handler, unexpected
control flow can occur. POSIX does not specify whether setjmp saves the signal mask.

• Using setjmp and longjmp or sigsetjmp and siglongjmp makes your program
difficult to understand and maintain.

7 CERT C Rules and Recommendations

7-828

Fix

Perform nonlocal jumps in your code using setjmp/longjmp or sigsetjmp/
siglongjmp only in contexts where such jumps can be performed securely. Alternatively,
use POSIX threads if possible.

In C++, to simulate throwing and catching exceptions, use standard idioms such as
throw expressions and catch statements.

Example - Use of setjmp and longjmp

#include <setjmp.h>
#include <signal.h>

extern int update(int);
extern void print_int(int);

static jmp_buf env;
void sighandler(int signum) {
 longjmp(env, signum);
}
void func_main(int i) {
 signal(SIGINT, sighandler);
 if (setjmp(env)==0) {
 while(1) {
 /* Main loop of program, iterates until SIGINT signal catch */
 i = update(i);
 }
 } else {
 /* Managing longjmp return */
 i = -update(i);
 }

 print_int(i);
 return;
}

In this example, the initial return value of setjmp is 0. The update function is called in
an infinite while loop until the user interrupts it through a signal.

In the signal handling function, the longjmp statement causes a jump back to main and
the return value of setjmp is now 1. Therefore, the else branch is executed.

 CERT C: Rec. MSC22-C

7-829

Correction — Use Alternative to setjmp and longjmp

To emulate the same behavior more securely, use a volatile global variable instead of a
combination of setjmp and longjmp.

#include <setjmp.h>
#include <signal.h>

extern int update(int);
extern void print_int(int);

volatile sig_atomic_t eflag = 0;

void sighandler(int signum) {
 eflag = signum; /* Fix: using global variable */
}

void func_main(int i) {
 /* Fix: Better design to avoid use of setjmp/longjmp */
 signal(SIGINT, sighandler);
 while(!eflag) { /* Fix: using global variable */
 /* Main loop of program, iterates until eflag is changed */
 i = update(i);
 }

 print_int(i);
 return;
}

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

7 CERT C Rules and Recommendations

7-830

External Websites
MSC22-C

Introduced in R2019a

 CERT C: Rec. MSC22-C

7-831

https://wiki.sei.cmu.edu/confluence/x/ktYxBQ

CERT C: Rec. MSC24-C
Do not use deprecated or obsolescent functions

Description

Rule Definition
Do not use deprecated or obsolescent functions.

Examples

Use of obsolete standard function
Description

Use of obsolete standard function detects calls to standard function routines that are
considered legacy, removed, deprecated, or obsolete by C/C++ coding standards.

Obsolete Function Standards Risk Replacement
Function

asctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

asctime_r Deprecated in POSIX.1-2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

bcmp Deprecated in 4.3BSD

Marked as legacy in
POSIX.1-2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcmp

7 CERT C Rules and Recommendations

7-832

Obsolete Function Standards Risk Replacement
Function

bcopy Deprecated in 4.3BSD

Marked as legacy in
POSIX.1-2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcpy or
memmove

brk and sbrk Marked as legacy in SUSv2 and
POSIX.1-2001.

 malloc

bsd_signal Removed in POSIX.1-2008 sigaction
bzero Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

 memset

ctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

ctime_r Deprecated in POSIX.1-2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

cuserid Removed in POSIX.1-2001. Not reentrant. Precise
functionality not
standardized causing
portability issues.

getpwuid

ecvt and fcvt Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008

Not reentrant snprintf

ecvt_r and fcvt_r Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008

 snprintf

ftime Removed in POSIX.1-2008 time,
gettimeofday,
clock_gettime

gamma, gammaf,
gammal

Function not specified in any
standard because of historical
variations

Portability issues. tgamma, lgamma

 CERT C: Rec. MSC24-C

7-833

Obsolete Function Standards Risk Replacement
Function

gcvt Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 snprintf

getcontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

getdtablesize BSD API function not included
in POSIX.1-2001

Portability issues. sysconf(_SC_OP
EN_MAX)

gethostbyaddr Removed in POSIX.1-2008 Not reentrant getaddrinfo
gethostbyname Removed in POSIX.1-2008 Not reentrant getnameinfo
getpagesize BSD API function not included

in POSIX.1-2001
Portability issues. sysconf(_SC_PA

GESIZE)
getpass Removed in POSIX.1-2001. Not reentrant. getpwuid
getw Not present in POSIX.1-2001. fread
getwd Marked legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

 getcwd

index Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 strchr

makecontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

memalign Appears in SunOS 4.1.3. Not in
4.4 BSD or POSIX.1-2001

 posix_memalign

mktemp Removed in POSIX.1-2008. Generated names are
predictable and can
cause a race condition.

mkstemp removes
race risk

pthread_attr_
getstackaddr and
pthread_attr_
setstackaddr

 Ambiguities in the
specification of the
stackaddr attribute
cause portability
issues

pthread_attr_
getstack and
pthread_attr_
setstack

putw Not present in POSIX.1-2001. Portability issues. fwrite

7 CERT C Rules and Recommendations

7-834

Obsolete Function Standards Risk Replacement
Function

qecvt and qfcvt Marked as legacy in
POSIX.1-2001, removed in
POSIX.1-2008

 snprintf

qecvt_r and
qfcvt_r

Marked as legacy in
POSIX.1-2001, removed in
POSIX.1-2008

 snprintf

rand_r Marked as obsolete in
POSIX.1-2008

re_comp BSD API function Portability issues regcomp
re_exes BSD API function Portability issues regexec
rindex Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

 strrchr

scalb Removed in POSIX.1-2008 scalbln,
scalblnf, or
scalblnl

sigblock 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigmask 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigsetmask 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigstack Interface is obsolete and not
implemented on most
platforms.

Portability issues. sigaltstack

sigvec 4.3BSD signal API whose origin
is unclear

 sigaction

swapcontext Removed in POSIX.1-2008 Portability issues. Use POSIX threads.

 CERT C: Rec. MSC24-C

7-835

Obsolete Function Standards Risk Replacement
Function

tmpnam and
tmpnam_r

Marked as obsolete in
POSIX.1-2008.

This function
generates a different
string each time it is
called, up to
TMP_MAX times. If it
is called more than
TMP_MAX times, the
behavior is
implementation-
defined.

mkstemp, tmpfile

ttyslot Removed in POSIX.1-2001.
ualarm Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

Errors are under-
specified

setitimer or
POSIX
timer_create

usleep Removed in POSIX.1-2008. nanosleep
utime SVr4, POSIX.1-2001.

POSIX.1-2008 marks as
obsolete.

valloc Marked as obsolete in 4.3BSD.

Marked as legacy in SUSv2.

Removed from POSIX.1-2001

 posix_memalign

vfork Removed from POSIX.1-2008 Under-specified in
previous standards.

fork

wcswcs This function was not included
in the final ISO/IEC 9899:1990/
Amendment 1:1995 (E).

 wcsstr

WinExec WinAPI provides this function
only for 16-bit Windows
compatibility.

 CreateProcess

LoadModule WinAPI provides this function
only for 16-bit Windows
compatibility.

 CreateProcess

7 CERT C Rules and Recommendations

7-836

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Printing Out Time

#include <stdio.h>
#include <time.h>

void timecheck_bad(int argc, char *argv[])
{
 time_t ticks;

 ticks = time(NULL);
 printf("%.24s\r\n", ctime(&ticks));
}

In this example, the function ctime formats the current time and prints it out. However,
ctime was removed after C99 because it does not work on multithreaded programs.

Correction — Different Time Function

One possible correction is to use strftime instead because this function uses a set
buffer size.

#include <stdio.h>
#include <string.h>
#include <time.h>

void timecheck_good(int argc, char *argv[])
{
 char outBuff[1025];
 time_t ticks;
 struct tm * timeinfo;

 CERT C: Rec. MSC24-C

7-837

 memset(outBuff, 0, sizeof(outBuff));

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime(outBuff,sizeof(outBuff),"%I:%M%p.",timeinfo);
 fprintf(stdout, outBuff);
}

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC24-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-838

https://wiki.sei.cmu.edu/confluence/x/hNYxBQ

CERT C: Rec. POS05-C
Limit access to files by creating a jail

Description

Rule Definition
Limit access to files by creating a jail.

Examples

File manipulation after chroot without chdir
Description

File manipulation after chroot() without chdir("/") detects access to the file
system outside of the jail created by chroot. By calling chroot, you create a file system
jail that confines access to a specific file subsystem. However, this jail is ineffective if you
do not call chdir("/").

Risk

If you do not call chdir("/") after creating a chroot jail, file manipulation functions
that takes a path as an argument can access files outside of the jail. An attacker can still
manipulate files outside the subsystem that you specified, making the chroot jail
ineffective.

Fix

After calling chroot, call chdir("/") to make your chroot jail more secure.

Example - Open File in chroot-jail

#include <unistd.h>
#include <stdio.h>

 CERT C: Rec. POS05-C

7-839

const char root_path[] = "/var/ftproot";
const char log_path[] = "file.log";
FILE* chrootmisuse() {
 FILE* res;
 chroot(root_path);
 chdir("base");
 res = fopen(log_path, "r");
 return res;
}

This example uses chroot to create a chroot-jail. However, to use the chroot jail
securely, you must call chdir("\") afterward. This example calls chdir("base"),
which is not equivalent. Bug Finder also flags fopen because fopen opens a file in the
vulnerable chroot-jail.

Correction — Call chdir("/")

Before opening files, call chdir("/").

#include <unistd.h>
#include <stdio.h>

const char root_path[] = "/var/ftproot";
const char log_path[] = "file.log";
FILE* chrootmisuse() {
 FILE* res;
 chroot(root_path);
 chdir("/");
 res = fopen(log_path, "r");
 return res;
}

Check Information
Group: Rec. 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

7 CERT C Rules and Recommendations

7-840

Topics
“Check for Coding Standard Violations”

External Websites
POS05-C

Introduced in R2019a

 CERT C: Rec. POS05-C

7-841

https://wiki.sei.cmu.edu/confluence/x/vNYxBQ

CERT C: Rec. WIN00-C
Be specific when dynamically loading libraries

Description

Rule Definition
Be specific when dynamically loading libraries.

Examples

Load of library from a relative path can be controlled by an
external actor
Description

Load of library from a relative path can be controlled by an external actor detects
library loading routines that load an external library. If you load the library using a
relative path or no path, Bug Finder flags the loading routine as a defect.

Risk

By using a relative path or no path to load an external library, your program uses an
unsafe search process to find the library. An attacker can control the search process and
replace the intended library with a library of their own.

Fix

When you load an external library, specify the full path.

Example - Open Library with Library Name

#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>

7 CERT C Rules and Recommendations

7-842

#include <malloc.h>
#include <stdio.h>

void relative_path()
{
 dlopen("liberty.dll",RTLD_LAZY);
}

In this example, dlopen opens the liberty library by calling only the name of the
library. However, this call to the library uses a relative path to find the library, which is
unsafe.

Correction — Use Full Path to Library

One possible correction is to use the full path to the library when you load it into your
program.

#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void relative_path()
{
 dlopen("/home/my_libs/library/liberty.dll",RTLD_LAZY);
}

Library loaded from externally controlled path
Description

Library loaded from externally controlled path looks for libraries loaded from fixed or
controlled paths. If unintended actors can control one or more locations on this fixed
path, Bug Finder raises a defect.

Risk

If an attacker knows or controls the path that you use to load a library, the attacker can
change:

• The library that the program loads, replacing the intended library and commands.

 CERT C: Rec. WIN00-C

7-843

• The environment in which the library executes, giving unintended permissions and
capabilities to the attacker.

Fix

When possible, use hard-coded or fully qualified path names to load libraries. It is
possible the hard-coded paths do not work on other systems. Use a centralized location
for hard-coded paths, so that you can easily modify the path within the source code.

Another solution is to use functions that require explicit paths. For example, system()
does not require a full path because it can use the PATH environment variable. However,
execl() and execv() do require the full path.

Example - Call Custom Library

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void* taintedpathlib() {
 void* libhandle = NULL;
 char lib[SIZE128] = "";
 char* userpath = getenv("LD_LIBRARY_PATH");
 strncpy(lib, userpath, SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, 0x00001);
 return libhandle;
}

This example loads the library libX.so from an environment variable
LD_LIBRARY_PATH. An attacker can change the library path in this environment variable.
The actual library you load could be a different library from the one that you intend.

7 CERT C Rules and Recommendations

7-844

Correction — Change and Check Path

One possible correction is to change how you get the library path and check the path of
the library before opening the library. This example receives the path as an input
argument. Then the path is checked to make sure the library is not under /usr/.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

/* Function to sanitize a string */
int sanitize_str(char* s, size_t n) {
 /* strlen is used here as a kind of firewall for tainted string errors */
 int res = (strlen(s) > 0 && strlen(s) < n);
 return res;
}
void* taintedpathlib(char* userpath) {
 void* libhandle = NULL;
 if (sanitize_str(userpath, SIZE128)) {
 char lib[SIZE128] = "";

 if (strncmp(userpath, "/usr", 4)!=0) {
 strncpy(lib, userpath, SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, RTLD_LAZY);
 }
 }
 return libhandle;
}

Check Information
Group: Rec. 51. Microsoft Windows (WIN)

 CERT C: Rec. WIN00-C

7-845

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
WIN00-C

Introduced in R2019a

7 CERT C Rules and Recommendations

7-846

https://wiki.sei.cmu.edu/confluence/x/ntUxBQ

CERT C++ Rules

8

Acknowledgement
This software has been created by MathWorks incorporating portions of: the “SEI CERT-C
Website,” © 2017 Carnegie Mellon University, the SEI CERT-C++ Web site © 2017
Carnegie Mellon University, ”SEI CERT C Coding Standard – Rules for Developing safe,
Reliable and Secure systems – 2016 Edition,” © 2016 Carnegie Mellon University, and
“SEI CERT C++ Coding Standard – Rules for Developing safe, Reliable and Secure
systems in C++ – 2016 Edition” © 2016 Carnegie Mellon University, with special
permission from its Software Engineering Institute.

ANY MATERIAL OF CARNEGIE MELLON UNIVERSITY AND/OR ITS SOFTWARE
ENGINEERING INSTITUTE CONTAINED HEREIN IS FURNISHED ON AN "AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This software and associated documentation has not been reviewed nor is it endorsed by
Carnegie Mellon University or its Software Engineering Institute.

8 CERT C++ Rules

8-2

CERT C++: DCL30-C
Declare objects with appropriate storage durations

Description

Rule Definition
Declare objects with appropriate storage durations.

Examples

Pointer or reference to stack variable leaving scope
Description

Pointer or reference to stack variable leaving scope occurs when a pointer or
reference to a local variable leaves the scope of the variable. For instance:

• A function returns a pointer to a local variable.
• A function performs the assignment globPtr = &locVar. globPtr is a global

pointer variable and locVar is a local variable.
• A function performs the assignment *paramPtr = &locVar. paramPtr is a function

parameter that is, for instance, an int** pointer and locVar is a local int variable.
• A C++ method performs the assignment memPtr = &locVar. memPtr is a pointer

data member of the class the method belongs to. locVar is a variable local to the
method.

The defect also applies to memory allocated using the alloca function. The defect does
not apply to static, local variables.

 CERT C++: DCL30-C

8-3

Risk

Local variables are allocated an address on the stack. Once the scope of a local variable
ends, this address is available for reuse. Using this address to access the local variable
value outside the variable scope can cause unexpected behavior.

If a pointer to a local variable leaves the scope of the variable, Polyspace Bug Finder
highlights the defect. The defect appears even if you do not use the address stored in the
pointer. For maintainable code, it is a good practice to not allow the pointer to leave the
variable scope. Even if you do not use the address in the pointer now, someone else using
your function can use the address, causing undefined behavior.

Fix

Do not allow a pointer or reference to a local variable to leave the variable scope.

Example - Pointer to Local Variable Returned from Function

void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

In this example, func1 returns a pointer to local variable ret.

In main, ptr points to the address of the local variable. When ptr is accessed in func2,
the access is illegal because the scope of ret is limited to func1,

Example - Pointer to Local Variable Escapes Through Lambda Expression

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [&] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;

8 CERT C++ Rules

8-4

}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

In this example, the createAdder function defines a lambda expression adder that
captures the local variable addThis by reference. The scope of addThis is limited to the
createAdder function. When the object returned by createAdder is called, a reference
to the variable addThis is accessed outside its scope. When accessed in this way, the
value of addThis is undefined.

Correction – Capture Local Variables by Copy in Lambda Expression Instead of
Reference

If a function returns a lambda expression object, avoid capturing local variables by
reference in the lambda object. Capture the variables by copy instead.

Variables captured by copy have the same lifetime as the lambda object, but variables
captured by reference often have a smaller lifetime than the lambda object itself. When
the lambda object is used, these variables accessed outside scope have undefined values.

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [=] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

Check Information
Group: 01. Declarations and Initialization (DCL)

 CERT C++: DCL30-C

8-5

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL30-C

Introduced in R2019a

8 CERT C++ Rules

8-6

https://wiki.sei.cmu.edu/confluence/x/UtcxBQ

CERT C++: DCL39-C
Avoid information leakage in structure padding

Description

Rule Definition
Avoid information leakage in structure padding.

Examples

Information leak via structure padding
Description

Information leak via structure padding occurs when you do not initialize the padding
data of a structure or union before passing it across a trust boundary. A compiler adds
padding bytes to the structure or union to ensure a proper memory alignment of its
members. The bit-fields of the storage units can also have padding bits.

Information leak via structure padding raises a defect when:

• You call an untrusted function with structure or union pointer type argument
containing uninitialized padding data.

All external functions are considered untrusted.
• You copy or assign a structure or union containing uninitialized padding data to an

untrusted object.

All external structure or union objects, the output parameters of all externally linked
functions, and the return pointer of all external functions are considered untrusted
objects.

 CERT C++: DCL39-C

8-7

Risk

The padding bytes of the passed structure or union might contain sensitive information
that an untrusted source can access.

Fix

• Prevent the addition of padding bytes for memory alignment by using the pack
pragma or attribute supported by your compiler.

• Explicitly declare and initialize padding bytes as fields within the structure or union.
• Explicitly declare and initialize bit-fields corresponding to padding bits, even if you use

the pack pragma or attribute supported by your compiler.

Example - Structure with Padding Bytes Passed to External Function

#include <stddef.h>
#include <stdlib.h>
#include <string.h>

typedef struct s_padding
{
 /* Padding bytes may be introduced between
 * 'char c' and 'int i'
 */
 char c;
 int i;

/*Padding bits may be introduced around the bit-fields
* even if you use "#pragma pack" (Windows) or
* __attribute__((__packed__)) (GNU)*/

 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* External function */
extern void copy_object(void *out, void *in, size_t s);

void func(void *out_buffer)
{

8 CERT C++ Rules

8-8

/*Padding bytes not initialized*/

 S_Padding s = {'A', 10, 1, 3, {}};
/*Structure passed to external function*/

 copy_object((void *)out_buffer, (void *)&s, sizeof(s));
}

void main(void)
{
 S_Padding s1;
 func(&s1);
}

In this example, structure s1 can have padding bytes between the char c and int i
members. The bit-fields of the storage units of the structure can also contain padding bits.
The content of the padding bytes and bits is accessible to an untrusted source when s1 is
passed to func.

Correction — Use pack Pragma to Prevent Padding Bytes

One possible correction in Microsoft Visual Studiois to use #pragma pack() to prevent
padding bytes between the structure members. To prevent padding bits in the bit-fields of
s1, explicitly declare and initialize the bit-fields even if you use #pragma pack().

 #include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>

#define CHAR_BIT 8

#pragma pack(push, 1)

typedef struct s_padding
{
/*No Padding bytes when you use "#pragma pack" (Windows) or
* __attribute__((__packed__)) (GNU)*/
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
/* Padding bits explicitely declared */
 unsigned int bf_filler : sizeof(unsigned) * CHAR_BIT - 3;

 CERT C++: DCL39-C

8-9

 unsigned char buffer[20];
}

 S_Padding;

#pragma pack(pop)

/* External function */
extern void copy_object(void *out, void *in, size_t s);

void func(void *out_buffer)
{
 S_Padding s = {'A', 10, 1, 3, 0 /* padding bits */, {}};
 copy_object((void *)out_buffer, (void *)&s, sizeof(s));
}

void main(void)
{
 S_Padding s1;
 func(&s1);
}

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL39-C

Introduced in R2019a

8 CERT C++ Rules

8-10

https://wiki.sei.cmu.edu/confluence/x/atUxBQ

CERT C++: DCL40-C
Do not create incompatible declarations of the same function or object

Description
Rule Definition
Do not create incompatible declarations of the same function or object.

Examples
Declaration mismatch
Description

Declaration mismatch occurs when a function or variable declaration does not match
other instances of the function or variable.

Risk

When a mismatch occurs between two variable declarations in different compilation units,
a typical linker follows an algorithm to pick one declaration for the variable. If you expect
a variable declaration that is different from the one chosen by the linker, you can see
unexpected results when the variable is used.

A similar issue can occur with mismatch in function declarations.

Fix

The fix depends on the type of declaration mismatch. If both declarations indeed refer to
the same object, use the same declaration. If the declarations refer to different objects,
change the names of the one of the variables. If you change a variable name, remember to
make the change in all places that use the variable.

Sometimes, declaration mismatches can occur because the declarations are affected by
previous preprocessing directives. For instance, a declaration occurs in a macro, and the

 CERT C++: DCL40-C

8-11

macro is defined on one inclusion path but undefined in another. These declaration
mismatches can be tricky to debug. Identify the divergence between the two inclusion
paths and fix the conflicting macro definitions.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Inconsistent Declarations in Two Files

file1.c

int foo(void) {
 return 1;
}

file2.c

double foo(void);

int bar(void) {
 return (int)foo();
}

In this example, file1.c declares foo() as returning an integer. In file2.c, foo() is
declared as returning a double. This difference raises a defect on the second instance of
foo in file2.

Correction — Align the Function Return Values

One possible correction is to change the function declarations so that they match. In this
example, by changing the declaration of foo in file2.c to match file1.c, the defect is fixed.

file1.c

int foo(void) {
 return 1;
}

file2.c

int foo(void);

int bar(void) {
 return foo();
}

8 CERT C++ Rules

8-12

Example - Inconsistent Structure Alignment

test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

In this example, a declaration mismatch defect is raised on square in square.h because
Polyspace infers that square in square.h does not have the same alignment as square in
test2.c. This error occurs because the #pragma pack(1) statement in circle.h declares
specific alignment. In test2.c, circle.h is included before square.h. Therefore, the
#pragma pack(1) statement from circle.h is not reset to the default alignment after the
aCircle structure. Because of this omission, test2.c infers that the aSquare square
structure also has an alignment of 1 byte.

Correction — Close Packing Statements

One possible correction is to reset the structure alignment after the aCircle struct
declaration. For the GNU or Microsoft Visual compilers, fix the defect by adding a
#pragma pack() statement at the end of circle.h.

 CERT C++: DCL40-C

8-13

test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

#pragma pack()

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

Other compilers require different #pragma pack syntax. For your syntax, see the
documentation for your compiler.

Correction — Use the Ignore pragma pack directives Option

One possible correction is to add the Ignore pragma pack directives option to your
Bug Finder analysis. If you want the structure alignment to change for each structure,
and you do not want to see this Declaration mismatch defect, use this correction.

1 On the Configuration pane, select the Advanced Settings pane.
2 In the Other box, enter -ignore-pragma-pack.
3 Rerun your analysis.

The Declaration mismatch defect is resolved.

Check Information
Group: 01. Declarations and Initialization (DCL)

8 CERT C++ Rules

8-14

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL40-C

Introduced in R2019a

 CERT C++: DCL40-C

8-15

https://wiki.sei.cmu.edu/confluence/x/ftUxBQ

CERT C++: DCL50-CPP
Do not define a C-style variadic function

Description

Rule Definition
Do not define a C-style variadic function.

Examples

Function definition with ellipsis notation
Description

The issue occurs when you define a function using the ellipsis notation.

int func(cont char* format, ...);

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL50-CPP

8 CERT C++ Rules

8-16

https://wiki.sei.cmu.edu/confluence/x/5ns-BQ

Introduced in R2019a

 CERT C++: DCL50-CPP

8-17

CERT C++: DCL51-CPP
Do not declare or define a reserved identifier

Description

Rule Definition
Do not declare or define a reserved identifier.

Examples

Defining reserved identifier
Description

The issue occurs when you define, redefine, or undefine a reserved identifier, macro, or
function in the standard library.

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL51-CPP

8 CERT C++ Rules

8-18

https://wiki.sei.cmu.edu/confluence/x/Q30-BQ

Introduced in R2019a

 CERT C++: DCL51-CPP

8-19

CERT C++: DCL52-CPP
Never qualify a reference type with const or volatile

Description

Rule Definition
Never qualify a reference type with const or volatile.

Examples

const-Qualified Reference Type
int func (int &const iRef) {
 iRef++;
 return iRef%2;
}

In this example, iRef is a const-qualified reference type. Since iRef cannot refer to
another variable, the const qualifier is redundant.

Correction — Remove const Qualifier

Remove the redundant const qualifier. Since iRef is modified in func, it is not meant to
refer to a const-qualified variable. Moving the const qualifier before & will cause a
compilation error.

int func (int &iRef) {
 iRef++;
 return iRef%2;
}

8 CERT C++ Rules

8-20

Correction — Fix Placement of const Qualifier

If you do not identify to modify iRef in func, declare iRef as a reference to a const-
qualified variable. Place the const qualifier before the & operator. Make sure you do not
modify iRef in func.

int func (int const &iRef) {
 return (iRef+1)%2;
}

Modification of const-qualified Reference Types
typedef const int cint;
typedef cint& ref_to_cint;

void func(ref_to_cint refVal, int initVal){
 refVal = val;
}

In this example, ref_to_cint is a reference to a const-qualified type. The variable
refVal of type ref_to_cint is supposed to be initialized when func is called and not
modified subsequently. The modification violates the contract implied by the const
qualifier.

Correction — Avoid Modification of const-qualified Reference Types

One possible correction is to avoid the const in the declaration of the reference type.

typedef int& ref_to_int;

void func(ref_to_int refVal, int initVal){
 refVal = val;
}

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

 CERT C++: DCL52-CPP

8-21

Topics
“Check for Coding Standard Violations”

External Websites
DCL52-CPP

Introduced in R2019a

8 CERT C++ Rules

8-22

https://wiki.sei.cmu.edu/confluence/x/jXw-BQ

CERT C++: DCL53-CPP
Do not write syntactically ambiguous declarations

Description

Rule Definition
Do not write syntactically ambiguous declarations.

Examples

Function or Object Declaration
class ResourceType {
 int aMember;
 public:
 int getMember();
};

void getResource() {
 ResourceType aResource();
}

In this example, aResource might be used as an object but the declaration syntax
indicates a function declaration.

Correction — Use {} for Object Declaration

One possible correction (after C++11) is to use braces for object declaration.

class ResourceType {
 int aMember;
 public:
 int getMember();
};

 CERT C++: DCL53-CPP

8-23

void getResource() {
 ResourceType aResource{};
}

Unnamed Object or Unnamed Function Parameter Declaration
class MemberType {};

class ResourceType {
 MemberType aMember;
 public:
 ResourceType(MemberType m) {aMember = m;}
 int getMember();
};

void getResource() {
 ResourceType aResource(MemberType());
}

In this example, aResource might be used as an object initialized with an unnamed
object of type MemberType but the declaration syntax indicates a function with an
unnamed parameter of function pointer type. The function pointer points to a function
with no arguments and type MemberType.

Correction — Use {} for Object Declaration

One possible correction (after C++11) is to use braces for object declaration.

class MemberType {};

class ResourceType {
 MemberType aMember;
 public:
 ResourceType(MemberType m) {aMember = m;}
 int getMember();
};

void getResource {
 ResourceType aResource{MemberType()};
}

8 CERT C++ Rules

8-24

Unnamed Object or Named Function Parameter Declaration
class Integer {
 int aMember;
 public:
 Integer(int d) {aMember = d;}
 int getMember();
};

int aInt = 0;
Integer aInteger(Integer(aInt));

In this example, aInteger might be an object constructed with an unnamed object
Integer(aInt) (an object of class Integer which itself is constructed using the
variable aInt). However, the declaration syntax indicates that aInteger is a function
with a named parameter aInt of type Integer (the superfluous parenthesis is ignored).

Correction — Use of {} for Object Declaration

One possible correction (after C++11) is to use {} for object declaration.

class Integer {
 int aMember;
 public:
 Integer(int d) {aMember = d;}
 int getMember();
};

int aInt = 0;
Integer aInteger{Integer{aInt}};

Correction — Remove Superfluous Parenthesis for Named Parameter Declaration

If aInteger is a function with a named parameter aInt, remove the superfluous ()
around aInt.

class Integer {
 int aMember;
 public:
 Integer(int d) {aMember = d;}
 int getMember();
};

Integer aInteger(Integer aInt);

 CERT C++: DCL53-CPP

8-25

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL53-CPP

Introduced in R2019a

8 CERT C++ Rules

8-26

https://wiki.sei.cmu.edu/confluence/x/DHw-BQ

CERT C++: DCL54-CPP
Overload allocation and deallocation functions as a pair in the same scope

Description
Rule Definition
Overload allocation and deallocation functions as a pair in the same scope.

Examples
Mismatch Between Overloaded operator new and operator
delete
#include <new>
#include <cstdlib>

int global_store;

void update_bookkeeping(void *allocated_ptr, bool alloc) {
 if(alloc)
 global_store++;
 else
 global_store--;
}

void *operator new(std::size_t size, const std::nothrow_t& tag);
void *operator new(std::size_t size, const std::nothrow_t& tag) {
 void *ptr = (void*)malloc(size);
 if (ptr != nullptr)
 update_bookkeeping(ptr, true);
 return ptr;
}

void operator delete[](void *ptr, const std::nothrow_t& tag);

 CERT C++: DCL54-CPP

8-27

void operator delete[](void* ptr, const std::nothrow_t& tag) {
 update_bookkeeping(ptr, false);
 free(ptr);
}

In this example, the operators operator new and operator delete[] are overloaded
but there are no overloads of the corresponding operator delete and operator
new[] operators.

The overload of operator new calls a function update_bookkeeping to change the
value of a global variable global_store. If the default operator delete is called, this
global variable is unaffected, which might defy developer's expectations.

Correction — Overload the Correct Form of operator delete

If you want to overload operator new, overload the corresponding form of operator
delete in the same scope.

#include <new>
#include <cstdlib>

int global_store;

void update_bookkeeping(void *allocated_ptr, bool alloc) {
 if(alloc)
 global_store++;
 else
 global_store--;
}

void *operator new(std::size_t size, const std::nothrow_t& tag);
void *operator new(std::size_t size, const std::nothrow_t& tag) {
 void *ptr = (void*)malloc(size);
 if (ptr != nullptr)
 update_bookkeeping(ptr, true);
 return ptr;
}

void operator delete(void *ptr, const std::nothrow_t& tag);
void operator delete(void* ptr, const std::nothrow_t& tag) {
 update_bookkeeping(ptr, false);
 free(ptr);
}

8 CERT C++ Rules

8-28

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL54-CPP

Introduced in R2019a

 CERT C++: DCL54-CPP

8-29

https://wiki.sei.cmu.edu/confluence/x/KX0-BQ

CERT C++: DCL57-CPP
Do not let exceptions escape from destructors or deallocation functions

Description

Rule Definition
Do not let exceptions escape from destructors or deallocation functions.

Examples

Class destructor exiting with an exception
Description

The checker flags exceptions thrown in the body of the destructor. If the destructor calls
another function, the checker does not detect if that function throws an exception.

The checker does not detect these situations:

• A catch statement does not catch exceptions of all types that are thrown.

The checker considers the presence of a catch statement corresponding to a try
block as indication that an exception is caught.

• throw statements inside catch blocks

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

8 CERT C++ Rules

8-30

Topics
“Check for Coding Standard Violations”

External Websites
DCL57-CPP

Introduced in R2019a

 CERT C++: DCL57-CPP

8-31

https://wiki.sei.cmu.edu/confluence/x/G3s-BQ

CERT C++: DCL59-CPP
Do not define an unnamed namespace in a header file

Description
Rule Definition
Do not define an unnamed namespace in a header file.

Examples
Unnamed namespace in header file
Description

Unnamed namespace in header file detects an unnamed namespace in a header file,
which can lead to multiple definitions of objects in the namespace.

Risk

According to the C++ standard, names in an unnamed namespace, for instance, aVar
here:

namespace {
 int aVar;
}

have internal linkage by default. If a header file contains an unnamed namespace, each
translation unit #include-ing the header file defines its own instance of objects in the
namespace. The multiple definitions are probably not what you intended and can lead to
unexpected results, undesired memory usage or inadvertently violating the one-definition
rule.

Fix

Specify names for namespaces in header files or avoid using namespaces in header files.

8 CERT C++ Rules

8-32

Example – Unexpected Results from Unnamed Namespaces in Header Files

Header File: aHeader.h

namespace {
 int aVar;
}

First source file: aSource.cpp

#include "aHeader.h"
#include <iostream>

void setVar(int arg) {
 std::cout << "Current value: " << aVar << std::endl;
 aVar = arg;
 std::cout << "Value set at: " << aVar << std::endl;
}

Second source file: anotherSource.cpp

#include "aHeader.h"
#include <iostream>

extern void setVar(int);

void resetVar() {
 std::cout << "Current value: " << aVar << std::endl;
 aVar = 0;
 std::cout << "Value set at: 0" << std::endl;
}

void main() {
 setVar(1);
 resetVar();
}

In this example, the unnamed namespace leads to two definitions of aVar in the
translation unit from aSource.cpp and the translation unit from anotherSource.cpp.
The two definitions lead to the possibly unexpected output:

Current value: 0
Value set at: 1
Current value: 0
Value set at: 0

 CERT C++: DCL59-CPP

8-33

Correction – Avoid the Unnamed Namespace

One possible correction is to simply avoid a namespace in the header file.

Header File: aHeader.h

extern int aVar;

First source file: aSource.cpp

#include "aHeader.h"
#include <iostream>

void setVar(int arg) {
 std::cout << "Current value: " << aVar << std::endl;
 aVar = arg;
 std::cout << "Value set at: " << aVar << std::endl;
}

Second source file: anotherSource.cpp

#include "aHeader.h"
#include <iostream>

extern void setVar(int);
int aVar;

void resetVar() {
 std::cout << "Current value: " << aVar << std::endl;
 aVar = 0;
 std::cout << "Value set at: 0" << std::endl;
}

void main() {
 setVar(1);
 resetVar();
}

You now see the expected sequence in the output:

Current value: 0
Value set at: 1
Current value: 1
Value set at: 0

8 CERT C++ Rules

8-34

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL59-CPP

Introduced in R2019a

 CERT C++: DCL59-CPP

8-35

https://wiki.sei.cmu.edu/confluence/x/VXs-BQ

CERT C++: DCL60-CPP
Obey the one-definition rule

Description

Rule Definition
Obey the one-definition rule.

Examples

Inline constraint not respected
Description

Inline constraint not respected occurs when you refer to a file scope modifiable static
variable or define a local modifiable static variable in a nonstatic inlined function. The
checker considers a variable as modifiable if it is not const-qualified.

For instance, var is a modifiable static variable defined in an inline function func.
g_step is a file scope modifiable static variable referred to in the same inlined function.

static int g_step;
inline void func (void) {
 static int var = 0;
 var += g_step;
}

Risk

When you modify a static variable in multiple function calls, you expect to modify the
same variable in each call. For instance, each time you call func, the same instance of
var1 is incremented but a separate instance of var2 is incremented.

void func(void) {
 static var1 = 0;

8 CERT C++ Rules

8-36

 var2 = 0;
 var1++;
 var2++;
}

If a function has an inlined and non-inlined definition (in separate files), when you call the
function, the C standard allows compilers to use either the inlined or the non-inlined form
(see ISO/IEC 9899:2011, sec. 6.7.4). If your compiler uses an inlined definition in one call
and the non-inlined definition in another, you are no longer modifying the same variable
in both calls. This behavior defies the expectations from a static variable.

Fix

Use one of these fixes:

• If you do not intend to modify the variable, declare it as const.

If you do not modify the variable, there is no question of unexpected modification.
• Make the variable non-static. Remove the static qualifier from the declaration.

If the variable is defined in the function, it becomes a regular local variable. If defined
at file scope, it becomes an extern variable. Make sure that this change in behavior is
what you intend.

• Make the function static. Add a static qualifier to the function definition.

If you make the function static, the file with the inlined definition always uses the
inlined definition when the function is called. Other files use another definition of the
function. The question of which function definition gets used is not left to the compiler.

Example - Static Variable Use in Inlined and External Definition

/* file1. c : contains inline definition of get_random()*/

inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;

 CERT C++: DCL60-CPP

8-37

}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

In this example, get_random() has an inline definition in file1.c and an external
definition in file2.c. When get_random is called in file1.c, compilers are free to
choose whether to use the inline or the external definition.

Depending on the definition used, you might or might not modify the version of m_z and
m_w in the inlined version of get_random(). This behavior contradicts the usual
expectations from a static variable. When you call get_random(), you expect to always
modify the same m_z and m_w.

Correction — Make Inlined Function Static

One possible correction is to make the inlined get_random() static. Irrespective of your
compiler, calls to get_random() in file1.c then use the inlined definition. Calls to
get_random() in other files use the external definition. This fix removes the ambiguity
about which definition is used and whether the static variables in that definition are
modified.

8 CERT C++ Rules

8-38

/* file1. c : contains inline definition of get_random()*/

static inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

Check Information
Group: 01. Declarations and Initialization (DCL)

 CERT C++: DCL60-CPP

8-39

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL60-CPP

Introduced in R2019a

8 CERT C++ Rules

8-40

https://wiki.sei.cmu.edu/confluence/x/IXs-BQ

CERT C++: EXP34-C
Do not dereference null pointers

Description

Rule Definition
Do not dereference null pointers.

Examples

Null pointer
Description

Null pointer occurs when you use a pointer with a value of NULL as if it points to a valid
memory location.

Risk

Dereferencing a null pointer is undefined behavior. In most implementations, the
dereference can cause your program to crash.

Fix

Check a pointer for NULL before dereference.

If the issue occurs despite an earlier check for NULL, look for intermediate events
between the check and the subsequent dereference. Often the result details show a
sequence of events that led to the defect. You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using
right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

See examples of fixes below.

 CERT C++: EXP34-C

8-41

Example - Null pointer error

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 int* p=NULL;

 *p=arr[0];
 /* Defect: Null pointer dereference */

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

The pointer p is initialized with value of NULL. However, when the value arr[0] is
written to *p, p is assumed to point to a valid memory location.

Correction — Assign Address to Null Pointer Before Dereference

One possible correction is to initialize p with a valid memory address before dereference.

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 /* Fix: Assign address to null pointer */
 int* p=&arr[0];

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

8 CERT C++ Rules

8-42

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP34-C

Introduced in R2019a

 CERT C++: EXP34-C

8-43

https://wiki.sei.cmu.edu/confluence/x/QdcxBQ

CERT C++: EXP35-C
Do not modify objects with temporary lifetime

Description
Rule Definition
Do not modify objects with temporary lifetime.

Examples
Accessing object with temporary lifetime
Description

Accessing object with temporary lifetime occurs when you attempt to read from or
write to an object with temporary lifetime that is returned by a function call. In a
structure or union returned by a function, and containing an array, the array members are
temporary objects. The lifetime of temporary objects ends:

• When the full expression or full declarator containing the call ends, as defined in the
C11 Standard.

• After the next sequence point, as defined in the C90 and C99 Standards. A sequence
point is a point in the execution of a program where all previous evaluations are
complete and no subsequent evaluation has started yet.

For C++ code, Accessing object with temporary lifetime raises a defect only when
you write to an object with a temporary lifetime.

If the temporary lifetime object is returned by address, no defect is raised.

Risk

Modifying objects with temporary lifetime is undefined behavior and can cause abnormal
program termination and portability issues.

8 CERT C++ Rules

8-44

Fix

Assign the object returned from the function call to a local variable. The content of the
temporary lifetime object is copied to the variable. You can now modify it safely.

Example - Modifying Temporary Lifetime Object Returned by Function Call
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

/* func_temp() returns a struct value containing
* an array with a temporary lifetime.
*/
int func(void) {

/*Writing to temporary lifetime object is
 undefined behavior
 */
 return ++(func_temp().a[0]);
}

void main(void) {
 (void)func();
}

In this example, func_temp() returns by value a structure with an array member a. This
member has temporary lifetime. Incrementing it is undefined behavior.

Correction — Assign Returned Value to Local Variable Before Writing

One possible correction is to assign the return of the call to func_temp() to a local
variable. The content of the temporary object a is copied to the variable, which you can
safely increment.

 CERT C++: EXP35-C

8-45

 #include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

int func(void) {

/* Assign object returned by function call to
 *local variable
 */
 struct S_Array s = func_temp();

/* Local variable can safely be
 *incremented
 */
 ++(s.a[0]);
 return s.a[0];
}

void main(void) {
 (void)func();
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

8 CERT C++ Rules

8-46

Topics
“Check for Coding Standard Violations”

External Websites
EXP35-C

Introduced in R2019a

 CERT C++: EXP35-C

8-47

https://wiki.sei.cmu.edu/confluence/x/utUxBQ

CERT C++: EXP36-C
Do not cast pointers into more strictly aligned pointer types

Description

Rule Definition
Do not cast pointers into more strictly aligned pointer types.

Examples

Wrong allocated object size for cast
Description

Wrong allocated object size for cast occurs during pointer conversion when the
pointer’s address is misaligned. If a pointer is converted to a different pointer type, the
size of the allocated memory must be a multiple of the size of the destination pointer.

Risk

Dereferencing a misaligned pointer has undefined behavior and can cause your program
to crash.

Fix

Suppose you convert a pointer ptr1 to ptr2. If ptr1 points to a buffer of N bytes and
ptr2 is a type * pointer where sizeof(type) is n bytes, make sure that N is an
integer multiple of n.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

8 CERT C++ Rules

8-48

Example - Dynamic Allocation of Pointers

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(13);
 long *dest;

 dest = (long*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to a long*. The
dynamically allocated memory of ptr, 13 bytes, is not a multiple of the size of dest, 4
bytes. This misalignment causes the Wrong allocated object size for cast defect.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the allocated memory to 12 instead of 13.

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(12);
 long *dest;

 dest = (long*)ptr;
}

Example - Static Allocation of Pointers

void static_non_align(void){
 char arr[13], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to an int* in line
6. ptr has a memory size of 13 bytes because the array arr has a size of 13 bytes. The
size of dest is 4 bytes, which is not a multiple of 13. This misalignment causes the
Wrong allocated object size for cast defect.

 CERT C++: EXP36-C

8-49

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the size of the array arr to a multiple of 4.

void static_non_align(void){
 char arr[12], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr;
}

Example - Allocation with a Function

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(13); //defect
 dest2 = (char*)my_alloc(13); //not a defect
}

In this example, the software raises a defect on the conversion of the pointer returned by
my_alloc(13) to an int* in line 11. my_alloc(13) returns a pointer with a
dynamically allocated size of 13 bytes. The size of dest1 is 4 bytes, which is not a divisor
of 13. This misalignment causes the Wrong allocated object size for cast defect. In line
12, the same function call, my_alloc(13), does not call a defect for the conversion to
dest2 because the size of char*, 1 byte, a divisor of 13.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the argument for my_alloc to a multiple of
4.

8 CERT C++ Rules

8-50

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(12);
 dest2 = (char*)my_alloc(13);
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP36-C

Introduced in R2019a

 CERT C++: EXP36-C

8-51

https://wiki.sei.cmu.edu/confluence/x/u9UxBQ

CERT C++: EXP37-C
Call functions with the correct number and type of arguments

Description

Rule Definition
Call functions with the correct number and type of arguments.

Examples

Bad file access mode or status
Description

Bad file access mode or status occurs when you use functions in the fopen or open
group with invalid or incompatible file access modes, file creation flags, or file status flags
as arguments. For instance, for the open function, examples of valid:

• Access modes include O_RDONLY, O_WRONLY, and O_RDWR
• File creation flags include O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC.
• File status flags include O_APPEND, O_ASYNC, O_CLOEXEC, O_DIRECT, O_DIRECTORY,

O_LARGEFILE, O_NOATIME, O_NOFOLLOW, O_NONBLOCK, O_NDELAY, O_SHLOCK,
O_EXLOCK, O_FSYNC, O_SYNC and so on.

The defect can occur in the following situations.

8 CERT C++ Rules

8-52

Situation Risk Fix
You pass an empty or invalid
access mode to the fopen
function.

According to the ANSI C
standard, the valid access
modes for fopen are:

• r,r+
• w,w+
• a,a+
• rb, wb, ab
• r+b, w+b, a+b
• rb+, wb+, ab+

fopen has undefined
behavior for invalid access
modes.

Some implementations allow
extension of the access
mode such as:

• GNU: rb
+cmxe,ccs=utf

• Visual C++: a+t, where
t specifies a text mode.

However, your access mode
string must begin with one
of the valid sequences.

Pass a valid access mode to
fopen.

You pass the status flag
O_APPEND to the open
function without combining
it with either O_WRONLY or
O_RDWR.

O_APPEND indicates that
you intend to add new
content at the end of a file.
However, without O_WRONLY
or O_RDWR, you cannot write
to the file.

The open function does not
return -1 for this logical
error.

Pass either O_APPEND|
O_WRONLY or O_APPEND|
O_RDWR as access mode.

You pass the status flags
O_APPEND and O_TRUNC
together to the open
function.

O_APPEND indicates that
you intend to add new
content at the end of a file.
However, O_TRUNC indicates
that you intend to truncate
the file to zero. Therefore,
the two modes cannot
operate together.

The open function does not
return -1 for this logical
error.

Depending on what you
intend to do, pass one of the
two modes.

 CERT C++: EXP37-C

8-53

Situation Risk Fix
You pass the status flag
O_ASYNC to the open
function.

On certain implementations,
the mode O_ASYNC does not
enable signal-driven I/O
operations.

Use the fcntl(pathname,
F_SETFL, O_ASYNC);
instead.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Access Mode with fopen
#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "rw");
 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

In this example, the access mode rw is invalid. Because r indicates that you open the file
for reading and w indicates that you create a new file for writing, the two access modes
are incompatible.

Correction — Use Either r or w as Access Mode

One possible correction is to use the access mode corresponding to what you intend to do.

#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "w");

8 CERT C++ Rules

8-54

 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

Unreliable cast of function pointer
Description

Unreliable cast of function pointer occurs when a function pointer is cast to another
function pointer that has different argument or return type.

This defect applies only if the code language for the project is C.

Risk

If you cast a function pointer to another function pointer with different argument or
return type and then use the latter function pointer to call a function, the behavior is
undefined.

Fix

Avoid a cast between two function pointers with mismatch in argument or return types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Unreliable cast of function pointer error

#include <stdio.h>
#include <math.h>
#include <stdio.h>
#define PI 3.142

double Calculate_Sum(int (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)

 CERT C++: EXP37-C

8-55

 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 /* Defect: fp implicitly cast to int(*) (double) */

 printf("sum(sin): %f\n", sum);
 return 0;
}

The function pointer fp is declared as double (*)(double). However in passing it to
function Calculate_Sum, fp is implicitly cast to int (*)(double).

Correction — Avoid Function Pointer Cast

One possible correction is to check that the function pointer in the definition of
Calculate_Sum has the same argument and return type as fp. This step makes sure
that fp is not implicitly cast to a different argument or return type.

#include <stdio.h>
#include <math.h>
#include <stdio.h>
define PI 3.142

/*Fix: fptr has same argument and return type everywhere*/
double Calculate_Sum(double (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;

8 CERT C++ Rules

8-56

 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 printf("sum(sin): %f\n", sum);

 return 0;
}

Standard function call with incorrect arguments
Description

Standard function call with incorrect arguments occurs when the arguments to
certain standard functions do not meet the requirements for their use in the functions.

For instance, the arguments to these functions can be invalid in the following ways.

Function Type Situation Risk Fix
String manipulation
functions such as
strlen and strcpy

The pointer
arguments do not
point to a NULL-
terminated string.

The behavior of the
function is
undefined.

Pass a NULL-
terminated string to
string manipulation
functions.

File handling
functions in stdio.h
such as fputc and
fread

The FILE* pointer
argument can have
the value NULL.

The behavior of the
function is
undefined.

Test the FILE*
pointer for NULL
before using it as
function argument.

 CERT C++: EXP37-C

8-57

Function Type Situation Risk Fix
File handling
functions in
unistd.h such as
lseek and read

The file descriptor
argument can be -1.

The behavior of the
function is
undefined.

Most
implementations of
the open function
return a file
descriptor value of
-1. In addition, they
set errno to indicate
that an error has
occurred when
opening a file.

Test the return value
of the open function
for -1 before using it
as argument for
read or lseek.

If the return value is
-1, check the value of
errno to see which
error has occurred.

The file descriptor
argument represents
a closed file
descriptor.

The behavior of the
function is
undefined.

Close the file
descriptor only after
you have completely
finished using it.
Alternatively, reopen
the file descriptor
before using it as
function argument.

Directory name
generation functions
such as mkdtemp and
mkstemps

The last six
characters of the
string template are
not XXXXXX.

The function
replaces the last six
characters with a
string that makes the
file name unique. If
the last six
characters are not
XXXXXX, the function
cannot generate a
unique enough
directory name.

Test if the last six
characters of a string
are XXXXXX before
using the string as
function argument.

8 CERT C++ Rules

8-58

Function Type Situation Risk Fix
Functions related to
environment
variables such as
getenv and setenv

The string argument
is "".

The behavior is
implementation-
defined.

Test the string
argument for ""
before using it as
getenv or setenv
argument.

The string argument
terminates with an
equal sign, =. For
instance, "C="
instead of "C".

The behavior is
implementation-
defined.

Do not terminate the
string argument with
=.

String handling
functions such as
strtok and strstr

• strtok: The
delimiter
argument is "".

• strstr: The
search string
argument is "".

Some
implementations do
not handle these
edge cases.

Test the string for ""
before using it as
function argument.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - NULL Pointer Passed as strnlen Argument

#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

 CERT C++: EXP37-C

8-59

int func() {
 char* s = NULL;
 return strnlen(s, SIZE20);
}

In this example, a NULL pointer is passed as strnlen argument instead of a NULL-
terminated string.

Before running analysis on the code, specify a GNU compiler. See Compiler (-
compiler).

Correction — Pass NULL-terminated String

Pass a NULL-terminated string as the first argument of strnlen.

#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

int func() {
 char* s = "";
 return strnlen(s, SIZE20);
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

8 CERT C++ Rules

8-60

External Websites
EXP37-C

Introduced in R2019a

 CERT C++: EXP37-C

8-61

https://wiki.sei.cmu.edu/confluence/x/49UxBQ

CERT C++: EXP39-C
Do not access a variable through a pointer of an incompatible type

Description

Rule Definition
Do not access a variable through a pointer of an incompatible type.

Examples

Pointer conversion to unrelated pointer type
Description

The checker flags all pointer conversions including between a pointer to a struct object
and a pointer to the first member of the same struct type.

Indirect conversions from a pointer to non-pointer type are not detected.

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

8 CERT C++ Rules

8-62

External Websites
EXP39-C

Introduced in R2019a

 CERT C++: EXP39-C

8-63

https://wiki.sei.cmu.edu/confluence/x/ptYxBQ

CERT C++: EXP42-C
Do not compare padding data

Description

Rule Definition
Do not compare padding data.

Examples

Memory comparison of padding data
Description

Memory comparison of padding data occurs when you use the memcmp function to
compare two structures as a whole. In the process, you compare meaningless data stored
in the structure padding.

For instance:

struct structType {
 char member1;
 int member2;
 .
 .
};

structType var1;
structType var2;
.
.
if(memcmp(&var1,&var2,sizeof(var1)))
{...}

8 CERT C++ Rules

8-64

Risk

If members of a structure have different data types, your compiler introduces additional
padding for data alignment in memory. For an example of padding, see Higher
Estimate of Local Variable Size.

The content of these extra padding bytes is meaningless. The C Standard allows the
content of these bytes to be indeterminate, giving different compilers latitude to
implement their own padding. If you perform a byte-by-byte comparison of structures
with memcmp, you compare even the meaningless data stored in the padding. You might
reach the false conclusion that two data structures are not equal, even if their
corresponding members have the same value.

Fix

Instead of comparing two structures in one attempt, compare the structures member by
member.

For efficient code, write a function that does the comparison member by member. Use this
function for comparing two structures.

You can use memcmp for byte-by-byte comparison of structures only if you know that the
structures do not contain padding. Typically, to prevent padding, you use specific
attributes or pragmas such as #pragma pack. However, these attributes or pragmas are
not supported by all compilers and make your code implementation-dependent. If your
structures contain bit-fields, using these attributes or pragmas cannot prevent padding.

Example - Structures Compared with memcmp

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

 CERT C++: EXP42-C

8-65

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{

 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 if (0 == memcmp(left, right, sizeof(S_Padding)))
 {
 return 1;
 }
 else
 return 0;
}

In this example, memcmp compares byte-by-byte the two structures that left and right
point to. Even if the values stored in the structure members are the same, the comparison
can show an inequality if the meaningless values in the padding bytes are not the same.

Correction — Compare Structures Member by Member

One possible correction is to compare individual structure members.

Note You can compare entire arrays by using memcmp. All members of an array have the
same data type. Padding bytes are not required to store arrays.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;

8 CERT C++ Rules

8-66

 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{
 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 return ((left->c == right->c) &&
 (left->i == right->i) &&
 (left->bf1 == right->bf1) &&
 (left->bf2 == right->bf2) &&
 (memcmp(left->buffer, right->buffer, 20) == 0));
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP42-C

Introduced in R2019a

 CERT C++: EXP42-C

8-67

https://wiki.sei.cmu.edu/confluence/x/PtUxBQ

CERT C++: EXP45-C
Do not perform assignments in selection statements

Description

Rule Definition
Do not perform assignments in selection statements.

Examples

Invalid use of = (assignment) operator
Description

Invalid use of = operator occurs when an assignment is made inside the predicate of a
conditional, such as if or while.

In C and C++, a single equal sign is an assignment not a comparison. Using a single
equal sign in a conditional statement can indicate a typo or a mistake.

Risk

• Conditional statement tests the wrong values— The single equal sign operation
assigns the value of the right operand to the left operand. Then, because this
assignment is inside the predicate of a conditional, the program checks whether the
new value of the left operand is nonzero or not NULL.

• Maintenance and readability issues — Even if the assignment is intended, someone
reading or updating the code can misinterpret the assignment as an equality
comparison instead of an assignment.

Fix

• If the assignment is a bug, to check for equality, add a second equal sign (==).

8 CERT C++ Rules

8-68

• If the assignment inside the conditional statement was intentional, to improve
readability, separate the assignment and the test. Move the assignment outside the
control statement. In the control statement, simply test the result of the assignment.

If you do not want to fix the issue, add comments to your result or code to avoid
another review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Single Equal Sign Inside an if Condition
#include <stdio.h>

void bad_equals_ex(int alpha, int beta)
{
 if(alpha = beta)
 {
 printf("Equal\n");
 }
}

The equal sign is flagged as a defect because the assignment operator is used within the
predicate of the if-statement. The predicate assigns the value beta to alpha, then
implicitly tests whether alpha is true or false.

Correction — Change Expression to Comparison

One possible correction is adding an additional equal sign. This correction changes the
assignment to a comparison. The if condition compares whether alpha and beta are
equal.

#include <stdio.h>

void equality_test(int alpha, int beta)
{
 if(alpha == beta)
 {
 printf("Equal\n");
 }
}

Correction — Assignment and Comparison Inside the if Condition

If an assignment must be made inside the predicate, a possible correction is adding an
explicit comparison. This correction assigns the value of beta to alpha, then explicitly
checks whether alpha is nonzero. The code is clearer.

 CERT C++: EXP45-C

8-69

#include <stdio.h>

int assignment_not_zero(int alpha, int beta)
{
 if((alpha = beta) != 0)
 {
 return alpha;
 }
 else
 {
 return 0;
 }
}

Correction — Move Assignment Outside the if Statement

If the assignment can be made outside the control statement, one possible correction is to
separate the assignment and comparison. This correction assigns the value of beta to
alpha before the if. Inside the if-condition, only alpha is given to test if alpha is
nonzero or not NULL.

#include <stdio.h>

void assign_and_print(int alpha, int beta)
{
 alpha = beta;
 if(alpha)
 {
 printf("%d", alpha);
 }
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

8 CERT C++ Rules

8-70

External Websites
EXP45-C

Introduced in R2019a

 CERT C++: EXP45-C

8-71

https://wiki.sei.cmu.edu/confluence/x/ZNYxBQ

CERT C++: EXP46-C
Do not use a bitwise operator with a Boolean-like operand

Description
Rule Definition
Do not use a bitwise operator with a Boolean-like operand.

Examples
Use of bool operand with bitwise operator
Description

The issue occurs when you use expressions with type bool as operands to built-in
operators except for:

• The assignment operator =.
• The logical operators &&, ||, and !.
• The equality operators == and !=.
• The unary operator &.
• The conditional operator.

Risk

Operators other than the ones mentioned in the rule do not produce meaningful results
with bool operands. Use of bool operands with these operators can indicate
programming errors. For instance, you intended to use the logical operator || but used
the bitwise operator | instead.

Example - Compliant and Noncompliant Uses of bool Operands
void boolOperations() {
 bool lhs = true;

8 CERT C++ Rules

8-72

 bool rhs = false;

 int res;

 if(lhs & rhs) {} //Noncompliant
 if(lhs < rhs) {} //Noncompliant
 if(~rhs) {} //Noncompliant
 if(lhs ^ rhs) {} //Noncompliant
 if(lhs == rhs) {} //Compliant
 if(!rhs) {} //Compliant
 res = lhs? -1:1; //Compliant
}

In this example, bool operands do not violate the rule when used with the ==, ! and
the ? operators.

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP46-C

Introduced in R2019a

 CERT C++: EXP46-C

8-73

https://wiki.sei.cmu.edu/confluence/x/WNYxBQ

CERT C++: EXP47-C
Do not call va_arg with an argument of the incorrect type

Description

Rule Definition
Do not call va_arg with an argument of the incorrect type.

Examples

Incorrect data type passed to va_arg
Description

Incorrect data type passed to va_arg when the data type in a va_arg call does not
match the data type of the variadic function argument that va_arg reads.

For instance, you pass an unsigned char argument to a variadic function func.
Because of default argument promotion, the argument is promoted to int. When you use
a va_arg call that reads an unsigned char argument, a type mismatch occurs.

void func (int n, ...) {
 ...
 va_list args;
 va_arg(args, unsigned char);
 ...
}

void main(void) {
 unsigned char c;
 func(1,c);
}

8 CERT C++ Rules

8-74

Risk

In a variadic function (function with variable number of arguments), you use va_arg to
read each argument from the variable argument list (va_list). The va_arg use does not
guarantee that there actually exists an argument to read or that the argument data type
matches the data type in the va_arg call. You have to make sure that both conditions are
true.

Reading an incorrect type with a va_arg call can result in undefined behavior. Because
function arguments reside on the stack, you might access an unwanted area of the stack.

Fix

Make sure that the data type of the argument passed to the variadic function matches the
data type in the va_arg call.

Arguments of a variadic function undergo default argument promotions. The argument
data types of a variadic function cannot be determined from a prototype. The arguments
of such functions undergo default argument promotions (see Sec. 6.5.2.2 and 7.15.1.1 in
the C99 Standard). Integer arguments undergo integer promotion and arguments of type
float are promoted to double. For integer arguments, if a data type can be represented
by an int, for instance, char or short, it is promoted to an int. Otherwise, it is
promoted to an unsigned int. All other arguments do not undergo promotion.

To avoid undefined and implementation-defined behavior, minimize the use of variadic
functions. Use the checkers for MISRA C:2012 Rule 17.1 or MISRA C++:2008 Rule
8-4-1 to detect use of variadic functions.

Example - char Used as Function Argument Type and va_arg argument

#include <stdarg.h>
#include <stdio.h>

unsigned char func(size_t count, ...) {
 va_list ap;
 unsigned char result = 0;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, unsigned char);
 }
 va_end(ap);
 return result;
}

 CERT C++: EXP47-C

8-75

void func_caller(void) {
 unsigned char c = 0x12;
 (void)func(1, c);
}

In this example, func takes an unsigned char argument, which undergoes default
argument promotion to int. The data type in the va_arg call is still unsigned char,
which does not match the int argument type.

Correction — Use int as va_arg Argument

One possible correction is to read an int argument with va_arg.

#include <stdarg.h>
#include <stdio.h>

unsigned char func(size_t count, ...) {
 va_list ap;
 unsigned char result = 0;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 }
 va_end(ap);
 return result;
}

void func_caller(void) {
 unsigned char c = 0x12;
 (void)func(1, c);
}

Too many va_arg calls for current argument list
Description

Too many va_arg calls for current argument list occurs when the number of calls to
va_arg exceeds the number of arguments passed to the corresponding variadic function.
The analysis raises a defect only when the variadic function is called.

Too many va_arg calls for current argument list does not raise a defect when:

8 CERT C++ Rules

8-76

• The number of calls to va_arg inside the variadic function is indeterminate. For
example, if the calls are from an external source.

• The va_list used in va_arg is invalid.

Risk

When you call va_arg and there is no next argument available in va_list, the behavior
is undefined. The call to va_arg might corrupt data or return an unexpected result.

Fix

Ensure that you pass the correct number of arguments to the variadic function.

Example - No Argument Available When Calling va_arg

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/
int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {
/* No further argument available
* in va_list when calling va_arg
*/

 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100);

 CERT C++: EXP47-C

8-77

}

In this example, the named argument and only one variadic argument are passed to
variadic_func() when it is called inside func(). On the second call to va_arg, no
further variadic argument is available in ap and the behavior is undefined.

Correction — Pass Correct Number of Arguments to Variadic Function

One possible correction is to ensure that you pass the correct number of arguments to the
variadic function.

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/

int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {

/* The correct number of arguments is
* passed to va_list when variadic_func()
* is called inside func()
*/
 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100, 200);

}

8 CERT C++ Rules

8-78

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP47-C

Introduced in R2019a

 CERT C++: EXP47-C

8-79

https://wiki.sei.cmu.edu/confluence/x/d9UxBQ

CERT C++: EXP50-CPP
Do not depend on the order of evaluation for side effects

Description

Rule Definition
Do not depend on the order of evaluation for side effects.

Examples

Expression value depends on order of evaluation
Description

The issue occurs when the value of an expression is not the same depending on the order
of evaluation of the expression.

An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and
written.

• The expression allows more than one order of evaluation.

Therefore, the rule checker forbids expressions where a variable is modified more than
once and can cause different results under different orders of evaluation. The rule
checker also detects cases where a volatile variable is read more than once in an
expression.

Risk

If an expression results in different values depending on the order of evaluation, its value
becomes implementation-defined.

8 CERT C++ Rules

8-80

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP50-CPP

Introduced in R2019a

 CERT C++: EXP50-CPP

8-81

https://wiki.sei.cmu.edu/confluence/x/IXw-BQ

CERT C++: EXP52-CPP
Do not rely on side effects in unevaluated operands

Description

Rule Definition
Do not rely on side effects in unevaluated operands.

Examples

Logical operator operand with side effects
Description

The issue occurs when the right hand operand of a logical && or || operator contains side
effects.

The checker does not show a warning on volatile accesses and function calls.

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

8 CERT C++ Rules

8-82

External Websites
EXP52-CPP

Introduced in R2019a

 CERT C++: EXP52-CPP

8-83

https://wiki.sei.cmu.edu/confluence/x/oXs-BQ

CERT C++: EXP53-CPP
Do not read uninitialized memory

Description

Rule Definition
Do not read uninitialized memory.

Examples

Non-initialized pointer
Description

Non-initialized pointer occurs when a pointer is not assigned an address before
dereference.

Risk

Unless a pointer is explicitly assigned an address, it points to an unpredictable location.

Fix

The fix depends on the root cause of the defect. For instance, you assigned an address to
the pointer but the assignment is unreachable.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below. It is a good practice to initialize a pointer to NULL when
declaring the pointer.

8 CERT C++ Rules

8-84

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Non-initialized pointer error
#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }

 *pi = j;
 /* Defect: Writing to uninitialized pointer */

 return pi;
}

If prev is not NULL, the pointer pi is not assigned an address. However, pi is
dereferenced on every execution paths, irrespective of whether prev is NULL or not.

Correction — Initialize Pointer on Every Execution Path

One possible correction is to assign an address to pi when prev is not NULL.

#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }
 /* Fix: Initialize pi in branches of if statement */
 else

 CERT C++: EXP53-CPP

8-85

 pi = prev;

 *pi = j;

 return pi;
}

Non-initialized variable
Description

Non-initialized variable occurs when a variable is not initialized before its value is read.

Risk

Unless a variable is explicitly initialized, the variable value is unpredictable. You cannot
rely on the variable having a specific value.

Fix

The fix depends on the root cause of the defect. For instance, you assigned a value to the
variable but the assignment is unreachable or you assigned a value to the variable in one
of two branches of a conditional statement. Fix the unreachable code or missing
assignment.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below. It is a good practice to initialize a variable at declaration.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Non-initialized variable error

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 int val;

8 CERT C++ Rules

8-86

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 /* Defect: val does not have a value if command is not 2 */
}

If command is not 2, the variable val is unassigned. In this case, the return value of
function get_sensor_value is undetermined.

Correction — Initialize During Declaration

One possible correction is to initialize val during declaration so that the initialization is
not bypassed on some execution paths.

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 /* Fix: Initialize val */
 int val=0;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 }

val is assigned an initial value of 0. When command is not equal to 2, the function
get_sensor_value returns this value.

Check Information
Group: 02. Expressions (EXP)

 CERT C++: EXP53-CPP

8-87

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP53-CPP

Introduced in R2019a

8 CERT C++ Rules

8-88

https://wiki.sei.cmu.edu/confluence/x/EXw-BQ

CERT C++: EXP54-CPP
Do not access an object outside of its lifetime

Description

Rule Definition
Do not access an object outside of its lifetime.

Examples

Non-initialized pointer
Description

Non-initialized pointer occurs when a pointer is not assigned an address before
dereference.

Risk

Unless a pointer is explicitly assigned an address, it points to an unpredictable location.

Fix

The fix depends on the root cause of the defect. For instance, you assigned an address to
the pointer but the assignment is unreachable.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below. It is a good practice to initialize a pointer to NULL when
declaring the pointer.

 CERT C++: EXP54-CPP

8-89

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Non-initialized pointer error
#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }

 *pi = j;
 /* Defect: Writing to uninitialized pointer */

 return pi;
}

If prev is not NULL, the pointer pi is not assigned an address. However, pi is
dereferenced on every execution paths, irrespective of whether prev is NULL or not.

Correction — Initialize Pointer on Every Execution Path

One possible correction is to assign an address to pi when prev is not NULL.

#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }
 /* Fix: Initialize pi in branches of if statement */
 else

8 CERT C++ Rules

8-90

 pi = prev;

 *pi = j;

 return pi;
}

Non-initialized variable
Description

Non-initialized variable occurs when a variable is not initialized before its value is read.

Risk

Unless a variable is explicitly initialized, the variable value is unpredictable. You cannot
rely on the variable having a specific value.

Fix

The fix depends on the root cause of the defect. For instance, you assigned a value to the
variable but the assignment is unreachable or you assigned a value to the variable in one
of two branches of a conditional statement. Fix the unreachable code or missing
assignment.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below. It is a good practice to initialize a variable at declaration.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Non-initialized variable error

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 int val;

 CERT C++: EXP54-CPP

8-91

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 /* Defect: val does not have a value if command is not 2 */
}

If command is not 2, the variable val is unassigned. In this case, the return value of
function get_sensor_value is undetermined.

Correction — Initialize During Declaration

One possible correction is to initialize val during declaration so that the initialization is
not bypassed on some execution paths.

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 /* Fix: Initialize val */
 int val=0;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 }

val is assigned an initial value of 0. When command is not equal to 2, the function
get_sensor_value returns this value.

Use of previously freed pointer
Description

Use of previously freed pointer occurs when you access a block of memory after
freeing the block using the free function.

8 CERT C++ Rules

8-92

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points
to a memory location on the heap. When you use the free function on this pointer, the
associated block of memory is freed for reallocation. Trying to access this block of
memory can result in unpredictable behavior or even a segmentation fault.

Fix

The fix depends on the root cause of the defect. See if you intended to free the memory
later or allocate another memory block to the pointer before access.

As a good practice, after you free a memory block, assign the corresponding pointer to
NULL. Before dereferencing pointers, check them for NULL values and handle the error.
In this way, you are protected against accessing a freed block.

Example - Use of Previously Freed Pointer Error
#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;
 free(pi);

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore,
dereferencingpi after the free statement is not valid.

Correction — Free Pointer After Use

One possible correction is to free the pointer pi only after the last instance where it is
accessed.

#include <stdlib.h>

 CERT C++: EXP54-CPP

8-93

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

Pointer or reference to stack variable leaving scope
Description

Pointer or reference to stack variable leaving scope occurs when a pointer or
reference to a local variable leaves the scope of the variable. For instance:

• A function returns a pointer to a local variable.
• A function performs the assignment globPtr = &locVar. globPtr is a global

pointer variable and locVar is a local variable.
• A function performs the assignment *paramPtr = &locVar. paramPtr is a function

parameter that is, for instance, an int** pointer and locVar is a local int variable.
• A C++ method performs the assignment memPtr = &locVar. memPtr is a pointer

data member of the class the method belongs to. locVar is a variable local to the
method.

The defect also applies to memory allocated using the alloca function. The defect does
not apply to static, local variables.

Risk

Local variables are allocated an address on the stack. Once the scope of a local variable
ends, this address is available for reuse. Using this address to access the local variable
value outside the variable scope can cause unexpected behavior.

8 CERT C++ Rules

8-94

If a pointer to a local variable leaves the scope of the variable, Polyspace Bug Finder
highlights the defect. The defect appears even if you do not use the address stored in the
pointer. For maintainable code, it is a good practice to not allow the pointer to leave the
variable scope. Even if you do not use the address in the pointer now, someone else using
your function can use the address, causing undefined behavior.

Fix

Do not allow a pointer or reference to a local variable to leave the variable scope.

Example - Pointer to Local Variable Returned from Function

void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

In this example, func1 returns a pointer to local variable ret.

In main, ptr points to the address of the local variable. When ptr is accessed in func2,
the access is illegal because the scope of ret is limited to func1,

Example - Pointer to Local Variable Escapes Through Lambda Expression

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [&] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

 CERT C++: EXP54-CPP

8-95

In this example, the createAdder function defines a lambda expression adder that
captures the local variable addThis by reference. The scope of addThis is limited to the
createAdder function. When the object returned by createAdder is called, a reference
to the variable addThis is accessed outside its scope. When accessed in this way, the
value of addThis is undefined.

Correction – Capture Local Variables by Copy in Lambda Expression Instead of
Reference

If a function returns a lambda expression object, avoid capturing local variables by
reference in the lambda object. Capture the variables by copy instead.

Variables captured by copy have the same lifetime as the lambda object, but variables
captured by reference often have a smaller lifetime than the lambda object itself. When
the lambda object is used, these variables accessed outside scope have undefined values.

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [=] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

Accessing object with temporary lifetime
Description

Accessing object with temporary lifetime occurs when you attempt to read from or
write to an object with temporary lifetime that is returned by a function call. In a
structure or union returned by a function, and containing an array, the array members are
temporary objects. The lifetime of temporary objects ends:

• When the full expression or full declarator containing the call ends, as defined in the
C11 Standard.

8 CERT C++ Rules

8-96

• After the next sequence point, as defined in the C90 and C99 Standards. A sequence
point is a point in the execution of a program where all previous evaluations are
complete and no subsequent evaluation has started yet.

For C++ code, Accessing object with temporary lifetime raises a defect only when
you write to an object with a temporary lifetime.

If the temporary lifetime object is returned by address, no defect is raised.

Risk

Modifying objects with temporary lifetime is undefined behavior and can cause abnormal
program termination and portability issues.

Fix

Assign the object returned from the function call to a local variable. The content of the
temporary lifetime object is copied to the variable. You can now modify it safely.

Example - Modifying Temporary Lifetime Object Returned by Function Call

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

/* func_temp() returns a struct value containing
* an array with a temporary lifetime.
*/
int func(void) {

/*Writing to temporary lifetime object is
 undefined behavior
 */

 CERT C++: EXP54-CPP

8-97

 return ++(func_temp().a[0]);
}

void main(void) {
 (void)func();
}

In this example, func_temp() returns by value a structure with an array member a. This
member has temporary lifetime. Incrementing it is undefined behavior.

Correction — Assign Returned Value to Local Variable Before Writing

One possible correction is to assign the return of the call to func_temp() to a local
variable. The content of the temporary object a is copied to the variable, which you can
safely increment.

 #include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

int func(void) {

/* Assign object returned by function call to
 *local variable
 */
 struct S_Array s = func_temp();

/* Local variable can safely be
 *incremented
 */
 ++(s.a[0]);
 return s.a[0];
}

8 CERT C++ Rules

8-98

void main(void) {
 (void)func();
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP54-CPP

Introduced in R2019a

 CERT C++: EXP54-CPP

8-99

https://wiki.sei.cmu.edu/confluence/x/OXw-BQ

CERT C++: EXP55-CPP
Do not access a cv-qualified object through a cv-unqualified type

Description

Rule Definition
Do not access a cv-qualified object through a cv-unqualified type.

Examples

Cast removes cv-qualification of pointer
Description

The issue occurs when a cast removes a const or volatile qualification from the type
of a pointer or reference.

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP55-CPP

8 CERT C++ Rules

8-100

https://wiki.sei.cmu.edu/confluence/x/AHw-BQ

Introduced in R2019a

 CERT C++: EXP55-CPP

8-101

CERT C++: EXP57-CPP
Do not cast or delete pointers to incomplete classes

Description

Rule Definition
Do not cast or delete pointers to incomplete classes.

Examples

Conversion or deletion of incomplete class pointer
Description

Conversion or deletion of incomplete class pointer occurs when you delete or cast to
a pointer to an incomplete class. An incomplete class is one whose definition is not visible
at the point where the class is used.

For instance, the definition of class Body is not visible when the delete operator is
called on a pointer to Body:

class Handle {
 class Body *impl;
public:
 ~Handle() { delete impl; }
 // ...
};

Risk

When you delete a pointer to an incomplete class, it is not possible to call any nontrivial
destructor that the class might have. If the destructor performs cleanup activities such as
memory deallocation, these activities do not happen.

8 CERT C++ Rules

8-102

A similar problem happens, for instance, when you downcast to a pointer to an incomplete
class (downcasting is casting from a pointer to a base class to a pointer to a derived
class). At the point of downcasting, the relationship between the base and derived class is
not known. In particular, if the derived class inherits from multiple classes, at the point of
downcasting, this information is not available. The downcasting cannot make the
necessary adjustments for multiple inheritance and the resulting pointer cannot be
dereferenced.

A similar statement can be made for upcasting (casting from a pointer to derived class to
a pointer to a base class).

Fix

When you delete or downcast to a pointer to a class, make sure that the class definition is
visible.

Alternatively, you can perform one of these actions:

• Instead of a regular pointer, use the std::shared_ptr type to point to the
incomplete class.

• When downcasting, make sure that the result is valid. Write error-handling code for
invalid results.

Example - Deletion of Pointer to Incomplete Class

class Handle {
 class Body *impl;
public:
 ~Handle() { delete impl; }
 // ...
};

In this example, the definition of class Body is not visible when the pointer to Body is
deleted.

Correction — Define Class Before Deletion

One possible correction is to make sure that the class definition is visible when a pointer
to the class is deleted.

class Handle {
 class Body *impl;
public:

 CERT C++: EXP57-CPP

8-103

 ~Handle();
 // ...
};

// Elsewhere
class Body { /* ... */ };

Handle::~Handle() {
 delete impl;
}

Correction — Use std::shared_ptr

Another possible correction is to use the std::shared_ptr type instead of a regular
pointer.

#include <memory>

class Handle {
 std::shared_ptr<class Body> impl;
 public:
 Handle();
 ~Handle() {}
 // ...
};

Example - Downcasting to Pointer to Incomplete Class

File1.h:

class Base {
protected:
 double var;
public:
 Base() : var(1.0) {}
 virtual void do_something();
 virtual ~Base();
};

File2.h:

void funcprint(class Derived *);
class Base *get_derived();

File1.cpp:

8 CERT C++ Rules

8-104

#include "File1.h"
#include "File2.h"

void getandprint() {
 Base *v = get_derived();
 funcprint(reinterpret_cast<class Derived *>(v));
}

File2.cpp:

#include "File2.h"
#include "File1.h"
#include <iostream>

class Base2 {
protected:
 short var2;
public:
 Base2() : var2(12) {}
};

class Derived : public Base2, public Base {
 float var_derived;
public:
 Derived() : Base2(), Base(), var_derived(1.2f) {}
 void do_something()
 {
 std::cout << "var_derived: "
 << var_derived << ", var : " << var
 << ", var2: " << var2 << std::endl;
 }
 };

void funcprint(Derived *d) {
 d->do_something();
}

Base *get_derived() {
 return new Derived;
}

In this example, the definition of class Derived is not visible in File1.cpp when a
Base* pointer to downcast to a Derived* pointer.

 CERT C++: EXP57-CPP

8-105

In File2.cpp, class Derived derives from two classes, Base and Base2. This
information about multiple inheritance is not available at the point of downcasting in
File1.cpp. The result of downcasting is passed to the function funcprint and
dereferenced in the body of funcprint. Because the downcasting was done with
incomplete information, the dereference can be invalid.

Correction — Define Class Before Downcasting

One possible correction is to define the class Derived before downcasting a Base*
pointer to a Derived* pointer.

In this corrected example, the downcasting is done in File2.cpp in the body of
funcprint at a point where the definition of class Derived is visible. The downcasting
is not done in File1.cpp where the definition of Derived is not visible. The changes
from the previous incorrect example are highlighted.

File1.h:

class Base {
protected:
 double var;
public:
 Base() : var(1.0) {}
 virtual void do_something();
 virtual ~Base();
};

File2.h:

void funcprint(class Base *);
class Base *get_derived();

File1.cpp:

#include "File1.h"
#include "File2.h"

void getandprint() {
 Base *v = get_derived();
 funcprint(v);
}

File2.cpp:

8 CERT C++ Rules

8-106

#include "File2_corr.h"
#include "File1_corr.h"
#include <iostream>

class Base2 {
protected:
 short var2;
public:
 Base2() : var2(12) {}
};

class Derived : public Base2, public Base {
 float var_derived;

public:
 Derived() : Base2(), Base(), var_derived(1.2f) {}
 void do_something()
 {
 std::cout << "var_derived: "
 << var_derived << ", var : " << var
 << ", var2: " << var2 << std::endl;
 }
};

void funcprint(Base *d) {
 Derived *temp = dynamic_cast<Derived*>(d);
 if(temp) {
 d->do_something();
 }
 else {
 //Handle error
 }
}

Base *get_derived() {
 return new Derived;
}

Check Information
Group: 02. Expressions (EXP)

 CERT C++: EXP57-CPP

8-107

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP57-CPP

Introduced in R2019a

8 CERT C++ Rules

8-108

https://wiki.sei.cmu.edu/confluence/x/83s-BQ

CERT C++: EXP58-CPP
Pass an object of the correct type to va_start

Description
Rule Definition
Pass an object of the correct type to va_start.

Examples
Incorrect Data Types for Second Argument of va_start
#include <string>
#include <cstdarg>

double addVariableNumberOfDoubles(double* weight, short num, ...) {
 double sum=0.0;
 va_list list;
 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

double addVariableNumberOfFloats(float* weight, int num, std::string s, ...) {
 float sum=0.0;
 va_list list;
 va_start(list, s);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, float);
 }
 va_end(list);
 return sum;
}

 CERT C++: EXP58-CPP

8-109

In this example, the checker flags the call to va_start in:

• addVariableNumberOfDoubles because the argument has type short, which
undergoes default argument promotion to int.

• addVariableNumberOfFloats because the argument has type std::string, which
has a nontrivial copy constructor.

Correction — Fix Data Type for Second Argument of va_start

Make sure that the second argument of the va_start macro has a supported data type.
In the following corrected example:

• In addVariableNumberOfDoubles, the data type of the last named parameter of the
variadic function is changed to int.

• In addVariableNumberOfFloats, the second and third parameters of the variadic
function are switched so that data type of the last named parameter is int.

#include <string>
#include <cstdarg>

double addVariableNumberOfDoubles(double* weight, int num, ...) {
 double sum=0.0;
 va_list list;
 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

double addVariableNumberOfFloats(double* weight, std::string s, int num, ...) {
 double sum=0.0;
 va_list list;
 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

8 CERT C++ Rules

8-110

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP58-CPP

Introduced in R2019a

 CERT C++: EXP58-CPP

8-111

https://wiki.sei.cmu.edu/confluence/x/X3s-BQ

CERT C++: EXP59-CPP
Use offsetof() on valid types and members

Description

Rule Definition
Use offsetof() on valid types and members.

Examples

Use of offsetof Macro with Nonstandard Layout Class
#include <cstddef>

class myClass {
 int privateData;
 public:
 int publicData;
};

void func() {
 size_t off = offsetof(myClass, publicData);
 // ...
}

In this example, the class myClass has two data members with different access control,
one private and the other public. Therefore, the class does not satisfy the requirements of
a standard layout class and cannot be used with the offsetof macro.

Correction — Use Uniform Access Control for All Data Members

If the use of offsetof is important for the application, make sure that the first argument
is a class with a standard layout. For instance, see if you can work around the need for a
public data member.

8 CERT C++ Rules

8-112

#include <cstddef>

class myClass {
 int privateData;
 int publicData;
 public:
 int getpublicData(void) { return publicData;}
};

void func() {
 size_t off = offsetof(myClass, publicData);
 // ...
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP59-CPP

Introduced in R2019a

 CERT C++: EXP59-CPP

8-113

https://wiki.sei.cmu.edu/confluence/x/B3s-BQ

CERT C++: EXP61-CPP
A lambda object must not outlive any of its reference captured objects

Description

Rule Definition
A lambda object must not outlive any of its reference captured objects.

Examples

Object Escapes Scope Through Lambda Expression
Description

The issue occurs when a lambda expression captures an object by reference and the
lambda expression object outlives the captured object. For instance, the captured object
is a local variable but the lambda expression object has a much larger scope.

Risk

If a lambda expression object outlives one of its reference captured objects, the captured
object can be accessed outside its scope.

For instance, consider this function createFunction:

std::function<std::int32_t()> createFunction() {
 std::int32_t localVar = 0;
 return ([&localVar]() -> std::int32_t {
 localVar = 1;
 return localVar;
 });
}

8 CERT C++ Rules

8-114

createFunction returns a lambda expression object that captures the local variable
localVar by reference. The scope of localVar is limited to createFunction but the
lambda expression object returned has a much larger scope.

This situation can result in an attempt to access the local object localVar outside its
scope. For instance, when you call createFunction and assign the returned lambda
expression object to another object aFunction:

auto aFunction = createFunction();

and then invoke the new object aFunction:

std::int32_t someValue = aFunction();

the captured variable localVar is no longer in scope. Therefore, the value returned from
aFunction is undefined.

Fix

If a function returns a lambda expression, to avoid accessing a captured object outside its
scope, make sure that the lambda expression captures all objects by copy. For instance,
you can rewrite createFunction as:

std::function<std::int32_t()> createFunction() {
 std::int32_t localVar = 0;
 return ([localVar]() mutable -> std::int32_t {
 localVar = 1;
 return localVar;
 });
}

Example – Pointer to Local Variable Escapes Through Lambda Expression
auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [&] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

 CERT C++: EXP61-CPP

8-115

In this example, the createAdder function defines a lambda expression adder that
captures the local variable addThis by reference. The scope of addThis is limited to the
createAdder function. When the object returned by createAdder is called, a reference
to the variable addThis is accessed outside its scope. When accessed in this way, the
value of addThis is undefined.

Correction – Capture Local Variables by Copy in Lambda Expression Instead of
Reference

If a function returns a lambda expression object, avoid capturing local variables by
reference in the lambda object. Capture the variables by copy instead.

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [=] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP61-CPP

8 CERT C++ Rules

8-116

https://wiki.sei.cmu.edu/confluence/x/Vns-BQ

Introduced in R2019b

 CERT C++: EXP61-CPP

8-117

CERT C++: INT30-C
Ensure that unsigned integer operations do not wrap

Description

Rule Definition
Ensure that unsigned integer operations do not wrap.

Examples

Unsigned integer overflow
Description

Unsigned integer overflow occurs when an operation on unsigned integer variables can
result in values that cannot be represented by the result data type. The data type of a
variable determines the number of bytes allocated for the variable storage and constrains
the range of allowed values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

The C11 standard states that unsigned integer overflows result in wrap-around behavior.
However, a wrap around behavior might not always be desirable. For instance, if the
result of a computation is used as an array size and the computation overflows, the array
size is much smaller than expected.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click

8 CERT C++ Rules

8-118

options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling. In the error handling code, you can override the default wrap-around
behavior for overflows and implement saturation behavior, for instance.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Add One to Maximum Unsigned Integer

#include <limits.h>

unsigned int plusplus(void) {

 unsigned uvar = UINT_MAX;
 uvar++;
 return uvar;
}

In the third statement of this function, the variable uvar is increased by 1. However, the
value of uvar is the maximum unsigned integer value, so 1 plus the maximum integer
value cannot be represented by an unsigned int. The C programming language
standard does not view unsigned overflow as an error because the program automatically
reduces the result by modulo the maximum value plus 1. In this example, uvar is reduced
by modulo UINT_MAX. The result is uvar = 1.

Correction — Different Storage Type

One possible correction is to store the operation result in a larger data type. In this
example, by returning an unsigned long long instead of an unsigned int, the
overflow error is fixed.

#include <limits.h>

unsigned long long plusplus(void) {

 CERT C++: INT30-C

8-119

 unsigned long long ullvar = UINT_MAX;
 ullvar++;
 return ullvar;
}

Unsigned integer constant overflow
Description

Unsigned integer constant overflow occurs when you assign a compile-time constant
to a unsigned integer variable whose data type cannot accommodate the value. An n-bit
unsigned integer holds values in the range [0, 2n-1].

For instance, c is an 8-bit unsigned char variable that cannot hold the value 256.

unsigned char c = 256;

To determine the sizes of fundamental types, Bug Finder uses your specification for
Target processor type (-target).

Risk

The C standard states that overflowing unsigned integers must be wrapped around (see,
for instance, the C11 standard, section 6.2.5). However, the wrap-around behavior can be
unintended and cause unexpected results.

Fix

Check if the constant value is what you intended. If the value is correct, use a wider data
type for the variable.

Example - Overflowing Constant from Macro Expansion
#define MAX_UNSIGNED_CHAR 255
#define MAX_UNSIGNED_SHORT 65535

void main() {
 unsigned char c1 = MAX_UNSIGNED_CHAR + 1;
 unsigned short c2 = MAX_UNSIGNED_SHORT + 1;
}

In this example, the defect appears on the macros because at least one use of the macro
causes an overflow.

8 CERT C++ Rules

8-120

Correction — Use Wider Data Type

One possible correction is to use a wider data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_UNSIGNED_SHORT 65535

void main() {
 unsigned short c1 = MAX_UNSIGNED_CHAR + 1;
 unsigned int c2 = MAX_UNSIGNED_SHORT + 1;
}

Check Information
Group: 03. Integers (INT)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
INT30-C

Introduced in R2019a

 CERT C++: INT30-C

8-121

https://wiki.sei.cmu.edu/confluence/x/bNYxBQ

CERT C++: INT31-C
Ensure that integer conversions do not result in lost or misinterpreted data

Description

Rule Definition
Ensure that integer conversions do not result in lost or misinterpreted data.

Examples

Integer conversion overflow
Description

Integer conversion overflow occurs when converting an integer to a smaller integer
type. If the variable does not have enough bytes to represent the original value, the
conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

Integer conversion overflows result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
overflowing computation acquire their current values. You can implement the fix on any
event in the sequence. If the result details do not show the event history, you can trace
back using right-click options in the source code and see previous related events. See also
“Interpret Polyspace Bug Finder Results”.

8 CERT C++ Rules

8-122

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

In general, avoid conversions to smaller integer types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Converting from int to char

char convert(void) {

 int num = 1000000;

 return (char)num;
}

In the return statement, the integer variable num is converted to a char. However, an 8-
bit or 16-bit character cannot represent 1000000 because it requires at least 20 bits. So
the conversion operation overflows.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the
entire number.

long convert(void) {

 int num = 1000000;

 return (long)num;
}

 CERT C++: INT31-C

8-123

Call to memset with unintended value
Description

Call to memset with unintended value occurs when Polyspace Bug Finder detects a
use of the memset or wmemset function with possibly incorrect arguments.

void *memset (void *ptr, int value, size_t num) fills the first num bytes of
the memory block that ptr points to with the specified value. If the argument value is
incorrect, the memory block is initialized with an unintended value.

The unintended initialization can occur in the following cases.

Issue Risk Possible Fix
The second argument is '0'
instead of 0 or '\0'.

The ASCII value of
character '0' is 48
(decimal), 0x30
(hexadecimal), 069 (octal)
but not 0 (or '\0') .

If you want to initialize with
'0', use one of the ASCII
values. Otherwise, use 0 or
'\0'.

The second and third
arguments are probably
reversed. For instance, the
third argument is a literal
and the second argument is
not a literal.

If the order is reversed, a
memory block of unintended
size is initialized with
incorrect arguments.

Reverse the order of the
arguments.

The second argument
cannot be represented in a
byte.

If the second argument
cannot be represented in a
byte, and you expect each
byte of a memory block to
be filled with that argument,
the initialization does not
occur as intended.

Apply a bit mask to the
argument to produce a
wrapped or truncated result
that can be represented in a
byte. When you apply a bit
mask, make sure that it
produces an expected
result.

For instance, replace
memset(a, -13,
sizeof(a)) with
memset(a, (-13) &
0xFF, sizeof(a)).

8 CERT C++ Rules

8-124

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Value Cannot Be Represented in a Byte

#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, (char)c, sizeof(buf));
}

In this example, (char)c cannot be represented in a byte.

Correction — Apply Cast

One possible correction is to apply a cast so that the result can be represented in a byte.
However, check that the result of the cast is an acceptable initialization value.

#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, (unsigned char)c, sizeof(buf));
}

 CERT C++: INT31-C

8-125

Sign change integer conversion overflow
Description

Sign change integer conversion overflow occurs when converting an unsigned integer
to a signed integer. If the variable does not have enough bytes to represent both the
original constant and the sign bit, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Convert from unsigned char to char

char sign_change(void) {
 unsigned char count = 255;

 return (char)count;
}

In the return statement, the unsigned character variable count is converted to a signed
character. However, char has 8 bits, 1 for the sign of the constant and 7 to represent the
number. The conversion operation overflows because 255 uses 8 bits.

Correction — Change conversion types

One possible correction is using a larger integer type. By using an int, there are enough
bits to represent the sign and the number value.

int sign_change(void) {
 unsigned char count = 255;

8 CERT C++ Rules

8-126

 return (int)count;
}

Tainted sign change conversion
Description

Tainted sign change conversion looks for values from unsecure sources that are
converted, implicitly or explicitly, from signed to unsigned values.

For example, functions that use size_t as arguments implicitly convert the argument to
an unsigned integer. Some functions that implicitly convert size_t are:

bcmp
memcpy
memmove
strncmp
strncpy
calloc
malloc
memalign

Risk

If you convert a small negative number to unsigned, the result is a large positive number.
The large positive number can create security vulnerabilities. For example, if you use the
unsigned value in:

• Memory size routines — causes allocating memory issues.
• String manipulation routines — causes buffer overflow.
• Loop boundaries — causes infinite loops.

Fix

To avoid converting unsigned negative values, check that the value being converted is
within an acceptable range. For example, if the value represents a size, validate that the
value is not negative and less than the maximum value size.

Example - Set Memory Value with Size Argument
#include <stdlib.h>
#include <string.h>

 CERT C++: INT31-C

8-127

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void bug_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size<SIZE128) {
 memset(str, 'c', size);
 }
}

In this example, a char buffer is created and filled using memset. The size argument to
memset is an input argument to the function.

The call to memset implicitly converts size to unsigned integer. If size is a large
negative number, the absolute value could be too large to represent as an integer, causing
a buffer overflow.

Correction — Check Value of size

One possible correction is to check if size is inside the valid range. This correction
checks if size is greater than zero and less than the buffer size before calling memset.

#include <stdlib.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void corrected_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size>0 && size<SIZE128) {
 memset(str, 'c', size);
 }
}

8 CERT C++ Rules

8-128

Unsigned integer conversion overflow
Description

Unsigned integer conversion overflow occurs when converting an unsigned integer to
a smaller unsigned integer type. If the variable does not have enough bytes to represent
the original constant, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

Integer conversion overflows result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

In general, avoid conversions to smaller integer types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Converting from int to char

unsigned char convert(void) {
 unsigned int unum = 1000000U;

 CERT C++: INT31-C

8-129

 return (unsigned char)unum;
}

In the return statement, the unsigned integer variable unum is converted to an unsigned
character type. However, the conversion overflows because 1000000 requires at least 20
bits. The C programming language standard does not view unsigned overflow as an error
because the program automatically reduces the result by modulo the maximum value plus
1. In this example, unum is reduced by modulo 2^8 because a character data type can
only represent 2^8-1.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the
entire number. For example, long.

unsigned long convert(void) {
 unsigned int unum = 1000000U;

 return (unsigned long)unum;
}

Check Information
Group: 03. Integers (INT)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
INT31-C

Introduced in R2019a

8 CERT C++ Rules

8-130

https://wiki.sei.cmu.edu/confluence/x/U9YxBQ

CERT C++: INT32-C
Ensure that operations on signed integers do not result in overflow

Description

Rule Definition
Ensure that operations on signed integers do not result in overflow.

Examples

Integer overflow
Description

Integer overflow occurs when an operation on integer variables can result in values that
cannot be represented by the result data type. The data type of a variable determines the
number of bytes allocated for the variable storage and constrains the range of allowed
values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

Integer overflows on signed integers result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
overflowing computation acquire their current values. You can implement the fix on any
event in the sequence. If the result details do not show the event history, you can trace
back using right-click options in the source code and see previous related events. See also
“Interpret Polyspace Bug Finder Results”.

 CERT C++: INT32-C

8-131

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

To avoid overflows in general, try one of these techniques:

• Keep integer variable values restricted to within half the range of signed integers.
• In operations that might overflow, check for conditions that can lead to the overflow

and implement wrap around or saturation behavior depending on how the result of the
operation is used. The result then becomes predictable and can be safely used in
subsequent computations.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Addition of Maximum Integer
#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value
of var is the maximum integer value, so an int cannot represent one plus the maximum
integer value.

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a
larger data type (Note that on a 32-bit machine, int and long has the same size). In this
example, on a 32-bit machine, by returning a long long instead of an int, the overflow
error is fixed.

#include <limits.h>

8 CERT C++ Rules

8-132

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;
 return lvar;
}

Tainted division operand
Description

Tainted division operand detects division operations where one or both of the integer
operands is from an unsecure source.

Risk

• If the numerator is the minimum possible value and the denominator is -1, your
division operation overflows because the result cannot be represented by the current
variable size.

• If the denominator is zero, your division operation fails possibly causing your program
to crash.

These risks can be used to execute arbitrary code. This code is usually outside the scope
of a program's implicit security policy.

Fix

Before performing the division, validate the values of the operands. Check for
denominators of 0 or -1, and numerators of the minimum integer value.

Example - Division of Function Arguments

extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = usernum/userden;
 print_int(r);
 return r;
}

This example function divides two argument variables, then prints and returns the result.
The argument values are unknown and can cause division by zero or integer overflow.

 CERT C++: INT32-C

8-133

Correction — Check Values

One possible correction is to check the values of the numerator and denominator before
performing the division.

#include "limits.h"

extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = 0;
 if (userden!=0 && !(usernum=INT_MIN && userden==-1)) {
 r = usernum/userden;
 }
 print_int(r);
 return r;
}

Tainted modulo operand
Description

Tainted modulo operand checks the operands of remainder % operations. Bug Finder
flags modulo operations with one or more tainted operands.

Risk

• If the second remainder operand is zero, your remainder operation fails, causing your
program to crash.

• If the second remainder operand is -1, your remainder operation can overflow if the
remainder operation is implemented based on the division operation that can overflow.

• If one of the operands is negative, the operation result is uncertain. For C89, the
modulo operation is not standardized, so the result from negative operands is
implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in
general.

Fix

Before performing the modulo operation, validate the values of the operands. Check the
second operand for values of 0 and -1. Check both operands for negative values.

8 CERT C++ Rules

8-134

Example - Modulo with Function Arguments

extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 128%userden;
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using an input argument.
The argument is not checked before calculating the remainder for values that can crash
the program, such as 0 and -1.

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the
modulo operation. In this corrected example, the modulo operation continues only if the
second operand is greater than zero.

extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Check Information
Group: 03. Integers (INT)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

 CERT C++: INT32-C

8-135

External Websites
INT32-C

Introduced in R2019a

8 CERT C++ Rules

8-136

https://wiki.sei.cmu.edu/confluence/x/UtYxBQ

CERT C++: INT33-C
Ensure that division and remainder operations do not result in divide-by-zero errors

Description

Rule Definition
Ensure that division and remainder operations do not result in divide-by-zero errors.

Examples

Integer division by zero
Description

Integer division by zero occurs when the denominator of a division or modulo operation
can be a zero-valued integer.

Risk

A division by zero can result in a program crash.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the denominator
variable acquires a zero value. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

It is a good practice to check for zero values of a denominator before division and handle
the error. Instead of performing the division directly:

res = num/den;

 CERT C++: INT33-C

8-137

use a library function that handles zero values of the denominator before performing the
division:

res = div(num, den);

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Dividing an Integer by Zero

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 if (denom != 0)
 result = num/denom;

 return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

8 CERT C++ Rules

8-138

int fraction(int num)
{
 int denom = 2;
 int result = 0;

 result = num/denom;

 return result;
}

Example - Modulo Operation with Zero

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % i;
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

In this example, Polyspace flags the modulo operation as a division by zero. Because
modulo is inherently a division operation, the divisor (right hand argument) cannot be
zero. The modulo operation uses the for loop index as the divisor. However, the for loop
starts at zero, which cannot be an iterator.

Correction — Check Divisor Before Operation

One possible correction is checking the divisor before the modulo operation. In this
example, see if the index i is zero before the modulo operation.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 if(i != 0)
 {
 arr[i] = input % i;
 }
 else
 {

 CERT C++: INT33-C

8-139

 arr[i] = input;
 }
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Correction — Change Divisor

Another possible correction is changing the divisor to a nonzero integer. In this example,
add one to the index before the % operation to avoid dividing by zero.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % (i+1);
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Tainted division operand
Description

Tainted division operand detects division operations where one or both of the integer
operands is from an unsecure source.

Risk

• If the numerator is the minimum possible value and the denominator is -1, your
division operation overflows because the result cannot be represented by the current
variable size.

• If the denominator is zero, your division operation fails possibly causing your program
to crash.

These risks can be used to execute arbitrary code. This code is usually outside the scope
of a program's implicit security policy.

8 CERT C++ Rules

8-140

Fix

Before performing the division, validate the values of the operands. Check for
denominators of 0 or -1, and numerators of the minimum integer value.

Example - Division of Function Arguments

extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = usernum/userden;
 print_int(r);
 return r;
}

This example function divides two argument variables, then prints and returns the result.
The argument values are unknown and can cause division by zero or integer overflow.

Correction — Check Values

One possible correction is to check the values of the numerator and denominator before
performing the division.

#include "limits.h"

extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = 0;
 if (userden!=0 && !(usernum=INT_MIN && userden==-1)) {
 r = usernum/userden;
 }
 print_int(r);
 return r;
}

Tainted modulo operand
Description

Tainted modulo operand checks the operands of remainder % operations. Bug Finder
flags modulo operations with one or more tainted operands.

 CERT C++: INT33-C

8-141

Risk

• If the second remainder operand is zero, your remainder operation fails, causing your
program to crash.

• If the second remainder operand is -1, your remainder operation can overflow if the
remainder operation is implemented based on the division operation that can overflow.

• If one of the operands is negative, the operation result is uncertain. For C89, the
modulo operation is not standardized, so the result from negative operands is
implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in
general.

Fix

Before performing the modulo operation, validate the values of the operands. Check the
second operand for values of 0 and -1. Check both operands for negative values.

Example - Modulo with Function Arguments
extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 128%userden;
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using an input argument.
The argument is not checked before calculating the remainder for values that can crash
the program, such as 0 and -1.

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the
modulo operation. In this corrected example, the modulo operation continues only if the
second operand is greater than zero.

extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 0;
 if (userden > 0) {

8 CERT C++ Rules

8-142

 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Check Information
Group: 03. Integers (INT)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
INT33-C

Introduced in R2019a

 CERT C++: INT33-C

8-143

https://wiki.sei.cmu.edu/confluence/x/ftYxBQ

CERT C++: INT34-C
Do not shift an expression by a negative number of bits or by greater than or equal to the
number of bits that exist in the operand

Description

Rule Definition
Do not shift an expression by a negative number of bits or by greater than or equal to the
number of bits that exist in the operand.

Examples

Shift of a negative value
Description

Shift of a negative value occurs when a bit-wise shift is used on a variable that can
have negative values.

Risk

Shifts on negative values overwrite the sign bit that identifies a number as negative. The
shift operation can result in unexpected values.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variable being
shifted acquires negative values. You can implement the fix on any event in the sequence.
If the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

8 CERT C++ Rules

8-144

To fix the defect, check for negative values before the bit-wise shift operation and perform
appropriate error handling.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Shifting a negative variable

int shifting(int val)
{
 int res = -1;
 return res << val;
}

In the return statement, the variable res is shifted a certain number of bits to the left.
However, because res is negative, the shift might overwrite the sign bit.

Correction — Change the Data Type

One possible correction is to change the data type of the shifted variable to unsigned.
This correction eliminates the sign bit, so left shifting does not change the sign of the
variable.

int shifting(int val)
{
 unsigned int res = -1;
 return res << val;
}

Shift operation overflow
Description

Shift operation overflow occurs when a shift operation can result in values that cannot
be represented by the result data type. The data type of a variable determines the number
of bytes allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

 CERT C++: INT34-C

8-145

Risk

Shift operation overflows can result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
shift operation acquire their current values. You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using
right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the shift operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Left Shift of Integer
int left_shift(void) {

 int foo = 33;
 return 1 << foo;
}

In the return statement of this function, bit-wise shift operation is performed shifting 1
foo bits to the left. However, an int has only 32 bits, so the range of the shift must be
between 0 and 31. Therefore, this shift operation causes an overflow.

Correction — Different storage type

One possible correction is to store the shift operation result in a larger data type. In this
example, by returning a long long instead of an int, the overflow defect is fixed.

long long left_shift(void) {

8 CERT C++ Rules

8-146

 int foo = 33;
 return 1LL << foo;
}

Check Information
Group: 03. Integers (INT)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
INT34-C

Introduced in R2019a

 CERT C++: INT34-C

8-147

https://wiki.sei.cmu.edu/confluence/x/ItcxBQ

CERT C++: INT35-C
Use correct integer precisions

Description

Rule Definition
Use correct integer precisions.

Examples

Integer precision exceeded
Description

Integer precision exceeded occurs when an integer expression uses the integer size in
an operation that exceeds the integer precision. On some architectures, the size of an
integer in memory can include sign and padding bits. On these architectures, the integer
size is larger than the precision which is just the number of bits that represent the value
of the integer.

Risk

Using the size of an integer in an operation on the integer precision can result in integer
overflow, wrap around, or unexpected results. For instance, an unsigned integer can be
stored in memory in 64 bits, but uses only 48 bits to represent its value. A 56 bits left-
shift operation on this integer is undefined behavior.

Assuming that the size of an integer is equal to its precision can also result in program
portability issues between different architectures.

8 CERT C++ Rules

8-148

Fix

Do not use the size of an integer instead of its precision. To determine the integer
precision, implement a precision computation routine or use a builtin function such as
__builtin_popcount().

Example - Using Size of unsigned int for Left Shift Operation
#include <limits.h>

unsigned int func(unsigned int exp)
{
 if (exp >= sizeof(unsigned int) * CHAR_BIT) {
 /* Handle error */
 }
 return 1U << exp;
}

In this example, the function uses a left shift operation to return the value of 2 raised to
the power of exp. The operation shifts the bits of 1U by exp positions to the left. The if
statement ensures that the operation does not shift the bits by a number of positions exp
greater than the size of an unsigned int. However, if unsigned int contains padding
bits, the value returned by sizeof() is larger than the precision of unsigned int. As a
result, some values of exp might be too large, and the shift operation might be undefined
behavior.

Correction — Implement Function to Compute Precision of unsigned int

One possible correction is to implement a function popcount() that computes the
precision of unsigned int by counting the number of set bits.

#include <stddef.h>
#include <stdint.h>
#include <limits.h>

size_t popcount(uintmax_t);
#define PRECISION(umax_value) popcount(umax_value)

unsigned int func(unsigned int exp)
{
 if (exp >= PRECISION(UINT_MAX)) {
 /* Handle error */
 }

 CERT C++: INT35-C

8-149

 return 1 << exp;
}

size_t popcount(uintmax_t num)
{
 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;
 }
 num >>= 1;
 }
 return precision;
}

Check Information
Group: 03. Integers (INT)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
INT35-C

Introduced in R2019a

8 CERT C++ Rules

8-150

https://wiki.sei.cmu.edu/confluence/x/Q9UxBQ

CERT C++: INT36-C
Converting a pointer to integer or integer to pointer

Description

Rule Definition
Converting a pointer to integer or integer to pointer.

Examples

Unsafe conversion between pointer and integer
Description

Unsafe conversion between pointer and integer checks for pointer to integer and
integer to pointers conversions. If you convert between a pointer, intptr_t, or
uintprt_t and an integer type, such as enum, ptrdiff_t, or pid_t, Polyspace raises a
defect.

Risk

The mapping between pointers and integers is not always consistent with the addressing
structure of the environment.

Converting from pointers to integers can create:

• Truncated or out of range integer values.
• Invalid integer types.

Converting from integers to pointers can create:

• Misaligned pointers or misaligned objects.
• Invalid pointer addresses.

 CERT C++: INT36-C

8-151

Fix

Where possible, avoid pointer-to-integer or integer-to-pointer conversions. If you want to
convert a void pointer to an integer, so that you do not change the value, use types:

• C99 — intptr_t or uintptr_t
• C90 — size_t or ssize_t

Example - Integer to Pointer Conversions

unsigned int *badintptrcast(void)
{
 unsigned int *ptr0 = (unsigned int *)0xdeadbeef;
 char *ptr1 = (char *)0xdeadbeef;
 return (unsigned int *)(ptr0 - (unsigned int *)ptr1);
}

In this example, there are three conversions, two unsafe conversions and one safe
conversion. The first conversion of 0xdeadbeef to unsigned int* causes alignment
issues for the pointer. The second conversion of 0xdeadbeef to char * is safe because
there are no alignment issues for char. The third conversion in the return casts
ptrdiff_t to a pointer. This pointer might or might not point to an invalid address.

Correction — Use intptr_t

One possible correction is to use intptr_t types to store the pointer address
0xdeadbeef. Also, you can change the second pointer to an integer offset so that there is
no longer a conversion from ptrdiff_t to a pointer.

#include <stdint.h>

unsigned int *badintptrcast(void)
{
 intptr_t iptr0 = (intptr_t)0xdeadbeef;
 int offset = 0;
 return (unsigned int *)(iptr0 - offset);
}

Check Information
Group: 03. Integers (INT)

8 CERT C++ Rules

8-152

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
INT36-C

Introduced in R2019a

 CERT C++: INT36-C

8-153

https://wiki.sei.cmu.edu/confluence/x/0dUxBQ

CERT C++: ARR30-C
Do not form or use out-of-bounds pointers or array subscripts

Description

Rule Definition
Do not form or use out-of-bounds pointers or array subscripts.

Examples

Array access out of bounds
Description

Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.

Risk

Accessing an array outside its bounds is undefined behavior. You can read an
unpredictable value or try to access a location that is not allowed and encounter a
segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you accessed an array
inside a loop and one of these situations happened:

• The upper bound of the loop is too large.
• You used an array index that is the same as the loop index instead of being one less

than the loop index.

To fix the issue, you have to modify the loop bound or the array index.

8 CERT C++ Rules

8-154

Another reason why an array index can exceed array bounds is a prior conversion from
signed to unsigned integers. The conversion can result in a wrap around of the index
value, eventually causing the array index to exceed the array bounds.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Array Access Out of Bounds Error
#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of
[0,1,2,...,9]. The variable i has a value 10 when it comes out of the for-loop.
Therefore, the printf statement attempts to access fib[10] through i.

Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

 CERT C++: ARR30-C

8-155

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

Pointer access out of bounds
Description

Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer.
You cannot access memory beyond that block using the pointer.

Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an
unpredictable value or try to access a location that is not allowed and encounter a
segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer
inside a loop and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the

pointer increment.

8 CERT C++ Rules

8-156

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int).
In the for-loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points
outside the memory block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {

 CERT C++: ARR30-C

8-157

 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it,
it is not dereferenced more.

Array access with tainted index
Description

Array access with tainted index detects reading or writing to an array by using a
tainted index that has not been validated.

Risk

The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write operation create to problems in your
program.

Fix

Before using the index to access the array, validate the index value to make sure that it is
inside the array range.

Example - Use Index to Return Buffer Value

#define SIZE100 100
extern int tab[SIZE100];

8 CERT C++ Rules

8-158

int taintedarrayindex(int num) {
 return tab[num];
}

In this example, the index num accesses the array tab. The function does not check to see
if num is inside the range of tab.

Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex(int num) {
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -9999;
 }
}

Use of tainted pointer
Description

Use of tainted pointer defect is raised when:

• Tainted NULL pointer — the pointer is not validated against NULL.
• Tainted size pointer — the size of the memory zone that a pointer points to is not

validated.

Note On a single pointer, your code can have instances of Use of tainted pointer,
Pointer dereference with tainted offset, and Tainted NULL or non-null-terminated
string. Bug Finder raises only the first tainted pointer defect that it finds.

Risk

An attacker can give your program a pointer that points to unexpected memory locations.
If the pointer is dereferenced to write, the attacker can:

 CERT C++: ARR30-C

8-159

• Modify the state variables of a critical program.
• Cause your program to crash.
• Execute unwanted code.

If the pointer is dereferenced to read, the attacker can:

• Read sensitive data.
• Cause your program to crash.
• Modify a program variable to an unexpected value.

Fix

Avoid use of pointers from external sources.

Alternatively, if you trust the external source, sanitize the pointer before dereference. In a
separate sanitization function:

• Check that the pointer is not NULL.
• Check the size of the memory location (if possible). This second check validates

whether the size of the data the pointer points to matches the size your program
expects.

The defect still appears in the body of the sanitization function. However, if you use a
sanitization function, instead of several occurrences, the defect appears only once. You
can justify the defect and hide it in later reviews by using code annotations. See “Address
Polyspace Results Through Bug Fixes or Justifications”.

Example - Function That Dereferences an External Pointer
void taintedptr(int* p, int i) {
 *p = i;
}

In this example, the pointer *p is passed as an argument, and the value is changed. The
pointer can be null or point to unknown memory, which can be vulnerable.

Correction — Avoid Use of External Pointers

One possible correction is to avoid pointers from external sources.

int *taintedptr(int i) {
 /* Use heap memory allocated in the application */

8 CERT C++ Rules

8-160

 int *p = (int *)malloc(sizeof (int));
 if (p != NULL) { /* Check for success */
 *p = i;
 }
return p;
}

Correction — Check Pointer

Another possible correction is to sanitize the pointer before using it. This example uses a
second function to check if the pointer is null and can be dereferenced.

#include <stdlib.h>

int* sanitize_ptr(int* p) {
 int* res = NULL;
 if (p && *p) { /* Tainted pointer detected here, used as "firewall" */
 /* Pointer is not null and dereference ok */
 res = p;
 }
 return res;
}
void taintedptr(int* p, int i) {
 p = sanitize_ptr(p);
 if (p) {
 *p = i;
 }
}

Pointer dereference with tainted offset
Description

Pointer dereference with tainted offset detects pointer dereferencing, either reading
or writing, using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array
access with tainted index.

Risk

The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

 CERT C++: ARR30-C

8-161

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write to compromise your program.

Fix

Validate the index before you use the variable to access the pointer. Check to make sure
that the variable is inside the valid range and does not overflow.

Example - Dereference Pointer Array

#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[i];
 free(pint);
 }
 return c;
}

In this example, the function initializes an integer pointer pint. The pointer is
dereferenced using the input index i. The value of i could be outside the pointer range,
causing an out-of-range error.

8 CERT C++ Rules

8-162

Correction — Check Index Before Dereference

One possible correction is to validate the value of the index. If the index is inside the valid
range, continue with the pointer dereferencing.

#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (i>0 && i<SIZE10) {
 c = pint[i];
 }
 free(pint);
 }
 return c;
}

Check Information
Group: 04. Containers (CTR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ARR30-C

 CERT C++: ARR30-C

8-163

https://wiki.sei.cmu.edu/confluence/x/wtYxBQ

Introduced in R2019a

8 CERT C++ Rules

8-164

CERT C++: ARR37-C
Do not add or subtract an integer to a pointer to a non-array object

Description

Rule Definition
Do not add or subtract an integer to a pointer to a non-array object.

Examples

Invalid assumptions about memory organization
Description

Invalid assumptions about memory organization occurs when you compute the
address of a variable in the stack by adding or subtracting from the address of another
non-array variable.

Risk

When you compute the address of a variable in the stack by adding or subtracting from
the address of another variable, you assume a certain memory organization. If your
assumption is incorrect, accessing the computed address can be invalid.

Fix

Do not perform an access that relies on assumptions about memory organization.

Example - Reliance on Memory Organization

void func(void) {
 int var1 = 0x00000011, var2;
 *(&var1 + 1) = 0;
}

 CERT C++: ARR37-C

8-165

In this example, the programmer relies on the assumption that &var1 + 1 provides the
address of var2. Therefore, an Invalid assumptions about memory organization
appears on the + operation. In addition, a Pointer access out of bounds error also
appears on the dereference.

Correction — Do Not Rely on Memory Organization

One possible correction is not perform direct computation on addresses to access
separately declared variables.

Check Information
Group: 04. Containers (CTR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ARR37-C

Introduced in R2019a

8 CERT C++ Rules

8-166

https://wiki.sei.cmu.edu/confluence/x/1dUxBQ

CERT C++: ARR38-C
Guarantee that library functions do not form invalid pointers

Description

Rule Definition
Guarantee that library functions do not form invalid pointers.

Examples

Mismatch between data length and size
Description

Mismatch between data length and size looks for memory copying functions such as
memcpy, memset, or memmove. If you do not control the length argument and data buffer
argument properly, Bug Finder raises a defect.

Risk

If an attacker can manipulate the data buffer or length argument, the attacker can cause
buffer overflow by making the actual data size smaller than the length.

This mismatch in length allows the attacker to copy memory past the data buffer to a new
location. If the extra memory contains sensitive information, the attacker can now access
that data.

This defect is similar to the SSL Heartbleed bug.

Fix

When copying or manipulating memory, compute the length argument directly from the
data so that the sizes match.

 CERT C++: ARR38-C

8-167

Example - Copy Buffer of Data

#include <stdlib.h>
#include <string.h>

typedef struct buf_mem_st {
 char *data;
 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

 length = *(unsigned short *)os->data;
 memcpy(&(beta.data[num]), os->data + 2, length);

 return(1);
}

This function copies the buffer alpha into a buffer beta. However, the length variable is
not related to data+2.

Correction — Check Buffer Length

One possible correction is to check the length of your buffer against the maximum value
minus 2. This check ensures that you have enough space to copy the data to the beta
structure.

#include <stdlib.h>
#include <string.h>

typedef struct buf_mem_st {
 char *data;
 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

8 CERT C++ Rules

8-168

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

 length = *(unsigned short *)os->data;
 if (length<(os->max -2)) {
 memcpy(&(beta.data[num]), os->data + 2, length);
 }

 return(1);

}

Invalid use of standard library memory routine
Description

Invalid use of standard library memory routine occurs when a memory library
function is called with invalid arguments. For instance, the memcpy function copies to an
array that cannot accommodate the number of bytes copied.

Risk

Use of a memory library function with invalid arguments can result in issues such as
buffer overflow.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 CERT C++: ARR38-C

8-169

Example - Invalid Use of Standard Library Memory Routine Error

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 char str1[10],str2[5];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

 return str2;
 }

The size of string str2 is 5, but six characters of string str1 are copied into str2 using
the memcpy function.

Correction — Call Function with Valid Arguments

One possible correction is to adjust the size of str2 so that it accommodates the
characters copied with the memcpy function.

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 /* Fix: Declare str2 with size 6 */
 char str1[10],str2[6];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 return str2;
 }

8 CERT C++ Rules

8-170

Possible misuse of sizeof
Description

Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly
unintended results from the use of sizeof operator. For instance:

• You use the sizeof operator on an array parameter name, expecting the array size.
However, the array parameter name by itself is a pointer. The sizeof operator
returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However,
the operator returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect
because you used the sizeof operator earlier with possibly incorrect expectations.
For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an
incorrect use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the not the
number of wide characters but a size in bytes obtained by using the sizeof
operator. For instance, you use wcsncpy(destination, source,
sizeof(destination) - 1) instead of wcsncpy(destination, source,
(sizeof(desintation)/sizeof(wchar_t)) - 1).

Risk

Incorrect use of the sizeof operator can cause the following issues:

• If you expect the sizeof operator to return array size and use the return value to
constrain a loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is
smaller than what you require. Insufficient buffer can lead to resultant weaknesses
such as buffer overflows.

• If you use the return value of sizeof operator incorrectly in a function call, the
function does not behave as you expect.

Fix

Possible fixes are:

 CERT C++: ARR38-C

8-171

• Do not use the sizeof operator on an array parameter name or array element to
determine array size.

The best practice is to pass the array size as a separate function parameter and use
that parameter in the function body.

• Use the sizeof operator carefully to determine the number argument of functions
such as strncmp or wcsncpy. For instance, for wide string functions such as
wcsncpy, use the number of wide characters as argument instead of the number of
bytes.

Example - sizeof Used Incorrectly to Determine Array Size

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {
 a[i] = i + 1;
 }
}

In this example, sizeof(a) returns the size of the pointer a and not the array size.

Correction — Determine Array Size in Another Way

One possible correction is to use another means to determine the array size.

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < MAX_SIZE; i++) {
 a[i] = i + 1;
 }
}

8 CERT C++ Rules

8-172

Buffer overflow from incorrect string format specifier
Description

Buffer overflow from incorrect string format specifier occurs when the format
specifier argument for functions such as sscanf leads to an overflow or underflow in the
memory buffer argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size, an
overflow occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

Example - Memory Buffer Overflow

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c
causes a buffer overflow.

Correction — Use Smaller Precision in Format Specifier

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

 CERT C++: ARR38-C

8-173

Invalid use of standard library string routine
Description

Invalid use of standard library string routine occurs when a string library function is
called with invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy
function with a source argument larger than the destination argument can result in buffer
overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases,
you can constrain the function arguments before the function call. For instance, if the
strcpy function:

char * strcpy(char * destination, const char* source)

tries to copy too many bytes into the destination argument compared to the available
buffer, constrain the source argument before the call to strcpy. In some cases, you can
use an alternative function to avoid the error. For instance, instead of strcpy, you can
use strncpy to control the number of bytes copied. See also “Interpret Polyspace Bug
Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

8 CERT C++ Rules

8-174

 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Destination buffer overflow in string manipulation
Description

Destination buffer overflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at an offset greater
than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char*
format), you use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer overflow also introduces the risk of code injection.

 CERT C++: ARR38-C

8-175

Fix

One possible solution is to use alternative functions to constrain the number of characters
written. For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or
sprintf_s instead to enforce length control. Alternatively, use asprintf to
automatically allocate the memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string,
use vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s
instead to enforce length control.

Another possible solution is to increase the buffer size.

Example - Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater
size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

8 CERT C++ Rules

8-176

Destination buffer underflow in string manipulation
Description

Destination buffer underflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at a negative offset
from the beginning of the buffer.

For instance, for the function sprintf(char* buffer, const char* format), you
obtain the buffer from an operation buffer = (char*)arr; ... buffer +=
offset;. arr is an array and offset is a negative value.

Risk

Buffer underflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer underflow also introduces the risk of code injection.

Fix

If the destination buffer argument results from pointer arithmetic, see if you are
decrementing a pointer. Fix the pointer decrement by modifying either the original value
before decrement or the decrement value.

Example - Buffer Underflow in sprintf Use
#include <stdio.h>
#define offset -2

void func(void) {
 char buffer[20];
 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);
}

In this example, &buffer[offset] is at a negative offset from the memory allocated to
buffer.

Correction — Change Pointer Decrementer

One possible correction is to change the value of offset.

#include <stdio.h>
#define offset 2

 CERT C++: ARR38-C

8-177

void func(void) {
 char buffer[20];
 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);
}

Check Information
Group: 04. Containers (CTR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ARR38-C

Introduced in R2019a

8 CERT C++ Rules

8-178

https://wiki.sei.cmu.edu/confluence/x/W9UxBQ

CERT C++: ARR39-C
Do not add or subtract a scaled integer to a pointer

Description

Rule Definition
Do not add or subtract a scaled integer to a pointer.

Examples

Incorrect pointer scaling
Description

Incorrect pointer scaling occurs when Polyspace Bug Finder considers that you are
ignoring the implicit scaling in pointer arithmetic.

For instance, the defect can occur in the following situations.

Situation Risk Possible Fix
You use the sizeof
operator in arithmetic
operations on a pointer.

The sizeof operator
returns the size of a data
type in number of bytes.

Pointer arithmetic is already
implicitly scaled by the size
of the data type of the
pointed variable. Therefore,
the use of sizeof in pointer
arithmetic produces
unintended results.

Do not use sizeof operator
in pointer arithmetic.

 CERT C++: ARR39-C

8-179

Situation Risk Possible Fix
You perform arithmetic
operations on a pointer, and
then apply a cast.

Pointer arithmetic is
implicitly scaled. If you do
not consider this implicit
scaling, casting the result of
a pointer arithmetic
produces unintended
results.

Apply the cast before the
pointer arithmetic.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Use of sizeof Operator

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2*(sizeof(int)));
}

In this example, the operation 2*(sizeof(int)) returns twice the size of an int
variable in bytes. However, because pointer arithmetic is implicitly scaled, the number of
bytes by which ptr is offset is 2*(sizeof(int))*(sizeof(int)).

In this example, the incorrect scaling shifts ptr outside the bounds of the array.
Therefore, a Pointer access out of bounds error appears on the * operation.

Correction — Remove sizeof Operator

One possible correction is to remove the sizeof operator.

8 CERT C++ Rules

8-180

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2);
}

Example - Cast Following Pointer Arithmetic

int func(void) {
 int x = 0;
 char r = *(char *)(&x + 1);
 return r;
}

In this example, the operation &x + 1 offsets &x by sizeof(int). Following the
operation, the resulting pointer points outside the allowed buffer. When you dereference
the pointer, a Pointer access out of bounds error appears on the * operation.

Correction — Apply Cast Before Pointer Arithmetic

If you want to access the second byte of x, first cast &x to a char* pointer and then
perform the pointer arithmetic. The resulting pointer is offset by sizeof(char) bytes
and still points within the allowed buffer, whose size is sizeof(int) bytes.

int func(void) {
 int x = 0;
 char r = *((char *)(&x)+ 1);
 return r;
}

Check Information
Group: 04. Containers (CTR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

 CERT C++: ARR39-C

8-181

External Websites
ARR39-C

Introduced in R2019a

8 CERT C++ Rules

8-182

https://wiki.sei.cmu.edu/confluence/x/ytYxBQ

CERT C++: CTR50-CPP
Guarantee that container indices and iterators are within the valid range

Description

Rule Definition
Guarantee that container indices and iterators are within the valid range.

Examples

Array access out of bounds
Description

Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.

Risk

Accessing an array outside its bounds is undefined behavior. You can read an
unpredictable value or try to access a location that is not allowed and encounter a
segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you accessed an array
inside a loop and one of these situations happened:

• The upper bound of the loop is too large.
• You used an array index that is the same as the loop index instead of being one less

than the loop index.

To fix the issue, you have to modify the loop bound or the array index.

 CERT C++: CTR50-CPP

8-183

Another reason why an array index can exceed array bounds is a prior conversion from
signed to unsigned integers. The conversion can result in a wrap around of the index
value, eventually causing the array index to exceed the array bounds.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Array Access Out of Bounds Error
#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of
[0,1,2,...,9]. The variable i has a value 10 when it comes out of the for-loop.
Therefore, the printf statement attempts to access fib[10] through i.

Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

8 CERT C++ Rules

8-184

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

Array access with tainted index
Description

Array access with tainted index detects reading or writing to an array by using a
tainted index that has not been validated.

Risk

The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write operation create to problems in your
program.

 CERT C++: CTR50-CPP

8-185

Fix

Before using the index to access the array, validate the index value to make sure that it is
inside the array range.

Example - Use Index to Return Buffer Value

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex(int num) {
 return tab[num];
}

In this example, the index num accesses the array tab. The function does not check to see
if num is inside the range of tab.

Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex(int num) {
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -9999;
 }
}

Pointer dereference with tainted offset
Description

Pointer dereference with tainted offset detects pointer dereferencing, either reading
or writing, using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array
access with tainted index.

8 CERT C++ Rules

8-186

Risk

The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write to compromise your program.

Fix

Validate the index before you use the variable to access the pointer. Check to make sure
that the variable is inside the valid range and does not overflow.

Example - Dereference Pointer Array

#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[i];
 free(pint);
 }
 return c;
}

 CERT C++: CTR50-CPP

8-187

In this example, the function initializes an integer pointer pint. The pointer is
dereferenced using the input index i. The value of i could be outside the pointer range,
causing an out-of-range error.

Correction — Check Index Before Dereference

One possible correction is to validate the value of the index. If the index is inside the valid
range, continue with the pointer dereferencing.

#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (i>0 && i<SIZE10) {
 c = pint[i];
 }
 free(pint);
 }
 return c;
}

Check Information
Group: 04. Containers (CTR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

8 CERT C++ Rules

8-188

External Websites
CTR50-CPP

Introduced in R2019a

 CERT C++: CTR50-CPP

8-189

https://wiki.sei.cmu.edu/confluence/x/cHw-BQ

CERT C++: STR30-C
Do not attempt to modify string literals

Description

Rule Definition
Do not attempt to modify string literals.

Examples

Writing to const qualified object
Description

Writing to const qualified object occurs when you do one of the following:

• Use a const-qualified object as the destination of an assignment.
• Pass a const-qualified object to a function that modifies the argument.

For instance, the defect can occur in the following situations:

• You pass a const-qualified object as first argument of one of the following functions:

• mkstemp
• mkostemp
• mkostemps
• mkdtemp

• You pass a const-qualified object as the destination argument of one of the following
functions:

• strcpy
• strncpy

8 CERT C++ Rules

8-190

• strcat
• memset

• You perform a write operation on a const-qualified object.

Risk

The risk depends upon the modifications made to the const-qualified object.

Situation Risk
Passing to mkstemp, mkostemp,
mkostemps, mkdtemp, and so on.

These functions replace the last six
characters of their first argument with a
string. Therefore, they expect a modifiable
char array as their first argument.

Passing to strcpy, strncpy, strcat,
memset and so on.

These functions modify their destination
argument. Therefore, they expect a
modifiable char array as their destination
argument.

Writing to the object The const qualifier implies an agreement
that the value of the object will not be
modified. By writing to a const-qualified
object, you break the agreement. The result
of the operation is undefined.

Fix

The fix depends on the modification made to the const-qualified object.

Situation Fix
Passing to mkstemp, mkostemp,
mkostemps, mkdtemp, and so on.

Pass a non-const object as first argument
of the function.

Passing to strcpy, strncpy, strcat,
memset and so on.

Pass a non-const object as destination
argument of the function.

Writing to the object Perform the write operation on a non-
const object.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 CERT C++: STR30-C

8-191

Example - Writing to const-Qualified Object

#include <string.h>

const char* buffer = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

In this example, because buffer is const-qualified, strchr(buffer,'X') returns a
const-qualified char* pointer. When this char* pointer is used as the destination
argument of strcpy, a Writing to const qualified object error appears.

Correction — Copy const-Qualified Object to Non-const Object

One possible correction is to assign the constant string to a non-const object and use the
non-const object as destination argument of strchr.

#include <string.h>

char buffer[] = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

Check Information
Group: 05. Characters and Strings (STR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

8 CERT C++ Rules

8-192

External Websites
STR30-C

Introduced in R2019a

 CERT C++: STR30-C

8-193

https://wiki.sei.cmu.edu/confluence/x/VtYxBQ

CERT C++: STR31-C
Guarantee that storage for strings has sufficient space for character data and the null
terminator

Description

Rule Definition
Guarantee that storage for strings has sufficient space for character data and the null
terminator.

Examples

Use of dangerous standard function
Description

The Use of dangerous standard function check highlights uses of functions that are
inherently dangerous or potentially dangerous given certain circumstances. The following
table lists possibly dangerous functions, the risks of using each function, and what
function to use instead.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You cannot
control the length of input from the
console.

fgets

cin Inherently dangerous — You cannot
control the length of input from the
console.

Avoid or prefaces calls to cin
with cin.width.

8 CERT C++ Rules

8-194

Dangerous
Function

Risk Level Safer Function

strcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

strncpy

stpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

stpncpy

lstrcpy or
StrCpy

Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

StringCbCopy,
StringCchCopy, strncpy,
strcpy_s, or strlcpy

strcat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

strncat, strlcat, or
strcat_s

lstrcat or
StrCat

Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or
strlcat

wcpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

wcsncat, wcslcat, or
wcncat_s

wcscpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcsncpy

 CERT C++: STR31-C

8-195

Dangerous
Function

Risk Level Safer Function

sprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

snprintf

vsprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

vsnprintf

Risk

These functions can cause buffer overflow, which attackers can use to infiltrate your
program.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Using sprintf
#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

8 CERT C++ Rules

8-196

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

This example function uses sprintf to copy the string str to dst. However, if str is
larger than the buffer, sprintf can cause buffer overflow.

Correction — Use snprintf with Buffer Size

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Missing null in string array
Description

Missing null in string array occurs when a string does not have enough space to
terminate with a null character '\0'.

 CERT C++: STR31-C

8-197

This defect applies only for projects in C.

Risk

A buffer overflow can occur if you copy a string to an array without assuming the implicit
null terminator.

Fix

If you initialize a character array with a literal, avoid specifying the array bounds.

char three[] = "THREE";

The compiler automatically allocates space for a null terminator. In the preceding
example, the compiler allocates sufficient space for five characters and a null terminator.

If the issue occurs after initialization, you might have to increase the size of the array by
one to account for the null terminator.

In certain circumstances, you might want to initialize the character array with a sequence
of characters instead of a string. In this situation, add comments to your result or code to
avoid another review. See “Address Polyspace Results Through Bug Fixes or
Justifications”.

Example - Array size is too small

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[5] = "THREE";
}

The character array three has a size of 5 and 5 characters 'T', 'H', 'R', 'E', and 'E'.
There is no room for the null character at the end because three is only five bytes large.

Correction — Increase Array Size

One possible correction is to change the array size to allow for the five characters plus a
null character.

void countdown(int i)
{
 static char one[5] = "ONE";

8 CERT C++ Rules

8-198

 static char two[5] = "TWO";
 static char three[6] = "THREE";
}

Correction — Change Initialization Method

One possible correction is to initialize the string by leaving the array size blank. This
initialization method allocates enough memory for the five characters and a terminating-
null character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[] = "THREE";
}

Buffer overflow from incorrect string format specifier
Description

Buffer overflow from incorrect string format specifier occurs when the format
specifier argument for functions such as sscanf leads to an overflow or underflow in the
memory buffer argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size, an
overflow occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

Example - Memory Buffer Overflow

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

 CERT C++: STR31-C

8-199

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c
causes a buffer overflow.

Correction — Use Smaller Precision in Format Specifier

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

Destination buffer overflow in string manipulation
Description

Destination buffer overflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at an offset greater
than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char*
format), you use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of characters
written. For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or
sprintf_s instead to enforce length control. Alternatively, use asprintf to
automatically allocate the memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string,
use vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s
instead to enforce length control.

8 CERT C++ Rules

8-200

Another possible solution is to increase the buffer size.

Example - Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater
size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Check Information
Group: 05. Characters and Strings (STR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

 CERT C++: STR31-C

8-201

External Websites
STR31-C

Introduced in R2019a

8 CERT C++ Rules

8-202

https://wiki.sei.cmu.edu/confluence/x/sNUxBQ

CERT C++: STR32-C
Do not pass a non-null-terminated character sequence to a library function that expects a
string

Description
Rule Definition
Do not pass a non-null-terminated character sequence to a library function that expects a
string.

Examples
Invalid use of standard library string routine
Description

Invalid use of standard library string routine occurs when a string library function is
called with invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy
function with a source argument larger than the destination argument can result in buffer
overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases,
you can constrain the function arguments before the function call. For instance, if the
strcpy function:

char * strcpy(char * destination, const char* source)

tries to copy too many bytes into the destination argument compared to the available
buffer, constrain the source argument before the call to strcpy. In some cases, you can

 CERT C++: STR32-C

8-203

use an alternative function to avoid the error. For instance, instead of strcpy, you can
use strncpy to control the number of bytes copied. See also “Interpret Polyspace Bug
Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

8 CERT C++ Rules

8-204

 return(res);
 }

Tainted NULL or non-null-terminated string
Description

Tainted NULL or non-null-terminated string looks for strings from unsecure sources
that are being used in string manipulation routines that implicitly dereference the string
buffer. For example, strcpy or sprintf.

Tainted NULL or non-null-terminated string raises no defect for a string returned
from a call to scanf-family variadic functions. Similarly, no defect is raised when you
pass the string with a %s specifier to printf-family variadic functions.

Note If you reference a string using the form ptr[i], *ptr, or pointer arithmetic, Bug
Finder raises a Use of tainted pointer defect instead. The Tainted NULL or non-null-
terminated string defect is raised only when the pointer is used as a string.

Risk

If a string is from an unsecure source, it is possible that an attacker manipulated the
string or pointed the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the
program to crash. If the string is not null-terminated, the string routine might not know
when the string ends. This error can cause you to write out of bounds, causing a buffer
overflow.

Fix

Validate the string before you use it. Check that:

• The string is not NULL.
• The string is null-terminated
• The size of the string matches the expected size.

Example - Getting String from Input Argument
#include <stdio.h>
#include <string.h>

 CERT C++: STR32-C

8-205

#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

In this example, the string str is concatenated with the argument userstr. The value of
userstr is unknown. If the size of userstr is greater than the space available, the
concatenation overflows.

Correction — Validate the Data

One possible correction is to check the size of userstr and make sure that the string is
null-terminated before using it in strncat. This example uses a helper function,
sansitize_str, to validate the string. The defects are concentrated in this function.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

int sanitize_str(char* s) {
 int res = 0;
 if (s && (strlen(s) > 0)) { // TAINTED_STRING only flagged here
 // - string is not null
 // - string has a positive and limited size
 // - TAINTED_STRING on strlen used as a firewall

8 CERT C++ Rules

8-206

 res = 1;
 }
 return res;
}

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

Correction — Validate the Data

Another possible correction is to call function errorMsg and warningMsg with specific
strings.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));

 CERT C++: STR32-C

8-207

 print_str(str);
}

int manageSensorValue(int sensorValue) {
 int ret = sensorValue;
 if (sensorValue < 0) {
 errorMsg("sensor value should be positive");
 exit(1);
 } else if (sensorValue > 50) {
 warningMsg("sensor value greater than 50 (applying threshold)...");
 sensorValue = 50;
 }

 return sensorValue;
}

Check Information
Group: 05. Characters and Strings (STR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
STR32-C

Introduced in R2019a

8 CERT C++ Rules

8-208

https://wiki.sei.cmu.edu/confluence/x/r9UxBQ

CERT C++: STR34-C
Cast characters to unsigned char before converting to larger integer sizes

Description
Rule Definition
Cast characters to unsigned char before converting to larger integer sizes.

Examples
Misuse of sign-extended character value
Description

Misuse of sign-extended character value occurs when you convert a signed or plain
char data type to a wider integer data type with sign extension. You then use the
resulting sign-extended value as array index, for comparison with EOF or as argument to
a character-handling function.

Risk

Comparison with EOF: Suppose, your compiler implements the plain char type as signed.
In this implementation, the character with the decimal form of 255 (–1 in two’s
complement form) is stored as a signed value. When you convert a char variable to the
wider data type int for instance, the sign bit is preserved (sign extension). This sign
extension results in the character with the decimal form 255 being converted to the
integer –1, which cannot be distinguished from EOF.

Use as array index: By similar reasoning, you cannot use sign-extended plain char
variables as array index. If the sign bit is preserved, the conversion from char to int can
result in negative integers. You must use positive integer values for array index.

Argument to character-handling function: By similar reasoning, you cannot use sign-
extended plain char variables as arguments to character-handling functions declared in

 CERT C++: STR34-C

8-209

ctype.h, for instance, isalpha() or isdigit(). According to the C11 standard
(Section 7.4), if you supply an integer argument that cannot be represented as unsigned
char or EOF, the resulting behavior is undefined.

Fix

Before conversion to a wider integer data type, cast the signed or plain char value
explicitly to unsigned char.

Example - Sign-Extended Character Value Compared with EOF

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = *buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

In this example, the function parser can traverse a string input buf. If a character in the
string has the decimal form 255, when converted to the int variable c, its value becomes
–1, which is indistinguishable from EOF. The later comparison with EOF can lead to a false
positive.

Correction — Cast to unsigned char Before Conversion

One possible correction is to cast the plain char value to unsigned char before
conversion to the wider int type.

8 CERT C++ Rules

8-210

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = (unsigned char)*buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Group: 05. Characters and Strings (STR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
STR34-C

Introduced in R2019a

 CERT C++: STR34-C

8-211

https://wiki.sei.cmu.edu/confluence/x/BdYxBQ

CERT C++: STR37-C
Arguments to character-handling functions must be representable as an unsigned char

Description
Rule Definition
Arguments to character-handling functions must be representable as an unsigned char.

Examples
Invalid use of standard library integer routine
Description

Invalid use of standard library integer routine occurs when you use invalid
arguments with an integer function from the standard library. This defect picks up:

• Character Conversion

toupper, tolower
• Character Checks

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit

• Integer Division

div, ldiv
• Absolute Values

abs, labs

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If

8 CERT C++ Rules

8-212

the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Absolute Value of Large Negative

#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN;
 return abs(neg);
}

The input value to abs is INT_MIN. The absolute value of INT_MIN is INT_MAX+1. This
number cannot be represented by the type int.

Correction — Change Input Argument

One possible correction is to change the input value to fit returned data type. In this
example, change the input value to INT_MIN+1.

#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN+1;
 return abs(neg);
}

Check Information
Group: 05. Characters and Strings (STR)

 CERT C++: STR37-C

8-213

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
STR37-C

Introduced in R2019a

8 CERT C++ Rules

8-214

https://wiki.sei.cmu.edu/confluence/x/BNcxBQ

CERT C++: STR38-C
Do not confuse narrow and wide character strings and functions

Description

Rule Definition
Do not confuse narrow and wide character strings and functions.

Examples

Misuse of narrow or wide character string
Description

Misuse of narrow or wide character string occurs when you pass a narrow character
string to a wide string function, or a wide character string to a narrow string function.

Misuse of narrow or wide character string raises no defect on operating systems
where narrow and wide character strings have the same size.

Risk

Using a narrow character string with a wide string function, or vice versa, can result in
unexpected or undefined behavior.

If you pass a wide character string to a narrow string function, you can encounter these
issues:

• Data truncation. If the string contains null bytes, a copy operation using strncpy()
can terminate early.

• Incorrect string length. strlen() returns the number of characters of a string up to
the first null byte. A wide string can have additional characters after its first null byte.

 CERT C++: STR38-C

8-215

If you pass a narrow character string to a wide string function, you can encounter this
issue:

• Buffer overflow. In a copy operation using wcsncpy(), the destination string might
have insufficient memory to store the result of the copy.

Fix

Use the narrow string functions with narrow character strings. Use the wide string
functions with wide character strings.

Example - Passing Wide Character Strings to strncpy()

#include <string.h>
#include <wchar.h>

void func(void)
{
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 strncpy(wide_str2, wide_str1, 10);
}

In this example, strncpy() copies 10 wide characters from wide_strt1 to wide_str2.
If wide_str1 contains null bytes, the copy operation can end prematurely and truncate
the wide character string.

Correction — Use wcsncpy() to Copy Wide Character Strings

One possible correction is to use wcsncpy() to copy wide_str1 to wide_str2.

#include <string.h>
#include <wchar.h>

void func(void)
{
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 wcsncpy(wide_str2, wide_str1, 10);
}

8 CERT C++ Rules

8-216

Check Information
Group: 05. Characters and Strings (STR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
STR38-C

Introduced in R2019a

 CERT C++: STR38-C

8-217

https://wiki.sei.cmu.edu/confluence/x/xtYxBQ

CERT C++: STR50-CPP
Guarantee that storage for strings has sufficient space for character data and the null
terminator

Description

Rule Definition
Guarantee that storage for strings has sufficient space for character data and the null
terminator.

Examples

Use of dangerous standard function
Description

The Use of dangerous standard function check highlights uses of functions that are
inherently dangerous or potentially dangerous given certain circumstances. The following
table lists possibly dangerous functions, the risks of using each function, and what
function to use instead.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You cannot
control the length of input from the
console.

fgets

cin Inherently dangerous — You cannot
control the length of input from the
console.

Avoid or prefaces calls to cin
with cin.width.

8 CERT C++ Rules

8-218

Dangerous
Function

Risk Level Safer Function

strcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

strncpy

stpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

stpncpy

lstrcpy or
StrCpy

Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

StringCbCopy,
StringCchCopy, strncpy,
strcpy_s, or strlcpy

strcat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

strncat, strlcat, or
strcat_s

lstrcat or
StrCat

Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or
strlcat

wcpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

wcsncat, wcslcat, or
wcncat_s

wcscpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcsncpy

 CERT C++: STR50-CPP

8-219

Dangerous
Function

Risk Level Safer Function

sprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

snprintf

vsprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

vsnprintf

Risk

These functions can cause buffer overflow, which attackers can use to infiltrate your
program.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Using sprintf
#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

8 CERT C++ Rules

8-220

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

This example function uses sprintf to copy the string str to dst. However, if str is
larger than the buffer, sprintf can cause buffer overflow.

Correction — Use snprintf with Buffer Size

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Missing null in string array
Description

Missing null in string array occurs when a string does not have enough space to
terminate with a null character '\0'.

 CERT C++: STR50-CPP

8-221

This defect applies only for projects in C.

Risk

A buffer overflow can occur if you copy a string to an array without assuming the implicit
null terminator.

Fix

If you initialize a character array with a literal, avoid specifying the array bounds.

char three[] = "THREE";

The compiler automatically allocates space for a null terminator. In the preceding
example, the compiler allocates sufficient space for five characters and a null terminator.

If the issue occurs after initialization, you might have to increase the size of the array by
one to account for the null terminator.

In certain circumstances, you might want to initialize the character array with a sequence
of characters instead of a string. In this situation, add comments to your result or code to
avoid another review. See “Address Polyspace Results Through Bug Fixes or
Justifications”.

Example - Array size is too small

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[5] = "THREE";
}

The character array three has a size of 5 and 5 characters 'T', 'H', 'R', 'E', and 'E'.
There is no room for the null character at the end because three is only five bytes large.

Correction — Increase Array Size

One possible correction is to change the array size to allow for the five characters plus a
null character.

void countdown(int i)
{
 static char one[5] = "ONE";

8 CERT C++ Rules

8-222

 static char two[5] = "TWO";
 static char three[6] = "THREE";
}

Correction — Change Initialization Method

One possible correction is to initialize the string by leaving the array size blank. This
initialization method allocates enough memory for the five characters and a terminating-
null character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[] = "THREE";
}

Buffer overflow from incorrect string format specifier
Description

Buffer overflow from incorrect string format specifier occurs when the format
specifier argument for functions such as sscanf leads to an overflow or underflow in the
memory buffer argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size, an
overflow occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

Example - Memory Buffer Overflow

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

 CERT C++: STR50-CPP

8-223

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c
causes a buffer overflow.

Correction — Use Smaller Precision in Format Specifier

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

Destination buffer overflow in string manipulation
Description

Destination buffer overflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at an offset greater
than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char*
format), you use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of characters
written. For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or
sprintf_s instead to enforce length control. Alternatively, use asprintf to
automatically allocate the memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string,
use vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s
instead to enforce length control.

8 CERT C++ Rules

8-224

Another possible solution is to increase the buffer size.

Example - Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater
size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Check Information
Group: 05. Characters and Strings (STR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

 CERT C++: STR50-CPP

8-225

External Websites
STR50-CPP

Introduced in R2019a

8 CERT C++ Rules

8-226

https://wiki.sei.cmu.edu/confluence/x/i3w-BQ

CERT C++: STR53-CPP
Range check element access

Description

Rule Definition
Range check element access.

Examples

Array access out of bounds
Description

Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.

Risk

Accessing an array outside its bounds is undefined behavior. You can read an
unpredictable value or try to access a location that is not allowed and encounter a
segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you accessed an array
inside a loop and one of these situations happened:

• The upper bound of the loop is too large.
• You used an array index that is the same as the loop index instead of being one less

than the loop index.

To fix the issue, you have to modify the loop bound or the array index.

 CERT C++: STR53-CPP

8-227

Another reason why an array index can exceed array bounds is a prior conversion from
signed to unsigned integers. The conversion can result in a wrap around of the index
value, eventually causing the array index to exceed the array bounds.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Array Access Out of Bounds Error
#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of
[0,1,2,...,9]. The variable i has a value 10 when it comes out of the for-loop.
Therefore, the printf statement attempts to access fib[10] through i.

Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

8 CERT C++ Rules

8-228

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

Array access with tainted index
Description

Array access with tainted index detects reading or writing to an array by using a
tainted index that has not been validated.

Risk

The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write operation create to problems in your
program.

 CERT C++: STR53-CPP

8-229

Fix

Before using the index to access the array, validate the index value to make sure that it is
inside the array range.

Example - Use Index to Return Buffer Value

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex(int num) {
 return tab[num];
}

In this example, the index num accesses the array tab. The function does not check to see
if num is inside the range of tab.

Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex(int num) {
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -9999;
 }
}

Pointer dereference with tainted offset
Description

Pointer dereference with tainted offset detects pointer dereferencing, either reading
or writing, using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array
access with tainted index.

8 CERT C++ Rules

8-230

Risk

The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write to compromise your program.

Fix

Validate the index before you use the variable to access the pointer. Check to make sure
that the variable is inside the valid range and does not overflow.

Example - Dereference Pointer Array

#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[i];
 free(pint);
 }
 return c;
}

 CERT C++: STR53-CPP

8-231

In this example, the function initializes an integer pointer pint. The pointer is
dereferenced using the input index i. The value of i could be outside the pointer range,
causing an out-of-range error.

Correction — Check Index Before Dereference

One possible correction is to validate the value of the index. If the index is inside the valid
range, continue with the pointer dereferencing.

#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (i>0 && i<SIZE10) {
 c = pint[i];
 }
 free(pint);
 }
 return c;
}

Check Information
Group: 05. Characters and Strings (STR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

8 CERT C++ Rules

8-232

External Websites
STR53-CPP

Introduced in R2019a

 CERT C++: STR53-CPP

8-233

https://wiki.sei.cmu.edu/confluence/x/h3s-BQ

CERT C++: MEM30-C
Do not access freed memory

Description

Rule Definition
Do not access freed memory.

Examples

Use of previously freed pointer
Description

Use of previously freed pointer occurs when you access a block of memory after
freeing the block using the free function.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points
to a memory location on the heap. When you use the free function on this pointer, the
associated block of memory is freed for reallocation. Trying to access this block of
memory can result in unpredictable behavior or even a segmentation fault.

Fix

The fix depends on the root cause of the defect. See if you intended to free the memory
later or allocate another memory block to the pointer before access.

As a good practice, after you free a memory block, assign the corresponding pointer to
NULL. Before dereferencing pointers, check them for NULL values and handle the error.
In this way, you are protected against accessing a freed block.

8 CERT C++ Rules

8-234

Example - Use of Previously Freed Pointer Error

#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;
 free(pi);

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore,
dereferencingpi after the free statement is not valid.

Correction — Free Pointer After Use

One possible correction is to free the pointer pi only after the last instance where it is
accessed.

#include <stdlib.h>

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

 CERT C++: MEM30-C

8-235

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM30-C

Introduced in R2019a

8 CERT C++ Rules

8-236

https://wiki.sei.cmu.edu/confluence/x/GdYxBQ

CERT C++: MEM31-C
Free dynamically allocated memory when no longer needed

Description

Rule Definition
Free dynamically allocated memory when no longer needed.

Examples

Memory leak
Description

Memory leak occurs when you do not free a block of memory allocated through malloc,
calloc, realloc, or new. If the memory is allocated in a function, the defect does not
occur if:

• Within the function, you free the memory using free or delete.
• The function returns the pointer assigned by malloc, calloc, realloc, or new.
• The function stores the pointer in a global variable or in a parameter.

Risk

Dynamic memory allocation functions such as malloc allocate memory on the heap. If
you do not release the memory after use, you reduce the amount of memory available for
another allocation. On embedded systems with limited memory, you might end up
exhausting available heap memory even during program execution.

Fix

Determine the scope where the dynamically allocated memory is accessed. Free the
memory block at the end of this scope.

 CERT C++: MEM31-C

8-237

To free a block of memory, use the free function on the pointer that was used during
memory allocation. For instance:

ptr = (int*)malloc(sizeof(int));
...
free(ptr);

It is a good practice to allocate and free memory in the same module at the same level of
abstraction. For instance, in this example, func allocates and frees memory at the same
level but func2 does not.

void func() {
 ptr = (int*)malloc(sizeof(int));
 {
 ...
 }
 free(ptr);
}

void func2() {
 {
 ptr = (int*)malloc(sizeof(int));
 ...
 }
 free(ptr);
}

See CERT-C Rule MEM00-C.

Example - Dynamic Memory Not Released Before End of Function
#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }

 *pi = 42;

8 CERT C++ Rules

8-238

https://wiki.sei.cmu.edu/confluence/x/FtYxBQ

 /* Defect: pi is not freed */
}

In this example, pi is dynamically allocated by malloc. The function assign_memory
does not free the memory, nor does it return pi.

Correction — Free Memory

One possible correction is to free the memory referenced by pi using the free function.
The free function must be called before the function assign_memory terminates

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }
 *pi = 42;

 /* Fix: Free the pointer pi*/
 free(pi);
}

Correction — Return Pointer from Dynamic Allocation

Another possible correction is to return the pointer pi. Returning pi allows the function
calling assign_memory to free the memory block using pi.

#include<stdlib.h>
#include<stdio.h>

int* assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return(pi);
 }

 CERT C++: MEM31-C

8-239

 *pi = 42;

 /* Fix: Return the pointer pi*/
 return(pi);
}

Example - Memory Leak with New/Delete

#define NULL '\0'

void initialize_arr1(void)
{
 int *p_scalar = new int(5);
}

void initialize_arr2(void)
{
 int *p_array = new int[5];
}

In this example, the functions create two variables, p_scalar and p_array, using the
new keyword. However, the functions end without cleaning up the memory for these
pointers. Because the functions used new to create these variables, you must clean up
their memory by calling delete at the end of each function.

Correction — Add Delete

To correct this error, add a delete statement for every new initialization. If you used
brackets [] to instantiate a variable, you must call delete with brackets as well.

#define NULL '\0'

void initialize_arrs(void)
{
 int *p_scalar = new int(5);
 int *p_array = new int[5];

 delete p_scalar;
 p_scalar = NULL;

 delete[] p_array;
 p_scalar = NULL;
}

8 CERT C++ Rules

8-240

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM31-C

Introduced in R2019a

 CERT C++: MEM31-C

8-241

https://wiki.sei.cmu.edu/confluence/x/GNYxBQ

CERT C++: MEM34-C
Only free memory allocated dynamically

Description

Rule Definition
Only free memory allocated dynamically.

Examples

Invalid free of pointer
Description

Invalid free of pointer occurs when a block of memory released using the free function
was not previously allocated using malloc, calloc, or realloc.

Risk

The free function releases a block of memory allocated on the heap. If you try to access
a location on the heap that you did not allocate previously, a segmentation fault can occur.

The issue can highlight coding errors. For instance, you perhaps wanted to use the free
function or a previous malloc function on a different pointer.

Fix

In most cases, you can fix the issue by removing the free statement. If the pointer is not
allocated memory from the heap with malloc or calloc, you do not need to free the
pointer. You can simply reuse the pointer as required.

If the issue highlights a coding error such as use of free or malloc on the wrong
pointer, correct the error.

8 CERT C++ Rules

8-242

If the issue occurs because you use the free function to free memory allocated with the
new operator, replace the free function with the delete operator.

Example - Invalid Free of Pointer Error

#include <stdlib.h>

void Assign_Ones(void)
{
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;

 free(p);
 /* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points to a memory
location that was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction
is to remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)
 {
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;
 /* Fix: Remove deallocation of p */
 }

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time, one possible
correction is to dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)
{

 CERT C++: MEM34-C

8-243

 int *p;
 /* Fix: Allocate memory dynamically to p */
 p=(int*) calloc(10,sizeof(int));
 for(int i=0;i<10;i++)
 *(p+i)=1;
 free(p);
}

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM34-C

Introduced in R2019a

8 CERT C++ Rules

8-244

https://wiki.sei.cmu.edu/confluence/x/HNYxBQ

CERT C++: MEM35-C
Allocate sufficient memory for an object

Description

Rule Definition
Allocate sufficient memory for an object.

Examples

Pointer access out of bounds
Description

Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer.
You cannot access memory beyond that block using the pointer.

Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an
unpredictable value or try to access a location that is not allowed and encounter a
segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer
inside a loop and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the

pointer increment.

 CERT C++: MEM35-C

8-245

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int).
In the for-loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points
outside the memory block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {

8 CERT C++ Rules

8-246

 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it,
it is not dereferenced more.

Memory allocation with tainted size
Description

Memory allocation with tainted size checks memory allocation functions, such as
calloc or malloc, for size arguments from unsecured sources.

Risk

Uncontrolled memory allocation can cause your program to request too much system
memory. This consequence can lead to a crash due to an out-of-memory condition, or
assigning too many resources.

Fix

Before allocating memory, check the value of your arguments to check that they do not
exceed the bounds.

Example - Allocate Memory Using Input Argument

#include "stdlib.h"

int* bug_taintedmemoryallocsize(size_t size) {
 int* p = (int*)malloc(size);
 return p;
}

In this example, malloc allocates size amount of memory for the pointer p. size is an
outside variable, so could be any size value. If the size is larger than the amount of
memory you have available, your program could crash.

 CERT C++: MEM35-C

8-247

Correction — Check Size of Memory to be Allocated

One possible correction is to check the size of the memory that you want to allocate
before performing the malloc operation. This example checks to see if the size is positive
and less than the maximum size.

#include "stdlib.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int* corrected_taintedmemoryallocsize(int size) {
 int* p = NULL;
 if (size>0 && size<SIZE128) { /* Fix: Check entry range before use */
 p = (int*)malloc((unsigned int)size);
 }
 return p;
}

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM35-C

Introduced in R2019a

8 CERT C++ Rules

8-248

https://wiki.sei.cmu.edu/confluence/x/ANYxBQ

CERT C++: MEM36-C
Do not modify the alignment of objects by calling realloc()

Description

Rule Definition
Do not modify the alignment of objects by calling realloc().

Examples

Alignment changed after memory reallocation
Description

Alignment changed after memory reallocation occurs when you use realloc() to
modify the size of objects with strict memory alignment requirements.

Risk

The pointer returned by realloc() can be suitably assigned to objects with less strict
alignment requirements. A misaligned memory allocation can lead to buffer underflow or
overflow, an illegally dereferenced pointer, or access to arbitrary memory locations. In
processors that support misaligned memory, the allocation impacts the performance of
the system.

Fix

To reallocate memory:

1 Resize the memory block.

• In Windows, use _aligned_realloc() with the alignment argument used in
_aligned_malloc() to allocate the original memory block.

 CERT C++: MEM36-C

8-249

• In UNIX/Linux, use the same function with the same alignment argument used to
allocate the original memory block.

2 Copy the original content to the new memory block.
3 Free the original memory block.

Note This fix has implementation-defined behavior. The implementation might not
support the requested memory alignment and can have additional constraints for the size
of the new memory.

Example - Memory Reallocated Without Preserving the Original Alignment

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;
 int *ptr1;

 /* Allocate memory with 4096 bytes alignment */

 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */
 }

 /*Reallocate memory without using the original alignment.
 ptr1 may not be 4096 bytes aligned. */

 ptr1 = (int *)realloc(ptr, sizeof(int) * resize);

 if (ptr1 == NULL)
 {
 /* Handle error */
 }

 /* Processing using ptr1 */

8 CERT C++ Rules

8-250

 /* Free before exit */
 free(ptr1);
}

In this example, the allocated memory is 4096-bytes aligned. realloc() then resizes the
allocated memory. The new pointer ptr1 might not be 4096-bytes aligned.

Correction — Specify the Alignment for the Reallocated Memory

When you reallocate the memory, use posix_memalign() and pass the alignment
argument that you used to allocate the original memory.

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;

 /* Allocate memory with 4096 bytes alignment */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */
 }

 /* Reallocate memory using the original alignment. */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int) * resize) != 0)
 {
 /* Handle error */
 free(ptr);
 ptr = NULL;
 }

 /* Processing using ptr */

 /* Free before exit */

 CERT C++: MEM36-C

8-251

 free(ptr);
}

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM36-C

Introduced in R2019a

8 CERT C++ Rules

8-252

https://wiki.sei.cmu.edu/confluence/x/f9YxBQ

CERT C++: MEM50-CPP
Do not access freed memory

Description

Rule Definition
Do not access freed memory.

Examples

Pointer access out of bounds
Description

Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer.
You cannot access memory beyond that block using the pointer.

Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an
unpredictable value or try to access a location that is not allowed and encounter a
segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer
inside a loop and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the

pointer increment.

 CERT C++: MEM50-CPP

8-253

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int).
In the for-loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points
outside the memory block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {

8 CERT C++ Rules

8-254

 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it,
it is not dereferenced more.

Deallocation of previously deallocated pointer
Description

Deallocation of previously deallocated pointer occurs when a block of memory is
freed more than once using the free function without an intermediate allocation.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points
to a memory location on the heap. When you use the free function on this pointer, the
associated block of memory is freed for reallocation. Trying to free this block of memory
can result in a segmentation fault.

Fix

The fix depends on the root cause of the defect. See if you intended to allocate a memory
block to the pointer between the first deallocation and the second. Otherwise, remove the
second free statement.

As a good practice, after you free a memory block, assign the corresponding pointer to
NULL. Before freeing pointers, check them for NULL values and handle the error. In this
way, you are protected against freeing an already freed block.

Example - Deallocation of Previously Deallocated Pointer Error
#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));

 CERT C++: MEM50-CPP

8-255

 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 free (pi);
 /* Defect: pi has already been freed */
}

The first free statement releases the block of memory that pi refers to. The second free
statement on pi releases a block of memory that has been freed already.

Correction — Remove Duplicate Deallocation

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 /* Fix: remove second deallocation */
 }

Use of previously freed pointer
Description

Use of previously freed pointer occurs when you access a block of memory after
freeing the block using the free function.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points
to a memory location on the heap. When you use the free function on this pointer, the
associated block of memory is freed for reallocation. Trying to access this block of
memory can result in unpredictable behavior or even a segmentation fault.

8 CERT C++ Rules

8-256

Fix

The fix depends on the root cause of the defect. See if you intended to free the memory
later or allocate another memory block to the pointer before access.

As a good practice, after you free a memory block, assign the corresponding pointer to
NULL. Before dereferencing pointers, check them for NULL values and handle the error.
In this way, you are protected against accessing a freed block.

Example - Use of Previously Freed Pointer Error

#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;
 free(pi);

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore,
dereferencingpi after the free statement is not valid.

Correction — Free Pointer After Use

One possible correction is to free the pointer pi only after the last instance where it is
accessed.

#include <stdlib.h>

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 CERT C++: MEM50-CPP

8-257

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM50-CPP

Introduced in R2019a

8 CERT C++ Rules

8-258

https://wiki.sei.cmu.edu/confluence/x/onw-BQ

CERT C++: MEM51-CPP
Properly deallocate dynamically allocated resources

Description

Rule Definition
Properly deallocate dynamically allocated resources.

Examples

Invalid deletion of pointer
Description

Invalid deletion of pointer occurs when:

• You release a block of memory with the delete operator but the memory was
previously not allocated with the new operator.

• You release a block of memory with the delete operator using the single-object
notation but the memory was previously allocated as an array with the new operator.

This defect applies only to C++ source files.

Risk

The risk depends on the cause of the issue:

• The delete operator releases a block of memory allocated on the heap. If you try to
access a location on the heap that you did not allocate previously, a segmentation fault
can occur.

• If you use the single-object notation for delete on a pointer that is previously
allocated with the array notation for new, the behavior is undefined.

 CERT C++: MEM51-CPP

8-259

The issue can also highlight other coding errors. For instance, you perhaps wanted to use
the delete operator or a previous new operator on a different pointer.

Fix

The fix depends on the cause of the issue:

• In most cases, you can fix the issue by removing the delete statement. If the pointer
is not allocated memory from the heap with the new operator, you do not need to
release the pointer with delete. You can simply reuse the pointer as required or let
the object be destroyed at the end of its scope.

• In case of mismatched notation for new and delete, correct the mismatch. For
instance, to allocate and deallocate a single object, use this notation:

classType* ptr = new classType;
delete ptr;

To allocate and deallocate an array objects, use this notation:

classType* p2 = new classType[10];
delete[] p2;

If the issue highlights a coding error such as use of delete or new on the wrong pointer,
correct the error.

Example - Deleting Static Memory
void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)
 *(ptr+i)=1;

 delete[] ptr;
}

The pointer ptr is released using the delete operator. However, ptr points to a memory
location that was not dynamically allocated.

Correction: Remove Pointer Deallocation

If the number of elements of the array ptr is known at compile time, one possible
correction is to remove the deallocation of the pointer ptr.

8 CERT C++ Rules

8-260

void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)
 *(ptr+i)=1;
}

Correction — Add Pointer Allocation

If the number of array elements is not known at compile time, one possible correction is
to dynamically allocate memory to the array ptr using the new operator.

void assign_ones(int num)
{
 int *ptr = new int[num];

 for(int i=0; i < num; i++)
 *(ptr+i) = 1;

 delete[] ptr;
 }

Example - Mismatched new and delete
int main (void)
{
 int *p_scale = new int[5];

 //more code using scal

 delete p_scale;
}

In this example, p_scale is initialized to an array of size 5 using new int[5]. However,
p_scale is deleted with delete instead of delete[]. The new-delete pair does not
match. Do not use delete without the brackets when deleting arrays.

Correction — Match delete to new

One possible correction is to add brackets so the delete matches the new []
declaration.

int main (void)
{

 CERT C++: MEM51-CPP

8-261

 int *p_scale = new int[5];

 //more code using p_scale

 delete[] p_scale;
}

Correction — Match new to delete

Another possible correction is to change the declaration of p_scale. If you meant to
initialize p_scale as 5 itself instead of an array of size 5, you must use different syntax.
For this correction, change the square brackets in the initialization to parentheses. Leave
the delete statement as it is.

int main (void)
{
 int *p_scale = new int(5);

 //more code using p_scale

 delete p_scale;
}

Invalid free of pointer
Description

Invalid free of pointer occurs when a block of memory released using the free function
was not previously allocated using malloc, calloc, or realloc.

Risk

The free function releases a block of memory allocated on the heap. If you try to access
a location on the heap that you did not allocate previously, a segmentation fault can occur.

The issue can highlight coding errors. For instance, you perhaps wanted to use the free
function or a previous malloc function on a different pointer.

Fix

In most cases, you can fix the issue by removing the free statement. If the pointer is not
allocated memory from the heap with malloc or calloc, you do not need to free the
pointer. You can simply reuse the pointer as required.

8 CERT C++ Rules

8-262

If the issue highlights a coding error such as use of free or malloc on the wrong
pointer, correct the error.

If the issue occurs because you use the free function to free memory allocated with the
new operator, replace the free function with the delete operator.

Example - Invalid Free of Pointer Error
#include <stdlib.h>

void Assign_Ones(void)
{
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;

 free(p);
 /* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points to a memory
location that was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction
is to remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)
 {
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;
 /* Fix: Remove deallocation of p */
 }

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time, one possible
correction is to dynamically allocate memory to the array p.

#include <stdlib.h>

 CERT C++: MEM51-CPP

8-263

void Assign_Ones(int num)
{
 int *p;
 /* Fix: Allocate memory dynamically to p */
 p=(int*) calloc(10,sizeof(int));
 for(int i=0;i<10;i++)
 *(p+i)=1;
 free(p);
}

Deallocation of previously deallocated pointer
Description

Deallocation of previously deallocated pointer occurs when a block of memory is
freed more than once using the free function without an intermediate allocation.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points
to a memory location on the heap. When you use the free function on this pointer, the
associated block of memory is freed for reallocation. Trying to free this block of memory
can result in a segmentation fault.

Fix

The fix depends on the root cause of the defect. See if you intended to allocate a memory
block to the pointer between the first deallocation and the second. Otherwise, remove the
second free statement.

As a good practice, after you free a memory block, assign the corresponding pointer to
NULL. Before freeing pointers, check them for NULL values and handle the error. In this
way, you are protected against freeing an already freed block.

Example - Deallocation of Previously Deallocated Pointer Error

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

8 CERT C++ Rules

8-264

 *pi = 2;
 free(pi);
 free (pi);
 /* Defect: pi has already been freed */
}

The first free statement releases the block of memory that pi refers to. The second free
statement on pi releases a block of memory that has been freed already.

Correction — Remove Duplicate Deallocation

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 /* Fix: remove second deallocation */
 }

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM51-CPP

 CERT C++: MEM51-CPP

8-265

https://wiki.sei.cmu.edu/confluence/x/Gns-BQ

Introduced in R2019a

8 CERT C++ Rules

8-266

CERT C++: MEM52-CPP
Detect and handle memory allocation errors

Description
Rule Definition
Detect and handle memory allocation errors.

Examples
Unprotected dynamic memory allocation
Description

Unprotected dynamic memory allocation occurs when you do not check after dynamic
memory allocation whether the memory allocation succeeded.

Risk

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a
value NULL if the requested memory is not available. If the code following the allocation
accesses the memory block without checking for this NULL value, this access is not
protected from failures.

Fix

Check the return value of malloc, calloc, or realloc for NULL before accessing the
allocated memory location.

int *ptr = malloc(size * sizeof(int));

if(ptr) /* Check for NULL */
{
 /* Memory access through ptr */
}

 CERT C++: MEM52-CPP

8-267

Example - Unprotected dynamic memory allocation error

#include <stdlib.h>

void Assign_Value(void)
{
 int* p = (int*)calloc(5, sizeof(int));

 *p = 2;
 /* Defect: p is not checked for NULL value */

 free(p);
}

If the memory allocation fails, the function calloc returns NULL to p. Before accessing
the memory through p, the code does not check whether p is NULL

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

void Assign_Value(void)
 {
 int* p = (int*)calloc(5, sizeof(int));

 /* Fix: Check if p is NULL */
 if(p!=NULL) *p = 2;

 free(p);
 }

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

8 CERT C++ Rules

8-268

Topics
“Check for Coding Standard Violations”

External Websites
MEM52-CPP

Introduced in R2019a

 CERT C++: MEM52-CPP

8-269

https://wiki.sei.cmu.edu/confluence/x/u3w-BQ

CERT C++: MEM57-CPP
Avoid using default operator new for over-aligned types

Description

Rule Definition
Avoid using default operator new for over-aligned types.

Examples

Operator new not overloaded for possibly overaligned class
Description

Operator new not overloaded for possibly overaligned class occurs when you do not
adequately overload operator new/new[] and you use this operator to create an object
with an alignment requirement specified with alignas. The checker raises a defect for
these versions of throwing and non-throwing operator new/new[].

• void* operator new(std::size_t size)
• void* operator new(std::size_t size, const std::nothrow_t&)
• void* operator new[](std::size_t size)
• void* operator new[](std::size_t size, const std::nothrow_t&)

The use of alignas indicates that you do not expect the default operator new/new[] to
satisfy the alignment requirement or the object, and that the object is possibly over
aligned. A type is over aligned if you use alignas to make the alignment requirement of
the type larger than std::max_align_t. For instance, foo is over aligned in this code
snippet because its alignment requirement is 32 bytes, but std::max_align_t has an
alignment of 16 bytes in most implementations.

8 CERT C++ Rules

8-270

struct alignas(32) foo {
 char elems[32];
}

Operator new not overloaded for possibly overaligned class raises no defect if you
do not overload the operator new/new[] and you use version C++17 or later of the
Standard. The default operator new/new[] in C++17 or later supports over alignment by
passing the alignment requirement as an argument of type std::align_val_t, for
instance void* operator new(std::size_t size, std::align_val_t
alignment).

Risk

The default operator new/new[] allocates storage with the alignment requirement of
std::align_val_t at most. If you do not overload the operator when you create an
object with over aligned type, the resulting object may be misaligned. Accessing this
object might cause illegal access errors or abnormal program terminations.

Fix

If you use version C++14 or earlier of the Standard, pass the alignment requirement of
over aligned types to the operator new/new[] by overloading the operator.

Example - Allocated Memory Is Smaller Than Alignment Requirement of Type foo
#include <new>
#include <cstdlib>
#include <iostream>

struct alignas(64) foo {
 char elems[32];
};

foo* func()
{
 foo* bar = 0x0;
 try {
 bar = new foo ;
 } catch (...) { return nullptr; }
 delete bar;
}

In this example, structure foo is declared with an alignment requirement of 32 bytes.
When you use the default operator new to create object bar, the allocated memory for
bar is smaller than the alignment requirement of type foo and bar might be misaligned.

 CERT C++: MEM57-CPP

8-271

Correction — Define Overloaded Operator new to Handle Alignment Requirement
of Type foo

One possible correction, if you use C11 stdlib.h or POSIX-C malloc.h, is to define an
overloaded operator new that uses aligned_alloc() or posix_memalign() or to
obtain storage with the correct alignment.
#include <new>
#include <cstdlib>
#include <iostream>

struct alignas(64) foo {
 char elems[32];
 static void* operator new (size_t nbytes)
 {
 if (void* p =
 ::aligned_alloc(alignof(foo), nbytes)) {
 return p;
 }
 throw std::bad_alloc();
 }
 static void operator delete(void *p) {
 free(p);
 }
};

foo* func()
{
 foo* bar = 0x0;
 try {
 bar = new foo ;
 } catch (...) { return nullptr; }
 delete bar;
}

Check Information
Group: Rule 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM57-CPP

8 CERT C++ Rules

8-272

https://wiki.sei.cmu.edu/confluence/x/hns-BQ

Introduced in R2019b

 CERT C++: MEM57-CPP

8-273

CERT C++: FIO30-C
Exclude user input from format strings

Description
Rule Definition
Exclude user input from format strings.

Examples
Tainted string format
Description

Tainted string format detects string formatting with printf-style functions that
contain elements from unsecure sources.

Risk

If you use externally controlled elements to format a string, you can cause buffer overflow
or data-representation problems. An attacker can use these string formatting elements to
view the contents of a stack using %x or write to a stack using %n.

Fix

Pass a static string to format string functions. This fix ensures that an external actor
cannot control the string.

Another possible fix is to allow only the expected number of arguments. If possible, use
functions that do not support the vulnerable %n operator in format strings.

Example - Get Elements from User Input
#include "stdio.h"

8 CERT C++ Rules

8-274

void taintedstringformat(char* userstr) {
 printf(userstr);
}

This example prints the input argument userstr. The string is unknown. If it contains
elements such as %, printf can interpret userstr as a string format instead of a string,
causing your program to crash.

Correction — Print as String

One possible correction is to print userstr explicitly as a string so that there is no
ambiguity.

#include "stdio.h"

void taintedstringformat(char* userstr) {
 printf("%.20s", userstr);
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO30-C

Introduced in R2019a

 CERT C++: FIO30-C

8-275

https://wiki.sei.cmu.edu/confluence/x/RdYxBQ

CERT C++: FIO32-C
Do not perform operations on devices that are only appropriate for files

Description

Rule Definition
Do not perform operations on devices that are only appropriate for files.

Examples

Inappropriate I/O operation on device files
Description

Inappropriate I/O operation on device files occurs when you do not check whether a
file name parameter refers to a device file before you pass it to these functions:

• fopen()
• fopen_s()
• freopen()
• remove()
• rename()
• CreateFile()
• CreateFileA()
• CreateFileW()
• _wfopen()
• _wfopen_s()

Device files are files in a file system that provide an interface to device drivers. You can
use these files to interact with devices.

8 CERT C++ Rules

8-276

Inappropriate I/O operation on device files does not raise a defect when:

• You use stat or lstat-family functions to check the file name parameter before
calling the previously listed functions.

• You use a string comparison function to compare the file name against a list of device
file names.

Risk

Operations appropriate only for regular files but performed on device files can result in
denial-of-service attacks, other security vulnerabilities, or system failures.

Fix

Before you perform an I/O operation on a file:

• Use stat(), lstat(), or an equivalent function to check whether the file name
parameter refers to a regular file.

• Use a string comparison function to compare the file name against a list of device file
names.

Example - Using fopen() Without Checking file_name

#include <stdio.h>
#include <string.h>

#define SIZE1024 1024

FILE* func()
{

 FILE* f;
 const char file_name[SIZE1024] = "./tmp/file";

 if ((f = fopen(file_name, "w")) == NULL) {
 /*handle error */
 };
 /*operate on file */
}

In this example, func() operates on the file file_name without checking whether it is a
regular file. If file_name is a device file, attempts to access it can result in a system
failure.

 CERT C++: FIO32-C

8-277

Correction — Check File with lstat() Before Calling fopen()

One possible correction is to use lstat() and the S_ISREG macro to check whether the
file is a regular file. This solution contains a TOCTOU race condition that can allow an
attacker to modify the file after you check it but before the call to fopen(). To prevent this
vulnerability, ensure that file_name refers to a file in a secure folder.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>

#define SIZE1024 1024

FILE* func()
{

 FILE* f;
 const char file_name[SIZE1024] = "./tmp/file";
 struct stat orig_st;
 if ((lstat(file_name, &orig_st) != 0) ||
 (!S_ISREG(orig_st.st_mode))) {
 exit(0);
 }
 if ((f = fopen(file_name, "w")) == NULL) {
 /*handle error */
 };
 /*operate on file */
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

8 CERT C++ Rules

8-278

External Websites
FIO32-C

Introduced in R2019a

 CERT C++: FIO32-C

8-279

https://wiki.sei.cmu.edu/confluence/x/19YxBQ

CERT C++: FIO34-C
Distinguish between characters read from a file and EOF or WEOF

Description
Rule Definition
Distinguish between characters read from a file and EOF or WEOF.

Examples
Character value absorbed into EOF
Description

Character value absorbed into EOF occurs when you perform a data type conversion
that makes a valid character value indistinguishable from EOF (End-of-File). Bug Finder
flags the defect in one of the following situations:

• End-of-File: You perform a data type conversion such as from int to char that
converts a non-EOF character value into EOF.

char ch = (char)getchar()

You then compare the result with EOF.

if((int)ch == EOF)

The conversion can be explicit or implicit.
• Wide End-of-File: You perform a data type conversion that can convert a non-WEOF

wide character value into WEOF, and then compare the result with WEOF.

Risk

The data type char cannot hold the value EOF that indicates the end of a file. Functions
such as getchar have return type int to accommodate EOF. If you convert from int to

8 CERT C++ Rules

8-280

char, the values UCHAR_MAX (a valid character value) and EOF get converted to the same
value -1 and become indistinguishable from each other. When you compare the result of
this conversion with EOF, the comparison can lead to false detection of EOF. This rationale
also applies to wide character values and WEOF.

Fix

Perform the comparison with EOF or WEOF before conversion.

Example - Return Value of getchar Converted to char

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 char ch;
 ch = getchar();
 if (EOF == (int)ch) {
 fatal_error();
 }
 return ch;
}

In this example, the return value of getchar is implicitly converted to char. If getchar
returns UCHAR_MAX, it is converted to -1, which is indistinguishable from EOF. When you
compare with EOF later, it can lead to a false positive.

Correction — Perform Comparison with EOF Before Conversion

One possible correction is to first perform the comparison with EOF, and then convert
from int to char.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 int i;
 i = getchar();
 if (EOF == i) {
 fatal_error();

 CERT C++: FIO34-C

8-281

 }
 else {
 return (char)i;
 }
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO34-C

Introduced in R2019a

8 CERT C++ Rules

8-282

https://wiki.sei.cmu.edu/confluence/x/TNUxBQ

CERT C++: FIO37-C
Do not assume that fgets() or fgetws() returns a nonempty string when successful

Description

Rule Definition
Do not assume that fgets() or fgetws() returns a nonempty string when successful.

Examples

Use of indeterminate string
Description

Use of indeterminate string occurs when you do not check the validity of the buffer
returned from fgets-family functions. The checker raises a defect when such a buffer is
used as:

• An argument in standard functions that print or manipulate strings or wide strings.
• A return value.
• An argument in external functions with parameter type const char * or const

wchar_t *.

Risk

If an fgets-family function fails, the content of its output buffer is indeterminate. Use of
such a buffer has undefined behavior and can result in a program that stops working or
other security vulnerabilities.

Fix

Reset the output buffer of an fgets-family function to a known string value when the
function fails.

 CERT C++: FIO37-C

8-283

Example - Output of fgets() Passed to External Function
#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func(void) {
 char buf[SIZE20];

 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* 'buf' may contain an indeterminate string. */
 ;
 }
 /* 'buf passed to external function */
 display_text(buf);
}

In this example, the output buf is passed to the external function display_text(), but
its value is not reset if fgets() fails.

Correction — Reset fgets() Output on Failure

If fgets() fails, reset buf to a known value before you pass it to an external function.

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func1(void) {
 char buf[SIZE20];
 /* Check fgets() error */

8 CERT C++ Rules

8-284

 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* value of 'buf' reset after fgets() failure. */
 buf[0] = '\0';
 }
 /* 'buf' passed to external function */
 display_text(buf);
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO37-C

Introduced in R2019a

 CERT C++: FIO37-C

8-285

https://wiki.sei.cmu.edu/confluence/x/JtcxBQ

CERT C++: FIO38-C
Do not copy a FILE object

Description

Rule Definition
Do not copy a FILE object.

Examples

Misuse of a FILE object
Description

Misuse of a FILE object occurs when:

• You dereference a pointer to a FILE object, including indirect dereference by using
memcmp().

• You modify an entire FILE object or one of its components through its pointer.
• You take the address of FILE object that was not returned from a call to an fopen-

family function. No defect is raised if a macro defines the pointer as the address of a
built-in FILE object, such as #define ptr (&__stdout).

Risk

In some implementations, the address of the pointer to a FILE object used to control a
stream is significant. A pointer to a copy of a FILE object is interpreted differently than a
pointer to the original object, and can potentially result in operations on the wrong
stream. Therefore, the use of a copy of a FILE object can cause the software to stop
responding, which an attacker might exploit in denial-of-service attacks.

8 CERT C++ Rules

8-286

Fix

Do not make a copy of a FILE object. Do not use the address of a FILE object that was not
returned from a successful call to an fopen-family function.

Example - Copy of FILE Object Used in fputs()

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>

void fatal_error(void);

int func(void)
{
 /*'stdout' dereferenced and contents
 copied to 'my_stdout'. */
 FILE my_stdout = *stdout;

 /* Address of 'my_stdout' may not point to correct stream. */
 if (fputs("Hello, World!\n", &my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;
}

In this example, FILE object stdout is dereferenced and its contents are copied to
my_stdout. The contents of stdout might not be significant. fputs() is then called
with the address of my_stdout as an argument. Because no call to fopen() or a similar
function was made, the address of my_stdout might not point to the correct stream.

Correction — Copy the FILE Object Pointer

Declare my_stdout to point to the same address as stdout to ensure that you write to
the correct stream when you call fputs().

#include <stdio.h>
#include <unistd.h>

 CERT C++: FIO38-C

8-287

#include <stdlib.h>
#include <string.h>
#include <strings.h>

void fatal_error(void);

int func(void)
{
 /* 'my_stdout' and 'stdout' point to the same object. */
 FILE *my_stdout = stdout;
 if (fputs("Hello, World!\n", my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO38-C

Introduced in R2019a

8 CERT C++ Rules

8-288

https://wiki.sei.cmu.edu/confluence/x/OtcxBQ

CERT C++: FIO39-C
Do not alternately input and output from a stream without an intervening flush or
positioning call

Description
Rule Definition
Do not alternately input and output from a stream without an intervening flush or
positioning call.

Examples
Alternating input and output from a stream without flush or
positioning call
Description

Alternating input and output from a stream without flush or positioning call
occurs when:

• You do not perform a flush or function positioning call between an output operation
and a following input operation on a file stream in update mode.

• You do not perform a function positioning call between an input operation and a
following output operation on a file stream in update mode.

Risk

Alternating input and output operations on a stream without an intervening flush or
positioning call is undefined behavior.

Fix

Call fflush() or a file positioning function such as fseek() or fsetpos() between
output and input operations on an update stream.

 CERT C++: FIO39-C

8-289

Call a file positioning function between input and output operations on an update stream.

Example - Read After Write Without Intervening Flush

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Read operation after write without
 intervening flush. */
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

8 CERT C++ Rules

8-290

In this example, the file demo.txt is opened for reading and appending. After the call to
fwrite(), a call to fread() without an intervening flush operation is undefined
behavior.

Correction — Call fflush() Before the Read Operation

After writing data to the file, before calling fread(), perform a flush call.

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Buffer flush after write and before read */
 if (fflush(file) != 0)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;

 CERT C++: FIO39-C

8-291

 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO39-C

Introduced in R2019a

8 CERT C++ Rules

8-292

https://wiki.sei.cmu.edu/confluence/x/L9YxBQ

CERT C++: FIO40-C
Reset strings on fgets() or fgetws() failure

Description

Rule Definition
Reset strings on fgets() or fgetws() failure.

Examples

Use of indeterminate string
Description

Use of indeterminate string occurs when you do not check the validity of the buffer
returned from fgets-family functions. The checker raises a defect when such a buffer is
used as:

• An argument in standard functions that print or manipulate strings or wide strings.
• A return value.
• An argument in external functions with parameter type const char * or const

wchar_t *.

Risk

If an fgets-family function fails, the content of its output buffer is indeterminate. Use of
such a buffer has undefined behavior and can result in a program that stops working or
other security vulnerabilities.

Fix

Reset the output buffer of an fgets-family function to a known string value when the
function fails.

 CERT C++: FIO40-C

8-293

Example - Output of fgets() Passed to External Function
#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func(void) {
 char buf[SIZE20];

 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* 'buf' may contain an indeterminate string. */
 ;
 }
 /* 'buf passed to external function */
 display_text(buf);
}

In this example, the output buf is passed to the external function display_text(), but
its value is not reset if fgets() fails.

Correction — Reset fgets() Output on Failure

If fgets() fails, reset buf to a known value before you pass it to an external function.

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func1(void) {
 char buf[SIZE20];
 /* Check fgets() error */

8 CERT C++ Rules

8-294

 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* value of 'buf' reset after fgets() failure. */
 buf[0] = '\0';
 }
 /* 'buf' passed to external function */
 display_text(buf);
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO40-C

Introduced in R2019a

 CERT C++: FIO40-C

8-295

https://wiki.sei.cmu.edu/confluence/x/JdYxBQ

CERT C++: FIO41-C
Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side effects

Description

Rule Definition
Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side
effects.

Examples

Stream argument with possibly unintended side effects
Description

Stream argument with possibly unintended side effects occurs when you call
getc(), putc(), getwc(), or putwc() with a stream argument that has side effects.

Stream argument with possibly unintended side effects considers the following as
stream side effects:

• Any assignment of a variable of a stream, such as FILE *, or any assignment of a
variable of a deeper stream type, such as an array of FILE *.

• Any call to a function that manipulates a stream or a deeper stream type.

The number of defects raised corresponds to the number of side effects detected. When a
stream argument is evaluated multiple times in a function implemented as a macro, a
defect is raised for each evaluation that has a side effect.

A defect is also raised on functions that are not implemented as macros but that can be
implemented as macros on another operating system.

8 CERT C++ Rules

8-296

Risk

If the function is implemented as an unsafe macro, the stream argument can be evaluated
more than once, and the stream side effect happens multiple times. For instance, a stream
argument calling fopen() might open the same file multiple times, which is unspecified
behavior.

Fix

To ensure that the side effect of a stream happens only once, use a separate statement for
the stream argument.

Example - Stream Argument of getc() Has Side Effect fopen()

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

#define fatal_error() abort()

const char* myfile = "my_file.log";

void func(void)
{
 int c;
 FILE* fptr;
 /* getc() has stream argument fptr with
 * 2 side effects: call to fopen(), and assignment
 * of fptr
 */
 c = getc(fptr = fopen(myfile, "r"));
 if (c == EOF) {
 /* Handle error */
 (void)fclose(fptr);
 fatal_error();
 }
 if (fclose(fptr) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

void main(void)
{

 CERT C++: FIO41-C

8-297

 func();

}

In this example, getc() is called with stream argument fptr. The stream argument has
two side effects: the call to fopen() and the assignment of fptr. If getc() is
implemented as an unsafe macro, the side effects happen multiple times.

Correction — Use Separate Statement for fopen()

One possible correction is to use a separate statement for fopen(). The call to fopen()
and the assignment of fptr happen in this statement so there are no side effects when
you pass fptr to getc().

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

#define fatal_error() abort()

const char* myfile = "my_file.log";

void func(void)
{
 int c;
 FILE* fptr;

 /* Separate statement for fopen()
 * before call to getc()
 */
 fptr = fopen(myfile, "r");
 if (fptr == NULL) {
 /* Handle error */
 fatal_error();
 }
 c = getc(fptr);
 if (c == EOF) {
 /* Handle error */
 (void)fclose(fptr);
 fatal_error();
 }
 if (fclose(fptr) == EOF) {
 /* Handle error */

8 CERT C++ Rules

8-298

 fatal_error();
 }
}

void main(void)
{
 func();

}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO41-C

Introduced in R2019a

 CERT C++: FIO41-C

8-299

https://wiki.sei.cmu.edu/confluence/x/PdYxBQ

CERT C++: FIO42-C
Close files when they are no longer needed

Description

Rule Definition
Close files when they are no longer needed.

Examples

Resource leak
Description

Resource leak occurs when you open a file stream by using a FILE pointer but do not
close it before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk

If you do not release file handles explicitly as soon as possible, a failure can occur due to
exhaustion of resources.

Fix

Close a FILE pointer before the end of its scope, or before you assign the pointer to
another stream.

Example - FILE Pointer Not Released Before End of Scope

#include <stdio.h>

8 CERT C++ Rules

8-300

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is
explicitly dissociated from the file stream of data1.txt, it is used to access another file
data2.txt.

Correction — Release FILE Pointer

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");
 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

 CERT C++: FIO42-C

8-301

External Websites
FIO42-C

Introduced in R2019a

8 CERT C++ Rules

8-302

https://wiki.sei.cmu.edu/confluence/x/QtUxBQ

CERT C++: FIO44-C
Only use values for fsetpos() that are returned from fgetpos()

Description

Rule Definition
Only use values for fsetpos() that are returned from fgetpos().

Examples

Invalid file position
Description

Invalid file position occurs when the file position argument of fsetpos() uses a value
that is not obtained from fgetpos().

Risk

The function fgetpos(FILE *stream, fpos_t *pos) gets the current file position of
the stream. When you use any other value as the file position argument of fsetpos(FILE
*stream, const fpos_t *pos), you might access an unintended location in the
stream.

Fix

Use the value returned from a successful call to fgetpos() as the file position argument
of fsetpos().

Example - memset() Sets File Position Argument

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

 CERT C++: FIO44-C

8-303

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */
 }
 /* Store initial position in variable 'offset' */
 (void)memset(&offset, 0, sizeof(offset));

 /* Read data from file */

 /* Return to the initial position. offset was not
 returned from a call to fgetpos() */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

In this example, fsetpos() uses offset as its file position argument. However, the
value of offset is set by memset(). The preceding code might access the wrong location
in the stream.

Correction — Use a File Position Returned From fgetpos()

Call fgetpos(), and if it returns successfully, use the position argument in your call to
fsetpos().

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */

8 CERT C++ Rules

8-304

 }
 /* Store initial position in variable 'offset'
 using fgetpos() */
 if (fgetpos(file, &offset) != 0)
 {
 /* Handle error */
 }

 /* Read data from file */

 /* Back to the initial position */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO44-C

Introduced in R2019a

 CERT C++: FIO44-C

8-305

https://wiki.sei.cmu.edu/confluence/x/x9UxBQ

CERT C++: FIO45-C
Avoid TOCTOU race conditions while accessing files

Description

Rule Definition
Avoid TOCTOU race conditions while accessing files.

Examples

File access between time of check and use (TOCTOU)
Description

File access between time of check and use (TOCTOU) detects race condition issues
between checking the existence of a file or folder, and using a file or folder.

Risk

An attacker can access and manipulate your file between your check for the file and your
use of a file. Symbolic links are particularly risky because an attacker can change where
your symbolic link points.

Fix

Before using a file, do not check its status. Instead, use the file and check the results
afterward.

Example - Check File Before Using

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

8 CERT C++ Rules

8-306

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 if (access(log_path, W_OK)==0) {
 FILE* f = fopen(log_path, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

In this example, before opening and using the file, the function checks if the file exists.
However, an attacker can change the file between the first and second lines of the
function.

Correction — Open Then Check

One possible correction is to open the file, and then check the existence and contents
afterward.

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 int fd = open(log_path, O_WRONLY);
 if (fd!=-1) {
 FILE *f = fdopen(fd, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

Check Information
Group: 07. Input Output (FIO)

 CERT C++: FIO45-C

8-307

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO45-C

Introduced in R2019a

8 CERT C++ Rules

8-308

https://wiki.sei.cmu.edu/confluence/x/RdUxBQ

CERT C++: FIO46-C
Do not access a closed file

Description

Rule Definition
Do not access a closed file.

Examples

Use of previously closed resource
Description

Use of previously closed resource occurs when a function operates on a stream that
you closed earlier in your code.

Risk

The standard states that the value of a FILE* pointer is indeterminate after you close the
stream associated with it. Operations using the FILE* pointer can produce unintended
results.

Fix

One possible fix is to close the stream only at the end of operations. Another fix is to
reopen the stream before using it again.

Example - Use of FILE* Pointer After Closing Stream

#include <stdio.h>

void func(void) {
 FILE *fp;

 CERT C++: FIO46-C

8-309

 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fclose(fp);
 fprintf(fp,"text");
 }
}

In this example, fclose closes the stream associated with fp. When you use fprintf on
fp after fclose, the Use of previously closed resource defect appears.

Correction — Close Stream After All Operations

One possible correction is to reverse the order of the fprintf and fclose operations.

#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fprintf(fp,"text");
 fclose(fp);
 }
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

8 CERT C++ Rules

8-310

External Websites
FIO46-C

Introduced in R2019a

 CERT C++: FIO46-C

8-311

https://wiki.sei.cmu.edu/confluence/x/QdUxBQ

CERT C++: FIO47-C
Use valid format strings

Description

Rule Definition
Use valid format strings.

Examples

Format string specifiers and arguments mismatch
Description

Format string specifiers and arguments mismatch occurs when the format specifiers
in the formatted output functions such as printf do not match their corresponding
arguments. For example, an argument of type unsigned long must have a format
specification of %lu.

Risk

Mismatch between format specifiers and the corresponding arguments result in
undefined behavior.

Fix

Make sure that the format specifiers match the corresponding arguments. For instance, in
this example, the %d specifier does not match the string argument message and the %s
specifier does not match the integer argument err_number.

 const char *message = "License not available";
 int err_number = ;-4
 printf("Error: %d (error type %s)\n", message, err_number);

8 CERT C++ Rules

8-312

Switching the two format specifiers fixes the issue. See the specifications for the printf
function for more information about format specifiers.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Printing a Float

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the
unsigned integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert
fst to an integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 CERT C++: FIO47-C

8-313

https://en.cppreference.com/w/cpp/io/c/fprintf
https://en.cppreference.com/w/cpp/io/c/fprintf

 printf("%d\n", (int)fst);
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO47-C

Introduced in R2019a

8 CERT C++ Rules

8-314

https://wiki.sei.cmu.edu/confluence/x/J9YxBQ

CERT C++: FIO50-CPP
Do not alternately input and output from a file stream without an intervening positioning
call

Description
Rule Definition
Do not alternately input and output from a file stream without an intervening positioning
call.

Examples
Alternating input and output from a stream without flush or
positioning call
Description

Alternating input and output from a stream without flush or positioning call
occurs when:

• You do not perform a flush or function positioning call between an output operation
and a following input operation on a file stream in update mode.

• You do not perform a function positioning call between an input operation and a
following output operation on a file stream in update mode.

Risk

Alternating input and output operations on a stream without an intervening flush or
positioning call is undefined behavior.

Fix

Call fflush() or a file positioning function such as fseek() or fsetpos() between
output and input operations on an update stream.

 CERT C++: FIO50-CPP

8-315

Call a file positioning function between input and output operations on an update stream.

Example - Read After Write Without Intervening Flush

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Read operation after write without
 intervening flush. */
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

8 CERT C++ Rules

8-316

In this example, the file demo.txt is opened for reading and appending. After the call to
fwrite(), a call to fread() without an intervening flush operation is undefined
behavior.

Correction — Call fflush() Before the Read Operation

After writing data to the file, before calling fread(), perform a flush call.

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Buffer flush after write and before read */
 if (fflush(file) != 0)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;

 CERT C++: FIO50-CPP

8-317

 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO50-CPP

Introduced in R2019a

8 CERT C++ Rules

8-318

https://wiki.sei.cmu.edu/confluence/x/2Hw-BQ

CERT C++: FIO51-CPP
Close files when they are no longer needed

Description

Rule Definition
Close files when they are no longer needed.

Examples

Resource leak
Description

Resource leak occurs when you open a file stream by using a FILE pointer but do not
close it before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk

If you do not release file handles explicitly as soon as possible, a failure can occur due to
exhaustion of resources.

Fix

Close a FILE pointer before the end of its scope, or before you assign the pointer to
another stream.

Example - FILE Pointer Not Released Before End of Scope

#include <stdio.h>

 CERT C++: FIO51-CPP

8-319

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is
explicitly dissociated from the file stream of data1.txt, it is used to access another file
data2.txt.

Correction — Release FILE Pointer

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");
 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

8 CERT C++ Rules

8-320

External Websites
FIO51-CPP

Introduced in R2019a

 CERT C++: FIO51-CPP

8-321

https://wiki.sei.cmu.edu/confluence/x/6Hw-BQ

CERT C++: ERR30-C
Set errno to zero before calling a library function known to set errno, and check errno
only after the function returns a value indicating failure

Description
Rule Definition
Set errno to zero before calling a library function known to set errno, and check errno
only after the function returns a value indicating failure.

Examples
Misuse of errno
Description

Misuse of errno occurs when you check errno for error conditions in situations where
checking errno does not guarantee the absence of errors. In some cases, checking
errno can lead to false positives.

For instance, you check errno following calls to the functions:

• fopen: If you follow the ISO Standard, the function might not set errno on errors.
• atof: If you follow the ISO Standard, the function does not set errno.
• signal: The errno value indicates an error only if the function returns the SIG_ERR

error indicator.

Risk

The ISO C Standard does not enforce that these functions set errno on errors. Whether
the functions set errno or not is implementation-dependent.

To detect errors, if you check errno alone, the validity of this check also becomes
implementation-dependent.

8 CERT C++ Rules

8-322

In some cases, the errno value indicates an error only if the function returns a specific
error indicator. If you check errno before checking the function return value, you can see
false positives.

Fix

For information on how to detect errors, see the documentation for that specific function.

Typically, the functions return an out-of-band error indicator to indicate errors. For
instance:

• fopen returns a null pointer if an error occurs.
• signal returns the SIG_ERR error indicator and sets errno to a positive value.

Check errno only after you have checked the function return value.

Example - Incorrectly Checking for errno After fopen Call

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 errno = 0;
 fileptr = fopen(temp_filename, "w+b");
 if (errno != 0) {
 if (fileptr != NULL) {
 (void)fclose(fileptr);
 }
 /* Handle error */
 fatal_error();
 }
 return fileptr;
}

In this example, errno is the first variable that is checked after a call to fopen. You
might expect that fopen changes errno to a nonzero value if an error occurs. If you run
this code with an implementation of fopen that does not set errno on errors, you might

 CERT C++: ERR30-C

8-323

miss an error condition. In this situation, fopen can return a null pointer that escapes
detection.

Correction — Check Return Value of fopen After Call

One possible correction is to only check the return value of fopen for a null pointer.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 fileptr = fopen(temp_filename, "w+b");
 if (fileptr == NULL) {
 fatal_error();
 }
 return fileptr;
}

Errno not reset
Description

Errno not reset occurs when you do not reset errno before calling a function that sets
errno to indicate error conditions. However, you check errno for those error conditions
after the function call.

Risk

The errno is not clean and can contain values from a previous call. Checking errno for
errors can give the false impression that an error occurred.

errno is set to zero at program startup but subsequently, errno is not reset by a C
standard library function. You must explicitly set errno to zero when required.

8 CERT C++ Rules

8-324

Fix

Before calling a function that sets errno to indicate error conditions, reset errno to zero
explicitly.

Example - errno Not Reset Before Call to strtod

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

In this example, errno is not reset to 0 before the first call to strtod. Checking errno
for 0 later can lead to a false positive.

Correction — Reset errno Before Call

One possible correction is to reset errno to 0 before calling strtod.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

 CERT C++: ERR30-C

8-325

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 errno = 0;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR30-C

Introduced in R2019a

8 CERT C++ Rules

8-326

https://wiki.sei.cmu.edu/confluence/x/39YxBQ

CERT C++: ERR32-C
Do not rely on indeterminate values of errno

Description

Rule Definition
Do not rely on indeterminate values of errno.

Examples

Misuse of errno in a signal handler
Description

Misuse of errno in a signal handler occurs when you call one of these functions in a
signal handler:

• signal: You call the signal function in a signal handler and then read the value of
errno.

For instance, the signal handler function handler calls signal and then calls
perror, which reads errno.

void handler(int signum) {
 pfv old_handler = signal(signum, SIG_DFL);
 if (old_handler == SIG_ERR) {
 perror("SIGINT handler");
 }
}

• errno-setting POSIX function: You call an errno-setting POSIX function in a signal
handler but do not restore errno when returning from the signal handler.

For instance, the signal handler function handler calls waitpid, which changes
errno, but does not restore errno before returning.

 CERT C++: ERR32-C

8-327

void handler(int signum) {
 int rc = waitpid(-1, NULL, WNOHANG);
 if (ECHILD != errno) {
 }
}

Risk

In each case that the checker flags, you risk relying on an indeterminate value of errno.

• signal: If the call to signal in a signal handler fails, the value of errno is
indeterminate (see C11 Standard, Sec. 7.14.1.1). If you rely on a specific value of
errno, you can see unexpected results.

• errno-setting POSIX function: An errno-setting function sets errno on failure. If you
read errno after a signal handler is called and the signal handler itself calls an
errno-setting function, you can see unexpected results.

Fix

Avoid situations where you risk relying on an indeterminate value of errno.

• signal: After calling the signal function in a signal handler, do not read errno or
use a function that reads errno.

• errno-setting POSIX function: Before calling an errno-setting function in a signal
handler, save errno to a temporary variable. Restore errno from this variable before
returning from the signal handler.

Example - Reading errno After signal Call in Signal Handler

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

#define fatal_error() abort()

void handler(int signum) {
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 perror("SIGINT handler");
 }
}

int func(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {

8 CERT C++ Rules

8-328

 /* Handle error */
 fatal_error();
 }
 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 fatal_error();
 }
 return 0;
}

In this example, the function handler is called to handle the SIGINT signal. In the body
of handler, the signal function is called. Following this call, the value of errno is
indeterminate. The checker raises a defect when the perror function is called because
perror relies on the value of errno.

Correction — Avoid Reading errno After signal Call

One possible correction is to not read errno after calling the signal function in a signal
handler. The corrected code here calls the abort function via the fatal_error macro
instead of the perror function.

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

#define fatal_error() abort()

void handler(int signum) {
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 fatal_error();
 }
}

int func(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 fatal_error();
 }
 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 fatal_error();
 }

 CERT C++: ERR32-C

8-329

 return 0;
}

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR32-C

Introduced in R2019a

8 CERT C++ Rules

8-330

https://wiki.sei.cmu.edu/confluence/x/-dUxBQ

CERT C++: ERR33-C
Detect and handle standard library errors

Description

Rule Definition
Detect and handle standard library errors.

Examples

Errno not checked
Description

Errno not checked occurs when you call a function that sets errno to indicate error
conditions, but do not check errno after the call. For these functions, checking errno is
the only reliable way to determine if an error occurred.

Functions that set errno on errors include:

• fgetwc, strtol, and wcstol.

For a comprehensive list of functions, see documentation about errno.
• POSIX errno-setting functions such as encrypt and setkey.

Risk

To see if the function call completed without errors, check errno for error values.

The return values of these errno-setting functions do not indicate errors. The return
value can be one of the following:

• void

 CERT C++: ERR33-C

8-331

https://www.securecoding.cert.org/confluence/x/KwBl

• Even if an error occurs, the return value can be the same as the value from a
successful call. Such return values are called in-band error indicators.

You can determine if an error occurred only by checking errno.

For instance, strtol converts a string to a long integer and returns the integer. If the
result of conversion overflows, the function returns LONG_MAX and sets errno to ERANGE.
However, the function can also return LONG_MAX from a successful conversion. Only by
checking errno can you distinguish between an error and a successful conversion.

Fix

Before calling the function, set errno to zero.

After the function call, to see if an error occurred, compare errno to zero. Alternatively,
compare errno to known error indicator values. For instance, strtol sets errno to
ERANGE to indicate errors.

The error message in the Polyspace result shows the error indicator value that you can
compare to.

Example - errno Not Checked After Call to strtol
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 long val = strtol(str, &endptr, base);
 printf("Return value of strtol() = %ld\n", val);
}

You are using the return value of strtol without checking errno.

Correction — Check errno After Call

Before calling strtol, set errno to zero . After a call to strtol, check the return value
for LONG_MIN or LONG_MAX and errno for ERANGE.

8 CERT C++ Rules

8-332

#include<stdlib.h>
#include<stdio.h>
#include<errno.h>
#include<limits.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 errno = 0;
 long val = strtol(str, &endptr, base);
 if((val == LONG_MIN || val == LONG_MAX) && errno == ERANGE) {
 printf("strtol error");
 exit(EXIT_FAILURE);
 }
 printf("Return value of strtol() = %ld\n", val);
}

Returned value of a sensitive function not checked
Description

Returned value of a sensitive function not checked occurs when you call sensitive
standard functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or
vulnerable tasks:

 CERT C++: ERR33-C

8-333

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive or critical
sensitive tasks, your program can behave unexpectedly. Errors from these functions can
propagate throughout the program causing incorrect output, security vulnerabilities, and
possibly system failures.

Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to
void. Polyspace does not raise this defect for sensitive functions cast to void. This
resolution is not accepted for critical sensitive functions because they perform more
vulnerable tasks.

Example - Sensitive Function Return Ignored

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 pthread_attr_init(&attr);
}

This example shows a call to the sensitive function pthread_attr_init. The return
value of pthread_attr_init is ignored, causing a defect.

Correction — Cast Function to (void)

One possible correction is to cast the function to void. This fix informs Polyspace and any
reviewers that you are explicitly ignoring the return value of the sensitive function.

8 CERT C++ Rules

8-334

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 (void)pthread_attr_init(&attr);
}

Correction — Test Return Value

One possible correction is to test the return value of pthread_attr_init to check for
errors.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

void initialize() {
 pthread_attr_t attr;
 int result;

 result = pthread_attr_init(&attr);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Example - Critical Function Return Ignored
#include <pthread.h>
extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0));
 pthread_join(thread_id, &res);
}

In this example, two critical functions are called: pthread_create and pthread_join.
The return value of the pthread_create is ignored by casting to void, but because

 CERT C++: ERR33-C

8-335

pthread_create is a critical function (not just a sensitive function), Polyspace does not
ignore this Return value of a sensitive function not checked defect. The other critical
function, pthread_join, returns value that is ignored implicitly. pthread_join uses
the return value of pthread_create, which was not checked.

Correction — Test the Return Value of Critical Functions

The correction for this defect is to check the return value of these critical functions to
verify the function performed as expected.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Unprotected dynamic memory allocation
Description

Unprotected dynamic memory allocation occurs when you do not check after dynamic
memory allocation whether the memory allocation succeeded.

8 CERT C++ Rules

8-336

Risk

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a
value NULL if the requested memory is not available. If the code following the allocation
accesses the memory block without checking for this NULL value, this access is not
protected from failures.

Fix

Check the return value of malloc, calloc, or realloc for NULL before accessing the
allocated memory location.

int *ptr = malloc(size * sizeof(int));

if(ptr) /* Check for NULL */
{
 /* Memory access through ptr */
}

Example - Unprotected dynamic memory allocation error

#include <stdlib.h>

void Assign_Value(void)
{
 int* p = (int*)calloc(5, sizeof(int));

 *p = 2;
 /* Defect: p is not checked for NULL value */

 free(p);
}

If the memory allocation fails, the function calloc returns NULL to p. Before accessing
the memory through p, the code does not check whether p is NULL

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

void Assign_Value(void)
 {

 CERT C++: ERR33-C

8-337

 int* p = (int*)calloc(5, sizeof(int));

 /* Fix: Check if p is NULL */
 if(p!=NULL) *p = 2;

 free(p);
 }

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR33-C

Introduced in R2019a

8 CERT C++ Rules

8-338

https://wiki.sei.cmu.edu/confluence/x/kNYxBQ

CERT C++: ERR34-C
Detect errors when converting a string to a number

Description

Rule Definition
Detect errors when converting a string to a number.

Examples

Unsafe conversion from string to numerical value
Description

Unsafe conversion from string to numerical value detects conversions from strings
to integer or floating-point values. If your conversion method does not include robust
error handling, a defect is raised.

Risk

Converting a string to numerical value can cause data loss or misinterpretation. Without
validation of the conversion or error handling, your program continues with invalid
values.

Fix

• Add additional checks to validate the numerical value.
• Use a more robust string-to-numeric conversion function such as strtol, strtoll,

strtoul, or strtoull.

Example - Conversion With atoi

#include <stdio.h>
#include <stdlib.h>

 CERT C++: ERR34-C

8-339

#include <string.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)
 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char* argv1)
{
 int s = 0;
 if (demo_check_string_not_empty(argv1))
 {
 s = atoi(argv1);
 }
 return s;
}

In this example, argv1 is converted to an integer with atoi. atoi does not provide
errors for an invalid integer string. The conversion can fail unexpectedly.

Correction — Use strtol instead

One possible correction is to use strtol to validate the input string and the converted
integer.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <errno.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)
 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char *argv1)
{
 char *c_str = argv1;

8 CERT C++ Rules

8-340

 char *end;
 long sl;

 if (demo_check_string_not_empty(c_str))
 {
 errno = 0; /* set errno for error check */
 sl = strtol(c_str, &end, 10);
 if (end == c_str)
 {
 (void)fprintf(stderr, "%s: not a decimal number\n", c_str);
 }
 else if ('\0' != *end)
 {
 (void)fprintf(stderr, "%s: extra characters: %s\n", c_str, end);
 }
 else if ((LONG_MIN == sl || LONG_MAX == sl) && ERANGE == errno)
 {
 (void)fprintf(stderr, "%s out of range of type long\n", c_str);
 }
 else if (sl > INT_MAX)
 {
 (void)fprintf(stderr, "%ld greater than INT_MAX\n", sl);
 }
 else if (sl < INT_MIN)
 {
 (void)fprintf(stderr, "%ld less than INT_MIN\n", sl);
 }
 else
 {
 return (int)sl;
 }
 }
 return 0;
}

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

 CERT C++: ERR34-C

8-341

Topics
“Check for Coding Standard Violations”

External Websites
ERR34-C

Introduced in R2019a

8 CERT C++ Rules

8-342

https://wiki.sei.cmu.edu/confluence/x/C9cxBQ

CERT C++: ERR50-CPP
Do not abruptly terminate the program

Description

Rule Definition
Do not abruptly terminate the program.

Examples

Implicit call to terminate() function
Description

The checker flags these situations when the terminate() function can be called implicitly:

• An exception escapes uncaught. For instance:

• Before an exception is caught, it escapes through another function that throws an
uncaught exception. For instance, a catch statement or exception handler invokes a
copy constructor that throws an uncaught exception.

• A throw expression with no operand rethrows an uncaught exception.
• A class destructor throws an exception.

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

 CERT C++: ERR50-CPP

8-343

Topics
“Check for Coding Standard Violations”

External Websites
ERR50-CPP

Introduced in R2019a

8 CERT C++ Rules

8-344

https://wiki.sei.cmu.edu/confluence/x/-Hs-BQ

CERT C++: ERR51-CPP
Handle all exceptions

Description

Rule Definition
Handle all exceptions.

Examples

Unhandled exception not caught
Description

The checker shows a violation if there is no try/catch in the main function or the catch
does not handle all exceptions (with ellipsis ...). The rule is not checked if a main
function does not exist.

The checker does not determine if an exception of an unhandled type actually propagates
to main.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

 CERT C++: ERR51-CPP

8-345

Topics
“Check for Coding Standard Violations”

External Websites
ERR51-CPP

Introduced in R2019a

8 CERT C++ Rules

8-346

https://wiki.sei.cmu.edu/confluence/x/H3s-BQ

CERT C++: ERR52-CPP
Do not use setjmp() or longjmp()

Description

Rule Definition
Do not use setjmp() or longjmp().

Examples

Use of setjmp/longjmp
Description

Use of setjmp/longjmp occurs when you use a combination of setjmp and longjmp or
sigsetjmp and siglongjmp to deviate from normal control flow and perform non-local
jumps in your code.

Risk

Using setjmp and longjmp, or sigsetjmp and siglongjmp has the following risks:

• Nonlocal jumps are vulnerable to attacks that exploit common errors such as buffer
overflows. Attackers can redirect the control flow and potentially execute arbitrary
code.

• Resources such as dynamically allocated memory and open files might not be closed,
causing resource leaks.

• If you use setjmp and longjmp in combination with a signal handler, unexpected
control flow can occur. POSIX does not specify whether setjmp saves the signal mask.

• Using setjmp and longjmp or sigsetjmp and siglongjmp makes your program
difficult to understand and maintain.

 CERT C++: ERR52-CPP

8-347

Fix

Perform nonlocal jumps in your code using setjmp/longjmp or sigsetjmp/
siglongjmp only in contexts where such jumps can be performed securely. Alternatively,
use POSIX threads if possible.

In C++, to simulate throwing and catching exceptions, use standard idioms such as
throw expressions and catch statements.

Example - Use of setjmp and longjmp

#include <setjmp.h>
#include <signal.h>

extern int update(int);
extern void print_int(int);

static jmp_buf env;
void sighandler(int signum) {
 longjmp(env, signum);
}
void func_main(int i) {
 signal(SIGINT, sighandler);
 if (setjmp(env)==0) {
 while(1) {
 /* Main loop of program, iterates until SIGINT signal catch */
 i = update(i);
 }
 } else {
 /* Managing longjmp return */
 i = -update(i);
 }

 print_int(i);
 return;
}

In this example, the initial return value of setjmp is 0. The update function is called in
an infinite while loop until the user interrupts it through a signal.

In the signal handling function, the longjmp statement causes a jump back to main and
the return value of setjmp is now 1. Therefore, the else branch is executed.

8 CERT C++ Rules

8-348

Correction — Use Alternative to setjmp and longjmp

To emulate the same behavior more securely, use a volatile global variable instead of a
combination of setjmp and longjmp.

#include <setjmp.h>
#include <signal.h>

extern int update(int);
extern void print_int(int);

volatile sig_atomic_t eflag = 0;

void sighandler(int signum) {
 eflag = signum; /* Fix: using global variable */
}

void func_main(int i) {
 /* Fix: Better design to avoid use of setjmp/longjmp */
 signal(SIGINT, sighandler);
 while(!eflag) { /* Fix: using global variable */
 /* Main loop of program, iterates until eflag is changed */
 i = update(i);
 }

 print_int(i);
 return;
}

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

 CERT C++: ERR52-CPP

8-349

External Websites
ERR52-CPP

Introduced in R2019a

8 CERT C++ Rules

8-350

https://wiki.sei.cmu.edu/confluence/x/nHs-BQ

CERT C++: ERR53-CPP
Do not reference base classes or class data members in a constructor or destructor
function-try-block handler

Description

Rule Definition
Do not reference base classes or class data members in a constructor or destructor
function-try-block handler.

Examples

Constructor or destructor function-try-block handler
references base classes or class data members
Description

The issue occurs when handlers of a function-try-block implementation of a class
constructor or destructor references non-static members from this class or its bases.

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

 CERT C++: ERR53-CPP

8-351

External Websites
ERR53-CPP

Introduced in R2019a

8 CERT C++ Rules

8-352

https://wiki.sei.cmu.edu/confluence/x/_3s-BQ

CERT C++: ERR54-CPP
Catch handlers should order their parameter types from most derived to least derived

Description

Rule Definition
Catch handlers should order their parameter types from most derived to least derived.

Examples

Exception handlers not ordered from most-derived to base
class
Description

The issue occurs when you provide multiple handlers in a single try-catch statement or
function-try-block for a derived class and some or all of its bases, and the handlers are not
ordered from most-derived to base class.

Incorrect order of ellipsis handler
Description

The issue occurs when you provide multiple handlers in a single try-catch statement or
function-try-block, and the ellipsis (catch-all) handler does not occur last.

Check Information
Group: 08. Exceptions and Error Handling (ERR)

 CERT C++: ERR54-CPP

8-353

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR54-CPP

Introduced in R2019a

8 CERT C++ Rules

8-354

https://wiki.sei.cmu.edu/confluence/x/Nnw-BQ

CERT C++: ERR61-CPP
Catch exceptions by lvalue reference

Description

Rule Definition
Catch exceptions by lvalue reference.

Examples

Exception object initialized by copy in catch statement
Description

The issue occurs when a catch statement

catch (exceptionType customExc) {
 ...
}

initializes the exception object customExc by copy.

Risk

If exceptionType has a nontrivial copy constructor or if the exception thrown belongs to
a class derived from exceptionType, the copying can produce object slicing or
undefined behavior.

Fix

Catch the exception by reference or const reference.

catch (exceptionType &customExc) {
 ...
}

 CERT C++: ERR61-CPP

8-355

Example - Derived Class Exception Caught by Value

#include <exception>
#include <string>
#include <typeinfo>
#include <iostream>

// Class declarations
class BaseExc {
public:
 explicit BaseExc();
 virtual ~BaseExc() {};
protected:
 BaseExc(const std::string& type);
private:
 std::string _id;
};

class IOExc: public BaseExc {
public:
 explicit IOExc();
};

//Class method declarations
BaseExc::BaseExc():_id(typeid(this).name()) {
}
BaseExc::BaseExc(const std::string& type): _id(type) {
}
IOExc::IOExc(): BaseExc(typeid(this).name()) {
}

int input(void);

int main(void) {
 int rnd = input();
 try {
 if (rnd==0) {
 throw IOExc();
 } else {
 throw BaseExc();
 }
 }

8 CERT C++ Rules

8-356

 catch(BaseExc exc) {
 std::cout << "Intercept BaseExc" << std::endl;
 }
 return 0;
}

In this example, the catch statement takes a BaseExc object by value. Catching
exceptions by value causes copying of the object. The copying can cause:

• Undefined behavior of the exception if it fails.
• Object slicing if an exception of the derived class IOExc is caught.

Correction — Catch Exceptions by Reference

One possible correction is to catch exceptions by reference.

#include <exception>
#include <string>
#include <typeinfo>
#include <iostream>

// Class declarations
class BaseExc {
public:
 explicit BaseExc();
 virtual ~BaseExc() {};
protected:
 BaseExc(const std::string& type);
private:
 std::string _id;
};

class IOExc: public BaseExc {
public:
 explicit IOExc();
};

//Class method declarations
BaseExc::BaseExc():_id(typeid(this).name()) {
}
BaseExc::BaseExc(const std::string& type): _id(type) {
}
IOExc::IOExc(): BaseExc(typeid(this).name()) {
}

 CERT C++: ERR61-CPP

8-357

int input(void);

int main(void) {
 int rnd = input();
 try {
 if (rnd==0) {
 throw IOExc();
 } else {
 throw BaseExc();
 }
 }

 catch(BaseExc& exc) {
 std::cout << "Intercept BaseExc" << std::endl;
 }
 return 0;
}

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR61-CPP

Introduced in R2019b

8 CERT C++ Rules

8-358

https://wiki.sei.cmu.edu/confluence/x/SXs-BQ

CERT C++: OOP51-CPP
Do not slice derived objects

Description

Rule Definition
Do not slice derived objects.

Examples

Object slicing
Description

Object slicing occurs when you pass a derived class object by value to a function, but
the function expects a base class object as parameter.

Risk

If you pass a derived class object by value to a function, you expect the derived class copy
constructor to be called. If the function expects a base class object as parameter:

1 The base class copy constructor is called.
2 In the function body, the parameter is considered as a base class object.

In C++, virtual methods of a class are resolved at run time according to the actual type
of the object. Because of object slicing, an incorrect implementation of a virtual
method can be called. For instance, the base class contains a virtual method and the
derived class contains an implementation of that method. When you call the virtual
method from the function body, the base class method is called, even though you pass a
derived class object to the function.

 CERT C++: OOP51-CPP

8-359

Fix

One possible fix is to pass the object by reference or pointer. Passing by reference or
pointer does not cause invocation of copy constructors. If you do not want the object to be
modified, use a const qualifier with your function parameter.

Another possible fix is to overload the function with another function that accepts the
derived class object as parameter.

Example - Function Call Causing Object Slicing

#include <iostream>

class Base {
public:
 explicit Base(int b) {
 _b = b;
 }
 virtual ~Base() {}
 virtual int update() const;
protected:
 int _b;
};

class Derived: public Base {
public:
 explicit Derived(int b):Base(b) {}
 int update() const;
};

//Class methods definition

int Base::update() const {
 return (_b + 1);
}

int Derived::update() const {
 return (_b -1);
}

//Other function definitions
void funcPassByValue(const Base bObj) {

8 CERT C++ Rules

8-360

 std::cout << "Updated _b=" << bObj.update() << std::endl;
}

int main() {
 Derived dObj(0);
 funcPassByValue(dObj); //Function call slices object
 return 0;
 }

In this example, the call funcPassByValue(dObj) results in the output Updated _b=1
instead of the expected Updated _b=-1. Because funcPassByValue expects a Base
object parameter, it calls the Base class copy constructor.

Therefore, even though you pass the Derived object dObj, the function
funcPassByValue treats its parameter b as a Base object. It calls Base::update()
instead of Derived::update().

Correction — Pass Object by Reference or Pointer

One possible correction is to pass the Derived object dObj by reference or by pointer. In
the following, corrected example, funcPassByReference and funcPassByPointer
have the same objective as funcPassByValue in the preceding example. However,
funcPassByReference expects a reference to a Base object and funcPassByPointer
expects a pointer to a Base object.

Passing the Derived object d by a pointer or by reference does not slice the object. The
calls funcPassByReference(dObj) and funcPassByPointer(&dObj) produce the
expected result Updated _b=-1.

#include <iostream>

class Base {
public:
 explicit Base(int b) {
 _b = b;
 }
 virtual ~Base() {}
 virtual int update() const;
protected:
 int _b;
};

class Derived: public Base {

 CERT C++: OOP51-CPP

8-361

public:
 explicit Derived(int b):Base(b) {}
 int update() const;
};

//Class methods definition

int Base::update() const {
 return (_b + 1);
}

int Derived::update() const {
 return (_b -1);
}

//Other function definitions
void funcPassByReference(const Base& bRef) {
 std::cout << "Updated _b=" << bRef.update() << std::endl;
}

void funcPassByPointer(const Base* bPtr) {
 std::cout << "Updated _b=" << bPtr->update() << std::endl;
}

int main() {
 Derived dObj(0);
 funcPassByReference(dObj); //Function call does not slice object
 funcPassByPointer(&dObj); //Function call does not slice object
 return 0;
 }

Note If you pass by value, because a copy of the object is made, the original object is not
modified. Passing by reference or by pointer makes the object vulnerable to modification.
If you are concerned about your original object being modified, add a const qualifier to
your function parameter, as in the preceding example.

Check Information
Group: 09. Object Oriented Programming (OOP)

8 CERT C++ Rules

8-362

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
OOP51-CPP

Introduced in R2019a

 CERT C++: OOP51-CPP

8-363

https://wiki.sei.cmu.edu/confluence/x/QX0-BQ

CERT C++: OOP52-CPP
Do not delete a polymorphic object without a virtual destructor

Description
Rule Definition
Do not delete a polymorphic object without a virtual destructor.

Examples
Base class destructor not virtual
Description

Base class destructor not virtual occurs when a class has virtual functions but not a
virtual destructor.

Risk

The presence of virtual functions indicates that the class is intended for use as a base
class. However, if the class does not have a virtual destructor, it cannot behave
polymorphically for deletion of derived class objects.

If a pointer to this class refers to a derived class object, and you use the pointer to delete
the object, only the base class destructor is called. Additional resources allocated in the
derived class are not released and can cause a resource leak.

Fix

One possible fix is to always use a virtual destructor in a class that contains virtual
functions.

Example - Base Class Destructor Not Virtual
class Base {
 public:

8 CERT C++ Rules

8-364

 Base(): _b(0) {};
 virtual void update() {_b += 1;};
 private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(): _d(0) {};
 ~Derived() {_d = 0;};
 virtual void update() {_d += 1;};
 private:
 int _d;
};

In this example, the class Base does not have a virtual destructor. Therefore, if a
Base* pointer points to a Derived object that is allocated memory dynamically, and the
delete operation is performed on that Base* pointer, the Base destructor is called. The
memory allocated for the additional member _d is not released.

The defect appears on the base class definition. Following are some tips for navigating in
the source code:

• To find classes derived from the base class, right-click the base class name and select
Search For All References. Browse through each search result to find derived class
definitions.

• To find if you are using a pointer or reference to a base class to point to a derived class
object, right-click the base class name and select Search For All References. Browse
through search results that start with Base* or Base& to locate pointers or references
to the base class. You can then see if you are using a pointer or reference to point to a
derived class object.

Correction — Make Base Class Destructor Virtual

One possible correction is to declare a virtual destructor for the class Base.

class Base {
 public:
 Base(): _b(0) {};
 virtual ~Base() {_b = 0;};
 virtual void update() {_b += 1;};
 private:
 int _b;

 CERT C++: OOP52-CPP

8-365

};

class Derived: public Base {
 public:
 Derived(): _d(0) {};
 ~Derived() {_d = 0;};
 virtual void update() {_d += 1;};
 private:
 int _d;
};

Check Information
Group: 09. Object Oriented Programming (OOP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
OOP52-CPP

Introduced in R2019a

8 CERT C++ Rules

8-366

https://wiki.sei.cmu.edu/confluence/x/5Xs-BQ

CERT C++: OOP54-CPP
Gracefully handle self-copy assignment

Description

Rule Definition
Gracefully handle self-copy assignment.

Examples

Self assignment not tested in operator
Description

Self assignment not tested in operator occurs when you do not test if the argument to
the copy assignment operator of an object is the object itself.

Risk

Self-assignment causes unnecessary copying. Though it is unlikely that you assign an
object to itself, because of aliasing, you or users of your class cannot always detect a self-
assignment.

Self-assignment can cause subtle errors if a data member is a pointer and you allocate
memory dynamically to the pointer. In your copy assignment operator, you typically
perform these steps:

1 Deallocate the memory originally associated with the pointer.

delete ptr;
2 Allocate new memory to the pointer. Initialize the new memory location with contents

obtained from the operator argument.

 ptr = new ptrType(*(opArgument.ptr));

 CERT C++: OOP54-CPP

8-367

If the argument to the operator, opArgument, is the object itself, after your first step, the
pointer data member in the operator argument, opArgument.ptr, is not associated with
a memory location. *opArgument.ptr contains unpredictable values. Therefore, in the
second step, you initialize the new memory location with unpredictable values.

Fix

Test for self-assignment in the copy assignment operator of your class. Only after the test,
perform the assignments in the copy assignment operator.

Example - Missing Test for Self-Assignment
class MyClass1 { };
class MyClass2 {
public:
 MyClass2() : p_(new MyClass1()) { }
 MyClass2(const MyClass2& f) : p_(new MyClass1(*f.p_)) { }
 ~MyClass2() {
 delete p_;
 }
 MyClass2& operator= (const MyClass2& f)
 {
 delete p_;
 p_ = new MyClass1(*f.p_);
 return *this;
 }
private:
 MyClass1* p_;
};

In this example, the copy assignment operator in MyClass2 does not test for self-
assignment. If the parameter f is the current object, after the statement delete p_, the
memory allocated to pointer f.p_ is also deallocated. Therefore, the statement p_ =
new MyClass1(*f.p_) initializes the memory location that p_ points to with
unpredictable values.

Correction — Test for Self-Assignment

One possible correction is to test for self-assignment in the copy assignment operator.

class MyClass1 { };
class MyClass2 {
public:
 MyClass2() : p_(new MyClass1()) { }

8 CERT C++ Rules

8-368

 MyClass2(const MyClass2& f) : p_(new MyClass1(*f.p_)) { }
 ~MyClass2() {
 delete p_;
 }
 MyClass2& operator= (const MyClass2& f)
 {
 if(&f != this) {
 delete p_;
 p_ = new MyClass1(*f.p_);
 }
 return *this;
 }
private:
 MyClass1* p_;
};

Check Information
Group: 09. Object Oriented Programming (OOP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
OOP54-CPP

Introduced in R2019a

 CERT C++: OOP54-CPP

8-369

https://wiki.sei.cmu.edu/confluence/x/oHs-BQ

CERT C++: OOP57-CPP
Prefer special member functions and overloaded operators to C Standard Library
functions

Description

Rule Definition
Prefer special member functions and overloaded operators to C Standard Library
functions.

Examples

Bytewise operations on nontrivial class object
Description

Bytewise operations on nontrivial class object occurs when you use C Standard
library functions to perform bytewise operation on non-trivial or non-standard layout class
type objects. For definitions of trivial and standard layout classes, see the C++ Standard,
[class], paragraphs 6 and 7 respectively.

The checker raises a defect you initialize or copy non-trivial class type objects using these
functions:

• std::memset
• std::memcpy
• std::strcpy
• std::memmove

Or when you compare non-standard layout class type objects using these functions:

• std::memcmp

8 CERT C++ Rules

8-370

https://www.iso.org/standard/68564.html

• std::strcmp

Bytewise operations on nontrivial class object raises no defect if the bytewise
operation is performed through an alias. For example no defect is raised in the bytewise
comparison and copy operations in this code. The bytewise operations use dptr and
sptr, the aliases of non-trivial or non-standard layout class objects d and s.

void func(NonTrivialNonStdLayout *d, const NonTrivialNonStdLayout *s)
{
 void* dptr = (void*)d;
 const void* sptr = (void*)s;
 // ...
 // ...
 // ...
 if (!std::memcmp(dptr, sptr, sizeof(NonTrivialNonStdLayout))) {
 (void)std::memcpy(dptr, sptr, sizeof(NonTrivialNonStdLayout));
 // ...
 }
}

Risk

Performing bytewise comparison operations by using C Standard library functions on non-
trivial or non-standard layout class type object might result in unexpected values due to
implementation details. The object representation depends on the implementation details,
such as the order of private and public members, or the use of virtual function pointer
tables to represent the object.

Performing bytewise setting operations by using C Standard library functions on non-
trivial or non-standard layout class type object can change the implementation details.
The operation might result in abnormal program behavior or a code execution
vulnerability. For instance, if the address of a member function is overwritten, the call to
this function invokes an unexpected function.

Fix

To perform bytewise operations non-trivial or non-standard layout class type object, use
these C++ special member functions instead of C Standard library functions.

C Standard Library Functions C++ Member Functions
std::memset Class constructor

 CERT C++: OOP57-CPP

8-371

C Standard Library Functions C++ Member Functions
std::memcpy

std::strcpy

std::memmove

Class copy constructor

Class move constructor

Copy assignment operator

Move assignment operator
std::memcmp

std::strcmp

operator<()

operator>()

operator==()

operator!=()

Example - Using memset with non-trivial class object

#include <cstring>
#include <iostream>
#include <utility>

class nonTrivialClass
{
 int scalingFactor;
 int otherData;
public:
 nonTrivialClass() : scalingFactor(1) {}
 void set_other_data(int i);
 int f(int i)
 {
 return i / scalingFactor;
 }
 // ...
};

void func()
{
 nonTrivialClass c;
 // ... Code that mutates c ...
 std::memset(&c, 0, sizeof(nonTrivialClass));
 std::cout << c.f(100) << std::endl;
}

8 CERT C++ Rules

8-372

In this example, func() uses std::memset to reinitialize non-trivial class object c after
it is first initialized with its default constructor. This bytewise operation might not
properly initialize the value representation of c.

Correction — Define Function Template That Uses std::swap

One possible correction is to define a function template clear() that uses std::swap to
perform a swap operation. The call to clear()properly reinitializes object c by swapping
the contents of c and default initialized object empty.

 #include <cstring>
#include <iostream>
#include <utility>

class nonTrivialClass
{
 int scalingFactor;
 int otherData;
public:
 nonTrivialClass() : scalingFactor(1) {}
 void set_other_data(int i);
 int f(int i)
 {
 return i / scalingFactor;
 }
 // ...
};

template <typename T>
T& clear(T& o)
{
 using std::swap;
 T empty;
 swap(o, empty);
 return o;
}

void func()
{
 nonTrivialClass c;
 // ... Code that mutates c ...

 clear(c);

 CERT C++: OOP57-CPP

8-373

 std::cout << c.f(100) << std::endl;
}

Check Information
Group: Rule 09. Object Oriented Programming (OOP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
OOP57-CPP

Introduced in R2019b

8 CERT C++ Rules

8-374

https://wiki.sei.cmu.edu/confluence/x/lHs-BQ

CERT C++: OOP58-CPP
Copy operations must not mutate the source object

Description

Rule Definition
Copy operations must not mutate the source object.

Examples

Copy operation modifying source operand
Description

Copy operation modifying source operand occurs when a copy constructor or copy
assignment operator modifies a mutable data member of its source operand.

For instance, this copy constructor A modifies the data member m of its source operand
other:

class A {
 mutable int m;

public:
 ...
 A(const A &other) : m(other.m) {
 other.m = 0; //Modification of source
 }
}

Risk

A copy operation with a copy constructor (or copy assignment operator):

className new_object = old_object; //Calls copy constructor of className

 CERT C++: OOP58-CPP

8-375

copies its source operand old_object to its destination operand new_object. After the
operation, you expect the destination operand to be a copy of the unmodified source
operand. If the source operand is modified during copy, this assumption is violated.

Fix

Do not modify the source operand in the copy operation.

If you are modifying the source operand in a copy constructor to implement a move
operation, use a move constructor instead. Move constructors are defined in the C++11
standard and later.

Example - Copy Constructor Modifying Source

#include <algorithm>
#include <vector>

class A {
 mutable int m;

public:
 A() : m(0) {}
 explicit A(int m) : m(m) {}

 A(const A &other) : m(other.m) {
 other.m = 0;
 }

 A& operator=(const A &other) {
 if (&other != this) {
 m = other.m;
 other.m = 0;
 }
 return *this;
 }

 int get_m() const { return m; }
};

void f() {
 std::vector<A> v{10};
 A obj(12);
 std::fill(v.begin(), v.end(), obj);
}

8 CERT C++ Rules

8-376

In this example, a vector of ten objects of type A is created. The std::fill function
copies an object of type A, which has a data member with value 12, to each of the ten
objects. After this operation, you might expect that all ten objects in the vector have a
data member with value 12.

However, the first copy modifies the data member of the source to the value 0. The
remaining nine copies copy this value. After the std::fill call, the first object in the
vector has a data member with value 12 and the remaining objects have data members
with value 0.

Correction — Use Move Constructor for Modifying Source

Do not modify data members of the source operand in a copy constructor or copy
assignment operator. If you want your class to have a move operation, use a move
constructor instead of a copy constructor.

In this corrected example, the copy constructor and copy assignment operator of class A
do not modify the data member m. A separate move constructor modifies the source
operand.

#include <algorithm>
#include <vector>

class A {
 int m;

public:
 A() : m(0) {}
 explicit A(int m) : m(m) {}

 A(const A &other) : m(other.m) {}
 A(A &&other) : m(other.m) { other.m = 0; }

 A& operator=(const A &other) {
 if (&other != this) {
 m = other.m;
 }
 return *this;
 }

 //Move constructor
 A& operator=(A &&other) {

 CERT C++: OOP58-CPP

8-377

 m = other.m;
 other.m = 0;
 return *this;
 }

 int get_m() const { return m; }
};

void f() {
 std::vector<A> v{10};
 A obj(12);
 std::fill(v.begin(), v.end(), obj);
}

Check Information
Group: 09. Object Oriented Programming (OOP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
OOP58-CPP

Introduced in R2019a

8 CERT C++ Rules

8-378

https://wiki.sei.cmu.edu/confluence/x/gXs-BQ

CERT C++: CON33-C
Avoid race conditions when using library functions

Description

Rule Definition
Avoid race conditions when using library functions.

Examples

Data race through standard library function call
Description

Data race through standard library function call occurs when:

1 Multiple tasks call the same standard library function.

For instance, multiple tasks call the strerror function.
2 The calls are not protected using a common protection.

For instance, the calls are not protected by the same critical section.

Functions flagged by this defect are not guaranteed to be reentrant. A function is
reentrant if it can be interrupted and safely called again before its previous invocation
completes execution. If a function is not reentrant, multiple tasks calling the function
without protection can cause concurrency issues. For the list of functions that are
flagged, see CON33-C: Avoid race conditions when using library functions.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Configuring Polyspace Multitasking Analysis Manually”.

 CERT C++: CON33-C

8-379

https://www.securecoding.cert.org/confluence/x/xIEzAg

Risk

The functions flagged by this defect are nonreentrant because their implementations can
use global or static variables. When multiple tasks call the function without protection,
the function call from one task can interfere with the call from another task. The two
invocations of the function can concurrently access the global or static variables and
cause unpredictable results.

The calls can also cause more serious security vulnerabilities, such as abnormal
termination, denial-of-service attack, and data integrity violations.

Fix

To fix this defect, do one of the following:

• Use a reentrant version of the standard library function if it exists.

For instance, instead of strerror(), use strerror_r() or strerror_s(). For
alternatives to functions flagged by this defect, see the documentation for CON33-C.

• Protect the function calls using common critical sections or temporal exclusion.

See Critical section details (-critical-section-begin -critical-
section-end) and Temporally exclusive tasks (-temporal-exclusions-
file).

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access
Protections column shows existing protections on the calls. To see the function call

sequence leading to the conflicts, click the icon. For an example, see below.

Example - Unprotected Call to Standard Library Function from Multiple Tasks

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

8 CERT C++ Rules

8-380

https://www.securecoding.cert.org/confluence/x/xIEzAg

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure
multitasking manually
Tasks (-entry-points) task1

task2

task3
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

 CERT C++: CON33-C

8-381

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks, task1, task2 and task3, call the function func. func calls
the nonreentrant standard library function, strerror.

Though task3 calls func inside a critical section, other tasks do not use the same critical
section. Operations in the critical section of task3 are not mutually exclusive with
operations in other tasks.

These three tasks are calling a nonreentrant standard library function without common
protection. In your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point
to the standard library function call. You also see that the call starting from task3 is in a
critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

8 CERT C++ Rules

8-382

Correction — Use Reentrant Version of Standard Library Function

One possible correction is to use a reentrant version of the standard library function
strerror. You can use the POSIX version strerror_r which has the same functionality
but also guarantees thread-safety.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);
enum { BUFFERSIZE = 64 };

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char errmsg[BUFFERSIZE];
 if (strerror_r(errno, errmsg, BUFFERSIZE) != 0) {
 /* Handle error */
 }
 printf("Could not get the file position: %s\n", errmsg);
 }

 CERT C++: CON33-C

8-383

}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

Correction — Place Function Call in Critical Section

One possible correction is to place the call to strerror in critical section. You can
implement the critical section in multiple ways.

For instance, you can place the call to the intermediate function func in the same critical
section in the three tasks. When task1 enters its critical section, the other tasks cannot
enter their critical sections until task1 leaves its critical section. The calls to func and
therefore the calls to strerror from the three tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call func between calls to
begin_critical_section and end_critical_section.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {
 fpos_t pos;

8 CERT C++ Rules

8-384

 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 begin_critical_section();
 func(fptr1);
 end_critical_section();
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 begin_critical_section();
 func(fptr2);
 end_critical_section();
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive
tasks (-temporal-
exclusions-file)

task1 task2 task3

On the command-line, you can use the following:

 CERT C++: CON33-C

8-385

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2 task3

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON33-C

Introduced in R2019a

8 CERT C++ Rules

8-386

https://wiki.sei.cmu.edu/confluence/x/d9YxBQ

CERT C++: CON37-C
Do not call signal() in a multithreaded program

Description

Rule Definition
Do not call signal() in a multithreaded program.

Examples

Signal call in multithreaded program
Description

Signal call in multithreaded program occurs when you use the signal() function in
a program with multiple threads.

Risk

According to the C11 standard (Section 7.14.1.1), use of the signal() function in a
multithreaded program is undefined behavior.

Fix

Depending on your intent, use other ways to perform an asynchronous action on a specific
thread.

Example - Use of signal() Function to Terminate Loop in Thread

#include <signal.h>
#include <stddef.h>
#include <threads.h>

volatile sig_atomic_t flag = 0;

 CERT C++: CON37-C

8-387

void handler(int signum) {
 flag = 1;
}

/* Runs until user sends SIGUSR1 */
int func(void *data) {
 while (!flag) {
 /* ... */
 }
 return 0;
}

int main(void) {
 signal(SIGINT, handler); /* Undefined behavior */
 thrd_t tid;

 if (thrd_success != thrd_create(&tid, func, NULL)) {
 /* Handle error */
 }
 /* ... */
 return 0;
}

In this example, the signal function is used to terminate a while loop in the thread
created with thrd_create.

Correction — Use atomic_bool Variable to Terminate Loop

One possible correction is to use an atomic_bool variable that multiple threads can
access. In the corrected example, the child thread evaluates this variable before every
loop iteration. After completing the program, you can modify this variable so that the
child thread exits the loop.

#include <stdatomic.h>
#include <stdbool.h>
#include <stddef.h>
#include <threads.h>

atomic_bool flag = ATOMIC_VAR_INIT(false);

int func(void *data) {
 while (!flag) {
 /* ... */

8 CERT C++ Rules

8-388

 }
 return 0;
}

int main(void) {
 thrd_t tid;

 if (thrd_success != thrd_create(&tid, func, NULL)) {
 /* Handle error */
 }
 /* ... */
 /* Set flag when done */
 flag = true;

 return 0;
}

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON37-C

Introduced in R2019a

 CERT C++: CON37-C

8-389

https://wiki.sei.cmu.edu/confluence/x/w9YxBQ

CERT C++: CON40-C
Do not refer to an atomic variable twice in an expression

Description

Rule Definition
Do not refer to an atomic variable twice in an expression.

Examples

Atomic variable accessed twice in an expression
Description

Atomic variable accessed twice in an expression occurs when C atomic types or C++
std::atomic class variables appear twice in an expression and there are:

• Two atomic read operations on the variable.
• An atomic read and a distinct atomic write operation on the variable.

The C standard defines certain operations on atomic variables that are thread safe and do
not cause data race conditions. Unlike individual operations, a pair of operations on the
same atomic variable in an expression is not thread safe.

Risk

A thread can modify the atomic variable between the pair of atomic operations, which can
result in a data race condition.

Fix

Do not reference an atomic variable twice in the same expression.

8 CERT C++ Rules

8-390

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic

Example - Referencing Atomic Variable Twice in an Expression

#include <stdatomic.h>

atomic_int n = ATOMIC_VAR_INIT(0);

int compute_sum(void)
{
 return n * (n + 1) / 2;
}

In this example, the global variable n is referenced twice in the return statement of
compute_sum(). The value of n can change between the two distinct read operations.
compute_sum() can return an incorrect value.

Correction — Pass Variable as Function Argument

One possible correction is to pass the variable as a function argument n. The variable is
copied to memory and the read operations on the copy guarantee that compute_sum()
returns a correct result. If you pass a variable of type int instead of type atomic_int,
the correction is still valid.

#include <stdatomic.h>

int compute_sum(atomic_int n)
{
 return n * (n + 1) / 2;
}

Atomic load and store sequence not atomic
Description

Atomic load and store sequence not atomic occurs when you use these functions to
load, and then store an atomic variable.

• C functions:

• atomic_load()
• atomic_load_explicit()
• atomic_store()

 CERT C++: CON40-C

8-391

• atomic_store_explicit()
• C++ functions:

• std::atomic_load()
• std::atomic_load_explicit()
• std::atomic_store()
• std::atomic_store_explicit()
• std::atomic::load()
• std::atomic::store()

A thread cannot interrupt an atomic load or an atomic store operation on a variable, but a
thread can interrupt a store, and then load sequence.

Risk

A thread can modify a variable between the load and store operations, resulting in a data
race condition.

Fix

To read, modify, and store a variable atomically, use a compound assignment operator
such as +=, atomic_compare_exchange() or atomic_fetch_*-family functions.

Example - Loading Then Storing an Atomic Variable

#include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC_VAR_INIT(false);

void init_flag(void)
{
 atomic_init(&flag, false);
}

void toggle_flag(void)
{
 bool temp_flag = atomic_load(&flag);
 temp_flag = !temp_flag;
 atomic_store(&flag, temp_flag);
}

8 CERT C++ Rules

8-392

bool get_flag(void)
{
 return atomic_load(&flag);
}

In this example, variable flag of type atomic_bool is referenced twice inside the
toggle_flag() function. The function loads the variable, negates its value, then stores
the new value back to the variable. If two threads call toggle_flag(), the second
thread can access flag between the load and store operations of the first thread. flag
can end up in an incorrect state.

Correction — Use Compound Assignment to Modify Variable

One possible correction is to use a compound assignment operator to toggle the value of
flag. The C standard defines the operation by using ^= as atomic.

 #include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC_VAR_INIT(false);

void toggle_flag(void)
{
 flag ^= 1;
}

bool get_flag(void)
{
 return flag;
}

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

 CERT C++: CON40-C

8-393

External Websites
CON40-C

Introduced in R2019a

8 CERT C++ Rules

8-394

https://wiki.sei.cmu.edu/confluence/x/MtUxBQ

CERT C++: CON41-C
Wrap functions that can fail spuriously in a loop

Description

Rule Definition
Wrap functions that can fail spuriously in a loop.

Examples

Function that can spuriously fail not wrapped in loop
Description

Function that can spuriously fail not wrapped in loop occurs when the following
atomic compare and exchange functions that can fail spuriously are called from outside a
loop.

• C atomic functions:

• atomic_compare_exchange_weak()
• atomic_compare_exchange_weak_explicit()

• C++ atomic functions:

• std::atomic<T>::compare_exchange_weak(T* expected, T desired)
• std::atomic<T>::compare_exchange_weak_explicit(T* expected, T

desired, std::memory_order succ, std::memory_order fail)
• std::atomic_compare_exchange_weak(std::atomic<T>* obj, T*

expected, T desired)
• std::atomic_compare_exchange_weak_explicit(volatile

std::atomic<T>* obj, T* expected, T desired, std::memory_order
succ, std::memory_order fail)

 CERT C++: CON41-C

8-395

The functions compare the memory contents of the object representations pointed to by
obj and expected. The comparison can spuriously return false even if the memory
contents are equal. This spurious failure makes the functions faster on some platforms.

Risk

An atomic compare and exchange function that spuriously fails can cause unexpected
results and unexpected control flow.

Fix

Wrap atomic compare and exchange functions that can spuriously fail in a loop. The loop
checks the failure condition after a possible spurious failure.

Example - atomic_compare_exchange_weak() Not Wrapped in Loop
#include <stdatomic.h>

extern void reset_count(void);
atomic_int count = ATOMIC_VAR_INIT(0);

void increment_count(void)
{
 int old_count = atomic_load(&count);
 int new_count;
 new_count = old_count + 1;
 if (!atomic_compare_exchange_weak(&count, &old_count, new_count))
 reset_count();

}

In this example, increment_count() uses atomic_compare_exchange_weak() to
compare count and old_count. If the counts are equal, count is incremented to
new_count. If they are not equal, the count is reset. When
atomic_compare_exchange_weak() fails spuriously, the count is reset unnecessarily.

Correction — Wrap atomic_compare_exchange_weak() in a while Loop

One possible correction is to wrap the call to atomic_compare_exchange_weak() in a
while loop. The loop checks the failure condition after a possible spurious failure.

#include <stdatomic.h>

extern void reset_count(void);

8 CERT C++ Rules

8-396

atomic_int count = ATOMIC_VAR_INIT(0);

void increment_count(void)
{
 int old_count = atomic_load(&count);
 int new_count;
 new_count = old_count + 1;

 do {
 reset_count();

 } while (!atomic_compare_exchange_weak(&count, &old_count, new_count));

}

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON41-C

Introduced in R2019a

 CERT C++: CON41-C

8-397

https://wiki.sei.cmu.edu/confluence/x/QNUxBQ

CERT C++: CON43-C
Do not allow data races in multithreaded code

Description
Rule Definition
Do not allow data races in multithreaded code.

Examples
Data race
Description

Data race occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a write operation.
3 At least one operation is nonatomic. For data race on both atomic and nonatomic

operations, see Data race including atomic operations.

See “Define Atomic Operations in Multitasking Code”.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Configuring Polyspace Multitasking Analysis Manually”.

Risk

Data race can result in unpredictable values of the shared variable because you do not
control the order of the operations in different tasks.

Data races between two write operations are more serious than data races between a
write and read operation. Two write operations can interfere with each other and result in

8 CERT C++ Rules

8-398

indeterminate values. To identify write-write conflicts, use the filters on the Detail
column of the Results List pane. For these conflicts, the Detail column shows the
additional line:

 Variable value may be altered by write-write concurrent access.

See “Filter and Group Results”.

Fix

To fix this defect, protect the operations on the shared variable using critical sections,
temporal exclusion or another means. See “Protections for Shared Variables in
Multitasking Code”.

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access Protections
column shows existing protections on the calls. To see the function call sequence leading

to the conflicts, click the icon. For an example, see below.

Example - Unprotected Operation on Global Variable from Multiple Tasks

int var;
void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 begin_critical_section();
 increment();

 CERT C++: CON43-C

8-399

 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure
multitasking manually
Tasks (-entry-points) task1

task2

task3
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks task1, task2, and task3 call the function increment.
increment contains the operation var++ that can involve multiple machine instructions
including:

• Reading var.
• Writing an increased value to var.

These machine instructions, when executed from task1 and task2, can occur
concurrently in an unpredictable sequence. For example, reading var from task1 can
occur either before or after writing to var from task2. Therefore the value of var can be
unpredictable.

Though task3 calls increment inside a critical section, other tasks do not use the same
critical section. The operations in the critical section of task3 are not mutually exclusive
with operations in other tasks.

8 CERT C++ Rules

8-400

Therefore, the three tasks are operating on a shared variable without common protection.
In your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point
to the read or write operation. You also see that the operation starting from task3 is in a
critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

Correction — Place Operation in Critical Section

One possible correction is to place the operation in critical section. You can implement
the critical section in multiple ways. For instance:

 CERT C++: CON43-C

8-401

• You can place var++ in a critical section. When task1 enters its critical section, the
other tasks cannot enter their critical sections until task1 leaves its critical section.
The operation var++ from the three tasks cannot interfere with each other.

To implement the critical section, in the function increment, place the operation var
++ between calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 begin_critical_section();
 var++;
 end_critical_section();
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 increment();
}

• You can place the call to increment in the same critical section in the three tasks.
When task1 enters its critical section, the other tasks cannot enter their critical
sections until task1 leaves its critical section. The calls to increment from the three
tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call increment between
calls to begin_critical_section and end_critical_section.

int var;

8 CERT C++ Rules

8-402

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task2(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive
tasks (-temporal-
exclusions-file)

task1 task2 task3

On the command-line, you can use the following:

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

 CERT C++: CON43-C

8-403

task1 task2 task3

Example - Unprotected Operation in Threads Created with pthread_create

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 count = count + 1;
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 c = count;
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 return 1;
}

In this example, Bug Finder detects the creation of separate threads with
pthread_create. The Data race defect is raised because the operation count =
count + 1 in the thread with id thread_increment conflicts with the operation c =
count in the thread with id thread_get. The variable count is accessed in multiple
threads without a common protection.

8 CERT C++ Rules

8-404

The two conflicting operations are nonatomic. The operation c = count is nonatomic on
32-bit targets. See “Define Atomic Operations in Multitasking Code”.

Correction — Protect Operations with pthread_mutex_lock and
pthread_mutex_unlock Pair

To prevent concurrent access on the variable count, protect operations on count with a
critical section. Use the functions pthread_mutex_lock and pthread_mutex_unlock
to implement the critical section.

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 pthread_mutex_lock(&count_mutex);
 count = count + 1;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 pthread_mutex_lock(&count_mutex);
 c = count;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 CERT C++: CON43-C

8-405

 return 1;
}

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON43-C

Introduced in R2019a

8 CERT C++ Rules

8-406

https://wiki.sei.cmu.edu/confluence/x/zNUxBQ

CERT C++: CON50-CPP
Do not destroy a mutex while it is locked

Description

Rule Definition
Do not destroy a mutex while it is locked.

Examples

Destruction of locked mutex
Description

Destruction of locked mutex occurs when a task destroys a mutex after it is locked
(and before it is unlocked). The locking and destruction can happen in the same task or
different tasks.

Risk

A mutex is locked to protect shared variables from concurrent access. If a mutex is
destroyed in the locked state, the protection does not apply.

Fix

To fix this defect, destroy the mutex only after you unlock it. It is a good design practice
to:

• Initialize a mutex before creating the threads where you use the mutex.
• Destroy a mutex after joining the threads that you created.

On the Result Details pane, you see two events, the locking and destruction of the
mutex, and the tasks that initiated the events. To navigate to the corresponding line in
your source code, click the event.

 CERT C++: CON50-CPP

8-407

Example - Locking and Destruction in Different Tasks

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
 pthread_mutex_unlock (&lock3);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

In this example, after task t0 locks the mutex lock3, task t1 can destroy it. The
destruction occurs if the following events happen in sequence:

1 t0 acquires lock3.
2 t0 releases lock2.
3 t0 releases lock1.
4 t1 acquires the lock lock1 released by t0.
5 t1 acquires the lock lock2 released by t0.
6 t1 destroys lock3.

For simplicity, this example uses a mix of automatic and manual concurrency detection.
The tasks t0 and t1 are manually specified as entry points by using the option Tasks (-
entry-points).The critical sections are implemented through primitives
pthread_mutex_lock and pthread_mutex_unlock that the software detects

8 CERT C++ Rules

8-408

automatically. In practice, for entry point specification (thread creation), you will use
primitives such as pthread_create. The next example shows how the defect can appear
when you use pthread_create.

Correction — Place Lock-Unlock Pair Together in Same Critical Section as
Destruction

The locking and destruction of lock3 occurs inside the critical section imposed by lock1
and lock2, but the unlocking occurs outside. One possible correction is to place the lock-
unlock pair in the same critical section as the destruction of the mutex. Use one of these
critical sections:

• Critical section imposed by lock1 alone.
• Critical section imposed by lock1 and lock2.

In this corrected code, the lock-unlock pair and the destruction is placed in the critical
section imposed by lock1 and lock2. When t0 acquires lock1 and lock2, t1 has to
wait for their release before it executes the instruction pthread_mutex_destroy
(&lock3);. Therefore, t1 cannot destroy mutex lock3 in the locked state.

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 CERT C++: CON50-CPP

8-409

 pthread_mutex_destroy (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

Example - Locking and Destruction in Start Routine of Thread
#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_destroy(&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);

8 CERT C++ Rules

8-410

 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Thread that initializes mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use mutex for atomic operation*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 pthread_exit(NULL);
}

In this example, four threads are created. The threads are assigned different actions.

• The first thread callThd[0] initializes the mutex lock.
• The second and third threads, callThd[1] and callThd[2], perform an atomic

operation protected by the mutex lock.
• The fourth thread callThd[3] destroys the mutex lock.

The threads can interrupt each other. Therefore, immediately after the second or third
thread locks the mutex, the fourth thread can destroy it.

Correction — Initialize and Destroy Mutex Outside Start Routine

One possible correction is to initialize and destroy the mutex in the main function outside
the start routine of the threads. The threads perform only the atomic operation. You need
two fewer threads because the mutex initialization and destruction threads are not
required.

#include <pthread.h>

/* Define globally accessible variables and a mutex */

 CERT C++: CON50-CPP

8-411

#define NUMTHREADS 2
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_work(void *arg) {
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize mutex */
 pthread_mutex_init(&lock, NULL);

 for(i=0; i<NUMTHREADS; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy mutex */
 pthread_mutex_destroy(&lock);

 pthread_exit(NULL);
}

8 CERT C++ Rules

8-412

Correction — Use A Second Mutex To Protect Lock-Unlock Pair and Destruction

Another possible correction is to use a second mutex and protect the lock-unlock pair
from the destruction. This corrected code uses the mutex lock2 to achieve this
protection. The second mutex is initialized in the main function outside the start routine
of the threads.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
pthread_mutex_t lock2;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy(&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;

 CERT C++: CON50-CPP

8-413

 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize second mutex */
 pthread_mutex_init(&lock2, NULL);

 /* Thread that initializes first mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use first mutex for atomic operation */
 /* The threads use second mutex to protect first from destruction in locked state*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys first mutex */
 /* The thread uses the second mutex to prevent destruction of locked mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy second mutex */
 pthread_mutex_destroy(&lock2);

 pthread_exit(NULL);
}

Check Information
Group: 10. Concurrency (CON)

8 CERT C++ Rules

8-414

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON50-CPP

Introduced in R2019a

 CERT C++: CON50-CPP

8-415

https://wiki.sei.cmu.edu/confluence/x/fXs-BQ

CERT C++: CON52-CPP
Prevent data races when accessing bit-fields from multiple threads

Description
Rule Definition
Prevent data races when accessing bit-fields from multiple threads.

Examples
Data race
Description

Data race occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a write operation.
3 At least one operation is nonatomic. For data race on both atomic and nonatomic

operations, see Data race including atomic operations.

See “Define Atomic Operations in Multitasking Code”.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Configuring Polyspace Multitasking Analysis Manually”.

Risk

Data race can result in unpredictable values of the shared variable because you do not
control the order of the operations in different tasks.

Data races between two write operations are more serious than data races between a
write and read operation. Two write operations can interfere with each other and result in

8 CERT C++ Rules

8-416

indeterminate values. To identify write-write conflicts, use the filters on the Detail
column of the Results List pane. For these conflicts, the Detail column shows the
additional line:

 Variable value may be altered by write-write concurrent access.

See “Filter and Group Results”.

Fix

To fix this defect, protect the operations on the shared variable using critical sections,
temporal exclusion or another means. See “Protections for Shared Variables in
Multitasking Code”.

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access Protections
column shows existing protections on the calls. To see the function call sequence leading

to the conflicts, click the icon. For an example, see below.

Example - Unprotected Operation on Global Variable from Multiple Tasks

int var;
void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 begin_critical_section();
 increment();

 CERT C++: CON52-CPP

8-417

 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure
multitasking manually
Tasks (-entry-points) task1

task2

task3
Critical section
details (-critical-
section-begin -
critical-section-end)

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks task1, task2, and task3 call the function increment.
increment contains the operation var++ that can involve multiple machine instructions
including:

• Reading var.
• Writing an increased value to var.

These machine instructions, when executed from task1 and task2, can occur
concurrently in an unpredictable sequence. For example, reading var from task1 can
occur either before or after writing to var from task2. Therefore the value of var can be
unpredictable.

Though task3 calls increment inside a critical section, other tasks do not use the same
critical section. The operations in the critical section of task3 are not mutually exclusive
with operations in other tasks.

8 CERT C++ Rules

8-418

Therefore, the three tasks are operating on a shared variable without common protection.
In your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point
to the read or write operation. You also see that the operation starting from task3 is in a
critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

Correction — Place Operation in Critical Section

One possible correction is to place the operation in critical section. You can implement
the critical section in multiple ways. For instance:

 CERT C++: CON52-CPP

8-419

• You can place var++ in a critical section. When task1 enters its critical section, the
other tasks cannot enter their critical sections until task1 leaves its critical section.
The operation var++ from the three tasks cannot interfere with each other.

To implement the critical section, in the function increment, place the operation var
++ between calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 begin_critical_section();
 var++;
 end_critical_section();
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 increment();
}

• You can place the call to increment in the same critical section in the three tasks.
When task1 enters its critical section, the other tasks cannot enter their critical
sections until task1 leaves its critical section. The calls to increment from the three
tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call increment between
calls to begin_critical_section and end_critical_section.

int var;

8 CERT C++ Rules

8-420

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task2(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive
tasks (-temporal-
exclusions-file)

task1 task2 task3

On the command-line, you can use the following:

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

 CERT C++: CON52-CPP

8-421

task1 task2 task3

Example - Unprotected Operation in Threads Created with pthread_create

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 count = count + 1;
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 c = count;
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 return 1;
}

In this example, Bug Finder detects the creation of separate threads with
pthread_create. The Data race defect is raised because the operation count =
count + 1 in the thread with id thread_increment conflicts with the operation c =
count in the thread with id thread_get. The variable count is accessed in multiple
threads without a common protection.

8 CERT C++ Rules

8-422

The two conflicting operations are nonatomic. The operation c = count is nonatomic on
32-bit targets. See “Define Atomic Operations in Multitasking Code”.

Correction — Protect Operations with pthread_mutex_lock and
pthread_mutex_unlock Pair

To prevent concurrent access on the variable count, protect operations on count with a
critical section. Use the functions pthread_mutex_lock and pthread_mutex_unlock
to implement the critical section.

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 pthread_mutex_lock(&count_mutex);
 count = count + 1;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 pthread_mutex_lock(&count_mutex);
 c = count;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 CERT C++: CON52-CPP

8-423

 return 1;
}

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON52-CPP

Introduced in R2019a

8 CERT C++ Rules

8-424

https://wiki.sei.cmu.edu/confluence/x/cXs-BQ

CERT C++: CON53-CPP
Avoid deadlock by locking in a predefined order

Description

Rule Definition
Avoid deadlock by locking in a predefined order.

Examples

Deadlock
Description

Deadlock occurs when multiple tasks are stuck in their critical sections (CS) because:

• Each CS waits for another CS to end.
• The critical sections (CS) form a closed cycle. For example:

• CS #1 waits for CS #2 to end, and CS #2 waits for CS #1 to end.
• CS #1 waits for CS #2 to end, CS #2 waits for CS #3 to end and CS #3 waits for

CS #1 to end.

Polyspace expects critical sections of code to follow a specific format. A critical section
lies between a call to a lock function and a call to an unlock function. When a task
my_task calls a lock function my_lock, other tasks calling my_lock must wait until
my_task calls the corresponding unlock function. Both lock and unlock functions must
have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

 CERT C++: CON53-CPP

8-425

Risk

Each task waits for a critical section in another task to end and is unable to proceed. The
program can freeze indefinitely.

Fix

The fix depends on the root cause of the defect. You can try to break the cyclic order
between the tasks in one of these ways:

• Write down all critical sections involved in the deadlock in a certain sequence.
Whenever you call the lock functions of the critical sections within a task, respect the
order in that sequence. See an example below.

• If one of the critical sections involved in a deadlock occurs in an interrupt, try to
disable all interrupts during critical sections in all tasks. See Disabling all
interrupts (-routine-disable-interrupts -routine-enable-
interrupts).

Reviewing this defect is an opportunity to check if all operations in your critical section
are really meant to be executed as an atomic block. It is a good practice to keep critical
sections at a bare minimum.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Deadlock with Two Tasks

void task1(void);
void task2(void);

int var;
void perform_task_cycle(void) {
 var++;
}

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

8 CERT C++ Rules

8-426

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_2();
 begin_critical_section_1();
 perform_task_cycle();
 end_critical_section_1();
 end_critical_section_2();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure
multitasking
manually
Entry points task1

task2
Critical section
details

Starting routine Ending routine
begin_critical_section_1 end_critical_section_1
begin_critical_section_2 end_critical_section_2

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls begin_critical_section_1.
2 task2 calls begin_critical_section_2.

 CERT C++: CON53-CPP

8-427

3 task1 reaches the instruction begin_critical_section_2();. Since task2 has
already called begin_critical_section_2, task1 waits for task2 to call
end_critical_section_2.

4 task2 reaches the instruction begin_critical_section_1();. Since task1 has
already called begin_critical_section_1, task2 waits for task1 to call
end_critical_section_1.

Correction-Follow Same Locking Sequence in Both Tasks

One possible correction is to follow the same sequence of calls to lock and unlock
functions in both task1 and task2.

void task1(void);
void task2(void);
void perform_task_cycle(void);

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

8 CERT C++ Rules

8-428

Example - Deadlock with More Than Two Tasks

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {
 while(1) {
 lock3();
 lock1();
 performTaskCycle();

 CERT C++: CON53-CPP

8-429

 unlock1();
 unlock3();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually
Entry points task1

task2

task3
Critical section details Starting routine Ending routine

lock1 unlock1
lock2 unlock2
lock3 unlock3

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls lock1.
2 task2 calls lock2.
3 task3 calls lock3.
4 task1 reaches the instruction lock2();. Since task2 has already called lock2,

task1 waits for call to unlock2.
5 task2 reaches the instruction lock3();. Since task3 has already called lock3,

task2 waits for call to unlock3.
6 task3 reaches the instruction lock1();. Since task1 has already called lock1,

task3 waits for call to unlock1.

Correction — Break Cyclic Order

To break the cyclic order between critical sections, note every lock function in your code
in a certain sequence, for example:

1 lock1

8 CERT C++ Rules

8-430

2 lock2
3 lock3

If you use more than one lock function in a task, use them in the order in which they
appear in the sequence. For example, you can use lock1 followed by lock2 but not
lock2 followed by lock1.

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {

 CERT C++: CON53-CPP

8-431

 while(1) {
 lock1();
 lock3();
 performTaskCycle();
 unlock3();
 unlock1();
 }
}

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON53-CPP

Introduced in R2019a

8 CERT C++ Rules

8-432

https://wiki.sei.cmu.edu/confluence/x/d3s-BQ

CERT C++: CON54-CPP
Wrap functions that can spuriously wake up in a loop

Description

Rule Definition
Wrap functions that can spuriously wake up in a loop.

Examples

Function that can spuriously wake up not wrapped in loop
Description

Function that can spuriously wake up not wrapped in loop occurs when the
following wait-on-condition functions are called from outside a loop:

• C functions:

• cnd_wait()
• cnd_timedwait()

• POSIX functions:

• pthread_cond_wait()
• pthread_cond_timedwait()

• C++ std::condition_variable and std::condition_variable_any class
member functions:

• wait()
• wait_until()
• wait_for()

 CERT C++: CON54-CPP

8-433

Wait-on-condition functions pause the execution of the calling thread when a specified
condition is met. The thread wakes up and resumes once another thread notifies it with
cnd_broadcast() or an equivalent function. The wake-up notification can be spurious
or malicious.

Risk

If a thread receives a spurious wake-up notification and the condition of the wait-on-
condition function is not checked, the thread can wake up prematurely. The wake-up can
cause unexpected control flow, indefinite blocking of other threads, or denial of service.

Fix

Wrap wait-on-condition functions that can wake up spuriously in a loop. The loop checks
the wake-up condition after a possible spurious wake-up notification.

Example - cnd_wait() Not Wrapped in Loop

#include <stdio.h>
#include <stddef.h>
#include <threads.h>

#define THRESHOLD 100

static mtx_t lock;
static cnd_t cond;

void func(int input)
{
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }
 /* test condition to pause thread */
 if (input > THRESHOLD) {
 if (thrd_success != cnd_wait(&cond, &lock)) {
 /* Handle error */
 }
 }
 /* Proceed if condition to pause does not hold */

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }

8 CERT C++ Rules

8-434

}

In this example, the thread uses cnd_wait() to pause execution when input is greater
than THRESHOLD. The paused thread can resume if another thread uses
cnd_broadcast(), which notifies all the threads. This notification causes the thread to
wake up even if the pause condition is still true.

Correction — Wrap cnd_wait() in a while Loop

One possible correction is to wrap cnd_wait() in a while loop. The loop checks the
pause condition after the thread receives a possible spurious wake-up notification.

#include <stdio.h>
#include <stddef.h>
#include <threads.h>

#define THRESHOLD 100

static mtx_t lock;
static cnd_t cond;

void func(int input)
{
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }
 /* test condition to pause thread */
 while (input > THRESHOLD) {
 if (thrd_success != cnd_wait(&cond, &lock)) {
 /* Handle error */
 }
 }
 /* Proceed if condition to pause does not hold */

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }
}

 CERT C++: CON54-CPP

8-435

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON54-CPP

Introduced in R2019a

8 CERT C++ Rules

8-436

https://wiki.sei.cmu.edu/confluence/x/cns-BQ

CERT C++: ENV30-C
Do not modify the object referenced by the return value of certain functions

Description
Rule Definition
Do not modify the object referenced by the return value of certain functions.

Examples
Modification of internal buffer returned from nonreentrant
standard function
Description

Modification of internal buffer returned from nonreentrant standard function
occurs when the following happens:

• A nonreentrant standard function returns a pointer.
• You attempt to write to the memory location that the pointer points to.

Nonreentrant standard functions that return a non const-qualified pointer to an internal
buffer include getenv, getlogin, crypt, setlocale, localeconv, strerror and
others.

Risk

Modifying the internal buffer that a nonreentrant standard function returns can cause the
following issues:

• It is possible that the modification does not succeed or alters other internal data.

For instance, getenv returns a pointer to an environment variable value. If you modify
this value, you alter the environment of the process and corrupt other internal data.

 CERT C++: ENV30-C

8-437

• Even if the modification succeeds, it is possible that a subsequent call to the same
standard function does not return your modified value.

For instance, you modify the environment variable value that getenv returns. If
another process, thread, or signal handler calls setenv, the modified value is
overwritten. Therefore, a subsequent call to getenv does not return your modified
value.

Fix

Avoid modifying the internal buffer using the pointer returned from the function.

Example - Modification of getenv Return Value

#include <stdlib.h>
#include <string.h>

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 strncpy(env, "C", 1);
 printstr(env);
 }
}

In this example, the first argument of strncpy is the return value from a nonreentrant
standard function getenv. The behavior can be undefined because strncpy modifies this
argument.

Correction - Copy Return Value of getenv and Modify Copy

One possible solution is to copy the return value of getenv and pass the copy to the
strncpy function.

#include <stdlib.h>
#include <string.h>
enum {
 SIZE20 = 20
};

void printstr(const char*);

8 CERT C++ Rules

8-438

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 char env_cp[SIZE20];
 strncpy(env_cp, env, SIZE20);
 strncpy(env_cp, "C", 1);
 printstr(env_cp);
 }
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ENV30-C

Introduced in R2019a

 CERT C++: ENV30-C

8-439

https://wiki.sei.cmu.edu/confluence/x/79UxBQ

CERT C++: ENV31-C
Do not rely on an environment pointer following an operation that may invalidate it

Description

Rule Definition
Do not rely on an environment pointer following an operation that may invalidate it.

Examples

Environment pointer invalidated by previous operation
Description

Environment pointer invalidated by previous operation occurs when you use the
third argument of main() in a hosted environment to access the environment after an
operation modifies the environment. In a hosted environment, many C implementations
support the nonstandard syntax:

main (int argc, char *argv[], char *envp[])

A call to a setenv or putenv family function modifies the environment pointed to by
*envp.

Risk

When you modify the environment through a call to a setenv or putenv family function,
the environment memory can potentially be reallocated. The hosted environment pointer
is not updated and might point to an incorrect location. A call to this pointer can return
unexpected results or cause an abnormal program termination.

8 CERT C++ Rules

8-440

Fix

Do not use the hosted environment pointer. Instead, use global external variable environ
in Linux, _environ or _wenviron in Windows, or their equivalent. When you modify the
environment, these variables are updated.

Example - Access Environment Through Pointer envp

#include <stdio.h>
#include <stdlib.h>

extern int check_arguments(int argc, char **argv, char **envp);
extern void use_envp(char **envp);

/* envp is from main function */
int func(char **envp)
{
 /* Call to setenv may cause environment
 *memory to be reallocated
 */
 if (setenv(("MY_NEW_VAR"),("new_value"),1) != 0)
 {
 /* Handle error */
 return -1;
 }
 /* envp not updated after call to setenv, and may
 *point to incorrect location.
 **/
 if (envp != ((void *)0)) {
 use_envp(envp);
/* No defect on second access to
*envp because defect already raised */
 }
 return 0;
}

void main(int argc, char **argv, char **envp)
{
 if (check_arguments(argc, argv, envp))
 {
 (void)func(envp);
 }
}

 CERT C++: ENV31-C

8-441

In this example, envp is accessed inside func() after a call to setenv that can
reallocate the environment memory. envp can point to an incorrect location because it is
not updated after setenv modifies the environment. No defect is raised when
use_envp() is called because the defect is already raised on the previous line of code.

Correction — Use Global External Variable environ

One possible correction is to access the environment by using a variable that is always
updated after a call to setenv. For instance, in the following code, the pointer envp is
still available from main(), but the environment is accessed in func() through the
global external variable environ.

#include <stdio.h>
#include <stdlib.h>
extern char **environ;

extern int check_arguments(int argc, char **argv, char **envp);
extern void use_envp(char **envp);

int func(void)
{
 if (setenv(("MY_NEW_VAR"), ("new_value"),1) != 0) {
 /* Handle error */
 return -1;
 }
 /* Use global external variable environ
 *which is always updated after a call to setenv */

 if (environ != NULL) {
 use_envp(environ);
 }
 return 0;
}

void main(int argc, char **argv, char **envp)
{
 if (check_arguments(argc, argv, envp))
 {
 (void)func();
 }
}

8 CERT C++ Rules

8-442

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ENV31-C

Introduced in R2019a

 CERT C++: ENV31-C

8-443

https://wiki.sei.cmu.edu/confluence/x/5NUxBQ

CERT C++: ENV32-C
All exit handlers must return normally

Description
Rule Definition
All exit handlers must return normally.

Examples
Abnormal termination of exit handler
Description

Abnormal termination of exit handler looks for registered exit handlers. Exit handlers
are registered with specific functions such as atexit, (WinAPI) _onexit, or
at_quick_exit(). If the exit handler calls a function that interrupts the program’s
expected termination sequence, Polyspace raises a defect. Some functions that can cause
abnormal exits are exit, abort, longjmp, or (WinAPI) _onexit.

Risk

If your exit handler terminates your program, you can have undefined behavior. Abnormal
program termination means other exit handlers are not invoked. These additional exit
handlers may do additional clean up or other required termination steps.

Fix

In inside exit handlers, remove calls to functions that prevent the exit handler from
terminating normally.

Example - Exit Handler With Call to exit
#include <stdlib.h>

8 CERT C++ Rules

8-444

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;
}
void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 exit(0);
 }
 return;
}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() performs additional cleanup */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

In this example, demo_install_exitabnormalhandler registers two exit handlers,
demo_exit1 and exitabnormalhandler. Exit handlers are invoked in the reverse
order of which they are registered. When the program ends, exitabnormalhandler
runs, then demo_exit1. However, exitabnormalhandler calls exit interrupting the
program exit process. Having this exit inside an exit handler causes undefined behavior
because the program is not finished cleaning up safely.

Correction — Remove exit from Exit Handler

One possible correction is to let your exit handlers terminate normally. For this example,
exit is removed from exitabnormalhandler, allowing the exit termination process to
complete as expected.

 CERT C++: ENV32-C

8-445

#include <stdlib.h>

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;
}
void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 /* Return normally */
 }
 return;
}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() continues clean up */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

8 CERT C++ Rules

8-446

Topics
“Check for Coding Standard Violations”

External Websites
ENV32-C

Introduced in R2019a

 CERT C++: ENV32-C

8-447

https://wiki.sei.cmu.edu/confluence/x/KdYxBQ

CERT C++: ENV33-C
Do not call system()

Description

Rule Definition
Do not call system().

Examples

Unsafe call to a system function
Description

Unsafe call to a system function occurs when you use a function that invokes an
implementation-defined command processor. These functions include:

• The C standard system() function.
• The POSIX popen() function.
• The Windows _popen() and _wpopen() functions.

Risk

If the argument of a function that invokes a command processor is not sanitized, it can
cause exploitable vulnerabilities. An attacker can execute arbitrary commands or read
and modify data anywhere on the system.

Fix

Do not use a system-family function to invoke a command processor. Instead, use safer
functions such as POSIX execve() and WinAPI CreateProcess().

8 CERT C++ Rules

8-448

Example - system() Called

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char buf[SIZE512];
 int retval=sprintf(buf, "/usr/bin/any_cmd %s", arg);

 if (retval<=0 || retval>SIZE512){
 /* Handle error */
 abort();
 }
 /* Use of system() to pass any_cmd with
 unsanitized argument to command processor */

 if (system(buf) == -1) {
 /* Handle error */
 }
}

In this example, system() passes its argument to the host environment for the command
processor to execute. This code is vulnerable to an attack by command-injection.

Correction — Sanitize Argument and Use execve()

In the following code, the argument of any_cmd is sanitized, and then passed to
execve() for execution. exec-family functions are not vulnerable to command-injection
attacks.

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,

 CERT C++: ENV33-C

8-449

SIZE3=3};

void func(char *arg)
{
 char *const args[SIZE3] = {"any_cmd", arg, NULL};
 char *const env[] = {NULL};

 /* Sanitize argument */

 /* Use execve() to execute any_cmd. */

 if (execve("/usr/bin/time", args, env) == -1) {
 /* Handle error */
 }
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ENV33-C

Introduced in R2019a

8 CERT C++ Rules

8-450

https://wiki.sei.cmu.edu/confluence/x/MdYxBQ

CERT C++: ENV34-C
Do not store pointers returned by certain functions

Description

Rule Definition
Do not store pointers returned by certain functions.

Examples

Misuse of return value from nonreentrant standard function
Description

Misuse of return value from nonreentrant standard function occurs when these
events happen in this sequence:

1 You point to the buffer returned from a nonreentrant standard function such as
getenv or setlocale.

user = getenv("USER");
2 You call that nonreentrant standard function again.

user2 = getenv("USER2");
3 You use or dereference the pointer from the first step expecting the buffer to remain

unmodified since that step. In the meantime, the call in the second step has modified
the buffer.

For instance:

var=*user;

In some cases, the defect might appear even if you do not call the getenv function a
second time but simply return the pointer. For instance:

 CERT C++: ENV34-C

8-451

char* func() {
 user=getenv("USER");
 .
 .
 return user;
}

For information on which functions are covered by this defect, see documentation on
nonreentrant standard functions.

Risk

The C Standard allows nonreentrant functions such as getenv to return a pointer to a
static buffer. Because the buffer is static, a second call to getenv modifies the buffer. If
you continue to use the pointer returned from the first call past the second call, you can
see unexpected results. The buffer that it points to no longer has values from the first call.

The defect appears even if you do not call getenv a second time but simply return the
pointer. The reason is that someone calling your function might use the returned pointer
after a second call to getenv. By returning the pointer from your call to getenv, you
make your function unsafe to use.

The same rationale is true for other nonreentrant functions covered by this defect.

Fix

After the first call to getenv, make a copy of the buffer that the returned pointer points
to. After the second call to getenv, use this copy. Even if the second call modifies the
buffer, your copy is untouched.

Example - Return from getenv Used After Second Call to getenv
#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME"); /* First call */
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');

8 CERT C++ Rules

8-452

https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions
https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions

 if (user_name_from_home != NULL) {
 user = getenv("USER"); /* Second call */
 if ((user != NULL) &&
 (strcmp(user, user_name_from_home) == 0))
 {
 result = 1;
 }
 }
 }
 return result;
}

In this example, the pointer user_name_from_home is derived from the pointer home.
home points to the buffer returned from the first call to getenv. Therefore,
user_name_from_home points to a location in the same buffer.

After the second call to getenv, the buffer is modified. If you continue to use
user_name_from_home, you can get unexpected results.

Correction — Make Copy of Buffer Before Second Call

If you want to access the buffer from the first call to getenv past the second call, make a
copy of the buffer after the first call. One possible correction is to use the strdup
function to make the copy.

#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME");
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');
 if (user_name_from_home != NULL) {
 /* Make copy before second call */
 char *saved_user_name_from_home = strdup(user_name_from_home);
 if (saved_user_name_from_home != NULL) {
 user = getenv("USER");
 if ((user != NULL) &&
 (strcmp(user, saved_user_name_from_home) == 0))
 {

 CERT C++: ENV34-C

8-453

 result = 1;
 }
 free(saved_user_name_from_home);
 }
 }
 }
 return result;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ENV34-C

Introduced in R2019a

8 CERT C++ Rules

8-454

https://wiki.sei.cmu.edu/confluence/x/8tYxBQ

CERT C++: FLP30-C
Do not use floating-point variables as loop counters

Description

Rule Definition
Do not use floating-point variables as loop counters.

Examples

Floating type or multiple for loop counters
Description

The checker flags these situations:

• The for loop index has a floating point type.
• More than one loop counter is incremented in the for loop increment statement.

For instance:

for(i=0, j=0; i<10 && j < 10;i++, j++) {}

• A loop counter is not incremented in the for loop increment statement.

For instance:

for(i=0; i<10;) {}

Even if you increment the loop counter in the loop body, the checker still raises a
violation.

 CERT C++: FLP30-C

8-455

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FLP30-C

Introduced in R2019a

8 CERT C++ Rules

8-456

https://wiki.sei.cmu.edu/confluence/x/HdYxBQ

CERT C++: FLP32-C
Prevent or detect domain and range errors in math functions

Description

Rule Definition
Prevent or detect domain and range errors in math functions.

Examples

Invalid use of standard library floating point routine
Description

Invalid use of standard library floating point routine occurs when you use invalid
arguments with a floating point function from the standard library. This defect picks up:

• Rounding and absolute value routines

ceil, fabs, floor, fmod
• Fractions and division routines

fmod, modf
• Exponents and log routines

frexp, ldexp, sqrt, pow, exp, log, log10
• Trigonometry function routines

cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh, acosh,
asinh, atanh

 CERT C++: FLP32-C

8-457

Risk

Domain errors on standard library floating point functions result in implementation-
defined values. If you use the function return value in subsequent computations, you can
see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the function
argument acquires invalid values. You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using
right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

It is a good practice to handle for domain errors before using a standard library floating
point function. For instance, before calling the acos function, check if the argument is in
[-1.0, 1.0] and handle the error.

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code,
add comments to your result or code to avoid another review. See “Address Polyspace
Results Through Bug Fixes or Justifications”.

Example - Arc Cosine Operation
#include <math.h>

double arccosine(void) {
 double degree = 5.0;
 return acos(degree);
}

The input value to acos must be in the interval [-1,1]. This input argument, degree, is
outside this range.

Correction — Change Input Argument

One possible correction is to change the input value to fit the specified range. In this
example, change the input value from degrees to radians to fix this defect.

#include <math.h>

8 CERT C++ Rules

8-458

double arccosine(void) {
 double degree = 5.0;
 double radian = degree * 3.14159 / 180.;
 return acos(radian);
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FLP32-C

Introduced in R2019a

 CERT C++: FLP32-C

8-459

https://wiki.sei.cmu.edu/confluence/x/DNcxBQ

CERT C++: FLP34-C
Ensure that floating-point conversions are within range of the new type

Description

Rule Definition
Ensure that floating-point conversions are within range of the new type.

Examples

Float conversion overflow
Description

Float conversion overflow occurs when converting a floating point number to a smaller
floating point data type. If the variable does not have enough memory to represent the
original number, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Risk

Overflows can result in unpredictable values from computations. The result can be infinity
or the maximum finite value depending on the rounding mode used in the
implementation. If you use the result of an overflowing conversion in subsequent
computations and do not account for the overflow, you can see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variable being
converted acquires its current value You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using

8 CERT C++ Rules

8-460

right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

In general, avoid conversions to smaller floating point types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Converting from double to float

float convert(void) {

 double diam = 1e100;
 return (float)diam;
}

In the return statement, the variable diam of type double (64 bits) is converted to a
variable of type float (32 bits). However, the value 1^100 requires more than 32 bits to be
precisely represented.

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

 CERT C++: FLP34-C

8-461

External Websites
FLP34-C

Introduced in R2019a

8 CERT C++ Rules

8-462

https://wiki.sei.cmu.edu/confluence/x/xNUxBQ

CERT C++: FLP36-C
Preserve precision when converting integral values to floating-point type

Description
Rule Definition
Preserve precision when converting integral values to floating-point type.

Examples
Precision loss in integer to float conversion
Description

Precision loss from integer to float conversion occurs when you cast an integer value
to a floating-point type that cannot represent the original integer value.

For instance, the long int value 1234567890L is too large for a variable of type
float .

Risk

If the floating-point type cannot represent the integer value, the behavior is undefined
(see C11 standard, 6.3.1.4, paragraph 2). For instance, least significant bits of the
variable value can be dropped leading to unexpected results.

Fix

Convert to a floating-point type that can represent the integer value.

For instance, if the float data type cannot represent the integer value, use the double
data type instead.

When writing a function that converts an integer to floating point type, before the
conversion, check if the integer value can be represented in the floating-point type. For

 CERT C++: FLP36-C

8-463

instance, DBL_MANT_DIG * log2(FLT_RADIX) represents the number of base-2 digits
in the type double. Before conversion to the type double, check if this number is
greater than or equal to the precision of the integer that you are converting. To determine
the precision of an integer num, use this code:

 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;
 }
 num >>= 1;
 }

Some implementations provide a builtin function to determine the precision of an integer.
For instance, GCC provides the function __builtin_popcount.

Example - Conversion of Large Integer to Floating-Point Type

#include <stdio.h>

int main(void) {
 long int big = 1234567890L;
 float approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

In this example, the long int variable big is converted to float.

Correction — Use a Wider Floating-Point Type

One possible correction is to convert to the double data type instead of float.

#include <stdio.h>

int main(void) {
 long int big = 1234567890L;
 double approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

8 CERT C++ Rules

8-464

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FLP36-C

Introduced in R2019a

 CERT C++: FLP36-C

8-465

https://wiki.sei.cmu.edu/confluence/x/XdYxBQ

CERT C++: FLP37-C
Do not use object representations to compare floating-point values

Description

Rule Definition
Do not use object representations to compare floating-point values.

Examples

Memory comparison of float-point values
Description

Memory comparison of float-point values occurs when you compare the object
representation of floating-point values or the object representation of structures
containing floating-point members. When you use the functions memcmp, bcmp, or
wmemcmp to perform the bit pattern comparison, the defect is raised.

Risk

The object representation of floating-point values uses specific bit patterns to encode
those values. Floating-point values that are equal, for instance -0.0 and 0.0 in the IEC
60559 standard, can have different bit patterns in their object representation. Similarly,
floating-point values that are not equal can have the same bit pattern in their object
representation.

Fix

When you compare structures containing floating-point members, compare the structure
members individually.

8 CERT C++ Rules

8-466

To compare two floating-point values, use the == or != operators. If you follow a standard
that discourages the use of these operators, such as MISRA, ensure that the difference
between the floating-point values is within an acceptable range.

Example - Using memcmp to Compare Structures with Floating-Point Members

#include <string.h>

typedef struct {
 int i;
 float f;
} myStruct;

extern void initialize_Struct(myStruct *);

int func_cmp(myStruct *s1, myStruct *s2) {
/* Comparison between structures containing
* floating-point members */
 return memcmp
 ((const void *)s1, (const void *)s2, sizeof(myStruct));
}

void func(void) {
 myStruct s1, s2;
 initialize_Struct(&s1);
 initialize_Struct(&s2);
 (void)func_cmp(&s1, &s2);
}

In this example, func_cmp() calls memcmp() to compare the object representations of
structures s1 and s2. The comparison might be inaccurate because the structures
contain floating-point members.

Correction — Compare Structure Members Individually

One possible correction is to compare the structure members individually and to ensure
that the difference between the floating-point values is within an acceptable range
defined by ESP.

 #include <string.h>

typedef struct {
 int i;
 float f;

 CERT C++: FLP37-C

8-467

} myStruct;

extern void initialize_Struct(myStruct *);

#define ESP 0.00001

int func_cmp(myStruct *s1, myStruct *s2) {

/*Structure members are compared individually */
 return ((s1->i == s2->i) &&
 (fabsf(s1->f - s2->f) <= ESP));
}

void func(void) {
 myStruct s1, s2;
 initialize_Struct(&s1);
 initialize_Struct(&s2);
 (void)func_cmp(&s1, &s2);
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FLP37-C

Introduced in R2019a

8 CERT C++ Rules

8-468

https://wiki.sei.cmu.edu/confluence/x/kdUxBQ

CERT C++: MSC30-C
Do not use the rand() function for generating pseudorandom numbers

Description
Rule Definition
Do not use the rand() function for generating pseudorandom numbers.

Examples
Vulnerable pseudo-random number generator
Description

The Vulnerable pseudo-random number generator identifies uses of
cryptographically weak pseudo-random number generator (PRNG) routines.

The list of cryptographically weak routines flagged by this checker include:

• rand, random
• drand48, lrand48, mrand48, erand48, nrand48, jrand48, and their _r equivalents

such as drand48_r
• RAND_pseudo_bytes

Risk

These cryptographically weak routines are predictable and must not be used for security
purposes. When a predictable random value controls the execution flow, your program is
vulnerable to malicious attacks.

Fix

Use more cryptographically sound random number generators, such as CryptGenRandom
(Windows), OpenSSL/RAND_bytes(Linux/UNIX).

 CERT C++: MSC30-C

8-469

Example - Random Loop Numbers

#include <stdio.h>
#include <stdlib.h>

volatile int rd = 1;
int main(int argc, char *argv[])
{
 int j, r, nloops;
 struct random_data buf;
 int i = 0;

 nloops = rand();

 for (j = 0; j < nloops; j++) {
 if (random_r(&buf, &i))
 exit(1);
 printf("random_r: %ld\n", (long)i);
 }
 return 0;
}

This example uses rand and random_r to generate random numbers. If you use these
functions for security purposes, these PRNGs can be the source of malicious attacks.

Correction — Use Stronger PRNG

One possible correction is to replace the vulnerable PRNG with a stronger random
number generator.

#include <stdio.h>
#include <stdlib.h>
#include <openssl/rand.h>

volatile int rd = 1;
int main(int argc, char* argv[])
{
 int j, r, nloops;
 unsigned char buf;
 unsigned int seed;
 int i = 0;

 if (argc != 3)

8 CERT C++ Rules

8-470

 {
 fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 seed = atoi(argv[1]);
 nloops = atoi(argv[2]);

 for (j = 0; j < nloops; j++) {
 if (RAND_bytes(&buf, i) != 1)
 exit(1);
 printf("RAND_bytes: %u\n", (unsigned)buf);
 }
 return 0;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC30-C

Introduced in R2019a

 CERT C++: MSC30-C

8-471

https://wiki.sei.cmu.edu/confluence/x/UNcxBQ

CERT C++: MSC32-C
Properly seed pseudorandom number generators

Description

Rule Definition
Properly seed pseudorandom number generators.

Examples

Deterministic random output from constant seed
Description

Deterministic random output from constant seed detects random standard functions
that when given a constant seed, have deterministic output.

Risk

When some random functions, such as srand, srandom, and initstate, have constant
seeds, the results produce the same output every time that your program is run. A hacker
can disrupt your program if they know how your program behaves.

Fix

Use a different random standard function or use a nonconstant seed.

Some standard random routines are inherently cryptographically weak on page 3-931,
and should not be used for security purposes.

Example - Random Number Generator Initialization

#include <stdlib.h>

8 CERT C++ Rules

8-472

void random_num(void)
{
 srand(12345U);
 /* ... */
}

This example initializes a random number generator using srand with a constant seed.
The random number generation is deterministic, making this function cryptographically
weak.

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define _CRT_RAND_S
#include <stdlib.h>
#include <stdio.h>

unsigned int random_num_time(void)
{

 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

 CERT C++: MSC32-C

8-473

Predictable random output from predictable seed
Description

Predictable random output from predictable seed looks for random standard
functions that use a nonconstant but predictable seed. Examples of predictable seed
generators are time, gettimeofday, and getpid.

Risk

When you use predictable seed values for random number generation, your random
numbers are also predictable. A hacker can disrupt your program if they know how your
program behaves.

Fix

You can use a different function to generate less predictable seeds.

You can also use a different random number generator that does not require a seed. For
example, the Windows API function rand_s seeds itself by default. It uses information
from the entire system, for example, system time, thread ids, system counter, and memory
clusters. This information is more random and a user cannot access this information.

Some standard random routines are inherently cryptographically weak on page 3-931,
and should not be used for security purposes.

Example - Seed as an Argument

#include <stdlib.h>
#include <time.h>

void seed_rng(int seed)
{
 srand(seed);
}

int generate_num(void)
{
 seed_rng(time(NULL) + 3);
 /* ... */
}

8 CERT C++ Rules

8-474

This example uses srand to start the random number generator with seed as the seed.
However, seed is predictable because the function time generates it. So, an attacker can
predict the random numbers generated by srand.

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define _CRT_RAND_S

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int generate_num(void)
{
 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

 CERT C++: MSC32-C

8-475

Topics
“Check for Coding Standard Violations”

External Websites
MSC32-C

Introduced in R2019a

8 CERT C++ Rules

8-476

https://wiki.sei.cmu.edu/confluence/x/W9YxBQ

CERT C++: MSC33-C
Do not pass invalid data to the asctime() function

Description

Rule Definition
Do not pass invalid data to the asctime() function.

Examples

Use of obsolete standard function
Description

Use of obsolete standard function detects calls to standard function routines that are
considered legacy, removed, deprecated, or obsolete by C/C++ coding standards.

Obsolete Function Standards Risk Replacement
Function

asctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

asctime_r Deprecated in POSIX.1-2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

bcmp Deprecated in 4.3BSD

Marked as legacy in
POSIX.1-2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcmp

 CERT C++: MSC33-C

8-477

Obsolete Function Standards Risk Replacement
Function

bcopy Deprecated in 4.3BSD

Marked as legacy in
POSIX.1-2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcpy or
memmove

brk and sbrk Marked as legacy in SUSv2 and
POSIX.1-2001.

 malloc

bsd_signal Removed in POSIX.1-2008 sigaction
bzero Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

 memset

ctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

ctime_r Deprecated in POSIX.1-2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

cuserid Removed in POSIX.1-2001. Not reentrant. Precise
functionality not
standardized causing
portability issues.

getpwuid

ecvt and fcvt Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008

Not reentrant snprintf

ecvt_r and fcvt_r Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008

 snprintf

ftime Removed in POSIX.1-2008 time,
gettimeofday,
clock_gettime

gamma, gammaf,
gammal

Function not specified in any
standard because of historical
variations

Portability issues. tgamma, lgamma

8 CERT C++ Rules

8-478

Obsolete Function Standards Risk Replacement
Function

gcvt Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 snprintf

getcontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

getdtablesize BSD API function not included
in POSIX.1-2001

Portability issues. sysconf(_SC_OP
EN_MAX)

gethostbyaddr Removed in POSIX.1-2008 Not reentrant getaddrinfo
gethostbyname Removed in POSIX.1-2008 Not reentrant getnameinfo
getpagesize BSD API function not included

in POSIX.1-2001
Portability issues. sysconf(_SC_PA

GESIZE)
getpass Removed in POSIX.1-2001. Not reentrant. getpwuid
getw Not present in POSIX.1-2001. fread
getwd Marked legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

 getcwd

index Marked as legacy in
POSIX.1-2001. Removed in
POSIX.1-2008.

 strchr

makecontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

memalign Appears in SunOS 4.1.3. Not in
4.4 BSD or POSIX.1-2001

 posix_memalign

mktemp Removed in POSIX.1-2008. Generated names are
predictable and can
cause a race condition.

mkstemp removes
race risk

pthread_attr_
getstackaddr and
pthread_attr_
setstackaddr

 Ambiguities in the
specification of the
stackaddr attribute
cause portability
issues

pthread_attr_
getstack and
pthread_attr_
setstack

putw Not present in POSIX.1-2001. Portability issues. fwrite

 CERT C++: MSC33-C

8-479

Obsolete Function Standards Risk Replacement
Function

qecvt and qfcvt Marked as legacy in
POSIX.1-2001, removed in
POSIX.1-2008

 snprintf

qecvt_r and
qfcvt_r

Marked as legacy in
POSIX.1-2001, removed in
POSIX.1-2008

 snprintf

rand_r Marked as obsolete in
POSIX.1-2008

re_comp BSD API function Portability issues regcomp
re_exes BSD API function Portability issues regexec
rindex Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

 strrchr

scalb Removed in POSIX.1-2008 scalbln,
scalblnf, or
scalblnl

sigblock 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigmask 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigsetmask 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigstack Interface is obsolete and not
implemented on most
platforms.

Portability issues. sigaltstack

sigvec 4.3BSD signal API whose origin
is unclear

 sigaction

swapcontext Removed in POSIX.1-2008 Portability issues. Use POSIX threads.

8 CERT C++ Rules

8-480

Obsolete Function Standards Risk Replacement
Function

tmpnam and
tmpnam_r

Marked as obsolete in
POSIX.1-2008.

This function
generates a different
string each time it is
called, up to
TMP_MAX times. If it
is called more than
TMP_MAX times, the
behavior is
implementation-
defined.

mkstemp, tmpfile

ttyslot Removed in POSIX.1-2001.
ualarm Marked as legacy in

POSIX.1-2001. Removed in
POSIX.1-2008.

Errors are under-
specified

setitimer or
POSIX
timer_create

usleep Removed in POSIX.1-2008. nanosleep
utime SVr4, POSIX.1-2001.

POSIX.1-2008 marks as
obsolete.

valloc Marked as obsolete in 4.3BSD.

Marked as legacy in SUSv2.

Removed from POSIX.1-2001

 posix_memalign

vfork Removed from POSIX.1-2008 Under-specified in
previous standards.

fork

wcswcs This function was not included
in the final ISO/IEC 9899:1990/
Amendment 1:1995 (E).

 wcsstr

WinExec WinAPI provides this function
only for 16-bit Windows
compatibility.

 CreateProcess

LoadModule WinAPI provides this function
only for 16-bit Windows
compatibility.

 CreateProcess

 CERT C++: MSC33-C

8-481

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Printing Out Time

#include <stdio.h>
#include <time.h>

void timecheck_bad(int argc, char *argv[])
{
 time_t ticks;

 ticks = time(NULL);
 printf("%.24s\r\n", ctime(&ticks));
}

In this example, the function ctime formats the current time and prints it out. However,
ctime was removed after C99 because it does not work on multithreaded programs.

Correction — Different Time Function

One possible correction is to use strftime instead because this function uses a set
buffer size.

#include <stdio.h>
#include <string.h>
#include <time.h>

void timecheck_good(int argc, char *argv[])
{
 char outBuff[1025];
 time_t ticks;
 struct tm * timeinfo;

8 CERT C++ Rules

8-482

 memset(outBuff, 0, sizeof(outBuff));

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime(outBuff,sizeof(outBuff),"%I:%M%p.",timeinfo);
 fprintf(stdout, outBuff);
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC33-C

Introduced in R2019a

 CERT C++: MSC33-C

8-483

https://wiki.sei.cmu.edu/confluence/x/yNYxBQ

CERT C++: MSC37-C
Ensure that control never reaches the end of a non-void function

Description

Rule Definition
Ensure that control never reaches the end of a non-void function.

Examples

Missing return statement
Description

Missing return statement occurs when a function does not return a value along at least
one execution path. If the return type of the function is void, this error does not occur.

Risk

If a function has a non-void return value in its signature, it is expected to return a value.
The return value of this function can be used in later computations. If the execution of the
function body goes through a path where a return statement is missing, the function
return value is indeterminate. Computations with this return value can lead to
unpredictable results.

Fix

In most cases, you can fix this defect by placing the return statement at the end of the
function body.

Alternatively, you can identify which execution paths through the function body do not
have a return statement and add a return statement on those paths. Often the result
details show a sequence of events that indicate this execution path. You can add a
return statement at an appropriate point in the path. If the result details do not show

8 CERT C++ Rules

8-484

the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Missing or invalid return statement error

int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }
 }
/* Defect: No return value if n is not 0*/

If n is equal to 0, the code does not enter the if statement. Therefore, the function
AddSquares does not return a value if n is 0.

Correction — Place Return Statement on Every Execution Path

One possible correction is to return a value in every branch of the if...else statement.

 int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }

 CERT C++: MSC37-C

8-485

 return(sum);
 }

 /*Fix: Place a return statement on branches of if-else */
 else
 return 0;
 }

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC37-C

Introduced in R2019a

8 CERT C++ Rules

8-486

https://wiki.sei.cmu.edu/confluence/x/m9YxBQ

CERT C++: MSC38-C
Do not treat a predefined identifier as an object if it might only be implemented as a
macro

Description
Rule Definition
Do not treat a predefined identifier as an object if it might only be implemented as a
macro.

Examples
Predefined macro used as an object
Description

Predefined macro used as an object occurs when you use certain identifiers in a way
that requires an underlying object to be present. These identifiers are defined as macros.
The C Standard does not allow you to redefine them as objects. You use the identifiers in
such a way that macro expansion of the identifiers cannot occur.

For instance, you refer to an external variable errno:

extern int errno;

However, errno does not occur as a variable but a macro.

The defect applies to these macros: assert, errno, math_errhandling, setjmp,
va_arg, va_copy, va_end, and va_start. The checker looks for the defect only in
source files (not header files).

Risk

The C11 Standard (Sec. 7.1.4) allows you to redefine most macros as objects. To access
the object and not the macro in a source file, you do one of these:

 CERT C++: MSC38-C

8-487

• Redeclare the identifier as an external variable or function.
• For function-like macros, enclose the identifier name in parentheses.

If you try to use these strategies for macros that cannot be redefined as objects, an error
occurs.

Fix

Do not use the identifiers in such a way that a macro expansion is suppressed.

• Do not redeclare the identifiers as external variables or functions.
• For function-like macros, do not enclose the macro name in parentheses.

Example - Use of assert as Function

#include<assert.h>
typedef void (*err_handler_func)(int);

extern void demo_handle_err(err_handler_func, int);

void func(int err_code) {
 extern void assert(int);
 demo_handle_err(&(assert), err_code);
}

In this example, the assert macro is redefined as an external function. When passed as
an argument to demo_handle_err, the identifier assert is enclosed in parentheses,
which suppresses use of the assert macro.

Correction — Use assert as Macro

One possible correction is to directly use the assert macro from assert.h. A different
implementation of the function demo_handle_err directly uses the assert macro
instead of taking the address of an assert function.

#include<assert.h>
void demo_handle_err(int err_code) {
 assert(err_code == 0);
}

void func(int err_code) {
 demo_handle_err(err_code);
}

8 CERT C++ Rules

8-488

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC38-C

Introduced in R2019a

 CERT C++: MSC38-C

8-489

https://wiki.sei.cmu.edu/confluence/x/qdYxBQ

CERT C++: MSC39-C
Do not call va_arg() on a va_list that has an indeterminate value

Description

Rule Definition
Do not call va_arg() on a va_list that has an indeterminate value.

Examples

Invalid va_list argument
Description

Invalid va_list argument occurs when you use a va_list variable as an argument to a
function in the vprintf group but:

• You do not initialize the variable previously using va_start or va_copy.
• You invalidate the variable previously using va_end and do not reinitialize it.

For instance, you call the function vsprintf as vsprintf (buffer,format, args).
However, before the function call, you do not initialize the va_list variable args using
either of the following:

• va_start(args, paramName). paramName is the last named argument of a
variable-argument function. For instance, for the function definition void func(int
n, char c, ...) {}, c is the last named argument.

• va_copy(args, anotherList). anotherList is another valid va_list variable.

Risk

The behavior of an uninitialized va_list argument is undefined. Calling a function with
an uninitialized va_list argument can cause stack overflows.

8 CERT C++ Rules

8-490

Fix

Before using a va_list variable as function argument, initialize it with va_start or
va_copy.

Clean up the variable using va_end only after all uses of the variable.

Example - va_list Variable Used Following Call to va_end
#include <stdarg.h>
#include <stdio.h>

int call_vfprintf(int line, const char *format, ...) {
 va_list ap;
 int r=0;

 va_start(ap, format);
 r = vfprintf(stderr, format, ap);
 va_end(ap);

 r += vfprintf(stderr, format, ap);
 return r;
}

In this example, the va_list variable ap is used in the vfprintf function, after the
va_end macro is called.

Correction — Call va_end After Using va_list Variable

One possible correction is to call va_end only after all uses of the va_list variable.

#include <stdarg.h>
#include <stdio.h>

int call_vfprintf(int line, const char *format, ...) {
 va_list ap;
 int r=0;

 va_start(ap, format);
 r = vfprintf(stderr, format, ap);
 r += vfprintf(stderr, format, ap);
 va_end(ap);

 return r;
}

 CERT C++: MSC39-C

8-491

Too many va_arg calls for current argument list
Description

Too many va_arg calls for current argument list occurs when the number of calls to
va_arg exceeds the number of arguments passed to the corresponding variadic function.
The analysis raises a defect only when the variadic function is called.

Too many va_arg calls for current argument list does not raise a defect when:

• The number of calls to va_arg inside the variadic function is indeterminate. For
example, if the calls are from an external source.

• The va_list used in va_arg is invalid.

Risk

When you call va_arg and there is no next argument available in va_list, the behavior
is undefined. The call to va_arg might corrupt data or return an unexpected result.

Fix

Ensure that you pass the correct number of arguments to the variadic function.

Example - No Argument Available When Calling va_arg

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/
int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {
/* No further argument available
* in va_list when calling va_arg
*/

8 CERT C++ Rules

8-492

 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100);

}

In this example, the named argument and only one variadic argument are passed to
variadic_func() when it is called inside func(). On the second call to va_arg, no
further variadic argument is available in ap and the behavior is undefined.

Correction — Pass Correct Number of Arguments to Variadic Function

One possible correction is to ensure that you pass the correct number of arguments to the
variadic function.

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/

int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {

/* The correct number of arguments is
* passed to va_list when variadic_func()
* is called inside func()
*/

 CERT C++: MSC39-C

8-493

 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100, 200);

}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC39-C

Introduced in R2019a

8 CERT C++ Rules

8-494

https://wiki.sei.cmu.edu/confluence/x/ndYxBQ

CERT C++: MSC40-C
Do not violate constraints

Description

Rule Definition
Do not violate constraints.

Examples

Inline constraint not respected
Description

Inline constraint not respected occurs when you refer to a file scope modifiable static
variable or define a local modifiable static variable in a nonstatic inlined function. The
checker considers a variable as modifiable if it is not const-qualified.

For instance, var is a modifiable static variable defined in an inline function func.
g_step is a file scope modifiable static variable referred to in the same inlined function.

static int g_step;
inline void func (void) {
 static int var = 0;
 var += g_step;
}

Risk

When you modify a static variable in multiple function calls, you expect to modify the
same variable in each call. For instance, each time you call func, the same instance of
var1 is incremented but a separate instance of var2 is incremented.

void func(void) {
 static var1 = 0;

 CERT C++: MSC40-C

8-495

 var2 = 0;
 var1++;
 var2++;
}

If a function has an inlined and non-inlined definition (in separate files), when you call the
function, the C standard allows compilers to use either the inlined or the non-inlined form
(see ISO/IEC 9899:2011, sec. 6.7.4). If your compiler uses an inlined definition in one call
and the non-inlined definition in another, you are no longer modifying the same variable
in both calls. This behavior defies the expectations from a static variable.

Fix

Use one of these fixes:

• If you do not intend to modify the variable, declare it as const.

If you do not modify the variable, there is no question of unexpected modification.
• Make the variable non-static. Remove the static qualifier from the declaration.

If the variable is defined in the function, it becomes a regular local variable. If defined
at file scope, it becomes an extern variable. Make sure that this change in behavior is
what you intend.

• Make the function static. Add a static qualifier to the function definition.

If you make the function static, the file with the inlined definition always uses the
inlined definition when the function is called. Other files use another definition of the
function. The question of which function definition gets used is not left to the compiler.

Example - Static Variable Use in Inlined and External Definition

/* file1. c : contains inline definition of get_random()*/

inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;

8 CERT C++ Rules

8-496

}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

In this example, get_random() has an inline definition in file1.c and an external
definition in file2.c. When get_random is called in file1.c, compilers are free to
choose whether to use the inline or the external definition.

Depending on the definition used, you might or might not modify the version of m_z and
m_w in the inlined version of get_random(). This behavior contradicts the usual
expectations from a static variable. When you call get_random(), you expect to always
modify the same m_z and m_w.

Correction — Make Inlined Function Static

One possible correction is to make the inlined get_random() static. Irrespective of your
compiler, calls to get_random() in file1.c then use the inlined definition. Calls to
get_random() in other files use the external definition. This fix removes the ambiguity
about which definition is used and whether the static variables in that definition are
modified.

 CERT C++: MSC40-C

8-497

/* file1. c : contains inline definition of get_random()*/

static inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

Check Information
Group: 49. Miscellaneous (MSC)

8 CERT C++ Rules

8-498

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC40-C

Introduced in R2019a

 CERT C++: MSC40-C

8-499

https://wiki.sei.cmu.edu/confluence/x/TtUxBQ

CERT C++: MSC50-CPP
Do not use std::rand() for generating pseudorandom numbers

Description
Rule Definition
Do not use std::rand() for generating pseudorandom numbers.

Examples
Vulnerable pseudo-random number generator
Description

The Vulnerable pseudo-random number generator identifies uses of
cryptographically weak pseudo-random number generator (PRNG) routines.

The list of cryptographically weak routines flagged by this checker include:

• rand, random
• drand48, lrand48, mrand48, erand48, nrand48, jrand48, and their _r equivalents

such as drand48_r
• RAND_pseudo_bytes

Risk

These cryptographically weak routines are predictable and must not be used for security
purposes. When a predictable random value controls the execution flow, your program is
vulnerable to malicious attacks.

Fix

Use more cryptographically sound random number generators, such as CryptGenRandom
(Windows), OpenSSL/RAND_bytes(Linux/UNIX).

8 CERT C++ Rules

8-500

Example - Random Loop Numbers

#include <stdio.h>
#include <stdlib.h>

volatile int rd = 1;
int main(int argc, char *argv[])
{
 int j, r, nloops;
 struct random_data buf;
 int i = 0;

 nloops = rand();

 for (j = 0; j < nloops; j++) {
 if (random_r(&buf, &i))
 exit(1);
 printf("random_r: %ld\n", (long)i);
 }
 return 0;
}

This example uses rand and random_r to generate random numbers. If you use these
functions for security purposes, these PRNGs can be the source of malicious attacks.

Correction — Use Stronger PRNG

One possible correction is to replace the vulnerable PRNG with a stronger random
number generator.

#include <stdio.h>
#include <stdlib.h>
#include <openssl/rand.h>

volatile int rd = 1;
int main(int argc, char* argv[])
{
 int j, r, nloops;
 unsigned char buf;
 unsigned int seed;
 int i = 0;

 if (argc != 3)

 CERT C++: MSC50-CPP

8-501

 {
 fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 seed = atoi(argv[1]);
 nloops = atoi(argv[2]);

 for (j = 0; j < nloops; j++) {
 if (RAND_bytes(&buf, i) != 1)
 exit(1);
 printf("RAND_bytes: %u\n", (unsigned)buf);
 }
 return 0;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC50-CPP

Introduced in R2019a

8 CERT C++ Rules

8-502

https://wiki.sei.cmu.edu/confluence/x/2ns-BQ

CERT C++: MSC51-CPP
Ensure your random number generator is properly seeded

Description

Rule Definition
Ensure your random number generator is properly seeded.

Examples

Deterministic random output from constant seed
Description

Deterministic random output from constant seed detects random standard functions
that when given a constant seed, have deterministic output.

Risk

When some random functions, such as srand, srandom, and initstate, have constant
seeds, the results produce the same output every time that your program is run. A hacker
can disrupt your program if they know how your program behaves.

Fix

Use a different random standard function or use a nonconstant seed.

Some standard random routines are inherently cryptographically weak on page 3-931,
and should not be used for security purposes.

Example - Random Number Generator Initialization

#include <stdlib.h>

 CERT C++: MSC51-CPP

8-503

void random_num(void)
{
 srand(12345U);
 /* ... */
}

This example initializes a random number generator using srand with a constant seed.
The random number generation is deterministic, making this function cryptographically
weak.

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define _CRT_RAND_S
#include <stdlib.h>
#include <stdio.h>

unsigned int random_num_time(void)
{

 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

8 CERT C++ Rules

8-504

Predictable random output from predictable seed
Description

Predictable random output from predictable seed looks for random standard
functions that use a nonconstant but predictable seed. Examples of predictable seed
generators are time, gettimeofday, and getpid.

Risk

When you use predictable seed values for random number generation, your random
numbers are also predictable. A hacker can disrupt your program if they know how your
program behaves.

Fix

You can use a different function to generate less predictable seeds.

You can also use a different random number generator that does not require a seed. For
example, the Windows API function rand_s seeds itself by default. It uses information
from the entire system, for example, system time, thread ids, system counter, and memory
clusters. This information is more random and a user cannot access this information.

Some standard random routines are inherently cryptographically weak on page 3-931,
and should not be used for security purposes.

Example - Seed as an Argument

#include <stdlib.h>
#include <time.h>

void seed_rng(int seed)
{
 srand(seed);
}

int generate_num(void)
{
 seed_rng(time(NULL) + 3);
 /* ... */
}

 CERT C++: MSC51-CPP

8-505

This example uses srand to start the random number generator with seed as the seed.
However, seed is predictable because the function time generates it. So, an attacker can
predict the random numbers generated by srand.

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define _CRT_RAND_S

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int generate_num(void)
{
 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

8 CERT C++ Rules

8-506

Topics
“Check for Coding Standard Violations”

External Websites
MSC51-CPP

Introduced in R2019a

 CERT C++: MSC51-CPP

8-507

https://wiki.sei.cmu.edu/confluence/x/-ns-BQ

CERT C++: MSC52-CPP
Value-returning functions must return a value from all exit paths

Description

Rule Definition
Value-returning functions must return a value from all exit paths.

Examples

Missing return statement
Description

Missing return statement occurs when a function does not return a value along at least
one execution path. If the return type of the function is void, this error does not occur.

Risk

If a function has a non-void return value in its signature, it is expected to return a value.
The return value of this function can be used in later computations. If the execution of the
function body goes through a path where a return statement is missing, the function
return value is indeterminate. Computations with this return value can lead to
unpredictable results.

Fix

In most cases, you can fix this defect by placing the return statement at the end of the
function body.

Alternatively, you can identify which execution paths through the function body do not
have a return statement and add a return statement on those paths. Often the result
details show a sequence of events that indicate this execution path. You can add a
return statement at an appropriate point in the path. If the result details do not show

8 CERT C++ Rules

8-508

the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Missing or invalid return statement error

int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }
 }
/* Defect: No return value if n is not 0*/

If n is equal to 0, the code does not enter the if statement. Therefore, the function
AddSquares does not return a value if n is 0.

Correction — Place Return Statement on Every Execution Path

One possible correction is to return a value in every branch of the if...else statement.

 int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }

 CERT C++: MSC52-CPP

8-509

 return(sum);
 }

 /*Fix: Place a return statement on branches of if-else */
 else
 return 0;
 }

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC52-CPP

Introduced in R2019a

8 CERT C++ Rules

8-510

https://wiki.sei.cmu.edu/confluence/x/EXs-BQ

CERT C++: PRE30-C
Do not create a universal character name through concatenation

Description

Rule Definition
Do not create a universal character name through concatenation.

Examples

Universal character name from token concatenation
Description

Universal character name from token concatenation occurs when two preprocessing
tokens joined with a ## operator create a universal character name. A universal character
name begins with \u or \U followed by hexadecimal digits. It represents a character not
found in the basic character set.

For instance, you form the character \u0401 by joining two tokens:

#define assign(uc1, uc2, val) uc1##uc2 = val
...
assign(\u04, 01, 4);

Risk

The C11 Standard (Sec. 5.1.1.2) states that if a universal character name is formed by
token concatenation, the behavior is undefined.

Fix

Use the universal character name directly instead of producing it through token
concatenation.

 CERT C++: PRE30-C

8-511

Example - Universal Character Name from Token Concatenation

#define assign(uc1, uc2, val) uc1##uc2 = val

int func(void) {
 int \u0401 = 0;
 assign(\u04, 01, 4);
 return \u0401;
}

In this example, the assign macro, when expanded, joins the two tokens \u04 and 01 to
form the universal character name \u0401.

Correction — Use Universal Character Name Directly

One possible correction is to use the universal character name \u0401 directly. The
correction redefines the assign macro so that it does not join tokens.

#define assign(ucn, val) ucn = val

int func(void) {
 int \u0401 = 0;
 assign(\u0401, 4);
 return \u0401;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
PRE30-C

8 CERT C++ Rules

8-512

https://wiki.sei.cmu.edu/confluence/x/UdcxBQ

Introduced in R2019a

 CERT C++: PRE30-C

8-513

CERT C++: PRE31-C
Avoid side effects in arguments to unsafe macros

Description

Rule Definition
Avoid side effects in arguments to unsafe macros.

Examples

Side effect in arguments to unsafe macro
Description

Side effect in arguments to unsafe macro occurs when you call an unsafe macro with
an expression that has a side effect.

• Unsafe macro: When expanded, an unsafe macro evaluates its arguments multiple
times or does not evaluate its argument at all.

For instance, the ABS macro evaluates its argument x twice.

#define ABS(x) (((x) < 0) ? -(x) : (x))

• Side effect: When evaluated, an expression with a side effect modifies at least one of
the variables in the expression.

For instance, ++n modifies n, but n+1 does not modify n.

The checker does not consider side effects in nested macros. The checker also does
not consider function calls or volatile variable access as side effects.

8 CERT C++ Rules

8-514

Risk

If you call an unsafe macro with an expression that has a side effect, the expression is
evaluated multiple times or not evaluated at all. The side effect can occur multiple times
or not occur at all, causing unexpected behavior.

For instance, in the call MACRO(++n), you expect only one increment of the variable n. If
MACRO is an unsafe macro, the increment happens more than once or does not happen at
all.

The checker flags expressions with side effects in the assert macro because the assert
macro is disabled in non-debug mode. To compile in non-debug mode, you define the
NDEBUG macro during compilation. For instance, in GCC, you use the flag -DNDEBUG.

Fix

Evaluate the expression with a side effect in a separate statement, and then use the result
as a macro argument.

For instance, instead of:

MACRO(++n);

perform the operation in two steps:

++n;
MACRO(n);

Alternatively, use an inline function instead of a macro. Pass the expression with side
effect as argument to the inline function.

The checker considers modifications of a local variable defined only in the block scope of
a macro body as a side effect. This defect cannot happen since the variable is visible only
in the macro body. If you see a defect of this kind, ignore the defect.

Example - Macro Argument with Side Effects

#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 int m = ABS(++n);

 CERT C++: PRE31-C

8-515

 /* ... */
}

In this example, the ABS macro evaluates its argument twice. The second evaluation can
result in an unintended increment.

Correction — Separate Evaluation of Expression from Macro Usage

One possible correction is to first perform the increment, and then pass the result to the
macro.

#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 ++n;
 int m = ABS(n);

 /* ... */
}

Correction — Evaluate Expression in Inline Function

Another possible correction is to evaluate the expression in an inline function.

static inline int iabs(int x) {
 return (((x) < 0) ? -(x) : (x));
}

void func(int n) {
 /* Validate that n is within the desired range */

int m = iabs(++n);

 /* ... */
}

Check Information
Group: 49. Miscellaneous (MSC)

8 CERT C++ Rules

8-516

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
PRE31-C

Introduced in R2019a

 CERT C++: PRE31-C

8-517

https://wiki.sei.cmu.edu/confluence/x/I9YxBQ

CERT C++: PRE32-C
Do not use preprocessor directives in invocations of function-like macros

Description

Rule Definition
Do not use preprocessor directives in invocations of function-like macros.

Examples

Preprocessor directive in macro argument
Description

Preprocessor directive in macro argument occurs when you use a preprocessor
directive in the argument to a function-like macro or a function that might be
implemented as a function-like macro.

For instance, a #ifdef statement occurs in the argument to a memcpy function. The
memcpy function might be implemented as a macro.

memcpy(dest, src,
 #ifdef PLATFORM1
 12
 #else
 24
 #endif
);

The checker flags similar usage in printf and assert, which can also be implemented
as macros.

8 CERT C++ Rules

8-518

Risk

During preprocessing, a function-like macro call is replaced by the macro body and the
parameters are replaced by the arguments to the macro call (argument substitution).
Suppose a macro min() is defined as follows.

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

When you call min(1,2), it is replaced by the body ((X) < (Y) ? (X) : (Y)). X and
Y are replaced by 1 and 2.

According to the C11 Standard (Sec. 6.10.3), if the list of arguments to a function-like
macro itself has preprocessing directives, the argument substitution during
preprocessing is undefined.

Fix

To ensure that the argument substitution happens in an unambiguous manner, use the
preprocessor directives outside the function-like macro.

For instance, to execute memcpy with different arguments based on a #ifdef directive,
call memcpy multiple times within the #ifdef directive branches.

#ifdef PLATFORM1
 memcpy(dest, src, 12);
#else
 memcpy(dest, src, 24);
#endif

Example - Directives in Function-Like Macros

#include <stdio.h>

#define print(A) printf(#A)

void func(void) {
 print(
#ifdef SW
 "Message 1"
#else
 "Message 2"
#endif
);
}

 CERT C++: PRE32-C

8-519

In this example, the preprocessor directives #ifdef and #endif occur in the argument
to the function-like macro print().

Correction — Use Directives Outside Macro

One possible correction is to use the function-like macro multiple times in the branches of
the #ifdef directive.

#include <stdio.h>

#define print(A) printf(#A)

void func(void) {
#ifdef SW
 print("Message 1");
#else
 print("Message 2");
#endif
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
PRE32-C

Introduced in R2019a

8 CERT C++ Rules

8-520

https://wiki.sei.cmu.edu/confluence/x/y9YxBQ

CERT C++: SIG31-C
Do not access shared objects in signal handlers

Description

Rule Definition
Do not access shared objects in signal handlers.

Examples

Shared data access within signal handler
Description

Shared data access within signal handler occurs when you access or modify a shared
object inside a signal handler.

Risk

When you define a signal handler function to access or modify a shared object, the
handler accesses or modifies the shared object when it receives a signal. If another
function is already accessing the shared object, that function causes a race condition and
can leave the data in an inconsistent state.

Fix

To access or modify shared objects inside a signal handler, check that the objects are lock-
free atomic, or, if they are integers, declare them as volatile sig_atomic_t.

Example - int Variable Access in Signal Handler

#include <signal.h>
#include <stdlib.h>
#include <string.h>

 CERT C++: SIG31-C

8-521

/* declare global variable. */
int e_flag;

void sig_handler(int signum)
{
 /* Signal handler accesses variable that is not
 of type volatile sig_atomic_t. */
 e_flag = signum;
}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

In this example, sig_handler accesses e_flag, a variable of type int. A concurrent
access by another function can leave e_flag in an inconsistent state.

Correction — Declare Variable of Type volatile sig_atomic_t

Before you access a shared variable from a signal handler, declare the variable with type
volatile sig_atomic_t instead of int. You can safely access variables of this type
asynchronously.

#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* Declare variable of type volatile sig_atomic_t. */

8 CERT C++ Rules

8-522

volatile sig_atomic_t e_flag;
void sig_handler(int signum)
{
 /* Use variable of proper type inside signal handler. */
 e_flag = signum;

}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
SIG31-C

Introduced in R2019a

 CERT C++: SIG31-C

8-523

https://wiki.sei.cmu.edu/confluence/x/VdYxBQ

CERT C++: SIG34-C
Do not call signal() from within interruptible signal handlers

Description

Rule Definition
Do not call signal() from within interruptible signal handlers.

Examples

Signal call from within signal handler
Description

Signal call from within signal handler occurs when you call signal() from a
nonpersistent signal handler on a Windows platform.

Risk

A nonpersistent signal handler is reset after catching a signal. The handler does not catch
subsequent signals unless the handler is reestablished by calling signal(). A
nonpersistent signal handler on a Windows platform is reset to SIG_DFL. If another signal
interrupts the execution of the handler, that signal can cause a race condition between
SIG_DFL and the existing signal handler. A call to signal() can also result in an infinite
loop inside the handler.

Fix

Do not call signal() from a signal handler on Windows platforms.

Example - signal() Called from Signal Handler

#include <stdio.h>
#include <stdlib.h>

8 CERT C++ Rules

8-524

#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{
 int s0 = signum;
 e_flag = 1;

 /* Call signal() to reestablish sig_handler
 upon receiving SIG_ERR. */

 if (signal(s0, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
}

void func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
 /* more code */
}

In this example, the definition of sig_handler() includes a call to signal() when the
handler catches SIG_ERR. On Windows platforms, signal handlers are nonpersistent. This
code can result in a race condition.

Correction — Do Not Call signal() from Signal Handler

If your code requires the use of a persistent signal handler on a Windows platform, use a
persistent signal handler after performing a thorough risk analysis.

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

 CERT C++: SIG34-C

8-525

#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{
 int s0 = signum;
 e_flag = 1;
 /* No call to signal() */
}

int main(void)
{

 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
SIG34-C

Introduced in R2019a

8 CERT C++ Rules

8-526

https://wiki.sei.cmu.edu/confluence/x/NtYxBQ

CERT C++: SIG35-C
Do not return from a computational exception signal handler

Description

Rule Definition
Do not return from a computational exception signal handler.

Examples

Return from computational exception signal handler
Description

Return from computational exception signal handler occurs when a signal handler
returns after catching a computational exception signal SIGFPE, SIGILL, or SIGSEGV.

Risk

A signal handler that returns normally from a computational exception is undefined
behavior. Even if the handler attempts to fix the error that triggered the signal, the
program can behave unexpectedly.

Fix

Check the validity of the values of your variables before the computation to avoid using a
signal handler to catch exceptions. If you cannot avoid a handler to catch computation
exception signals, call abort(), quick_exit(), or _Exit() in the handler to stop the
program.

Example - Signal Handler Return from Division by Zero

#include <errno.h>
#include <limits.h>

 CERT C++: SIG35-C

8-527

#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */
void sig_handler(int s)
{
 int s0 = s;
 if (denom == 0)
 {
 denom = 1;
 }
 /* Normal return from computation exception
 signal */
 return;
}

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

In this example, sig_handler is declared to handle a division by zero computation error.
The handler changes the value of denom if it is zero and returns, which is undefined
behavior.

Correction — Call abort() to Terminate Program

After catching a computational exception, call abort() from sig_handler to exit the
program without further error.

#include <errno.h>
#include <limits.h>

8 CERT C++ Rules

8-528

#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */

void sig_handler(int s)
{
 int s0 = s;
 /* call to abort() to exit the program */
 abort();
}

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
SIG35-C

 CERT C++: SIG35-C

8-529

https://wiki.sei.cmu.edu/confluence/x/b9YxBQ

Introduced in R2019a

8 CERT C++ Rules

8-530

AUTOSAR C++14 Rules

9

AUTOSAR C++14 Rule A0-1-2
The value returned by a function having a non-void return type that is not an overloaded
operator shall be used.

Description
Rule Definition
The value returned by a function having a non- void return type that is not an overloaded
operator shall always be used.

Rationale
The unused return value might indicate a coding error or oversight.

Overloaded operators are excluded from this rule because their usage must emulate built-
in operators which might not use their return value.

Polyspace Implementation
Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Return Value Not Used
#include <iostream>
#include <new>

9 AUTOSAR C++14 Rules

9-2

int assignMemory(int * ptr){
 int res = 1;
 ptr = new (std::nothrow) int;
 if(ptr==NULL) {
 res = 0;
 }
 return res;
}

void main() {
 int val;
 int status;

 assignMemory(&val); //Noncompliant
 status = assignMemory(&val); //Compliant
 (void)assignMemory(&val); //Compliant

}

The first call to the function assignMemory is noncompliant because the return value is
not used. The second and third calls use the return value. The return value from the
second call is assigned to a local variable.

The return value from the third call is cast to void. Casting to void indicates deliberate
non-use of the return value and cannot be a coding oversight.

Check Information
Group: Language Independent Issues

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A0-1-2

9-3

AUTOSAR C++14 Rule A0-1-4
There shall be no unused named parameters in non-virtual functions.

Description

Rule Definition
There shall be no unused named parameters in non-virtual functions.

Rationale
Unused parameters can indicate that the code is possibly incomplete. The parameter is
possibly intended for an operation that you forgot to code or leftover from a design
change.

If the parameters are obtained by copy and the copied objects are large, the redundant
copies can slow down performance.

Polyspace Implementation
The checker flags a function that has unused named parameters unless the function body
is empty.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Independent Issues

9 AUTOSAR C++14 Rules

9-4

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A0-1-4

9-5

AUTOSAR C++14 Rule A0-1-6
There should be no unused type declarations.

Description

Rule Definition
A project shall not contain unused type declarations.

Rationale
If a type is declared but not used, when reviewing the code later, it is unclear if the type is
redundant or left unused by mistake.

Unused types can indicate coding errors. For instance, you declared a enumerated data
type for some specialized data but used an integer type for the data.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Unused enum Declaration
enum switchValue {low, medium, high}; //Noncompliant

void operate(int userInput) {
 switch(userInput) {
 case 0: // Turn on low setting
 break;
 case 1: // Turn on medium setting
 break;

9 AUTOSAR C++14 Rules

9-6

 case 2: // Turn on high setting
 break;
 default: // Return error
 }
}

In this example, the enumerated type switchValue is not used. Perhaps the intention
was to use the type as switch input like this.

enum switchValue {low, medium, high}; //Compliant

void operate(switchValue userInput) {
 switch(userInput) {
 case low: // Turn on low setting
 break;
 case medium: // Turn on medium setting
 break;
 case high: // Turn on high setting
 break;
 default: // Return error
 }
}

Check Information
Group: Language Independent Issues

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A0-1-6

9-7

AUTOSAR C++14 Rule A0-4-2
Type long double shall not be used

Description

Rule Definition
Type long double shall not be used.

Rationale
The size of long double is implementation-dependent and reduces the portability of
your code across compilers. Compilers can implement long double as a synonym for
double or an 80-bit extended precision type or 128-bit quadruple precision type that are
more precise than double.

Instead, for multiple precision arithmetic that requires types more precise than double,
use libraries that support multiple precision arithmetic with well-defined data types.

Polyspace Implementation
The rule checker flags all uses of the long double keyword.

If you do not want to fix the issue, add a comment justifying the result. See “Address
Polyspace Results Through Bug Fixes or Justifications”.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

9 AUTOSAR C++14 Rules

9-8

Examples

Use of long double Keyword
void func() {
 float f{0.1F}; //Compliant
 double D(0.1); //Compliant
 long double LD(0.1L); //Noncompliant
}

The use of long double violates this rule.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A0-4-2

9-9

AUTOSAR C++14 Rule A10-2-1
Non-virtual member functions shall not be redefined in derived classes.

Description

Rule Definition
Non-virtual member functions shall not be redefined in derived classes.

Polyspace Implementation
Does not report for destructor.

Message in report file:

Inherited nonvirtual function %s shall not be redefined in a derived class.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-10

AUTOSAR C++14 Rule A1-1-1
All code shall conform to ISO/IEC 14882:2014 - Programming Language C++ and shall
not use deprecated features.

Description
Rule Definition
All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating
Technical Corrigendum 1".

Polyspace Implementation
The checker reports compilation errors as detected by a compiler that strictly adheres to
the C++03 Standard (ISO/IEC 14882:2003).

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: General

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule A1-1-1

9-11

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-12

AUTOSAR C++14 Rule A11-3-1
Friend declarations shall not be used

Description

Rule Definition
Friend declarations shall not be used.

Rationale
You declare a function as friend of a class to access private members of the class outside
the class scope.

class A
{
 int data;
 public:
 // operator+ can access private members of class A such as data
 friend A const operator+(A const& lhs, A const& rhs);
};

Friend functions and friend classes reduce data encapsulation. Private members of a class
are no longer accessible only through the class methods.

Code with friend functions can be difficult to maintain. For instance, if class myClass has
a friend class anotherClass, when you change a data member of myClass, you have to
find all instances of its usage in member functions of anotherClass.

Polyspace Implementation
The rule checker flags all uses of the friend keyword.

The checker follows specifications of AUTOSAR C++ 14 release 18-03 (March 2018).
However, release 18-10 and later releases of AUTOSAR C++14 allows an exception for
comparison operators such as operator==. If the rule checker flags the use of

 AUTOSAR C++14 Rule A11-3-1

9-13

comparison operators, add a comment justifying the result. See “Address Polyspace
Results Through Bug Fixes or Justifications”.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Use of friend Keyword
class myClass
{
 int data;
 public:
 myClass& operator+=(myClass const& oth);
 friend myClass const operator+(myClass const& lhs, myClass const& rhs);
 // Noncompliant: Use of friend keyword
};

operator+ is a friend function of class myClass and can access its private member,
data. The presence of this friend function violates the rule.

Check Information
Group: Member Access Control

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-14

AUTOSAR C++14 Rule A12-1-1
Constructors shall explicitly initialize all virtual base classes, all direct non-virtual base
classes and all non-static data members.

Description

Rule Definition
All constructors of a class should explicitly call a constructor for all of its immediate base
classes and all virtual base classes.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Special Member Functions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A12-1-1

9-15

AUTOSAR C++14 Rule A12-1-4
All constructors that are callable with a single argument of fundamental type shall be
declared explicit.

Description

Rule Definition
All constructors that are callable with a single argument of fundamental type shall be
declared explicit.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Special Member Functions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-16

AUTOSAR C++14 Rule A12-6-1
All class data members that are initialized by the constructor shall be initialized using
member initializers.

Description

Rule Definition
All class data members that are initialized by the constructor shall be initialized using
member initializers.

Polyspace Implementation
All data should be initialized in the initialization list except for array. Does not report that
an assignment exists in ctor body.

Message in report file:

Initialization of nonstatic class members "<field>" will be performed through the
member initialization list.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule A12-6-1

9-17

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-18

AUTOSAR C++14 Rule A12-8-5
A copy assignment and a move assignment operators shall handle self-assignment.

Description

Rule Definition
A copy assignment and a move assignment operators shall handle self-assignment.

Polyspace Implementation
Reports when copy assignment body does not begin with “if (this != arg)”

A violation is not raised if an empty else statement follows the if, or the body contains
only a return statement.

A violation is raised when the if statement is followed by a statement other than the
return statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A12-8-5

9-19

AUTOSAR C++14 Rule A13-2-1
An assignment operator shall return a reference to "this".

Description

Rule Definition
An assignment operator shall return a reference to "this".

Polyspace Implementation
The following operators should return *this on method, and *first_arg on plain
function:

• operator=
• operator+=
• operator-=
• operator*=
• operator >>=
• operator <<=
• operator /=
• operator %=
• operator |=
• operator &=
• operator ^=
• Prefix operator++
• Prefix operator--

Does not report when no return exists.

No special message if type does not match.

9 AUTOSAR C++14 Rules

9-20

Messages in report file:

• An assignment operator shall return a reference to *this.
• An assignment operator shall return a reference to its first arg.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A13-2-1

9-21

AUTOSAR C++14 Rule A15-1-2
An exception object shall not be a pointer.

Description

Rule Definition
An exception object should not have pointer type.

Polyspace Implementation
The checker raises a violation if a throw statement throws an exception of pointer type.

The checker does not raise a violation if a NULL pointer is thrown as exception. Throwing
a NULL pointer is forbidden by AUTOSAR C++14 Rule M15-1-2.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-22

AUTOSAR C++14 Rule A15-3-5
A class type exception shall be caught by reference or const reference.

Description

Rule Definition
A class type exception shall always be caught by reference.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A15-3-5

9-23

AUTOSAR C++14 Rule A15-5-3
The std::terminate() function shall not be called implicitly.

Description

Rule Definition
The terminate() function shall not be called implicitly.

Polyspace Implementation
The checker flags these situations when the terminate() function can be called implicitly:

• An exception escapes uncaught. For instance:

• Before an exception is caught, it escapes through another function that throws an
uncaught exception. For instance, a catch statement or exception handler invokes a
copy constructor that throws an uncaught exception.

• A throw expression with no operand rethrows an uncaught exception.
• A class destructor throws an exception.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

9 AUTOSAR C++14 Rules

9-24

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A15-5-3

9-25

AUTOSAR C++14 Rule A16-0-1
The preprocessor shall only be used for unconditional and conditional file inclusion and
include guards, and using specific directives.

Description

Rule Definition
The preprocessor shall only be used for unconditional and conditional file inclusion and
include guards, and using the following directives: (1) #ifndef, (2) #ifdef, (3) #if, (4)
#if defined, (5) #elif, (6) #else, (7) #define, (8) #endif, (9) #include.

Rationale
Other than unconditional and conditional file inclusion and include guards, avoid the use
of preprocessor directives. Use a safer alternative instead. For instance:

• Instead of:

#define MIN(a,b) ((a < b)? (a) : (b))

You can use inline functions and function templates.
• Instead of:

#define MAX_ARRAY_SIZE 1024U

You can use a constant object.

In these situations, preprocessor directives do not provide the benefits that the
alternatives provide, such as linkage, type checking, overloading, and so on.

Polyspace Implementation
The rule checker does not allow the use of preprocessor directives. The only exceptions
are:

9 AUTOSAR C++14 Rules

9-26

• #ifdef, #ifndef, #if, #if defined, #elif, #else and #endif, only if used for
conditional file inclusion and include guards.

• #define only if used for defining macros to be used in include guards. For instance, in
this example, the macro __FILE_H__ prevents the contents of the header file from
being included more than once:

/* aHeader.h */

#ifndef __FILE_H__
#define __FILE_H__
 /* Contents of header file */
#endif

When #ifdef, #define and #endif are used as include guards in a header file, the
entire content of the header file must be in the include guard.

• #include

The checker does not allow the #define directives in other contexts. If you use #define-
s for purposes other than for include guards, do one of the following:

• To define macros when compiling your code, instead of #define-s, use compilation
flags (such as the GCC option -D). When running a Polyspace analysis, use the
equivalent Polyspace option Preprocessor definitions (-D).

• To retain the use of #define in your code, justify the violation using comments in your
results or code. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Compliant and Noncompliant Use of Preprocessor Directives
#include <cstdint> //Compliant: unconditional file inclusion

#ifdef WIN32 //Compliant: include guard
 #include <windows.h> //Compliant: conditional file inclusion

 AUTOSAR C++14 Rule A16-0-1

9-27

#endif

#ifdef WIN32 //Noncompliant
 std::int32_t func(std::int16_t x, std::int16_t y) noexcept;
#endif

In this example, the rule is not violated when preprocessor directives are used for
unconditional and conditional inclusion and include guards. Otherwise, the rule is
violated.

Check Information
Group: Preprocessing directives

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

9 AUTOSAR C++14 Rules

9-28

AUTOSAR C++14 Rule A16-2-1
The ', ", /*, //, \ characters shall not occur in a header file name or in #include directive.

Description

Rule Definition
The ', ", /* or // characters shall not occur in a header file name.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A16-2-1

9-29

AUTOSAR C++ 14 Rule A16-7-1
The #pragma directive shall not be used.

Description
Rule Definition
The #pragma directive shall not be used.

Rationale
The use of the #pragma directive in your code results in implementation-defined behavior.
The directive might also not be supported by certain compilers.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Use of #pragma once Directive
//header.h
#pragma once //Noncompliant

#ifndef HEADER_H_ //Compliant
#define HEADER_H_
// ...
// body of header file
//..
#endif

The #pragma once directive prevents the inclusion of header.h more than once.
However, if you copy header.h into multiple project modules, the directive may or may

9 AUTOSAR C++14 Rules

9-30

not treat the copies as the same file depending on the implementation. To avoid double
definitions, use the #ifndef include guard instead.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++ 14 Rule A16-7-1

9-31

AUTOSAR C++14 Rule A17-0-1
Reserved identifiers, macros and functions in the C++ standard library shall not be
defined, redefined or undefined.

Description

Rule Definition
Reserved identifiers, macros and functions in the standard library shall not be defined,
redefined or undefined.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Library Introduction

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-32

AUTOSAR C++14 Rule A18-0-1
The C library facilities shall only be accessed through C++ library headers.

Description

Rule Definition
The C library shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A18-0-1

9-33

AUTOSAR C++14 Rule A18-0-2
The error state of a conversion from string to a numeric value shall be checked.

Description

Rule Definition
The library functions atof, atoi and atol from library <cstdlib> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-34

AUTOSAR C++14 Rule A18-0-3
The library <clocale> (locale.h) and the setlocale function shall not be used.

Description

Rule Definition
The library <clocale> (locale.h) and the setlocale function shall not be used.

Polyspace Implementation
setlocale and localeconv should not be used as a macro or a global with external "C"
linkage.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A18-0-3

9-35

AUTOSAR C++ 14 Rule A18-1-1
C-style arrays shall not be used.

Description

Rule Definition
C-style arrays shall not be used.

Rationale
You can lose information about the size of a C-style array. For instance, an array that you
pass to a function decays to a pointer to the first element of the array. This can lead to
unsafe and difficult to maintain code.

The AUTOSAR standard allows declarations of static constexpr data members of a C-
style array type. For example, this declaration is compliant.

static constexpr std::uint8_t array[] {0, 1, 2};

Polyspace Implementation
The rule checker does not flag C-style array arguments in function declarations because
the rule violation still exists if you fix the function declaration and not the definition. A
function might be declared in your code and defined in a library that you cannot access.
The checker flags C-style array arguments in function definitions. For instance, in this
code snippet, the checker flags the argument of foo but not the argument of bar.

extern void bar(char arg[]); //Declaration, checker raises no rule violation
int foo(char arg[]) // Definition, checker raises a rule violation
{
 return sizeof(arg); //Returns size of pointer, not size of array
}
void baz()
{
 char value[10]; //C-style array, checker raises a rule violation
 assert(sizeof(value) == foo(value));
}

9 AUTOSAR C++14 Rules

9-36

The checker raises a flag on arg in the definition of foo even when there is no explicit C-
style array definition for the argument. For example, declaring char* value; instead of
char value[10]; in baz() would still result in a rule violation on the argument of foo.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Declaration of C-Style Array
#include <array>

void func()
{

 const std::uint8_t size = 10;
 std::int32_t a1[size]; //non-compliant
 std::array<std::int32_t, size> a2; //compliant

}

In this example, the rule is violated when you declare C-style array a1. To declare fixed-
size stack-allocated arrays, use std:array instead.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++ 14 Rule A18-1-1

9-37

AUTOSAR C++ 14 Rule A18-1-2
The std::vector<bool> specialization shall not be used.

Description

Rule Definition
The std::vector<bool> specialization shall not be used.

Rationale
The specialization of std::vector for the type bool can be made space-efficient in an
implementation defined manner. For instance, std::vector<bool> does not necessarily
store its elements as a contiguous array. As a result, the specialization does not work as
expected with all standard library template (STL) algorithms, such as the index
operator[]() which does not return a contiguous sequence of elements. You cannot
safely modify distinct elements of STL container std::vector<bool>.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Non-Compliant and Compliant Use of std::vector With bool
Type
#include <cstdint>
#include <vector>

class BoolWrapper
{
public:
 BoolWrapper() = default;
 constexpr BoolWrapper(bool b) : b_(b) {}

9 AUTOSAR C++14 Rules

9-38

 constexpr operator bool() const
 {
 return b_;
 }
private:
 bool b_{};
};

void Fn() noexcept
{
 std::vector<bool> v2; //non-compliant
 std::vector<BoolWrapper> v3{true, false, true, false}; //compliant
}

In this example, vector v2 is non-compliant because it is declared with
std::vector<bool>. A possible fix is to use std::vector with a value type
BoolWrapper that wraps bool.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++ 14 Rule A18-1-2

9-39

AUTOSAR C++ 14 Rule A18-5-1
Functions malloc, calloc, realloc and free shall not be used.

Description

Rule Definition
Functions malloc, calloc, realloc and free shall not be used.

Rationale
C-style memory allocation and deallocation using malloc, calloc, realloc, or free is
not type safe and does not invoke class's constructors/destructor to create/delete objects.

For instance, malloc allocates memory to an object and returns a pointer to the allocated
memory of type void*. A program can then implicitly cast the returned pointer to a
different type that might not match the intended type of the object.

The use of these allocation and deallocation functions can result in undefined behavior if:

• You use free to deallocate memory allocated with operator new.
• You use operator delete to deallocate memory allocated with malloc, calloc, or

realloc.

The rule is not violated when you perform dynamic memory allocation or deallocation
using overloaded new and delete operators, or custom implementations of malloc and
free.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

9 AUTOSAR C++14 Rules

9-40

Examples

Non-Compliant Use of malloc
#include <cstdint>
#include <cstdlib>

void func()
{

 std::int32_t* p1 = static_cast<std::int32_t*>(malloc(sizeof(std::int32_t))); // Non-compliant
 *p1 = 0;

 free(p1); // Non-compliant

 std::int32_t* p2 = new std::int32_t(0); // Compliant

 delete p2; // Compliant
}

In this example, the allocation of memory for pointer p1 using malloc and the memory
deallocation using free are non-compliant. These operations are not type safe. Instead,
use operators new and delete to allocate and deallocate memory.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++ 14 Rule A18-5-1

9-41

AUTOSAR C++14 Rule A18-5-3
The form of delete operator shall match the form of new operator used to allocate the
memory

Description

Rule Definition
The form of delete operator shall match the form of new operator used to allocate the
memory.

Rationale
• The delete operator releases a block of memory allocated on the heap. If you try to

access a location on the heap that you did not allocate previously, a segmentation fault
can occur.

• If you use the single-object notation for delete on a pointer that is previously
allocated with the array notation for new, the behavior is undefined.

The issue can also highlight other coding errors. For instance, you perhaps wanted to use
the delete operator or a previous new operator on a different pointer.

Polyspace Implementation
The checker flags a defect when:

• You release a block of memory with the delete operator but the memory was
previously not allocated with the new operator.

• You release a block of memory with the delete operator using the single-object
notation but the memory was previously allocated as an array with the new operator.

This defect applies only to C++ source files.

9 AUTOSAR C++14 Rules

9-42

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Deleting Static Memory
void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)
 *(ptr+i)=1;

 delete[] ptr;
}

The pointer ptr is released using the delete operator. However, ptr points to a memory
location that was not dynamically allocated.

Correction: Remove Pointer Deallocation

If the number of elements of the array ptr is known at compile time, one possible
correction is to remove the deallocation of the pointer ptr.

void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)
 *(ptr+i)=1;
}

Correction — Add Pointer Allocation

If the number of array elements is not known at compile time, one possible correction is
to dynamically allocate memory to the array ptr using the new operator.

void assign_ones(int num)
{

 AUTOSAR C++14 Rule A18-5-3

9-43

 int *ptr = new int[num];

 for(int i=0; i < num; i++)
 *(ptr+i) = 1;

 delete[] ptr;
 }

Mismatched new and delete
int main (void)
{
 int *p_scale = new int[5];

 //more code using scal

 delete p_scale;
}

In this example, p_scale is initialized to an array of size 5 using new int[5]. However,
p_scale is deleted with delete instead of delete[]. The new-delete pair does not
match. Do not use delete without the brackets when deleting arrays.

Correction — Match delete to new

One possible correction is to add brackets so the delete matches the new []
declaration.

int main (void)
{
 int *p_scale = new int[5];

 //more code using p_scale

 delete[] p_scale;
}

Correction — Match new to delete

Another possible correction is to change the declaration of p_scale. If you meant to
initialize p_scale as 5 itself instead of an array of size 5, you must use different syntax.
For this correction, change the square brackets in the initialization to parentheses. Leave
the delete statement as it is.

9 AUTOSAR C++14 Rules

9-44

int main (void)
{
 int *p_scale = new int(5);

 //more code using p_scale

 delete p_scale;
}

Check Information
Group: Language Support Library

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A18-5-3

9-45

AUTOSAR C++14 Rule A18-5-4
If a project has sized or unsized version of operator 'delete' globally defined, then both
sized and unsized versions shall be defined.

Description

Rule Definition
If a project has sized or unsized version of operator 'delete' globally defined, then both
sized and unsized versions shall be defined.

Rationale
The C++14 Standard defines a sized version of operator delete. For instance, for an
unsized operator delete with this signature:

void operator delete (void* ptr);

The sized version has an additional size argument:

void operator delete (void* ptr, std::size_t size);

See the C++ reference page for operator delete.

The Standard states that if both versions of operator delete exist, the sized version
must be called because it provides a more efficient way to deallocate memory, especially
when the allocator allocates in size categories instead of storing the size nearbly the
object. However, in some cases, for instance to delete incomplete types, the unsized
version is used.

If you overload the unsized version of operator delete, you must also overload the
sized version. You typically overload operator delete to perform some bookkeeping in
addition to deallocating memory on the free store. If you overload the unsized version but
not the sized one or the other way around, any bookkeeping you perform in one version
will not omitted from the other version. This omission can lead to unexpected results.

9 AUTOSAR C++14 Rules

9-46

https://en.cppreference.com/w/cpp/memory/new/operator_delete

Polyspace Implementation
The checker flags situations where an unsized version of operator delete exists but
the corresponding sized version is not defined, or vice versa.

The checker is enabled only if you specify a C++ version of C++14 or later. See C++
standard version (-cpp-version).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Missing Sized Overload of operator delete[]
#include <new>
#include <cstdlib>

int global_store;

void update_bookkeeping(void *allocated_ptr, bool alloc) {
 if(alloc)
 global_store++;
 else
 global_store--;
}

void operator delete(void *ptr);
void operator delete(void* ptr) {
 update_bookkeeping(ptr, false);
 free(ptr);
}

void operator delete(void *ptr, std::size_t size);
void operator delete(void* ptr, std::size_t size) {
 //Compliant, both sized and unsized version defined
 update_bookkeeping(ptr, false);
 free(ptr);

 AUTOSAR C++14 Rule A18-5-4

9-47

}

void operator delete[](void *ptr);
void operator delete[](void* ptr) { //Noncompliant, only unsized version defined
 update_bookkeeping(ptr, false);
 free(ptr);
}

In this example, both the unsized and sized version of operator delete are overloaded
and complies with the rule. However, only the unsized version of operator delete[] is
overloaded, which violates the rule..

Check Information
Group: Language Support Library

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14) | Invalid deletion of pointer |
Invalid free of pointer | Memory leak | Mismatched alloc/dealloc
functions on Windows | Missing overload of allocation or deallocation
function

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-48

AUTOSAR C++ 14 Rule A18-9-1
The std::bind shall not be used.

Description

Rule Definition
The std::bind shall not be used.

Rationale
std::bind takes a callable object, such as a function object, and produces a forwarding
call wrapper for this object. Calling the wrapper invokes the object with some of the
object arguments bound to arguments you specify in the wrapper. For instance, in this
code snippet, foo is called through bar with the first (second) argument of bar bound to
the second (first) argument of foo.

int foo(int, int);
auto bar = std::bind(foo, _2, _1);
bar(10, 20); //call to foo(20, 10)

The use of std::bind results in a less readable function call. A developer that is
unfamiliar with foo would need to see the declaration of foo to understand how to pass
arguments to bar, and might confuse one function parameter with another. In addition, a
compiler is less likely to inline a function that you create using std::bind.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 AUTOSAR C++ 14 Rule A18-9-1

9-49

Examples

Non-Compliant Use of std::bind
#include <cstdint>polys
#include <functional>
class A
{
//...
};
void func(A const& a, double y) noexcept
{
//...
}
void func1() noexcept
{
 double arg2 = 0.0;
 auto bind_fn = std::bind(&func, std::placeholders::_1, arg2); // Non-compliant
 // ...
 A const a{};
 bind_fn(a);
}
void func2() noexcept
{
 auto lambda_fn = [](A const & a) -> void { // Compliant
 double arg2 = 0.0;
 func(a, arg2);
 }; // Compliant
 // ...
 A const a{};
 lambda_fn(a);
}

In this example, func is called through bind_fn with the only argument of bind_fn
bound to the first argument of func. It might be unclear to a developer that arg2 in the
definition of bind_fn is the second argument of func. For a more readable code, use
lambda expressions instead. The call to func with two arguments is clearer in the
definition of lambda_fn.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

9 AUTOSAR C++14 Rules

9-50

AUTOSAR C++14 Rule A2-11-1
Volatile keyword shall not be used.

Description

Rule Definition
Volatile keyword shall not be used.

Polyspace Implementation
Reports if volatile keyword is used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A2-11-1

9-51

AUTOSAR C++14 Rule A2-13-1
Only those escape sequences that are defined in ISO/IEC 14882:2014 shall be used.

Description

Rule Definition
Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used.

Rationale
Escape sequences are certain special characters represented in string and character
literals. They are written with a backslash (\) followed by a character.

The C++ Standard (ISO/IEC 14882:2003, Sec. 2.13.2) defines a list of escape sequences.
See Escape Sequences. Use of escape sequences (backslash followed by character)
outside that list leads to undefined behavior.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Incorrect Escape Sequences
void func () {
 const char a[2] = "\k"; \\Noncompliant
 const char b[2] = "\b"; \\Compliant
}

In this example, \k is not a recognized escape sequence.

9 AUTOSAR C++14 Rules

9-52

https://en.cppreference.com/w/cpp/language/escape

Check Information
Group: Lexical Conventions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A2-13-1

9-53

AUTOSAR C++14 Rule A2-13-2
String literals with different encoding prefixes shall not be concatenated.

Description

Rule Definition
Narrow and wide string literals shall not be concatenated.

Rationale
Narrow string literals are enclosed in double quotes without a prefix. Wide string literals
are enclosed in double quotes with a prefix L outside the quotes. See string literals.

Concatenation of narrow and wide string literals can lead to undefined behavior.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Concatenation of Narrow and Wide String Literals
char array[] = "Hello" "World";
wchar_t w_array[] = L"Hello" L"World";
wchar_t mixed[] = "Hello" L"World"; //Noncompliant

In this example, in the initialization of the array mixed, the narrow string literal "Hello"
is concatenated with the wide string literal L"World".

9 AUTOSAR C++14 Rules

9-54

https://en.cppreference.com/w/cpp/language/string_literal

Check Information
Group: Lexical Conventions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A2-13-2

9-55

AUTOSAR C++14 Rule A2-13-3
Type wchar_t shall not be used

Description

Rule Definition
Type wchar_t shall not be used.

Rationale
The size of wchar_t is implementation-dependent. If you use wchar_t for Unicode
values, your code is bound to a specific compiler.

To improve the portability of your code, use char16_t and char32_t instead. These are
standard types introduced in C++11 for text strings with UTF-16 and UTF-32 encodings.

Polyspace Implementation
The rule checker flags all uses of the wchar_t keyword.

If you do not want to fix the issue, add a comment justifying the result. See “Address
Polyspace Results Through Bug Fixes or Justifications”.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

9 AUTOSAR C++14 Rules

9-56

Examples

Use of wchar_t Keyword
char16_t str1[] = u"A UTF-16 string"; //Compliant
char32_t str2[] = U"A UTF-32 string"; //Compliant
wchar_t str3[] = L"A Unicode string"; //Noncompliant

The use of wchar_t violates this rule. Instead the types char16_t and char32_t can be
used.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A2-13-3

9-57

AUTOSAR C++14 Rule A2-13-5
Hexadecimal constants should be upper case.

Description

Rule Definition
Hexadecimal constants should be upper case.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-58

AUTOSAR C++14 Rule A21-8-1
Arguments to character-handling functions shall be representable as an unsigned char.

Description

Rule Definition
Arguments to character-handling functions shall be representable as an unsigned char.

Rationale
Comparison with EOF: Suppose, your compiler implements the plain char type as signed.
In this implementation, the character with the decimal form of 255 (–1 in two’s
complement form) is stored as a signed value. When you convert a char variable to the
wider data type int for instance, the sign bit is preserved (sign extension). This sign
extension results in the character with the decimal form 255 being converted to the
integer –1, which cannot be distinguished from EOF.

Use as array index: By similar reasoning, you cannot use sign-extended plain char
variables as array index. If the sign bit is preserved, the conversion from char to int can
result in negative integers. You must use positive integer values for array index.

Argument to character-handling function: By similar reasoning, you cannot use sign-
extended plain char variables as arguments to character-handling functions declared in
ctype.h, for instance, isalpha() or isdigit(). According to the C11 standard
(Section 7.4), if you supply an integer argument that cannot be represented as unsigned
char or EOF, the resulting behavior is undefined.

Polyspace Implementation
The check raises a flag when:

• You use invalid arguments with an integer function from the standard library. This
check picks up:

 AUTOSAR C++14 Rule A21-8-1

9-59

• Character Conversion

toupper, tolower
• Character Checks

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit

• Integer Division

div, ldiv
• Absolute Values

abs, labs
• You convert a signed or plain char data type to a wider integer data type with sign

extension. You then use the resulting sign-extended value as array index, for
comparison with EOF or as argument to a character-handling function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Absolute Value of Large Negative
#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN;
 return abs(neg);
}

The input value to abs is INT_MIN. The absolute value of INT_MIN is INT_MAX+1. This
number cannot be represented by the type int.

9 AUTOSAR C++14 Rules

9-60

Correction — Change Input Argument

One possible correction is to change the input value to fit returned data type. In this
example, change the input value to INT_MIN+1.

#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN+1;
 return abs(neg);
}

Sign-Extended Character Value Compared with EOF
#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = *buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

In this example, the function parser can traverse a string input buf. If a character in the
string has the value -1, it can represent either EOF or the valid character value '\377'
(corresponding to the unsigned char equivalent 255). When converted to the int
variable c, its value becomes the integer value -1, which is always EOF. The later
comparison with EOF will not detect if the value returned from parser is actually EOF.

 AUTOSAR C++14 Rule A21-8-1

9-61

Correction — Cast to unsigned char Before Conversion

One possible correction is to cast the plain char value to unsigned char before
conversion to the wider int type. Only then can you test if the return value of parser is
really EOF.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = (unsigned char)*buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Group: Strings library

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

9 AUTOSAR C++14 Rules

9-62

Introduced in R2019a

 AUTOSAR C++14 Rule A21-8-1

9-63

AUTOSAR C++14 Rule A2-5-1
Trigraphs shall not be used.

Description

Rule Definition
Trigraphs shall not be used.

Rationale
You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These
trigraphs can cause accidental confusion with other uses of two question marks.

For instance, the string

"(Date should be in the form ??-??-??)"

is transformed to

"(Date should be in the form ~~]"

but this transformation might not be intended.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Lexical Conventions

9 AUTOSAR C++14 Rules

9-64

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A2-5-1

9-65

AUTOSAR C++14 Rule A2-5-2
Digraphs shall not be used.

Description

Rule Definition
Digraphs should not be used.

Rationale
Digraphs are a sequence of two characters that are supposed to be treated as a single
character. The checker flags use of these digraphs:

• <%, indicating [
• %>, indicating]
• <:, indicating {
• :>, indicating }
• %:, indicating #
• %:%:

When developing or reviewing code with digraphs, the developer or reviewer can
incorrectly consider the digraph as a sequence of separate characters.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Lexical Conventions

9 AUTOSAR C++14 Rules

9-66

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A2-5-2

9-67

AUTOSAR C++14 Rule A26-5-1
Pseudorandom numbers shall not be generated using std::rand().

Description

Rule Definition
Pseudorandom numbers shall not be generated using std::rand().

Rationale
This cryptographically weak routines is predictable and must not be used for security
purposes. When a predictable random value controls the execution flow, your program is
vulnerable to malicious attacks.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Random Loop Numbers

#include <stdio.h>
#include <stdlib.h>

volatile int rd = 1;
int main(int argc, char *argv[])
{
 int j, r, nloops;
 struct random_data buf;
 int i = 0;

9 AUTOSAR C++14 Rules

9-68

 nloops = rand();

 for (j = 0; j < nloops; j++) {
 if (random_r(&buf, &i))
 exit(1);
 printf("random_r: %ld\n", (long)i);
 }
 return 0;
}

This example uses rand and random_r to generate random numbers. If you use these
functions for security purposes, these PRNGs can be the source of malicious attacks.

Correction — Use Stronger PRNG

One possible correction is to replace the vulnerable PRNG with a stronger random
number generator.

#include <stdio.h>
#include <stdlib.h>
#include <openssl/rand.h>

volatile int rd = 1;
int main(int argc, char* argv[])
{
 int j, r, nloops;
 unsigned char buf;
 unsigned int seed;
 int i = 0;

 if (argc != 3)
 {
 fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 seed = atoi(argv[1]);
 nloops = atoi(argv[2]);

 for (j = 0; j < nloops; j++) {
 if (RAND_bytes(&buf, i) != 1)
 exit(1);
 printf("RAND_bytes: %u\n", (unsigned)buf);

 AUTOSAR C++14 Rule A26-5-1

9-69

 }
 return 0;
}

Check Information
Group: Algorithms library

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-70

AUTOSAR C++14 Rule A3-1-1
It shall be possible to include any header file in multiple translation units without
violating the One Definition Rule.

Description
Rule Definition
It shall be possible to include any header file in multiple translation units without
violating the One Definition Rule.

Rationale
If a header file with variable or function definitions appears in multiple inclusion paths,
the header file violates the One Definition Rule possibly leading to unpredictable
behavior. For instance, a source file includes the header file include.h and another
header file, which also includes include.h.

Polyspace Implementation
The rule checker flags variable and function definitions in header files.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Basic Concepts

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule A3-1-1

9-71

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-72

AUTOSAR C++14 Rule A3-1-2
Header files, that are defined locally in the project, shall have a file name extension of one
of: .h, .hpp or .hxx

Description

Rule Definition
Header files, that are defined locally in the project, shall have a file name extension of one
of: .h, .hpp or .hxx.

Rationale
Developers and code reviewers expect a header file to have one of the standard file name
extensions.

Polyspace Implementation
The rule checker flags files included with the #include directive with names that have
an extension other than .h, .hpp or .hxx. For instance:

#include <header.c>
#include <header2.cpp>

Instead of <...>, if you use "..." around the file, the checker also flags the case where
the file does not have an extension at all.

The checker does not flag the following inclusions:

• Files included with the Include (-include) option.
• Included files that do not exist.

The checker is case-insensitive.

 AUTOSAR C++14 Rule A3-1-2

9-73

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Basic Concepts

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

9 AUTOSAR C++14 Rules

9-74

AUTOSAR C++14 Rule A3-1-3
Implementation files, that are defined locally in the project, should have a file name
extension of ".cpp".

Description

Rule Definition
Implementation files, that are defined locally in the project, should have a file name
extension of ".cpp".

Polyspace Implementation
Not case sensitive if you set the option -dos.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A3-1-3

9-75

AUTOSAR C++14 Rule A3-1-4
When an array with external linkage is declared, its size shall be stated explicitly.

Description

Rule Definition
When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization.

Rationale
Though you can declare an incomplete array type and later complete the type, specifying
the array size during the first declaration makes the subsequent array access less error-
prone.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Array Size Unspecified During Declaration
int array[10];
extern int array2[]; //Noncompliant
int array3[]= {0,1,2};
extern int array4[10];

In the declaration of array2, the array size is unspecified.

9 AUTOSAR C++14 Rules

9-76

Check Information
Group: Basic Concepts

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A3-1-4

9-77

AUTOSAR C++14 Rule A3-3-1
Objects or functions with external linkage (including members of named namespaces)
shall be declared in a header file.

Description

Rule Definition
Objects or functions with external linkage shall be declared in a header file.

Rationale
If you declare a function or object in a header file, it is clear that the function or object is
meant to be accessed in multiple translation units. If you intend to access the function or
object from a single translation unit, declare it static or in an unnamed namespace.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Declaration in Header File Missing
This example uses two files:

• decls.h:

extern int x;
• file.cpp:

#include "decls.h"

9 AUTOSAR C++14 Rules

9-78

int x = 0;
int y = 0; //Noncompliant
static int z = 0;

In this example, the variable x is declared in a header file but the variable y is not. The
variable z is also not declared in a header file but it is declared with the static specifier
and does not have external linkage.

Check Information
Group: Basic Concepts

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A3-3-1

9-79

AUTOSAR C++14 Rule A3-9-1
Fixed width integer types from <cstdint>, indicating the size and signedness, shall be
used in place of the basic numerical types.

Description

Rule Definition
Fixed width integer types from <cstdint>, indicating the size and signedness, shall be
used in place of the basic numerical types.

Polyspace Implementation
Only allows use of basic types through direct typedefs.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-80

AUTOSAR C++14 Rule A5-0-1
The value of an expression shall be the same under any order of evaluation that the
standard permits.

Description

Rule Definition
The value of an expression shall be the same under any order of evaluation that the
standard permits.

Rationale
If an expression results in different values depending on the order of evaluation, its value
becomes implementation-defined.

Polyspace Implementation
An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and
written.

• The expression allows more than one order of evaluation.

Therefore, the rule checker forbids expressions where a variable is modified more than
once and can cause different results under different orders of evaluation. The rule
checker also detects cases where a volatile variable is read more than once in an
expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 AUTOSAR C++14 Rule A5-0-1

9-81

Examples
Variable Modified More Than Once in Expression
int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */
 COPY_ELEMENT (i++); /* Non-compliant */
}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++
occurs twice and the order of evaluation of the two expressions is unspecified.

Variable Modified and Used in Multiple Function Arguments
void f (unsigned int param1, unsigned int param2) {}

void main () {
 unsigned int i=0;
 f (i++, i); /* Non-compliant */
}

In this example, the rule is violated because it is unspecified whether the operation i++
occurs before or after the second argument is passed to f. The call f(i++,i) can
translate to either f(0,0) or f(0,1).

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

9 AUTOSAR C++14 Rules

9-82

Introduced in R2019a

 AUTOSAR C++14 Rule A5-0-1

9-83

AUTOSAR C++14 Rule A5-0-2
The condition of an if-statement and the condition of an iteration statement shall have
type bool.

Description

Rule Definition
The condition of an if-statement and the condition of an iteration- statement shall have
type bool.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-84

AUTOSAR C++14 Rule A5-0-3
The declaration of objects shall contain no more than two levels of pointer indirection.

Description

Rule Definition
The declaration of objects shall contain no more than two levels of pointer indirection.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A5-0-3

9-85

AUTOSAR C++14 Rule A5-0-4
Pointer arithmetic shall not be used with pointers to non-final classes.

Description

Rule Definition
Pointer arithmetic shall not be used with pointers to non-final classes.

Polyspace Implementation
Reports pointer arithmetic and array like access on expressions whose pointed type is
used as a base class.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-86

AUTOSAR C++14 Rule A5-1-1
Literal values shall not be used apart from type initialization, otherwise symbolic names
shall be used instead.

Description

Rule Definition
Literal values shall not be used apart from type initialization, otherwise symbolic names
shall be used instead.

Rationale
It is often unclear from use of literal constants what the constant represents. Using
named constants improves the readability of the code.

Polyspace Implementation
The rule checker flags use of literal constants other than those with data type char in
expressions, non-const initializations and case clauses of a switch statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule A5-1-1

9-87

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-88

AUTOSAR C++14 Rule A5-1-2
Variables shall not be implicitly captured in a lambda expression.

Description

Rule Definition
Variables shall not be implicitly captured in a lambda expression.

Rationale
In a lambda expression, you have the option to capture variables implicitly. For instance,
this lambda expression

[&](std::int32_t var) {
 sum+ = var;
}

indicates that all local variables in the calling context are captured by reference.
However, it is not immediately clear from this lambda expression:

• If a variable in the body of the expression comes from the calling context.

For instance, in the preceding lambda expression, it is not clear if sum is captured
from the calling context or is a global variable.

• If all variables captured from the calling context are used and whether the variables
are modified or just read (If the variables are read, a by-copy capture is preferred).

If you capture variables explicitly in a lambda expression, you have more control on
whether to capture by reference or copy. In addition, you or a reviewer can read the
lambda expression and determine whether a variable was captured from the calling
context.

 AUTOSAR C++14 Rule A5-1-2

9-89

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Lambda Expressions with Implicit and Explicit Capture
#include <iostream>
#include <algorithm>
#include <vector>
#include <cstdint>

void addEvenNumbers(std::vector<std::int32_t> numbers)
{
 std::int64_t sum = 0;
 std::int32_t divisor = 2;
 for_each(numbers.begin(), numbers.end(), [&] (std::int32_t y) //Noncompliant
 {
 if (y % divisor == 0)
 {
 std::cout << y << std::endl;
 sum += y;
 }
 });

 std::cout << sum << std::endl;
}

void addOddNumbers(std::vector<std::int32_t> numbers)
{
 std::int64_t sum = 0;
 std::int32_t divisor = 2;
 for_each(numbers.begin(), numbers.end(), [&sum, divisor] (std::int32_t y) //Compliant
 {
 if (y % divisor != 0)
 {
 std::cout << y << std::endl;
 sum += y;
 }
 });

9 AUTOSAR C++14 Rules

9-90

 std::cout << sum << std::endl;
}

The lambda expression in the addEvenNumbers function captures all local variables in
the calling context implicitly by reference and violates this rule. Some of the issues are:

• Unless you go through the body of the expression, it is not clear which variables are
used.

• Though the variable divisor is only read and not modified, it is captured by
reference. A by-copy capture is preferred.

The lambda expression in the addOddNumbers function captures each variable explicitly
and does not violate this rule. Without looking at the body of the lambda expression, you
can determine which variables are intended to be modified in the expression.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++14 Rule A5-1-2

9-91

AUTOSAR C++14 Rule A5-1-3
Parameter list (possibly empty) shall be included in every lambda expression.

Description

Rule Definition
Parameter list (possibly empty) shall be included in every lambda expression.

Rationale
You do not have to include a parameter list in a lambda expression. For instance, this
expression is syntactically valid and indicates a closure that can be called without
parameters:

[&counter] {
 ++counter;
}

However, without the (), you or a reviewer might not recognize this as a function object.
It is visually clearer to use the parameter list (...) even when the list is empty. For
instance:

[&counter]() {
 ++counter;
}

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

9 AUTOSAR C++14 Rules

9-92

Examples

Lambda Expressions Without Parameter List
#include <cstdint>

void func() {
 std::int32_t count = 0;

 auto lambda1 = [&count] {++count;}; //Noncompliant
 auto lambda2 = [&count] () { //Compliant
 ++count;
 };
}

The lambda expression assigned to lambda1 does not have a parameter list and violates
the rule. The issue is fixed when the same lambda expression is assigned to lambda2.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++14 Rule A5-1-3

9-93

AUTOSAR C++14 Rule A5-1-4
A lambda expression object shall not outlive any of its reference-captured objects.

Description

Rule Definition
A lambda expression object shall not outlive any of its reference-captured objects.

Rationale
The rule flags cases where a lambda expression captures an object by reference and you
can potentially access the captured object outside its scope. This situation happens if the
lambda expression object outlives the object captured by reference.

For instance, consider this function createFunction:

std::function<std::int32_t()> createFunction() {
 std::int32_t localVar = 0;
 return ([&localVar]() -> std::int32_t {
 localVar = 1;
 return localVar;
 });
}

createFunction returns a lambda expression object that captures the local variable
localVar by reference. The scope of localVar is limited to createFunction but the
lambda expression object returned has a much larger scope.

This situation can result in an attempt to access the local object localVar outside its
scope. For instance, when you call createFunction and assign the returned lambda
expression object to another object aFunction:

auto aFunction = createFunction();

and then invoke the new object aFunction:

std::int32_t someValue = aFunction();

9 AUTOSAR C++14 Rules

9-94

the captured variable localVar is no longer in scope. Therefore, the value returned from
aFunction is undefined.

If a function returns a lambda expression, to avoid accessing a captured object outside its
scope, make sure that the lambda expression captures all objects by copy. For instance,
you can rewrite createFunction as:

std::function<std::int32_t()> createFunction() {
 std::int32_t localVar = 0;
 return ([localVar]() mutable -> std::int32_t {
 localVar = 1;
 return localVar;
 });
}

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++14 Rule A5-1-4

9-95

AUTOSAR C++14 Rule A5-1-7
A lambda shall not be an operand to decltype or typeid.

Description

Rule Definition
A lambda shall not be an operand to decltype or typeid.

Rationale
According to the C++ Standard, the type of a lambda expression is a unique, unnamed
class type. Because the type is unique, another variable or expression cannot have the
same type. Use of decltype or typeid on a lambda expression indicates that you expect
a second variable or expression to have the same type as the operand lambda expression.

Both decltype and typeid return the data type of their operands. Typically the
operators are used to:

• Assign a type to another variable. For instance:

decltype(var1) var2;

creates a variable var2 with the same type as var1.
• Compare the types of two variables. For instance:

(typeid(var1) == typeid(var2))

compares the types of var1 and var2.

These uses do not apply to a lambda expression, which has a unique type.

Polyspace Implementation
The rule checker flags uses of decltype and typeid with lambda expressions.

9 AUTOSAR C++14 Rules

9-96

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Use of typeid on Lambda Expressions
#include <cstdint>

 void func()
 {
 auto lambdaFirst = []() -> std::int8_t { return 1; };
 auto lambdaSecond = []() -> std::int8_t { return 1; };

 if (typeid(lambdaFirst) == typeid(lambdaSecond))
 {
 // ...
 }
 }

The use of typeid on lambda expressions can lead to unexpected results. The
comparison above is false even though lambdaFirst and lambdaSecond appear to have
the same body.

Correction – Assign Lambda Expression to Function Object Before Using typeid

One possible correction is to assign the lambda expression to a function object and then
use the typeid operator on the function objects for comparison.

#include <cstdint>
#include <functional>

 void func()
 {
 std::function<std::int8_t()> functionFirst = []() { return 1; };
 std::function<std::int8_t()> functionSecond = []() { return 1; };

 if (typeid(functionFirst) == typeid(functionSecond))
 {

 AUTOSAR C++14 Rule A5-1-7

9-97

 // ...
 }
 }

Check Information
Group: Lexical Conventions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

9 AUTOSAR C++14 Rules

9-98

AUTOSAR C++14 Rule A5-2-2
Traditional C-style casts shall not be used.

Description

Rule Definition
C-style casts (other than void casts) and functional notation casts (other than explicit
constructor calls) shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A5-2-2

9-99

AUTOSAR C++14 Rule A5-2-3
A cast shall not remove any const or volatile qualification from the type of a pointer or
reference.

Description

Rule Definition
A cast shall not remove any const or volatile qualification from the type of a pointer or
reference.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-100

AUTOSAR C++14 Rule A5-2-4
reinterpret_cast shall not be used

Description

Rule Definition
reinterpret_cast shall not be used.

Rationale
reinterpret_cast is typically used to explicitly convert between two unrelated data
types. For instance, in this example, reinterpret_cast converts the type struct S*
to int*:

struct S { int x; } s;
int* ptr = reinterpret_cast<int*> (&s);

However, it is difficult to use reinterpret_cast and not violate type safety. If the result
of reinterpret_cast is a pointer, it is safe to dereference the pointer only after you
cast the pointer back to its original type.

Polyspace Implementation
The rule checker flags all uses of the reinterpret_cast keyword.

If the rule checker flags an use of reinterpret_cast that you consider safe, add a
comment justifying the result. See “Address Polyspace Results Through Bug Fixes or
Justifications”.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 AUTOSAR C++14 Rule A5-2-4

9-101

Examples

Use of reinterpret_cast Keyword
class A {
 int x;
 int y;
 public:
 void getxy();
};

class B {
 int z;
 public:
 void getz();
};

void func (B* Bptr) {
 A* Aptr = reinterpret_cast<A*>(Bptr);
}

The use of reinterpret_cast violates this rule. The result of reinterpret_cast is
not safe to dereference since A and B are unrelated classes. Dereferencing Aptr as if it
were an A* pointer can result in illegal memory access.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-102

AUTOSAR C++14 Rule A5-2-6
The operands of a logical && or \\ shall be parenthesized if the operands contain binary
operators.

Description

Rule Definition
Each operand of a logical && or || shall be a postfix-expression.

Polyspace Implementation
During preprocessing, violations of this rule are detected on the expressions in #if
directives.

The checker allows exceptions on associativity (a && b && c), (a || b || c).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule A5-2-6

9-103

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-104

AUTOSAR C++14 Rule A5-3-3
Pointers to incomplete class types shall not be deleted.

Description

Rule Definition
Pointers to incomplete class types shall not be deleted.

Rationale
When you delete a pointer to an incomplete class, it is not possible to call any nontrivial
destructor that the class might have. If the destructor performs cleanup activities such as
memory deallocation, these activities do not happen.

A similar problem happens, for instance, when you downcast to a pointer to an incomplete
class (downcasting is casting from a pointer to a base class to a pointer to a derived
class). At the point of downcasting, the relationship between the base and derived class is
not known. In particular, if the derived class inherits from multiple classes, at the point of
downcasting, this information is not available. The downcasting cannot make the
necessary adjustments for multiple inheritance and the resulting pointer cannot be
dereferenced.

Polyspace Implementation
The check raises a defect when you delete or cast to a pointer to an incomplete class. An
incomplete class is one whose definition is not visible at the point where the class is used.

For instance, the definition of class Body is not visible when the delete operator is
called on a pointer to Body:

class Handle {
 class Body *impl;
public:
 ~Handle() { delete impl; }

 AUTOSAR C++14 Rule A5-3-3

9-105

 // ...
};

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Deletion of Pointer to Incomplete Class
class Handle {
 class Body *impl;
public:
 ~Handle() { delete impl; }
 // ...
};

In this example, the definition of class Body is not visible when the pointer to Body is
deleted.

Correction — Define Class Before Deletion

One possible correction is to make sure that the class definition is visible when a pointer
to the class is deleted.

class Handle {
 class Body *impl;
public:
 ~Handle();
 // ...
};

// Elsewhere
class Body { /* ... */ };

Handle::~Handle() {
 delete impl;
}

9 AUTOSAR C++14 Rules

9-106

Correction — Use std::shared_ptr

Another possible correction is to use the std::shared_ptr type instead of a regular
pointer.

#include <memory>

class Handle {
 std::shared_ptr<class Body> impl;
 public:
 Handle();
 ~Handle() {}
 // ...
};

Downcasting to Pointer to Incomplete Class
File1.h:

class Base {
protected:
 double var;
public:
 Base() : var(1.0) {}
 virtual void do_something();
 virtual ~Base();
};

File2.h:

void funcprint(class Derived *);
class Base *get_derived();

File1.cpp:

#include "File1.h"
#include "File2.h"

void getandprint() {
 Base *v = get_derived();
 funcprint(reinterpret_cast<class Derived *>(v));
}

File2.cpp:

 AUTOSAR C++14 Rule A5-3-3

9-107

#include "File2.h"
#include "File1.h"
#include <iostream>

class Base2 {
protected:
 short var2;
public:
 Base2() : var2(12) {}
};

class Derived : public Base2, public Base {
 float var_derived;
public:
 Derived() : Base2(), Base(), var_derived(1.2f) {}
 void do_something()
 {
 std::cout << "var_derived: "
 << var_derived << ", var : " << var
 << ", var2: " << var2 << std::endl;
 }
 };

void funcprint(Derived *d) {
 d->do_something();
}

Base *get_derived() {
 return new Derived;
}

In this example, the definition of class Derived is not visible in File1.cpp when a
Base* pointer to downcast to a Derived* pointer.

In File2.cpp, class Derived derives from two classes, Base and Base2. This
information about multiple inheritance is not available at the point of downcasting in
File1.cpp. The result of downcasting is passed to the function funcprint and
dereferenced in the body of funcprint. Because the downcasting was done with
incomplete information, the dereference can be invalid.

Correction — Define Class Before Downcasting

One possible correction is to define the class Derived before downcasting a Base*
pointer to a Derived* pointer.

9 AUTOSAR C++14 Rules

9-108

In this corrected example, the downcasting is done in File2.cpp in the body of
funcprint at a point where the definition of class Derived is visible. The downcasting
is not done in File1.cpp where the definition of Derived is not visible. The changes
from the previous incorrect example are highlighted.

File1.h:

class Base {
protected:
 double var;
public:
 Base() : var(1.0) {}
 virtual void do_something();
 virtual ~Base();
};

File2.h:

void funcprint(class Base *);
class Base *get_derived();

File1.cpp:

#include "File1.h"
#include "File2.h"

void getandprint() {
 Base *v = get_derived();
 funcprint(v);
}

File2.cpp:

#include "File2_corr.h"
#include "File1_corr.h"
#include <iostream>

class Base2 {
protected:
 short var2;
public:
 Base2() : var2(12) {}
};

class Derived : public Base2, public Base {

 AUTOSAR C++14 Rule A5-3-3

9-109

 float var_derived;

public:
 Derived() : Base2(), Base(), var_derived(1.2f) {}
 void do_something()
 {
 std::cout << "var_derived: "
 << var_derived << ", var : " << var
 << ", var2: " << var2 << std::endl;
 }
};

void funcprint(Base *d) {
 Derived *temp = dynamic_cast<Derived*>(d);
 if(temp) {
 d->do_something();
 }
 else {
 //Handle error
 }
}

Base *get_derived() {
 return new Derived;
}

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-110

AUTOSAR C++14 Rule A5-6-1
The right hand operand of the integer division or remainder operators shall not be equal
to zero.

Description

Rule Definition
The right hand operand of the integer division or remainder operators shall not be equal
to zero.

Rationale
• If the numerator is the minimum possible value and the denominator is -1, your

division operation overflows because the result cannot be represented by the current
variable size.

• If the denominator is zero, your division operation fails possibly causing your program
to crash.

These risks can be used to execute arbitrary code. This code is usually outside the scope
of a program's implicit security policy.

• If the second remainder operand is zero, your remainder operation fails, causing your
program to crash.

• If the second remainder operand is -1, your remainder operation can overflow if the
remainder operation is implemented based on the division operation that can overflow.

• If one of the operands is negative, the operation result is uncertain. For C89, the
modulo operation is not standardized, so the result from negative operands is
implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in
general.

 AUTOSAR C++14 Rule A5-6-1

9-111

Polyspace Implementation
The checker raises a defect when:

• The denominator of a division or modulo operation can be a zero-valued integer.
• There are division operations where one or both of the integer operands is from an

unsecure source.
• There are modulo operations with one or more tainted operands.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Dividing an Integer by Zero
int fraction(int num)
{
 int denom = 0;
 int result = 0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division
int fraction(int num)
{
 int denom = 0;
 int result = 0;

 if (denom != 0)
 result = num/denom;

9 AUTOSAR C++14 Rules

9-112

 return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

int fraction(int num)
{
 int denom = 2;
 int result = 0;

 result = num/denom;

 return result;
}

Modulo Operation with Zero
int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % i;
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

In this example, Polyspace flags the modulo operation as a division by zero. Because
modulo is inherently a division operation, the divisor (right hand argument) cannot be
zero. The modulo operation uses the for loop index as the divisor. However, the for loop
starts at zero, which cannot be an iterator.

Correction — Check Divisor Before Operation

One possible correction is checking the divisor before the modulo operation. In this
example, see if the index i is zero before the modulo operation.

 AUTOSAR C++14 Rule A5-6-1

9-113

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 if(i != 0)
 {
 arr[i] = input % i;
 }
 else
 {
 arr[i] = input;
 }
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Correction — Change Divisor

Another possible correction is changing the divisor to a nonzero integer. In this example,
add one to the index before the % operation to avoid dividing by zero.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % (i+1);
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Division of Function Arguments
extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = usernum/userden;
 print_int(r);
 return r;
}

9 AUTOSAR C++14 Rules

9-114

This example function divides two argument variables, then prints and returns the result.
The argument values are unknown and can cause division by zero or integer overflow.

Correction — Check Values

One possible correction is to check the values of the numerator and denominator before
performing the division.

#include "limits.h"

extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = 0;
 if (userden!=0 && !(usernum=INT_MIN && userden==-1)) {
 r = usernum/userden;
 }
 print_int(r);
 return r;
}

Modulo with Function Arguments
extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 128%userden;
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using an input argument.
The argument is not checked before calculating the remainder for values that can crash
the program, such as 0 and -1.

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the
modulo operation. In this corrected example, the modulo operation continues only if the
second operand is greater than zero.

extern void print_int(int);

 AUTOSAR C++14 Rule A5-6-1

9-115

int taintedintmod(int userden) {
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-116

AUTOSAR C++14 Rule A5-16-1
The ternary conditional operator shall not be used as a sub-expression.

Description
Rule Definition
The ternary conditional operator shall not be used as a sub-expression.

Rationale
A ternary conditional operator used as a subexpression makes the full expression less
readable and difficult to maintain. It is often visually clearer if you assign the result of a
ternary operator to a variable and then use the variable in subsequent operations.

Polyspace Implementation
The checker flags uses of the ternary conditional operator in subexpressions with some
exceptions. Exceptions include uses of the operator when:

• The result is assigned to a variable.
• The result is used as a function argument or returned from a function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Use of Ternary Operators as Sub-expressions
#include <cstdint>
const int ULIM = 100000;

 AUTOSAR C++14 Rule A5-16-1

9-117

std::int32_t foo(int32_t x) {
 int ret;
 ret = (x <= 0? 0: (x >= ULIM? 0 : x)); //Noncompliant
 return ret;
}

std::int32_t bar(int32_t x) {
 int ret, retInterim;
 retInterim = x >= ULIM? 0 : x; //Compliant
 ret = retInterim <= 0? 0 : retInterim; //Compliant
 return ret;
}

In this example, in foo, a ternary conditional operation is chained with a second
operation to return the value 0 if x is in the range [0, ULIM] and return x otherwise.
The ternary operation comparing x with ULIM is a sub-expression in the full chain and
violates the rule.

In bar, each ternary conditional operation is written in a separate step and does not
violate the rule. Alternatively, the same algorithm can be implemented by combining the
conditions with the boolean AND operator and using a single ternary conditional
operation.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-118

AUTOSAR C++14 Rule A6-4-1
A switch statement shall have at least two case-clauses, distinct from the default label.

Description

Rule Definition
A switch statement shall have at least two case-clauses, distinct from the default label.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A6-4-1

9-119

AUTOSAR C++14 Rule A6-5-2
A for loop shall contain a single loop-counter which shall not have floating-point type.

Description

Rule Definition
A for loop shall contain a single loop-counter which shall not have floating type.

Polyspace Implementation
The checker flags these situations:

• The for loop index has a floating point type.
• More than one loop counter is incremented in the for loop increment statement.

For instance:

for(i=0, j=0; i<10 && j < 10;i++, j++) {}

• The for loop increment statement is missing.

For instance:

for(i=0; i<10;) {}

Even if you increment the loop counter in the loop body, the checker still raises a
violation. The rule is based on MISRA C++ rule 6-5-1. According to the MISRA C++
specifications, a loop counter is one that is initialized in or prior to the loop
expression, acts as an operand to a relational operator in the loop expression and is
modified in the loop expression. If the increment statement in the loop expression is
missing, the checker cannot find the loop counter modification and considers as if a
loop counter is not present.

9 AUTOSAR C++14 Rules

9-120

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A6-5-2

9-121

AUTOSAR C++14 Rule A6-5-4
For-init-statement and expression should not perform actions other than loop-counter
initialization and modification.

Description

Rule Definition
For-init-statement and expression should not perform actions other than loop-counter
initialization and modification.

Polyspace Implementation
• Reports if loop parameter cannot be determined. Assumes JSF C++ Rule 200 is not

violated. The loop variable parameter is assumed to be a variable.
• Assumes 1 loop parameter (see JSF C++ Rule 198), with non class type. JSF C++ Rule

200 must not be violated for this rule to be reported.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-122

AUTOSAR C++14 Rule A6-6-1
The goto statement shall not be used.

Description

Rule Definition
The goto statement shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A6-6-1

9-123

AUTOSAR C++14 Rule A7-1-4
The register keyword shall not be used.

Description

Rule Definition
The register keyword shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-124

AUTOSAR C++14 Rule A7-1-6
The typedef specifier shall not be used

Description
Rule Definition
The typedef specifier shall not be used.

Rationale
The using syntax is a better alternative to typedef-s for defining aliases.

Since C++11, the using syntax allows you to define template aliases where the template
arguments are not bound to a data type. For instance, the following statements define an
alias vectorType for vector, where the argument T is not bound to a data type and can
be substituted later:

template<class T, class Allocator = allocator<T>> class vector;
template<class T> using vectorType = vector<T, My_allocator<T>>;
vectorType<int> primes = {2,3,5,7,11,13,17,19,23,29};

The typedef keyword does not allow defining such template aliases.

Polyspace Implementation
The rule checker flags all uses of the typedef keyword.

If you do not want to remove certain instances of the typedef keyword, add a comment
justifying those results. See “Address Polyspace Results Through Bug Fixes or
Justifications”.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 AUTOSAR C++14 Rule A7-1-6

9-125

Examples

Use of typedef Keyword
#include <cstdint>
#include <type_traits>

typedef std::int32_t (*fptr1) (std::int32_t); //Noncompliant
using fptr2 = std::int32_t (*) (std::int32_t); //Compliant

template <class T> using fptr3 = std::int32_t (*) (T); //Compliant

The alias definitions for fptr1 and fptr2 are exactly equivalent. There is no typedef
equivalent for the alias definition for fptr3.

The use of typedef-s violates this rule. The rule requires that you stick to the using
syntax for consistency even when a typedef equivalent exists.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-126

AUTOSAR C++14 Rule A7-1-7
Each expression statement and identifier declaration shall be placed on a separate line.

Description

Rule Definition
Each expression statement and identifier declaration shall be placed on a separate line.

Polyspace Implementation
Reports when two consecutive expression statements are on the same line.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A7-1-7

9-127

AUTOSAR C++14 Rule A7-1-9
A class, structure, or enumeration shall not be declared in the definition of its type.

Description

Rule Definition
A class, structure, or enumeration shall not be declared in the definition of its type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-128

AUTOSAR C++14 Rule A7-2-2
Enumeration underlying type shall be explicitly defined.

Description

Rule Definition
Enumeration underlying type shall be explicitly defined.

Rationale
In an unscoped enumeration declaration such as:

enum someEnum : type { ... }

if : type is omitted, the underlying type is implementation-defined (with the only
requirement that the type must accommodate all the enumeration values). Not declaring
an underlying type explicitly results in implementation-defined behavior.

In a scoped enumeration declaration such as:

enum class someEnum : type { ... }

if : type is omitted, the underlying type is int. If an enumeration value exceeds the
values allowed for int, you see compilation errors.

For both unscoped and scoped enumerations, declare the underlying type explicitly to
avoid implementation-defined behavior or compilation errors.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 AUTOSAR C++14 Rule A7-2-2

9-129

Examples

Enums with Underlying Type Omitted
#include <cstdint>

enum E1 { //Noncompliant unscoped enum
 E10,
 E11,
 E12
};

enum E2 : std::uint8_t { //Compliant unscoped enum
 E20,
 E21,
 E22
};

enum class E3 { //Noncompliant scoped enum
 E30,
 E31,
 E32
};

enum class E4 : std::uint8_t { //Compliant scoped enum
 E40,
 E41,
 E42
};

In this example, the code is noncompliant when the underlying types of the enumerations
are omitted.

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

9 AUTOSAR C++14 Rules

9-130

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++14 Rule A7-2-2

9-131

AUTOSAR C++14 Rule A7-2-3
Enumerations shall be declared as scoped enum classes.

Description
Rule Definition
Enumerations shall be declared as scoped enum classes.

Rationale
Enumeration values in an unscoped enum can conflict with other identifiers in the same
scope as the enum and cause compilation errors. For instance:

enum E: std::int32_t { E0, E1};
std::int32_t E0;

If you scope the enum, such conflicts can be avoided. For instance:

enum class E: std::int32_t { E0, E1};
std::int32_t E0;

Scoping the enum also disallows implicit conversions of the enumeration values to other
types.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Unscoped Enums
#include<cstdint>

9 AUTOSAR C++14 Rules

9-132

enum E1: std::int32_t { E10, E11}; //Noncompliant
// std::int32_t E10; causes compilation errors

enum class E2: std::int32_t { E20, E21}; //Compliant
std::int32_t E20;

In this example, the declaration of unscoped enum E1 is noncompliant. Redeclaring an
enumeration value of the unscoped enum causes compilation errors (as shown in the
commented line that redeclares the enumeration value E10).

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++14 Rule A7-2-3

9-133

AUTOSAR C++14 Rule A7-2-4
In an enumeration, either (1) none, (2) the first or (3) all enumerators shall be initialized.

Description

Rule Definition
In an enumerator list, the = construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-134

AUTOSAR C++14 Rule A7-3-1
All overloads of a function shall be visible from where it is called.

Description

Rule Definition
Multiple declarations for an identifier in the same namespace shall not straddle a using-
declaration for that identifier.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A7-3-1

9-135

AUTOSAR C++14 Rule A7-5-1
A function shall not return a reference or a pointer to a parameter that is passed by
reference to const.

Description

Rule Definition
A function shall not return a reference or a pointer to a parameter that is passed by
reference or const reference.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-136

AUTOSAR C++14 Rule A7-5-2
Functions shall not call themselves, either directly or indirectly.

Description

Rule Definition
Functions should not call themselves, either directly or indirectly.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A7-5-2

9-137

AUTOSAR C++14 Rule A8-4-1
Functions shall not be defined using the ellipsis notation.

Description

Rule Definition
Functions shall not be defined using the ellipsis notation.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-138

AUTOSAR C++14 Rule A8-4-2
All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

Description

Rule Definition
All exit paths from a function with non- void return type shall have an explicit return
statement with an expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A8-4-2

9-139

AUTOSAR C++14 Rule A8-4-7
"in" parameters for "cheap to copy" types shall be passed by value.

Description

Rule Definition
"in" parameters for "cheap to copy" types shall be passed by value.

Polyspace Implementation
Report constant parameters references with sizeof <= 2 * sizeof(int). Does not
report for copy-constructor.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-140

AUTOSAR C++14 Rule A8-5-0
All memory shall be initialized before it is read.

Description

Rule Definition
All variables shall have a defined value before they are used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A8-5-0

9-141

AUTOSAR C++14 Rule A8-5-1
In an initialization list, the order of initialization shall be following: (1) virtual base classes
in depth and left to right order of the inheritance graph, (2) direct base classes in left to
right order of inheritance list, (3) non-static data members in the order they were
declared in the class definition.

Description

Rule Definition
In an initialization list, the order of initialization shall be following: (1) virtual base classes
in depth and left to right order of the inheritance graph, (2) direct base classes in left to
right order of inheritance list, (3) non-static data members in the order they were
declared in the class definition.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-142

AUTOSAR C++14 Rule A8-5-2
Braced-initialization {}, without equals sign, shall be used for variable initialization.

Description
Rule Definition
Braced-initialization {}, without equals sign, shall be used for variable initialization.

Rationale
Braced initialization:

classType Object{arg1, arg2, ...};

is less ambiguous than other forms of initialization. Braced initialization has the following
advantages:

• Prevents implicit narrowing conversions such as from double to float.
• Avoids the ambiguous syntax that leads to the problem of most vexing parse.

For instance, from the declaration:

ResourceType aResource();

It is not immediately clear if aResource is a function returning a variable of type
ResourceType or an object of type ResourceType.

For more information, see Ambiguous declaration syntax.

The rule also forbids the use of = sign for initialization because the = sign can give the
impression that an assignment or copy constructor is invoked even though it is not.

Polyspace Implementation
In general, the checker flags initializations of an object obj1 of data type Type using
these formats:

 AUTOSAR C++14 Rule A8-5-2

9-143

• Type obj1 = obj2;

• Type obj1(obj2);

Provided obj1 and obj2 have distinct data types.

The checker is enabled only if you specify a C++ version of C++11 or later. See C++
standard version (-cpp-version).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Braced and Nonbraced Initialization
class ResourceType {
 int memberOne;
 int memberTwo;
 public:
 ResourceType() {memberOne = 0; memberTwo = 0;}
 ResourceType(int m, int n) {memberOne = m; memberTwo = n;}
 ResourceType(ResourceType &anotherResource) {
 memberOne = anotherResource.memberTwo;
 memberTwo = anotherResource.memberOne;
 }
};

void func() {
 ResourceType aResourceOne(); //Noncompliant
 ResourceType aResourceTwo(1, 2); //Noncompliant
 ResourceType aResourceThree = {1,2}; //Noncompliant

 ResourceType aResourceFour{1,2}; //Compliant

}

In this example, the function func declares four objects of type ResourceType. Only the
declaration of aResourceFour does not violate this rule.

9 AUTOSAR C++14 Rules

9-144

The declarations of aResourceOne, aResourceTwo and aResourceThree violate the
rule. In particular:

• The declaration of aResourceOne suffers from the problem of most vexing parse. It is
not clear whether aResourceOne is an object of type ResourceType or a function
returning an object of type ResourceType.

• The declaration of aResourceThree seems to suggest that the copy constructor
ResourceType(ResourceType &) is invoked for initialization. The copy constructor
initializes the data member memberOne to 2 and memberTwo to 1. However, the
constructor ResourceType(int, int) is invoked. This constructor initializes the
data member memberOne to 1 and memberTwo to 2.

Check Information
Group: Declarators

See Also
Ambiguous declaration syntax | Check AUTOSAR C++ 14 (-autosar-cpp14) |
Improper array initialization | Non-initialized variable | Variable
shadowing | Write without a further read

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A8-5-2

9-145

AUTOSAR C++14 Rule A9-3-1
Member functions shall not return non-const "raw" pointers or references to private or
protected data owned by the class.

Description

Rule Definition
Member functions shall not return non-const handles to class-data.

Polyspace Implementation
The checker flags a rule violation only if a member function returns a non-const pointer
or reference to a nonstatic data member. The rule does not apply to static data members.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Classes

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-146

AUTOSAR C++14 Rule A9-5-1
Unions shall not be used.

Description

Rule Definition
Unions shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Classes

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A9-5-1

9-147

AUTOSAR C++14 Rule A9-6-1
Bit-fields shall be either unsigned integral, or enumeration (with underlying type of
unsigned integral type).

Description

Rule Definition
Bit-fields shall be either unsigned integral, or enumeration (with underlying type of
unsigned integral type).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-148

AUTOSAR C++14 Rule M0-1-1
A project shall not contain unreachable code.

Description

Rule Definition
A project shall not contain unreachable code.

Rationale
This rule flags situations where a group of statements is unreachable because of syntactic
reasons. For instance, code following a return statement are always unreachable.

Unreachable code involve unnecessary maintenance and can often indicate programming
errors.

Polyspace Implementation
Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Unreachable statements
int func(int arg) {
 int temp = 0;

 AUTOSAR C++14 Rule M0-1-1

9-149

 switch(arg) {
 temp = arg; // Noncompliant
 case 1:
 {
 break;
 }
 default:
 {
 break;
 }
 }
 return arg;
 arg++; // Noncompliant
}

These statements are unreachable:

• Statements inside a switch statement that do not belong to a case or default
block.

• Statements after a return statement.

Check Information
Group: Language Independent Issues

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-150

AUTOSAR C++14 Rule M0-1-10
Every defined function should be called at least once.

Description

Rule Definition
Every defined function shall be called at least once.

Rationale
If a function with a definition is not called, it might indicate a serious coding error. For
instance, the function call is unreachable or a different function is called unintentionally.

Polyspace Implementation
The checker detects situations where a static function is defined but not called at all in its
translation unit.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Uncalled Static Function
static void func1() {
}

static void func2() { //Noncompliant
}

 AUTOSAR C++14 Rule M0-1-10

9-151

void func3();

int main() {
 func1();
 return 0;
}

The static function func2 is defined but not called.

The function func3 is not called either, however, it is only declared and not defined. The
absence of a call to func3 does not violate the rule.

Check Information
Group: Language Independent Issues

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-152

AUTOSAR C++14 Rule M0-1-2
A project shall not contain infeasible paths.

Description

Rule Definition
A project shall not contain infeasible paths.

Rationale
This rule flags situations where a group of statements is redundant because of
nonsyntactic reasons. For instance, an if condition is always true or false. Code that is
unreachable from syntactic reasons are flagged by rule 0-1-1.

Unreachable or redundant code involve unnecessary maintenance and can often indicate
programming errors.

Polyspace Implementation
Bug Finder and Code Prover check this rule differently. The analysis can produce different
results.

• Bug Finder uses the Dead code and Useless if checkers to detect violations of this
rule.

• Code Prover does not use run-time checks to detect violations of this rule. Instead,
Code Prover detects the violations at compile time.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 AUTOSAR C++14 Rule M0-1-2

9-153

Examples

Boolean Operations with Invariant Results
void func (unsigned int arg) {
 if (arg >= 0U) //Noncompliant
 arg = 1U;
 if (arg < 0U) //Noncompliant
 arg = 1U;
}

An unsigned int variable is nonnegative. Both if conditions involving the variable are
always true or always false and are therefore redundant.

Check Information
Group: Language Independent Issues

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-154

AUTOSAR C++14 Rule M0-1-3
A project shall not contain unused variables.

Description

Rule Definition
A project shall not contain unused variables.

Polyspace Implementation
The checker flags local or global variables that are declared or defined but not used
anywhere in the source files. This specification also applies to members of structures and
classes.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Use of Named Bit Field for Padding
#include <iostream>
struct S {
 unsigned char b1 : 3;
 unsigned char pad: 1; //Noncompliant
 unsigned char b2 : 4;
};
void init(struct S S_obj)
{
 S_obj.b1 = 0;

 AUTOSAR C++14 Rule M0-1-3

9-155

 S_obj.b2 = 0;
}

In this example, the bit field pad is used for padding the structure. Therefore, the field is
never read or written and causes a violation of this rule. To avoid the violation, use an
unnamed field for padding.

struct S {
 unsigned char b1 : 3;
 unsigned char : 1;
 unsigned char b2 : 4;
};

Check Information
Group: Language Independent Issues

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-156

AUTOSAR C++14 Rule M0-1-9
There shall be no dead code.

Description

Rule Definition
There shall be no dead code.

Rationale
If an operation is reachable but removing the operation does not affect program behavior,
the operation constitutes dead code. For instance, suppose that a variable is never read
following a write operation. The write operation is redundant.

The presence of dead code can indicate an error in the program logic. Because a compiler
can remove dead code, its presence can cause confusion for code reviewers.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Redundant Operations
#define ULIM 10000

int func(int arg) {
 int res;
 res = arg*arg + arg;
 if (res > ULIM)
 res = 0; //Noncompliant

 AUTOSAR C++14 Rule M0-1-9

9-157

 return arg;
}

In this example, the operations involving res are redundant because the function func
returns its argument arg. All operations involving res can be removed without changing
the effect of the function.

The checker flags the last write operation on res because the variable is never read after
that point. The dead code can indicate an unintended coding error. For instance, you
intended to return the value of res instead of arg.

Check Information
Group: Language Independent Issues

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-158

AUTOSAR C++14 Rule M0-2-1
An object shall not be assigned to an overlapping object.

Description
Rule Definition
An object shall not be assigned to an overlapping object.

Rationale
When you assign an object to another object with overlapping memory, the behavior is
undefined.

The exceptions are:

• You assign an object to another object with exactly overlapping memory and
compatible type.

• You copy one object to another with memmove.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Assignment of Union Members
void func (void) {
 union {
 short i;
 int j;
 } a = {0}, b = {1};

 AUTOSAR C++14 Rule M0-2-1

9-159

 a.j = a.i; //Noncompliant
 a = b; //Compliant
}

In this example, the rule is violated when a.i is assigned to a.j because the two
variables have overlapping regions of memory.

Check Information
Group: Language Independent Issues

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-160

AUTOSAR C++14 Rule M10-1-1
Classes should not be derived from virtual bases.

Description
Rule Definition
Classes should not be derived from virtual bases.

Rationale
The use of virtual bases can lead to many confusing behaviors.

For instance, in an inheritance hierarchy involving a virtual base, the most derived class
calls the constructor of the virtual base. Intermediate calls to the virtual base constructor
are ignored.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Use of Virtual Bases
class Base {};
class Intermediate: public virtual Base {}; //Noncompliant
class Final: public Intermediate {};

In this example, the rule checker raises a violation when the Intermediate class is
derived from the class Base with the virtual keyword.

The following behavior can be a potential source of confusion. When you create an object
of type Final, the constructor of Final directly calls the constructor of Base. Any call to

 AUTOSAR C++14 Rule M10-1-1

9-161

the Base constructor from the Intermediate constructor are ignored. You might see
unexpected results if you do not take into account this behavior.

Check Information
Group: Derived Classes

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-162

AUTOSAR C++14 Rule M10-1-2
A base class shall only be declared virtual if it is used in a diamond hierarchy.

Description

Rule Definition
A base class shall only be declared virtual if it is used in a diamond hierarchy.

Rationale
This rule is less restrictive than AUTOSAR C++14 Rule M10-1-1. Rule M10-1-1 forbids
the use of a virtual base anywhere in your code because a virtual base can lead to
potentially confusing behavior.

Rule M10-1-2 allows the use of virtual bases in the one situation where they are useful,
that is, as a common base class in diamond hierarchies.

For instance, the following diamond hierarchy violates rule M10-1-1 but not rule M10-1-2.

class Base {};
class Intermediate1: public virtual Base {};
class Intermediate2: public virtual Base {};
class Final: public Intermediate1, public Intermediate2 {};

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Derived Classes

 AUTOSAR C++14 Rule M10-1-2

9-163

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-164

AUTOSAR C++14 Rule M10-1-3
An accessible base class shall not be both virtual and non-virtual in the same hierarchy.

Description

Rule Definition
An accessible base class shall not be both virtual and non-virtual in the same hierarchy.

Rationale
The checker flags situations where the same class is inherited as a virtual base class and
a non-virtual base class in the same derived class. These situations defeat the purpose of
virtual inheritance and causes multiple copies of the base class sub-object in the derived
class object.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Base Class Both Virtual and Non-Virtual in Same Hierarchy
class Base {};
class Intermediate1: virtual public Base {};
class Intermediate2: virtual public Base {};
class Intermediate3: public Base {};
class Final: public Intermediate1, Intermediate2, Intermediate3 {}; //Noncompliant

In this example, the class Base is inherited in Final both as a virtual and non-virtual
base class. The Final object contains at least two copies of a Base sub-object.

 AUTOSAR C++14 Rule M10-1-3

9-165

Check Information
Group: Derived Classes

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-166

AUTOSAR C++14 Rule M10-2-1
All accessible entity names within a multiple inheritance hierarchy should be unique.

Description

Rule Definition
All accessible entity names within a multiple inheritance hierarchy should be unique.

Polyspace Implementation
The checker flags data members from different classes with conflicting names if the same
class derives from these classes. For instance:

class B1
 {
 public:
 int count;
 void foo ();
 };
class B2
 {
 public:
 int count;
 void foo ();
 };

class D : public B1, public B2
 {
 public:
 void Bar ()
 {
 ++B1::count;
 B1::foo ();
 }
 };

 AUTOSAR C++14 Rule M10-2-1

9-167

If the data member access in the derived class is ambiguous, the analysis reports this
issue as a compilation error and not a coding rule violation. For instance, a compilation
error occurs in the preceding example if the class D is rewritten as:

class D : public B1, public B2
 {
 public:
 void Bar ()
 {
 ++count; // Is that B1::count or B2::count?
 foo (); // Is that B1::foo() or B2::foo()?
 }
 };

The checker does not check for conflicts between entities of different kinds, for instance,
member functions against data members.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Derived Classes

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-168

AUTOSAR C++14 Rule M10-3-3
A virtual function shall only be overridden by a pure virtual function if it is itself declared
as pure virtual.

Description

Rule Definition
A virtual function shall only be overridden by a pure virtual function if it is itself declared
as pure virtual.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Derived Classes

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M10-3-3

9-169

AUTOSAR C++14 Rule M11-0-1
Member data in non-POD class types shall be private.

Description

Rule Definition
Member data in non- POD class types shall be private.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Member Access Control

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-170

AUTOSAR C++14 Rule M12-1-1
An object's dynamic type shall not be used from the body of its constructor or destructor.

Description

Rule Definition
An object's dynamic type shall not be used from the body of its constructor or destructor.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Special Member Functions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M12-1-1

9-171

AUTOSAR C++14 Rule M14-5-3
A copy assignment operator shall be declared when there is a template assignment
operator with a parameter that is a generic parameter.

Description

Rule Definition
A copy assignment operator shall be declared when there is a template assignment
operator with a parameter that is a generic parameter.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Templates

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-172

AUTOSAR C++14 Rule M14-6-1
In a class template with a dependent base, any name that may be found in that dependent
base shall be referred to using a qualified-id or this->.

Description

Rule Definition
In a class template with a dependent base, any name that may be found in that dependent
base shall be referred to using a qualified-id or this->

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Templates

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M14-6-1

9-173

AUTOSAR C++14 Rule M15-0-3
Control shall not be transferred into a try or catch block using a goto or a switch
statement.

Description

Rule Definition
Control shall not be transferred into a try or catch block using a goto or a switch
statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-174

AUTOSAR C++14 Rule M15-1-2
NULL shall not be thrown explicitly.

Description

Rule Definition
NULL shall not be thrown explicitly.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M15-1-2

9-175

AUTOSAR C++14 Rule M15-1-3
An empty throw (throw;) shall only be used in the compound statement of a catch handler.

Description

Rule Definition
An empty throw (throw;) shall only be used in the compound- statement of a catch
handler.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-176

AUTOSAR C++14 Rule M15-3-3
Handlers of a function-try-block implementation of a class constructor or destructor shall
not reference non-static members from this class or its bases.

Description

Rule Definition
Handlers of a function-try-block implementation of a class constructor or destructor shall
not reference non-static members from this class or its bases.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M15-3-3

9-177

AUTOSAR C++14 Rule M15-3-6
Where multiple handlers are provided in a single try-catch statement or function-try-block
for a derived class and some or all of its bases, the handlers shall be ordered most-derived
to base class.

Description

Rule Definition
Where multiple handlers are provided in a single try-catch statement or function-try-block
for a derived class and some or all of its bases, the handlers shall be ordered most-derived
to base class.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-178

AUTOSAR C++14 Rule M15-3-7
Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

Description

Rule Definition
Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Exception Handling

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M15-3-7

9-179

AUTOSAR C++14 Rule M16-0-1
#include directives in a file shall only be preceded by other pre-processor directives or
comments.

Description

Rule Definition
#include directives in a file shall only be preceded by other preprocessor directives or
comments.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-180

AUTOSAR C++14 Rule M16-0-2
Macros shall only be #define'd or #undef'd in the global namespace.

Description

Rule Definition
Macros shall only be #define 'd or #undef 'd in the global namespace.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-0-2

9-181

AUTOSAR C++14 Rule M16-0-5
Arguments to a function-like macro shall not contain tokens that look like pre-processing
directives.

Description

Rule Definition
Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-182

AUTOSAR C++14 Rule M16-0-6
In the definition of a function-like macro, each instance of a parameter shall be enclosed
in parentheses, unless it is used as the operand of # or ##.

Description

Rule Definition
In the definition of a function-like macro, each instance of a parameter shall be enclosed
in parentheses, unless it is used as the operand of # or ##.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-0-6

9-183

AUTOSAR C++14 Rule M16-0-7
Undefined macro identifiers shall not be used in #if or #elif pre-processor directives,
except as operands to the defined operator.

Description

Rule Definition
Undefined macro identifiers shall not be used in #if or #elif preprocessor directives,
except as operands to the defined operator.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-184

AUTOSAR C++14 Rule M16-0-8
If the # token appears as the first token on a line, then it shall be immediately followed by
a pre-processing token.

Description

Rule Definition
If the # token appears as the first token on a line, then it shall be immediately followed by
a preprocessing token.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-0-8

9-185

AUTOSAR C++14 Rule M16-1-1
The defined pre-processor operator shall only be used in one of the two standard forms.

Description

Rule Definition
The defined preprocessor operator shall only be used in one of the two standard forms.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-186

AUTOSAR C++14 Rule M16-1-2
All #else, #elif and #endif pre-processor directives shall reside in the same file as the #if
or #ifdef directive to which they are related.

Description

Rule Definition
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if
or #ifdef directive to which they are related.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-1-2

9-187

AUTOSAR C++14 Rule M16-2-3
Include guards shall be provided.

Description

Rule Definition
Include guards shall be provided.

Polyspace Implementation
The checker raises a violation if a header file does not contain an include guard.

For instance, this code uses an include guard for the #define and #include statements
and does not violate the rule:

// Contents of a header file
#ifndef FILE_H

#define FILE_H
#include "libFile.h"

#endif

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives

9 AUTOSAR C++14 Rules

9-188

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-2-3

9-189

AUTOSAR C++14 Rule M16-3-1
There shall be at most one occurrence of the # or ## operators in a single macro
definition.

Description

Rule Definition
There shall be at most one occurrence of the # or ## operators in a single macro
definition.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-190

AUTOSAR C++14 Rule M16-3-2
The # and ## operators should not be used.

Description

Rule Definition
The # and ## operators should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-3-2

9-191

AUTOSAR C++14 Rule M17-0-2
The names of standard library macros and objects shall not be reused.

Description

Rule Definition
The names of standard library macros and objects shall not be reused.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Library Introduction

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-192

AUTOSAR C++14 Rule M17-0-3
The names of standard library functions shall not be overridden.

Description

Rule Definition
The names of standard library functions shall not be overridden.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Library Introduction

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M17-0-3

9-193

AUTOSAR C++14 Rule M17-0-5
The setjmp macro and the longjmp function shall not be used.

Description

Rule Definition
The setjmp macro and the longjmp function shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Library Introduction

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-194

AUTOSAR C++14 Rule M18-0-3
The library functions abort, exit, getenv and system from library <cstdlib> shall not be
used.

Description

Rule Definition
The library functions abort, exit, getenv and system from library <cstdlib> shall not be
used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M18-0-3

9-195

AUTOSAR C++14 Rule M18-0-4
The time handling functions of library <ctime> shall not be used.

Description

Rule Definition
The time handling functions of library <ctime> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-196

AUTOSAR C++14 Rule M18-0-5
The unbounded functions of library <cstring> shall not be used.

Description

Rule Definition
The unbounded functions of library <cstring> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M18-0-5

9-197

AUTOSAR C++14 Rule M18-2-1
The macro offsetof shall not be used.

Description

Rule Definition
The macro offsetof shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-198

AUTOSAR C++14 Rule M18-7-1
The signal handling facilities of <csignal> shall not be used.

Description

Rule Definition
The signal handling facilities of <csignal> shall not be used.

Rationale
Signal handling functions such as signal contains undefined and implementation-
specific behavior.

You have to be very careful when using signal to avoid these behaviors.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Language Support Library

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M18-7-1

9-199

AUTOSAR C++14 Rule M19-3-1
The error indicator errno shall not be used.

Description

Rule Definition
The error indicator errno shall not be used.

Rationale
Observing this rule encourages the good practice of not relying on errno to check error
conditions.

Checking errno is not sufficient to guarantee absence of errors. Functions such as
fopen might not set errno on error conditions. Often, you have to check the return value
of such functions for error conditions.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Use of errno
#include <cstdlib>
#include <cerrno>

void func (const char* str) {
 errno = 0; // Noncompliant
 int i = atoi(str);
 if(errno != 0) { // Noncompliant

9 AUTOSAR C++14 Rules

9-200

 //Handle Error
 }
}

The use of errno violates this rule. The function atoi is not required to set errno if the
input string cannot be converted to an integer. Checking errno later does not safeguard
against possible failures in conversion.

Check Information
Group: Diagnostics Library

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M19-3-1

9-201

AUTOSAR C++14 Rule M2-10-1
Different identifiers shall be typographically unambiguous.

Description
Rule Definition
Different identifiers shall be typographically unambiguous.

Rationale
When you use identifiers that are typographically close, you can confuse between them.

The identifiers should not differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.
• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

Polyspace Implementation
The rule checker does not consider the fully qualified names of variables when checking
this rule.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

9 AUTOSAR C++14 Rules

9-202

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Typographically Ambiguous Identifiers
void func(void) {
 int id1_numval;
 int id1_num_val; /* Non-compliant */

 int id2_numval;
 int id2_numVal; /* Non-compliant */

 int id3_lvalue;
 int id3_Ivalue; /* Non-compliant */

 int id4_xyz;
 int id4_xy2; /* Non-compliant */

 int id5_zerO;
 int id5_zer0; /* Non-compliant */

 int id6_rn;
 int id6_m; /* Non-compliant */
}

In this example, the rule is violated when identifiers that can be confused for each other
are used.

Check Information
Group: Lexical Conventions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule M2-10-1

9-203

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-204

AUTOSAR C++14 Rule M2-13-2
Octal constants (other than zero) and octal escape sequences (other than "\0") shall not
be used.

Description
Rule Definition
Octal constants (other than zero) and octal escape sequences (other than "\0") shall not
be used.

Rationale
Octal constants are denoted by a leading zero. A developer or code reviewer can mistake
an octal constant as a decimal constant with a redundant leading zero.

Octal escape sequences beginning with \ can also cause confusion. Inadvertently
introducing an 8 or 9 in the digit sequence after \ breaks the escape sequence and
introduces a new digit. A developer or code reviewer can ignore this issue and continue to
treat the escape sequence as one digit.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Use of Octal Constants and Octal Escape Sequences
void func(void) {
 int busData[6];

 busData[0] = 100;

 AUTOSAR C++14 Rule M2-13-2

9-205

 busData[1] = 108;
 busData[2] = 052; //Noncompliant
 busData[3] = 071; //Noncompliant
 busData[4] = '\109'; //Noncompliant
 busData[5] = '\100'; //Noncompliant

}

The checker flags all octal constants (other than zero) and all octal escape sequences
(other than \0).

In this example:

• The octal escape sequence contains the digit 9, which is not an octal digit. This escape
sequence has implementation-defined behavior.

• The octal escape sequence \100 represents the number 64, but the rule checker
forbids this use.

Check Information
Group: Lexical Conventions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-206

AUTOSAR C++14 Rule M2-13-3
A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type.

Description

Rule Definition
A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type.

Rationale
The signedness of a constant is determined from:

• Value of the constant.
• Base of the constant: octal, decimal or hexadecimal.
• Size of the various types.
• Any suffixes used.

Unless you use a suffix u or U, another developer looking at your code cannot determine
easily whether a constant is signed or unsigned.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Lexical Conventions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule M2-13-3

9-207

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-208

AUTOSAR C++14 Rule M2-13-4
Literal suffixes shall be upper case.

Description

Rule Definition
Literal suffixes shall be upper case.

Rationale
Literal constants can end with the letter l (el). Enforcing literal suffixes to be upper case
removes potential confusion between the letter l and the digit 1.

For consistency, use upper case constants for other suffixes such as U (unsigned) and F
(float).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Use of Literal Constants with Lower Case Suffix
const int a = 0l; //Noncompliant
const int b = 0L; //Compliant

In this example, both a and b are assigned the same literal constant. However, from a
quick glance, one can mistakenly assume that a is assigned the value 01 (octal one).

 AUTOSAR C++14 Rule M2-13-4

9-209

Check Information
Group: Lexical Conventions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-210

AUTOSAR C++14 Rule M27-0-1
The stream input/output library <cstdio> shall not be used.

Description

Rule Definition
The stream input/output library <cstdio> shall not be used.

Rationale
Functions in cstdio such as gets, fgetpos, fopen, ftell, etc. have unspecified,
undefined and implementation-defined behavior.

For instance:

• The gets function:

char * gets (char * buf);

does not check if the number of characters provided at the standard input exceeds the
buffer buf. The function can have unexpected behavior when the input exceeds the
buffer.

• The fopen function has implementation-specific behavior related to whether it sets
errno on errors or whether it accepts additional characters following the standard
mode specifiers.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 AUTOSAR C++14 Rule M27-0-1

9-211

Examples

Use of gets
#include <cstdio>

void func() {
 char array[10];
 gets(array);
}

The use of gets violates this rule.

Check Information
Group: Input Output Library

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-212

AUTOSAR C++14 Rule M2-7-1
The character sequence /* shall not be used within a C-style comment.

Description

Rule Definition
The character sequence /* shall not be used within a C-style comment.

Rationale
If your code contains a /* in a /* */ comment, it typically means that you have
inadvertently commented out code. See the example that follows.

Polyspace Implementation
You cannot justify a violation of this rule using source code annotations.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Use of /* in /* */ Comment
void foo() {
 /* Initializer functions
 setup();
 /* Step functions */
}

 AUTOSAR C++14 Rule M2-7-1

9-213

In this example, the call to setup() is commented out because the ending */ is omitted,
perhaps inadvertently. The checker flags this issue by highlighting the /* in the /* */
comment.

Check Information
Group: Lexical Conventions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-214

AUTOSAR C++14 Rule M3-1-2
Functions shall not be declared at block scope.

Description

Rule Definition
Functions shall not be declared at block scope.

Rationale
It is a good practice to place all declarations at the namespace level.

Additionally, if you declare a function at block scope, it is often not clear if the statement
is a function declaration or an object declaration with a call to the constructor.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Function Declarations at Block Scope
class A {
};

void b1() {
 void func(); //Noncompliant
 A a(); //Noncompliant
}

In this example, the declarations of func and a are in the block scope of b1.

 AUTOSAR C++14 Rule M3-1-2

9-215

The second function declaration can cause confusion because it is not clear if a is a
function that returns an object of type A or a is itself an object of type A.

Check Information
Group: Basic Concepts

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-216

AUTOSAR C++14 Rule M3-2-1
All declarations of an object or function shall have compatible types.

Description

Rule Definition
All declarations of an object or function shall have compatible types.

Rationale
If the declarations of an object or function in two different translation units have
incompatible types, the behavior is undefined.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Basic Concepts

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M3-2-1

9-217

AUTOSAR C++14 Rule M3-2-2
The One Definition Rule shall not be violated.

Description

Rule Definition
The One Definition Rule shall not be violated.

Rationale
Violations of the One Definition Rule leads to undefined behavior.

Polyspace Implementation
The checker flags situations where the same function or object has multiple definitions
and the definitions differ by some token.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Different Tokens in Same Type Definition
This example uses two files:

• file1.cpp:

struct S
{

9 AUTOSAR C++14 Rules

9-218

 int x;
 int y;
};

• file2.cpp:

struct S
{
 int y;
 int x;
};

In this example, both file1.cpp and file2.cpp define the structure S. However, the
definitions switch the order of the structure fields.

Check Information
Group: Basic Concepts

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M3-2-2

9-219

AUTOSAR C++14 Rule M3-2-3
A type, object or function that is used in multiple translation units shall be declared in one
and only one file.

Description

Rule Definition
A type, object or function that is used in multiple translation units shall be declared in one
and only one file.

Rationale
If you declare an identifier in a header file, you can include the header file in any
translation unit where the identifier is defined or used. In this way, you ensure
consistency between:

• The declaration and the definition.
• The declarations in different translation units.

The rule enforces the practice of declaring external objects or functions in header files.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Basic Concepts

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

9 AUTOSAR C++14 Rules

9-220

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M3-2-3

9-221

AUTOSAR C++14 Rule M3-2-4
An identifier with external linkage shall have exactly one definition.

Description

Rule Definition
An identifier with external linkage shall have exactly one definition.

Rationale
If an identifier has multiple definitions or no definitions, it can lead to undefined behavior.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Multiple Definitions of Identifier
This example uses two files:

• file1.cpp:

int x = 0;

• file2.cpp:

int x = 1;

The same identifier x is defined in both files.

9 AUTOSAR C++14 Rules

9-222

Check Information
Group: Basic Concepts

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M3-2-4

9-223

AUTOSAR C++14 Rule M3-3-2
If a function has internal linkage then all re-declarations shall include the static storage
class specifier.

Description

Rule Definition
If a function has internal linkage then all re-declarations shall include the static storage
class specifier.

Rationale
If a function declaration has the static storage class specifier, it has internal linkage.
Subsequent redeclarations of the function have internal linkage even without the static
specifier.

However, if you do not specify the static keyword explicitly, it is not immediately clear
from a declaration whether the function has internal linkage.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Missing static Specifier from Redeclaration
static void func1 ();
static void func2 ();

void func1() {} //Noncompliant
static void func2() {}

9 AUTOSAR C++14 Rules

9-224

In this example, the function func1 is declared static but defined without the static
specifier.

Check Information
Group: Basic Concepts

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M3-3-2

9-225

AUTOSAR C++14 Rule M3-4-1
An identifier declared to be an object or type shall be defined in a block that minimizes its
visibility.

Description

Rule Definition
An identifier declared to be an object or type shall be defined in a block that minimizes its
visibility.

Rationale
Defining variables with the minimum possible block scope reduces the possibility that
they might later be accessed unintentionally.

For instance, if an object is meant to be accessed in one function only, declare the object
local to the function.

Polyspace Implementation
The rule checker determines if an object is used in one block only. If the object is used in
one block but defined outside the block, the checker raises a violation.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

9 AUTOSAR C++14 Rules

9-226

Examples

Use of Global Variable in Single Function
static int countReset; //Noncompliant

volatile int check;

void increaseCount() {
 int count = countReset;
 while(check%2) {
 count++;
 }
}

In this example, the variable countReset is declared global used in one function only. A
compliant solution declares the variable local to the function to reduce its visibility.

Check Information
Group: Basic Concepts

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M3-4-1

9-227

AUTOSAR C++14 Rule M3-9-1
The types used for an object, a function return type, or a function parameter shall be
token-for-token identical in all declarations and re-declarations.

Description

Rule Definition
The types used for an object, a function return type, or a function parameter shall be
token-for-token identical in all declarations and re-declarations.

Rationale
If a redeclaration is not token-for-token identical to the previous declaration, it is not
clear from visual inspection which object or function is being redeclared.

Polyspace Implementation
The rule checker compares the current declaration with the last seen declaration.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Identical Declarations That Do Not Match Token for Token
typedef int* intptr;

int* map;
extern intptr map; //Noncompliant

9 AUTOSAR C++14 Rules

9-228

intptr table;
extern intptr table; //Compliant

In this example, the variable map is declared twice. The second declaration uses a
typedef which resolves to the type of the first declaration. Because of the typedef, the
second declaration is not token-for-token identical to the first.

Check Information
Group: Basic Concepts

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M3-9-1

9-229

AUTOSAR C++14 Rule M3-9-3
The underlying bit representations of floating-point values shall not be used.

Description

Rule Definition
The underlying bit representations of floating-point values shall not be used.

Rationale
The underlying bit representations of floating point values vary across compilers. If you
directly use the underlying representation of floating point values, your program is not
portable across implementations.

Polyspace Implementation
The rule checker flags conversions from pointers to floating point types into pointers to
integer types, and vice versa.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Using Underlying Representation of Floating-Point Values
float fabs2(float f) {
 unsigned int* ptr = reinterpret_cast <unsigned int*> (&f); //Noncompliant
 *(ptr + 3) &= 0x7f;

9 AUTOSAR C++14 Rules

9-230

 return f;
}

In this example, the reinterpret_cast attempts to cast a floating-point value to an
integer and access the underlying bit representation of the floating point value.

Check Information
Group: Basic Concepts

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M3-9-3

9-231

AUTOSAR C++14 Rule M4-10-1
NULL shall not be used as an integer value.

Description

Rule Definition
NULL shall not be used as an integer value.

Rationale
In C++, you can use the literals 0 and NULL as both an integer and a null pointer
constant. However, use of 0 as a null pointer constant or NULL as an integer can cause
developer confusion.

This rule restricts the use of NULL to null pointer constants. AUTOSAR C++14 Rule
M4-10-2 restricts the use of the literal 0 to integers.

Polyspace Implementation
The checker flags assignment of NULL to an integer variable or binary operations
involving NULL and an integer. Assignments can be direct or indirect such as passing
NULL as integer argument to a function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

9 AUTOSAR C++14 Rules

9-232

Examples

Compliant and Noncompliant Uses of NULL
#include <cstddef>

void checkInteger(int);
void checkPointer(int *);

void main() {
 checkInteger(NULL); //Noncompliant
 checkPointer(NULL); //Compliant
}

In this example, the use of NULL as argument to the checkInteger function is
noncompliant because the function expects an int argument.

Check Information
Group: Standard Conversions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M4-10-1

9-233

AUTOSAR C++14 Rule M4-10-2
Literal zero (0) shall not be used as the null-pointer-constant.

Description

Rule Definition
Literal zero (0) shall not be used as the null-pointer-constant.

Rationale
In C++, you can use the literals 0 and NULL as both an integer and a null pointer
constant. However, use of 0 as a null pointer constant or NULL as an integer can cause
developer confusion.

This rule restricts the use of the literal 0 to integers. AUTOSAR C++14 Rule M4-10-1
restricts the use of NULL to null pointer constants.

Polyspace Implementation
The checker flags assignment of 0 to a pointer variable or binary operations involving 0
and a pointer. Assignments can be direct or indirect such as passing 0 as pointer
argument to a function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

9 AUTOSAR C++14 Rules

9-234

Examples

Compliant and Noncompliant Uses of Literal 0
#include <cstddef>

void checkInteger(int);
void checkPointer(int *);

void main() {
 checkInteger(0); //Compliant
 checkPointer(0); //Noncompliant
}

In this example, the use of 0 as argument to the checkPointer function is noncompliant
because the function expects an int * argument.

Check Information
Group: Standard Conversions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M4-10-2

9-235

AUTOSAR C++14 Rule M4-5-1
Expressions with type bool shall not be used as operands to built-in operators other than
the assignment operator =, the logical operators &&, ||, !, the equality operators ==
and ! =, the unary & operator, and the conditional operator.

Description

Rule Definition
Expressions with type bool shall not be used as operands to built-in operators other than
the assignment operator =, the logical operators &&, ||, !, the equality operators ==
and !=, the unary & operator, and the conditional operator.

Rationale
Operators other than the ones mentioned in the rule do not produce meaningful results
with bool operands. Use of bool operands with these operators can indicate
programming errors. For instance, you intended to use the logical operator || but used
the bitwise operator | instead.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Compliant and Noncompliant Uses of bool Operands
void boolOperations() {
 bool lhs = true;
 bool rhs = false;

9 AUTOSAR C++14 Rules

9-236

 int res;

 if(lhs & rhs) {} //Noncompliant
 if(lhs < rhs) {} //Noncompliant
 if(~rhs) {} //Noncompliant
 if(lhs ^ rhs) {} //Noncompliant
 if(lhs == rhs) {} //Compliant
 if(!rhs) {} //Compliant
 res = lhs? -1:1; //Compliant
}

In this example, bool operands do not violate the rule when used with the ==, ! and
the ? operators.

Check Information
Group: Standard Conversions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M4-5-1

9-237

AUTOSAR C++14 Rule M4-5-3
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in
operators other than the assignment operator =, the equality operators == and ! =, and
the unary & operator.

Description

Rule Definition
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in
operators other than the assignment operator =, the equality operators == and !=, and
the unary & operator. N

Rationale
The C++03 Standard only requires that the characters '0' to '9' have consecutive
values. Other characters do not have well-defined values. If you use these characters in
operations other than the ones mentioned in the rule, you implicitly use their underlying
values and might see unexpected results.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Compliant and Noncompliant Uses of Character Operands
void charManipulations (char ch) {

 char initChar = 'a'; //Compliant
 char finalChar = 'z'; //Compliant

9 AUTOSAR C++14 Rules

9-238

 if(ch == initChar) {} //Compliant
 if((ch >= initChar) && (ch <= finalChar)) {} //Noncompliant
 else if((ch >= '0') && (ch <= '9')) {} //Compliant by exception
}

In this example, character operands do not violate the rule when used with the = and ==
operators. Character operands can also be used with relational operators as long as the
comparison is performed with the digits '0' to '9'.

Check Information
Group: Standard Conversions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M4-5-3

9-239

AUTOSAR C++14 Rule M5-0-10
If the bitwise operators ~and << are applied to an operand with an underlying type of
unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand.

Description

Rule Definition
If the bitwise operators ~ and << are applied to an operand with an underlying type of
unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-240

AUTOSAR C++14 Rule M5-0-11
The plain char type shall only be used for the storage and use of character values.

Description

Rule Definition
The plain char type shall only be used for the storage and use of character values.

Polyspace Implementation
The checker raises a violation when a value of signed or unsigned integer type is
implicitly converted to the plain char type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-11

9-241

AUTOSAR C++14 Rule M5-0-12
Signed char and unsigned char type shall only be used for the storage and use of numeric
values.

Description

Rule Definition
Signed char and unsigned char type shall only be used for the storage and use of numeric
values.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-242

AUTOSAR C++14 Rule M5-0-14
The first operand of a conditional-operator shall have type bool.

Description

Rule Definition
The first operand of a conditional-operator shall have type bool.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-14

9-243

AUTOSAR C++14 Rule M5-0-15
Array indexing shall be the only form of pointer arithmetic.

Description

Rule Definition
Array indexing shall be the only form of pointer arithmetic.

Polyspace Implementation
The checker flags:

• Arithmetic operations on all pointers, for instance p+I, I+p and p-I, where p is a
pointer and I an integer..

• Array indexing on nonarray pointers.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

9 AUTOSAR C++14 Rules

9-244

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-15

9-245

AUTOSAR C++14 Rule M5-0-17
Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Description

Rule Definition
Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Polyspace Implementation
Use Bug Finder for this checker. The rule checker performs the same checks as
Subtraction or comparison between pointers to different arrays. Code
Prover can fail to detect some violations.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

9 AUTOSAR C++14 Rules

9-246

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-17

9-247

AUTOSAR C++14 Rule M5-0-18
>, >=, <, <= shall not be applied to objects of pointer type, except where they point to
the same array.

Description

Rule Definition
>, >=, <, <= shall not be applied to objects of pointer type, except where they point to
the same array.

Polyspace Implementation
Use Bug Finder for this checker. The rule checker performs the same checks as
Subtraction or comparison between pointers to different arrays. Code
Prover can fail to detect some violations.

The checker ignores casts when showing the violation on relational operator use with
pointers types.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

9 AUTOSAR C++14 Rules

9-248

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-18

9-249

AUTOSAR C++14 Rule M5-0-2
Limited dependence should be placed on C++ operator precedence rules in expressions.

Description

Rule Definition
Limited dependence should be placed on C++ operator precedence rules in expressions.

Rationale
Use parentheses to clearly indicate the order of evaluation.

Depending on operator precedence can cause the following issues:

• If you or another code reviewer reviews the code, the intended order of evaluation is
not immediately clear.

• It is possible that the result of the evaluation does not meet your expectations. For
instance:

• In the operation *p++, it is possible that you expect the dereferenced value to be
incremented. However, the pointer p is incremented before the dereference.

• In the operation (x == y | z), it is possible that you expect x to be compared
with y | z. However, the == operation happens before the | operation.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

9 AUTOSAR C++14 Rules

9-250

Examples

Evaluation Order Dependent on Operator Precedence Rules
#include <cstdio>

void showbits(unsigned int x) {
 for(int i = (sizeof(int) * 8) - 1; i >= 0; i--) {
 (x & 1u << i) ? putchar('1') : putchar('0'); // Noncompliant
 }
 printf("\n");
}

In this example, the checker flags the operation x & 1u << i because the statement
relies on operator precedence rules for the << operation to happen before the &
operation. If this is the intended order, the operation can be rewritten as x & (1u <<
i).

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-2

9-251

AUTOSAR C++14 Rule M5-0-20
Non-constant operands to a binary bitwise operator shall have the same underlying type.

Description

Rule Definition
Non-constant operands to a binary bitwise operator shall have the same underlying type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-252

AUTOSAR C++14 Rule M5-0-21
Bitwise operators shall only be applied to operands of unsigned underlying type.

Description

Rule Definition
Bitwise operators shall only be applied to operands of unsigned underlying type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-21

9-253

AUTOSAR C++14 Rule M5-0-3
A cvalue expression shall not be implicitly converted to a different underlying type.

Description

Rule Definition
A cvalue expression shall not be implicitly converted to a different underlying type.

Rationale
This rule ensures that the result of the expression does not overflow when converted to a
different type.

Polyspace Implementation
Expressions flagged by this checker follow the detailed specifications for cvalue
expressions from the MISRA C++ documentation.

The underlying data type of a cvalue expression is the widest of operand data types in the
expression. For instance, if you add two variables, one of type int8_t (typedef for
char) and another of type int32_t (typedef for int), the addition has underlying type
int32_t. If you assign the sum to a variable of type int8_t, the rule is violated.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

9 AUTOSAR C++14 Rules

9-254

Examples

Implicit Conversion of Cvalue Expression
typedef char int8_t;
typedef signed int int32_t;

void func ()
 {
 int32_t s32;
 int8_t s8;
 s32 = s8 + s8; //Noncompliant
 s32 = s32 + s8; //Compliant
 }

In this example, the rule is violated when two variables of type int8_t are added and the
result is assigned to a variable of type int32_t. The underlying type of the addition does
not take into account the integer promotion involved and is simply the widest of operand
data types, in this case, int8_t.

The rule is not violated if one of the operands has type int32_t and the result is
assigned to a variable of type int32_t. In this case, the underlying data type of the
addition is the same as the type of the variable to which the result is assigned.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-3

9-255

AUTOSAR C++14 Rule M5-0-4
An implicit integral conversion shall not change the signedness of the underlying type.

Description

Rule Definition
An implicit integral conversion shall not change the signedness of the underlying type.

Rationale
Some conversions from signed to unsigned data types can lead to implementation-defined
behavior. You can see unexpected results from the conversion.

Polyspace Implementation
The checker flags implicit conversions from a signed to an unsigned integer data type or
vice versa.

The checker assumes that ptrdiff_t is a signed integer.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples

Implicit Conversions that Change Signedness
typedef char int8_t;
typedef unsigned char uint8_t;

9 AUTOSAR C++14 Rules

9-256

void func()
 {
 int8_t s8;
 uint8_t u8;

 s8 = u8; //Noncompliant
 u8 = s8 + u8; //Noncompliant
 u8 = static_cast< uint8_t > (s8) + u8; //Compliant
}

In this example, the rule is violated when a variable with a variable with signed data type
is implicitly converted to a variable with unsigned data type or vice versa. If the
conversion is explicit, as in the preceding example, the rule violation does not occur.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-4

9-257

AUTOSAR C++14 Rule M5-0-5
There shall be no implicit floating-integral conversions.

Description

Rule Definition
There shall be no implicit floating-integral conversions.

Polyspace Implementation
This rule takes precedence over 5-0-4 and 5-0-6 if they apply at the same time.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-258

AUTOSAR C++14 Rule M5-0-6
An implicit integral or floating-point conversion shall not reduce the size of the underlying
type.

Description

Rule Definition
An implicit integral or floating-point conversion shall not reduce the size of the underlying
type.

Rationale
A conversion that reduces the size of the underlying type can result in loss of information.

Polyspace Implementation
If the conversion is to a narrower integer with a different sign, then rule M5-0-4 takes
precedence over rule M5-0-6. Only rule M5-0-4 is shown.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule M5-0-6

9-259

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-260

AUTOSAR C++14 Rule M5-0-7
There shall be no explicit floating-integral conversions of a cvalue expression.

Description
Rule Definition
There shall be no explicit floating-integral conversions of a cvalue expression.

Rationale
If you evaluate an expression and later cast the result to a different type, the cast has no
effect on the underlying type of the evaluation. For instance, in this example, the result of
an integer division is then cast to a floating-point type.

short num;
short den;
float res;
res= static_cast<float> (num/den);

However, a developer or code reviewer can expect that the evaluation uses the data type
to which the result is cast later. For instance, one can expect a floating-point division
because of the later cast.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Examples
Conversion of Division Result from Integer to Floating Point
void func() {
 short num;

 AUTOSAR C++14 Rule M5-0-7

9-261

 short den;
 short res_short;
 float res_float;

 res_float = static_cast<float> (num/den); //Noncompliant

 res_short = num/den;
 res_short = static_cast<float> (res_float); //Compliant

}

In this example, the first cast on the division result violates the rule but the second cast
does not.

• The first cast can lead to the incorrect expectation that the expression is evaluated
with an underlying type float.

• The second cast makes it clear that the expression is evaluated with the underlying
type short. The result is then cast to the type float.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-262

AUTOSAR C++14 Rule M5-0-8
An explicit integral or floating-point conversion shall not increase the size of the
underlying type of a cvalue expression.

Description

Rule Definition
An explicit integral or floating-point conversion shall not increase the size of the
underlying type of a cvalue expression.

Rationale
If you evaluate an expression and later cast the result to a different type, the cast has no
effect on the underlying type of the evaluation. For instance, in this example, the sum of
two short operands is cast to the wider type int.

short op1;
short op2;
int res;
res= static_cast<int> (op1 + op2);

However, a developer or code reviewer can expect that the evaluation uses the data type
to which the result is cast later. For instance, one can expect a sum with the underlying
type int because of the later cast.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

 AUTOSAR C++14 Rule M5-0-8

9-263

Examples

Conversion of Sum to Wider Integer Type
void func() {
 short op1;
 short op2;
 int res;

 res = static_cast<int> (op1 + op2); //Noncompliant
 res = static_cast<int> (op1) + op2; //Compliant

}

In this example, the first cast on the sum violates the rule but the second cast does not.

• The first cast can lead to the incorrect expectation that the sum is evaluated with an
underlying type int.

• The second cast first converts one of the operands to int so that the sum is actually
evaluated with the underlying type int.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-264

AUTOSAR C++14 Rule M5-0-9
An explicit integral conversion shall not change the signedness of the underlying type of a
cvalue expression.

Description

Rule Definition
An explicit integral conversion shall not change the signedness of the underlying type of a
cvalue expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-9

9-265

AUTOSAR C++14 Rule M5-14-1
The right hand operand of a logical &&, || operators shall not contain side effects.

Description

Rule Definition
The right hand operand of a logical && or || operator shall not contain side effects.

Polyspace Implementation
The checker does not show a warning on volatile accesses and function calls.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-266

AUTOSAR C++14 Rule M5-18-1
The comma operator shall not be used.

Description

Rule Definition
The comma operator shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-18-1

9-267

AUTOSAR C++14 Rule M5-19-1
Evaluation of constant unsigned integer expressions shall not lead to wrap-around.

Description

Rule Definition
Evaluation of constant unsigned integer expressions should not lead to wrap-around.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-268

AUTOSAR C++14 Rule M5-2-10
The increment (++) and decrement (âˆ’âˆ’) operators shall not be mixed with other
operators in an expression.

Description

Rule Definition
The increment (++) and decrement (--) operators should not be mixed with other
operators in an expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-2-10

9-269

AUTOSAR C++14 Rule M5-2-11
The comma operator, && operator and the || operator shall not be overloaded.

Description

Rule Definition
The comma operator, && operator and the || operator shall not be overloaded.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-270

AUTOSAR C++14 Rule M5-2-12
An identifier with array type passed as a function argument shall not decay to a pointer.

Description

Rule Definition
An identifier with array type passed as a function argument shall not decay to a pointer.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-2-12

9-271

AUTOSAR C++14 Rule M5-2-2
A pointer to a virtual base class shall only be cast to a pointer to a derived class by means
of dynamic_cast.

Description

Rule Definition
A pointer to a virtual base class shall only be cast to a pointer to a derived class by means
of dynamic_cast.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-272

AUTOSAR C++14 Rule M5-2-3
Casts from a base class to a derived class should not be performed on polymorphic types.

Description

Rule Definition
Casts from a base class to a derived class should not be performed on polymorphic types.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-2-3

9-273

AUTOSAR C++14 Rule M5-2-6
A cast shall not convert a pointer to a function to any other pointer type, including a
pointer to function type.

Description

Rule Definition
A cast shall not convert a pointer to a function to any other pointer type, including a
pointer to function type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-274

AUTOSAR C++14 Rule M5-2-8
An object with integer type or pointer to void type shall not be converted to an object with
pointer type.

Description

Rule Definition
An object with integer type or pointer to void type shall not be converted to an object with
pointer type.

Polyspace Implementation
The checker allows an exception on zero constants.

Objects with pointer type include objects with pointer-to-function type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule M5-2-8

9-275

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-276

AUTOSAR C++14 Rule M5-2-9
A cast shall not convert a pointer type to an integral type.

Description

Rule Definition
A cast should not convert a pointer type to an integral type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-2-9

9-277

AUTOSAR C++14 Rule M5-3-1
Each operand of the ! operator, the logical && or the logical || operators shall have type
bool.

Description

Rule Definition
Each operand of the ! operator, the logical && or the logical || operators shall have type
bool.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-278

AUTOSAR C++14 Rule M5-3-2
The unary minus operator shall not be applied to an expression whose underlying type is
unsigned.

Description

Rule Definition
The unary minus operator shall not be applied to an expression whose underlying type is
unsigned.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-3-2

9-279

AUTOSAR C++14 Rule M5-3-3
The unary & operator shall not be overloaded.

Description

Rule Definition
The unary & operator shall not be overloaded.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-280

AUTOSAR C++14 Rule M5-3-4
Evaluation of the operand to the sizeof operator shall not contain side effects.

Description

Rule Definition
Evaluation of the operand to the sizeof operator shall not contain side effects.

Polyspace Implementation
The checker does not show a warning on volatile accesses and function calls

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-3-4

9-281

AUTOSAR C++14 Rule M5-8-1
The right hand operand of a shift operator shall lie between zero and one less than the
width in bits of the underlying type of the left hand operand.

Description

Rule Definition
The right hand operand of a shift operator shall lie between zero and one less than the
width in bits of the underlying type of the left hand operand.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Expressions

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-282

AUTOSAR C++14 Rule M6-2-1
Assignment operators shall not be used in sub-expressions.

Description

Rule Definition
Assignment operators shall not be used in sub-expressions.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-2-1

9-283

AUTOSAR C++14 Rule M6-2-2
Floating-point expressions shall not be directly or indirectly tested for equality or
inequality.

Description

Rule Definition
Floating-point expressions shall not be directly or indirectly tested for equality or
inequality.

Polyspace Implementation
The checker detects the use of == or != with floating-point variables or expressions. The
checker does not detect indirectly testing of equality, for instance, using the <= operator.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

9 AUTOSAR C++14 Rules

9-284

Introduced in R2019a

 AUTOSAR C++14 Rule M6-2-2

9-285

AUTOSAR C++14 Rule M6-2-3
Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment, provided that the first character following the null statement is a
white-space character.

Description

Rule Definition
Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment, provided that the first character following the null statement is a
white - space character.

Polyspace Implementation
The checker considers a null statement as a line where the first character excluding
comments is a semicolon. The checker flags situations where:

• Comments appear before the semicolon.

For instance:

/* wait for pin */ ;

• Comments appear immediately after the semicolon without a white space in between.

For instance:

;// wait for pin

The checker also shows a violation when a second statement appears on the same line
following the null statement.

For instance:

; count++;

9 AUTOSAR C++14 Rules

9-286

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-2-3

9-287

AUTOSAR C++14 Rule M6-3-1
The statement forming the body of a switch, while, do ... while or for statement shall be a
compound statement.

Description

Rule Definition
The statement forming the body of a switch, while, do ... while or for statement shall be a
compound statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-288

AUTOSAR C++14 Rule M6-4-1
An if (condition) construct shall be followed by a compound statement. The else keyword
shall be followed by either a compound statement, or another if statement.

Description

Rule Definition
An if (condition) construct shall be followed by a compound statement. The else keyword
shall be followed by either a compound statement, or another if statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-4-1

9-289

AUTOSAR C++14 Rule M6-4-2
All if ... else if constructs shall be terminated with an else clause.

Description

Rule Definition
All if ... else if constructs shall be terminated with an else clause.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-290

AUTOSAR C++14 Rule M6-4-3
A switch statement shall be a well-formed switch statement.

Description

Rule Definition
A switch statement shall be a well-formed switch statement.

Polyspace Implementation
The checker flags these situations:

• A statement occurs between the switch statement and the first case statement.

For instance:

switch(ch) {
 int temp;
 case 1:
 break;
 default:
 break;
}

• A label or a jump statement such as goto or return occurs in the switch block.
• A variable is declared in a case statement (outside any block).

For instance:

switch(ch) {
 case 1:
 int temp;
 break;
 default:
 break;
}

 AUTOSAR C++14 Rule M6-4-3

9-291

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-292

AUTOSAR C++14 Rule M6-4-4
A switch-label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement.

Description

Rule Definition
A switch-label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-4-4

9-293

AUTOSAR C++14 Rule M6-4-5
An unconditional throw or break statement shall terminate every non-empty switch-
clause.

Description

Rule Definition
An unconditional throw or break statement shall terminate every non - empty switch-
clause.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-294

AUTOSAR C++14 Rule M6-4-6
The final clause of a switch statement shall be the default-clause.

Description

Rule Definition
The final clause of a switch statement shall be the default-clause.

Polyspace Implementation
The checker detects switch statements that do not have a final default clause.

The checker does not raise a violation if the switch variable is an enum with finite
number of values and you have a case clause for each value. For instance:

enum Colours { RED, BLUE, GREEN } colour;

switch (colour) {
 case RED:
 break;
 case BLUE:
 break;
 case GREEN:
 break;
}

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

 AUTOSAR C++14 Rule M6-4-6

9-295

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-296

AUTOSAR C++14 Rule M6-4-7
The condition of a switch statement shall not have bool type.

Description

Rule Definition
The condition of a switch statement shall not have bool type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-4-7

9-297

AUTOSAR C++14 Rule M6-5-2
If loop-counter is not modified by âˆ’âˆ’ or ++, then, within condition, the loop-counter
shall only be used as an operand to <=, <, > or >=.

Description

Rule Definition
If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall
only be used as an operand to <=, <, > or >=.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-298

AUTOSAR C++14 Rule M6-5-3
The loop-counter shall not be modified within condition or statement.

Description

Rule Definition
The loop-counter shall not be modified within condition or statement.

Rationale
The for loop has a specific syntax for modifying the loop counter. A code reviewer
expects modification using that syntax. Modifying the loop counter elsewhere can make
the code harder to review.

Polyspace Implementation
The checker flags modification of a for loop counter in the loop body or the loop
condition (the condition that is checked to see if the loop must be terminated).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule M6-5-3

9-299

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-300

AUTOSAR C++14 Rule M6-5-4
The loop-counter shall be modified by one of: âˆ’âˆ’, ++, âˆ’ = n, or + = n; where n
remains constant for the duration of the loop.

Description

Rule Definition
The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains
constant for the duration of the loop.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-5-4

9-301

AUTOSAR C++14 Rule M6-5-5
A loop-control-variable other than the loop-counter shall not be modified within condition
or expression.

Description

Rule Definition
A loop-control-variable other than the loop-counter shall not be modified within condition
or expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-302

AUTOSAR C++14 Rule M6-5-6
A loop-control-variable other than the loop-counter which is modified in statement shall
have type bool.

Description

Rule Definition
A loop-control-variable other than the loop-counter which is modified in statement shall
have type bool.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-5-6

9-303

AUTOSAR C++14 Rule M6-6-1
Any label referenced by a goto statement shall be declared in the same block, or in a
block enclosing the goto statement.

Description

Rule Definition
Any label referenced by a goto statement shall be declared in the same block, or in a
block enclosing the goto statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-304

AUTOSAR C++14 Rule M6-6-2
The goto statement shall jump to a label declared later in the same function body.

Description

Rule Definition
The goto statement shall jump to a label declared later in the same function body.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-6-2

9-305

AUTOSAR C++14 Rule M6-6-3
The continue statement shall only be used within a well-formed for loop.

Description

Rule Definition
The continue statement shall only be used within a well-formed for loop.

Polyspace Implementation
The checker flags the use of continue statements in:

• for loops that are not well-formed, that is, loops that violate rules 6-5-x.
• while loops.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Statements

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

9 AUTOSAR C++14 Rules

9-306

Introduced in R2019a

 AUTOSAR C++14 Rule M6-6-3

9-307

AUTOSAR C++14 Rule M7-1-2
A pointer or reference parameter in a function shall be declared as pointer to const or
reference to const if the corresponding object is not modified.

Description
Rule Definition
A pointer or reference parameter in a function shall be declared as pointer to const or
reference to const if the corresponding object is not modified.

Polyspace Implementation
The checker flags pointers where the underlying object is not const-qualified but never
modified in the function body.

If a variable is passed to another function by reference or pointers, the checker assumes
that the variable can be modified. Pointers that point to these variables are not flagged.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

9 AUTOSAR C++14 Rules

9-308

Introduced in R2019a

 AUTOSAR C++14 Rule M7-1-2

9-309

AUTOSAR C++14 Rule M7-3-1
The global namespace shall only contain main, namespace declarations and extern "C"
declarations.

Description

Rule Definition
The global namespace shall only contain main, namespace declarations and extern "C"
declarations.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-310

AUTOSAR C++14 Rule M7-3-2
The identifier main shall not be used for a function other than the global function main.

Description

Rule Definition
The identifier main shall not be used for a function other than the global function main.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M7-3-2

9-311

AUTOSAR C++14 Rule M7-3-3
There shall be no unnamed namespaces in header files.

Description

Rule Definition
There shall be no unnamed namespaces in header files.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-312

AUTOSAR C++14 Rule M7-3-4
Using-directives shall not be used.

Description

Rule Definition
using-directives shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M7-3-4

9-313

AUTOSAR C++14 Rule M7-3-6
Using-directives and using-declarations (excluding class scope or function scope using-
declarations) shall not be used in header files.

Description

Rule Definition
using-directives and using-declarations (excluding class scope or function scope using-
declarations) shall not be used in header files.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-314

AUTOSAR C++14 Rule M7-4-2
Assembler instructions shall only be introduced using the asm declaration.

Description

Rule Definition
Assembler instructions shall only be introduced using the asm declaration.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M7-4-2

9-315

AUTOSAR C++14 Rule M7-4-3
Assembly language shall be encapsulated and isolated.

Description

Rule Definition
Assembly language shall be encapsulated and isolated.

Polyspace Implementation
The checker flags asm statements unless they are encapsulated in a function call.

For instance, the noncompliant asm statement below is in regular C code while the
compliant asm statement is encapsulated in a call to the function Delay.

void Delay (void)
 {
 asm("NOP");//Compliant
 }
void fn (void)
 {
 DoSomething();
 Delay();// Assembler is encapsulated
 DoSomething();
 asm("NOP"); //Noncompliant
 DoSomething();
 }

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

9 AUTOSAR C++14 Rules

9-316

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M7-4-3

9-317

AUTOSAR C++14 Rule M7-5-1
A function shall not return a reference or a pointer to an automatic variable (including
parameters), defined within the function.

Description

Rule Definition
A function shall not return a reference or a pointer to an automatic variable (including
parameters), defined within the function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declaration

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-318

AUTOSAR C++14 Rule M8-0-1
An init-declarator-list or a member-declarator-list shall consist of a single init-declarator
or member-declarator respectively.

Description

Rule Definition
An init-declarator-list or a member-declarator-list shall consist of a single init-declarator
or member-declarator respectively.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M8-0-1

9-319

AUTOSAR C++14 Rule M8-3-1
Parameters in an overriding virtual function shall either use the same default arguments
as the function they override, or else shall not specify any default arguments.

Description

Rule Definition
Parameters in an overriding virtual function shall either use the same default arguments
as the function they override, or else shall not specify any default arguments.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-320

AUTOSAR C++14 Rule M8-4-2
The identifiers used for the parameters in a re-declaration of a function shall be identical
to those in the declaration.

Description

Rule Definition
The identifiers used for the parameters in a re-declaration of a function shall be identical
to those in the declaration.

Polyspace Implementation
The checker detects mismatch in parameter names between:

• A function declaration and the corresponding definition.
• Two declarations of a function, provided they occur in the same file.

If the declarations occur in different files, the checker does not raise a violation for
mismatch in parameter names. Redeclarations in different files are forbidden by
AUTOSAR C++14 Rule M3-2-3.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule M8-4-2

9-321

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-322

AUTOSAR C++14 Rule M8-4-4
A function identifier shall either be used to call the function or it shall be preceded by &.

Description

Rule Definition
A function identifier shall either be used to call the function or it shall be preceded by &.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M8-4-4

9-323

AUTOSAR C++14 Rule M8-5-2
Braces shall be used to indicate and match the structure in the non-zero initialization of
arrays and structures.

Description

Rule Definition
Braces shall be used to indicate and match the structure in the non- zero initialization of
arrays and structures.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Declarators

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

9 AUTOSAR C++14 Rules

9-324

AUTOSAR C++14 Rule M9-3-1
Const member functions shall not return non-const pointers or references to class-data.

Description

Rule Definition
const member functions shall not return non-const pointers or references to class-data.

Polyspace Implementation
The checker flags a rule violation only if a const member function returns a non-const
pointer or reference to a nonstatic data member. The rule does not apply to static data
members.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Classes

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M9-3-1

9-325

AUTOSAR C++14 Rule M9-3-3
If a member function can be made static then it shall be made static, otherwise if it can be
made const then it shall be made const.

Description
Rule Definition
If a member function can be made static then it shall be made static, otherwise if it can be
made const then it shall be made const.

Polyspace Implementation
The checker flags member functions that are not declared static but do not access a data
member of the class. Such a function can be potentially declared static.

The checker flags member functions that are not declared const but do not modify a data
member of the class. Such a function can be potentially declared const.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Standard Violations Not
Displayed”.

Check Information
Group: Classes

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

9 AUTOSAR C++14 Rules

9-326

Introduced in R2019a

 AUTOSAR C++14 Rule M9-3-3

9-327

ISO/IEC TS 17961

10

Acknowledgment
Extracts from the standard "ISO/IEC TS 17961 Technical Specification - 2013-11-15" are
reproduced with the agreement of AFNOR. Only the original and complete text of the
standard, as published by AFNOR Editions - accessible via the website
www.boutique.afnor.org - has normative value.

10 ISO/IEC TS 17961

10-2

ISO/IEC TS 17961 [accfree]
Accessing freed memory

Description

Rule Definition
Accessing freed memory.

Examples

Use of previously freed pointer
Description

Use of previously freed pointer occurs when you access a block of memory after
freeing the block using the free function.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points
to a memory location on the heap. When you use the free function on this pointer, the
associated block of memory is freed for reallocation. Trying to access this block of
memory can result in unpredictable behavior or even a segmentation fault.

Fix

The fix depends on the root cause of the defect. See if you intended to free the memory
later or allocate another memory block to the pointer before access.

As a good practice, after you free a memory block, assign the corresponding pointer to
NULL. Before dereferencing pointers, check them for NULL values and handle the error.
In this way, you are protected against accessing a freed block.

 ISO/IEC TS 17961 [accfree]

10-3

Example - Use of Previously Freed Pointer Error

#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;
 free(pi);

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore,
dereferencingpi after the free statement is not valid.

Correction — Free Pointer After Use

One possible correction is to free the pointer pi only after the last instance where it is
accessed.

#include <stdlib.h>

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

10 ISO/IEC TS 17961

10-4

Invalid use of standard library string routine
Description

Invalid use of standard library string routine occurs when a string library function is
called with invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy
function with a source argument larger than the destination argument can result in buffer
overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases,
you can constrain the function arguments before the function call. For instance, if the
strcpy function:

char * strcpy(char * destination, const char* source)

tries to copy too many bytes into the destination argument compared to the available
buffer, constrain the source argument before the call to strcpy. In some cases, you can
use an alternative function to avoid the error. For instance, instead of strcpy, you can
use strncpy to control the number of bytes copied. See also “Interpret Polyspace Bug
Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 ISO/IEC TS 17961 [accfree]

10-5

 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-6

ISO/IEC TS 17961 [accsig]
Accessing shared objects in signal handlers

Description

Rule Definition
Accessing shared objects in signal handlers.

Examples

Shared data access within signal handler
Description

Shared data access within signal handler occurs when you access or modify a shared
object inside a signal handler.

Risk

When you define a signal handler function to access or modify a shared object, the
handler accesses or modifies the shared object when it receives a signal. If another
function is already accessing the shared object, that function causes a race condition and
can leave the data in an inconsistent state.

Fix

To access or modify shared objects inside a signal handler, check that the objects are lock-
free atomic, or, if they are integers, declare them as volatile sig_atomic_t.

Example - int Variable Access in Signal Handler

#include <signal.h>
#include <stdlib.h>
#include <string.h>

 ISO/IEC TS 17961 [accsig]

10-7

/* declare global variable. */
int e_flag;

void sig_handler(int signum)
{
 /* Signal handler accesses variable that is not
 of type volatile sig_atomic_t. */
 e_flag = signum;
}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

In this example, sig_handler accesses e_flag, a variable of type int. A concurrent
access by another function can leave e_flag in an inconsistent state.

Correction — Declare Variable of Type volatile sig_atomic_t

Before you access a shared variable from a signal handler, declare the variable with type
volatile sig_atomic_t instead of int. You can safely access variables of this type
asynchronously.

#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* Declare variable of type volatile sig_atomic_t. */

10 ISO/IEC TS 17961

10-8

volatile sig_atomic_t e_flag;
void sig_handler(int signum)
{
 /* Use variable of proper type inside signal handler. */
 e_flag = signum;

}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [accsig]

10-9

ISO/IEC TS 17961 [addrescape]
Escaping of the address of an automatic object

Description

Rule Definition
Escaping of the address of an automatic object.

Examples

Pointer or reference to stack variable leaving scope
Description

Pointer or reference to stack variable leaving scope occurs when a pointer or
reference to a local variable leaves the scope of the variable. For instance:

• A function returns a pointer to a local variable.
• A function performs the assignment globPtr = &locVar. globPtr is a global

pointer variable and locVar is a local variable.
• A function performs the assignment *paramPtr = &locVar. paramPtr is a function

parameter that is, for instance, an int** pointer and locVar is a local int variable.
• A C++ method performs the assignment memPtr = &locVar. memPtr is a pointer

data member of the class the method belongs to. locVar is a variable local to the
method.

The defect also applies to memory allocated using the alloca function. The defect does
not apply to static, local variables.

10 ISO/IEC TS 17961

10-10

Risk

Local variables are allocated an address on the stack. Once the scope of a local variable
ends, this address is available for reuse. Using this address to access the local variable
value outside the variable scope can cause unexpected behavior.

If a pointer to a local variable leaves the scope of the variable, Polyspace Bug Finder
highlights the defect. The defect appears even if you do not use the address stored in the
pointer. For maintainable code, it is a good practice to not allow the pointer to leave the
variable scope. Even if you do not use the address in the pointer now, someone else using
your function can use the address, causing undefined behavior.

Fix

Do not allow a pointer or reference to a local variable to leave the variable scope.

Example - Pointer to Local Variable Returned from Function

void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

In this example, func1 returns a pointer to local variable ret.

In main, ptr points to the address of the local variable. When ptr is accessed in func2,
the access is illegal because the scope of ret is limited to func1,

Use of automatic variable as putenv-family function argument
Description

Use of automatic variable as putenv-family function argument occurs when the
argument of a putenv-family function is a local variable with automatic duration.

 ISO/IEC TS 17961 [addrescape]

10-11

Risk

The function putenv(char *string) inserts a pointer to its supplied argument into the
environment array, instead of making a copy of the argument. If the argument is an
automatic variable, its memory can be overwritten after the function containing the
putenv() call returns. A subsequent call to getenv() from another function returns the
address of an out-of-scope variable that cannot be dereferenced legally. This out-of-scope
variable can cause environment variables to take on unexpected values, cause the
program to stop responding, or allow arbitrary code execution vulnerabilities.

Fix

Use setenv()/unsetenv() to set and unset environment variables. Alternatively, use
putenv-family function arguments with dynamically allocated memory, or, if your
application has no reentrancy requirements, arguments with static duration. For example,
a single thread execution with no recursion or interrupts does not require reentrancy. It
cannot be called (reentered) during its execution.

Example - Automatic Variable as Argument of putenv()

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 char env[SIZE1024];
 int retval = sprintf(env, "TEST=%s", var ? "1" : "0");
 if (retval <= 0) {
 /* Handle error */
 }
 /* Environment variable TEST is set using putenv().
 The argument passed to putenv is an automatic variable. */
 retval = putenv(env);
 if (retval != 0) {
 /* Handle error */
 }
}

10 ISO/IEC TS 17961

10-12

In this example, sprintf() stores the character string TEST=var in env. The value of
the environment variable TEST is then set to var by using putenv(). Because env is an
automatic variable, the value of TEST can change once func() returns.

Correction — Use static Variable for Argument of putenv()

Declare env as a static-duration variable. The memory location of env is not overwritten
for the duration of the program, even after func() returns.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024
void func(int var)
{
 /* static duration variable */
 static char env[SIZE1024];
 int retval = sprintf(env,"TEST=%s", var ? "1" : "0");
 if (retval <= 0) {
 /* Handle error */
 }

 /* Environment variable TEST is set using putenv() */
 retval=putenv(env);
 if (retval != 0) {
 /* Handle error */
 }
}

Correction — Use setenv() to Set Environment Variable Value

To set the value of TEST to var, use setenv().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 /* Environment variable TEST is set using setenv() */
 int retval = setenv("TEST", var ? "1" : "0", 1);

 ISO/IEC TS 17961 [addrescape]

10-13

 if (retval != 0) {
 /* Handle error */
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-14

ISO/IEC TS 17961 [alignconv]
Converting pointer values to more strictly aligned pointer types

Description

Rule Definition
Converting pointer values to more strictly aligned pointer types.

Examples

Wrong allocated object size for cast
Description

Wrong allocated object size for cast occurs during pointer conversion when the
pointer’s address is misaligned. If a pointer is converted to a different pointer type, the
size of the allocated memory must be a multiple of the size of the destination pointer.

Risk

Dereferencing a misaligned pointer has undefined behavior and can cause your program
to crash.

Fix

Suppose you convert a pointer ptr1 to ptr2. If ptr1 points to a buffer of N bytes and
ptr2 is a type * pointer where sizeof(type) is n bytes, make sure that N is an
integer multiple of n.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 ISO/IEC TS 17961 [alignconv]

10-15

Example - Dynamic Allocation of Pointers

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(13);
 long *dest;

 dest = (long*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to a long*. The
dynamically allocated memory of ptr, 13 bytes, is not a multiple of the size of dest, 4
bytes. This misalignment causes the Wrong allocated object size for cast defect.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the allocated memory to 12 instead of 13.

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(12);
 long *dest;

 dest = (long*)ptr;
}

Example - Static Allocation of Pointers

void static_non_align(void){
 char arr[13], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to an int* in line
6. ptr has a memory size of 13 bytes because the array arr has a size of 13 bytes. The
size of dest is 4 bytes, which is not a multiple of 13. This misalignment causes the
Wrong allocated object size for cast defect.

10 ISO/IEC TS 17961

10-16

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the size of the array arr to a multiple of 4.

void static_non_align(void){
 char arr[12], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr;
}

Example - Allocation with a Function

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(13); //defect
 dest2 = (char*)my_alloc(13); //not a defect
}

In this example, the software raises a defect on the conversion of the pointer returned by
my_alloc(13) to an int* in line 11. my_alloc(13) returns a pointer with a
dynamically allocated size of 13 bytes. The size of dest1 is 4 bytes, which is not a divisor
of 13. This misalignment causes the Wrong allocated object size for cast defect. In line
12, the same function call, my_alloc(13), does not call a defect for the conversion to
dest2 because the size of char*, 1 byte, a divisor of 13.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the argument for my_alloc to a multiple of
4.

 ISO/IEC TS 17961 [alignconv]

10-17

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(12);
 dest2 = (char*)my_alloc(13);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-18

ISO/IEC TS 17961 [argcomp]
Calling functions with incorrect arguments

Description

Rule Definition
Calling functions with incorrect arguments.

Examples

Conflicting declarations or conflicting declaration and
definition
Description

The issue occurs when all declarations of an object or function do not use the same names
and type qualifiers.

The rule checker detects situations where parameter names or data types are different
between multiple declarations or the declaration and the definition. The checker
considers declarations in all translation units and flags issues that are not likely to be
detected by a compiler.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Risk

Consistently using parameter names and types across declarations of the same object or
function encourages stronger typing. It is easier to check that the same function interface
is used across all declarations.

 ISO/IEC TS 17961 [argcomp]

10-19

Example - Mismatch in Parameter Names

extern int div (int num, int den);

int div(int den, int num) { /* Non compliant */
 return(num/den);
}

In this example, the rule is violated because the parameter names in the declaration and
definition are switched.

Example - Mismatch in Parameter Data Types

typedef unsigned short width;
typedef unsigned short height;
typedef unsigned int area;

extern area calculate(width w, height h);

area calculate(width w, width h) { /* Non compliant *
 return w*h;
}

In this example, the rule is violated because the second argument of the calculate
function has data type:

• height in the declaration.
• width in the definition.

The rule is violated even though the underlying type of height and width are identical.

Unreliable cast of function pointer
Description

Unreliable cast of function pointer occurs when a function pointer is cast to another
function pointer that has different argument or return type.

This defect applies only if the code language for the project is C.

10 ISO/IEC TS 17961

10-20

Risk

If you cast a function pointer to another function pointer with different argument or
return type and then use the latter function pointer to call a function, the behavior is
undefined.

Fix

Avoid a cast between two function pointers with mismatch in argument or return types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Unreliable cast of function pointer error

#include <stdio.h>
#include <math.h>
#include <stdio.h>
#define PI 3.142

double Calculate_Sum(int (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 /* Defect: fp implicitly cast to int(*) (double) */

 ISO/IEC TS 17961 [argcomp]

10-21

 printf("sum(sin): %f\n", sum);
 return 0;
}

The function pointer fp is declared as double (*)(double). However in passing it to
function Calculate_Sum, fp is implicitly cast to int (*)(double).

Correction — Avoid Function Pointer Cast

One possible correction is to check that the function pointer in the definition of
Calculate_Sum has the same argument and return type as fp. This step makes sure
that fp is not implicitly cast to a different argument or return type.

#include <stdio.h>
#include <math.h>
#include <stdio.h>
define PI 3.142

/*Fix: fptr has same argument and return type everywhere*/
double Calculate_Sum(double (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 printf("sum(sin): %f\n", sum);

 return 0;
}

10 ISO/IEC TS 17961

10-22

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [argcomp]

10-23

ISO/IEC TS 17961 [asyncsig]
Calling functions in the C Standard Library other than abort, _Exit, and signal from within
a signal handler

Description

Rule Definition
Calling functions in the C Standard Library other than abort, _Exit, and signal from within
a signal handler.

Examples

Function called from signal handler not asynchronous-safe
(strict)
Description

Function called from signal handler not asynchronous-safe (strict) occurs when a
signal handler calls a function that is not asynchronous-safe according to the C standard.
An asynchronous-safe function can be interrupted at any point in its execution, then
called again without causing an inconsistent state. It can also correctly handle global data
that might be in an inconsistent state.

When you select the checker Function called from signal handler not asynchronous-
safe, the checker detects calls to functions that are not asynchronous-safe according to
the POSIX standard. Function called from signal handler not asynchronous-safe
(strict) does not raise a defect for these cases. Function called from signal handler
not asynchronous-safe (strict) raises a defect for functions that are asynchronous-safe
according to the POSIX standard but not according to the C standard.

If a signal handler calls another function that calls an asynchronous-unsafe function, the
defect appears on the function call in the signal handler. The defect traceback shows the
full path from the signal handler to the asynchronous-unsafe function.

10 ISO/IEC TS 17961

10-24

Risk

When a signal handler is invoked, the execution of the program is interrupted. After the
handler is finished, program execution resumes at the point of interruption. If a function
is executing at the time of the interruption, calling it from within the signal handler is
undefined behavior, unless it is asynchronous-safe.

Fix

The C standard defines the following functions as asynchronous-safe. You can call these
functions from a signal handler:

• abort()
• _Exit()
• quick_exit()
• signal()

Example - Call to raise() Inside Signal Handler
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */
}

void sig_handler(int signum)
{
 int s0 = signum;
 /* Call raise() */
 if (raise(SIGTERM) != 0) {
 /* Handle error */
 }
}

int finc(void)

 ISO/IEC TS 17961 [asyncsig]

10-25

{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

In this example, sig_handler calls raise() when catching a signal. If the handler
catches another signal while raise() is executing, the behavior of the program is
undefined.

Correction — Remove Call to raise() in Signal Handler

According to the C standard, the only functions that you can safely call from a signal
handler are abort(), _Exit(), quick_exit(), and signal().

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */
}
void sig_handler(int signum)
{

10 ISO/IEC TS 17961

10-26

 int s0 = signum;

}

int func(void)
{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

Function called from signal handler not asynchronous-safe
Description

Function called from signal handler not asynchronous-safe occurs when a signal
handler calls a function that is not asynchronous-safe according to the POSIX standard.
An asynchronous-safe function can be interrupted at any point in its execution, then
called again without causing an inconsistent state. It can also correctly handle global data
that might be in an inconsistent state.

If a signal handler calls another function that calls an asynchronous-unsafe function, the
defect appears on the function call in the signal handler. The defect traceback shows the
full path from the signal handler to the asynchronous-unsafe function.

Risk

When a signal handler is invoked, the execution of the program is interrupted. After the
handler is finished, program execution resumes at the point of interruption. If a function

 ISO/IEC TS 17961 [asyncsig]

10-27

is executing at the time of the interruption, calling it from within the signal handler is
undefined behavior, unless it is asynchronous-safe.

Fix

The POSIX standard defines these functions as asynchronous-safe. You can call these
functions from a signal handler.

_exit() getpgrp() setsockopt()
_Exit() getpid() setuid()
abort() getppid() shutdown()
accept() getsockname() sigaction()
access() getsockopt() sigaddset()
aio_error() getuid() sigdelset()
aio_return() kill() sigemptyset()
aio_suspend() link() sigfillset()
alarm() linkat() sigismember()
bind() listen() signal()
cfgetispeed() lseek() sigpause()
cfgetospeed() lstat() sigpending()
cfsetispeed() mkdir() sigprocmask()
cfsetospeed() mkdirat() sigqueue()
chdir() mkfifo() sigset()
chmod() mkfifoat() sigsuspend()
chown() mknod() sleep()
clock_gettime() mknodat() sockatmark()
close() open() socket()
connect() openat() socketpair()
creat() pathconf() stat()
dup() pause() symlink()
dup2() pipe() symlinkat()

10 ISO/IEC TS 17961

10-28

execl() poll() sysconf()
execle() posix_trace_event() tcdrain()
execv() pselect() tcflow()
execve() pthread_kill() tcflush()
faccessat() pthread_self() tcgetattr()
fchdir() pthread_sigmask() tcgetpgrp()
fchmod() quick_exit() tcsendbreak()
fchmodat() raise() tcsetattr()
fchown() read() tcsetpgrp()
fchownat() readlink() time()
fcntl() readlinkat() timer_getoverrun()
fdatasync() recv() timer_gettime()
fexecve() recvfrom() timer_settime()
fork() recvmsg() times()
fpathconf() rename() umask()
fstat() renameat() uname()
fstatat() rmdir() unlink()
fsync() select() unlinkat()
ftruncate() sem_post() utime()
futimens() send() utimensat()
getegid() sendmsg() utimes()
geteuid() sendto() wait()
getgid() setgid() waitpid()
getgroups() setpgid() write()
getpeername() setsid()

Functions not in the previous table are not asynchronous-safe, and should not be called
from a signal hander.

 ISO/IEC TS 17961 [asyncsig]

10-29

Example - Call to printf() Inside Signal Handler

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)
{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler(int signum)
{
 /* Call function printf() that is not
 asynchronous-safe */
 printf("signal %d received.", signum);
 e_flag = 1;
}

int main(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, sizeof(char));
 if (info == NULL)
 {
 /* Handle Error */
 }
 while (!e_flag)
 {

10 ISO/IEC TS 17961

10-30

 /* Main loop program code */
 display_info(info);
 /* More program code */
 }
 free(info);
 info = NULL;
 return 0;
}

In this example, sig_handler calls printf() when catching a signal. If the handler
catches another signal while printf() is executing, the behavior of the program is
undefined.

Correction — Set Flag Only in Signal Handler

Use your signal handler to set only the value of a flag. e_flag is of type volatile
sig_atomic_t. sig_handler can safely access it asynchronously.

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)
{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler1(int signum)
{
 int s0 = signum;
 e_flag = 1;

 ISO/IEC TS 17961 [asyncsig]

10-31

}

int func(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler1) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, 1);
 if (info == NULL)
 {
 /* Handle error */
 }
 while (!e_flag)
 {
 /* Main loop program code */
 display_info(info);
 /* More program code */
 }
 free(info);
 info = NULL;
 return 0;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-32

ISO/IEC TS 17961 [boolasgn]
No assignment in conditional expressions

Description

Rule Definition
No assignment in conditional expressions.

Examples

Invalid use of = (assignment) operator
Description

Invalid use of = operator occurs when an assignment is made inside the predicate of a
conditional, such as if or while.

In C and C++, a single equal sign is an assignment not a comparison. Using a single
equal sign in a conditional statement can indicate a typo or a mistake.

Risk

• Conditional statement tests the wrong values— The single equal sign operation
assigns the value of the right operand to the left operand. Then, because this
assignment is inside the predicate of a conditional, the program checks whether the
new value of the left operand is nonzero or not NULL.

• Maintenance and readability issues — Even if the assignment is intended, someone
reading or updating the code can misinterpret the assignment as an equality
comparison instead of an assignment.

Fix

• If the assignment is a bug, to check for equality, add a second equal sign (==).

 ISO/IEC TS 17961 [boolasgn]

10-33

• If the assignment inside the conditional statement was intentional, to improve
readability, separate the assignment and the test. Move the assignment outside the
control statement. In the control statement, simply test the result of the assignment.

If you do not want to fix the issue, add comments to your result or code to avoid
another review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Single Equal Sign Inside an if Condition
#include <stdio.h>

void bad_equals_ex(int alpha, int beta)
{
 if(alpha = beta)
 {
 printf("Equal\n");
 }
}

The equal sign is flagged as a defect because the assignment operator is used within the
predicate of the if-statement. The predicate assigns the value beta to alpha, then
implicitly tests whether alpha is true or false.

Correction — Change Expression to Comparison

One possible correction is adding an additional equal sign. This correction changes the
assignment to a comparison. The if condition compares whether alpha and beta are
equal.

#include <stdio.h>

void equality_test(int alpha, int beta)
{
 if(alpha == beta)
 {
 printf("Equal\n");
 }
}

Correction — Assignment and Comparison Inside the if Condition

If an assignment must be made inside the predicate, a possible correction is adding an
explicit comparison. This correction assigns the value of beta to alpha, then explicitly
checks whether alpha is nonzero. The code is clearer.

10 ISO/IEC TS 17961

10-34

#include <stdio.h>

int assignment_not_zero(int alpha, int beta)
{
 if((alpha = beta) != 0)
 {
 return alpha;
 }
 else
 {
 return 0;
 }
}

Correction — Move Assignment Outside the if Statement

If the assignment can be made outside the control statement, one possible correction is to
separate the assignment and comparison. This correction assigns the value of beta to
alpha before the if. Inside the if-condition, only alpha is given to test if alpha is
nonzero or not NULL.

#include <stdio.h>

void assign_and_print(int alpha, int beta)
{
 alpha = beta;
 if(alpha)
 {
 printf("%d", alpha);
 }
}

Check Information
Decidability: Decidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

 ISO/IEC TS 17961 [boolasgn]

10-35

Introduced in R2019a

10 ISO/IEC TS 17961

10-36

ISO/IEC TS 17961 [chreof]
Using character values that are indistinguishable from EOF

Description
Rule Definition
Using character values that are indistinguishable from EOF.

Examples
Character value absorbed into EOF
Description

Character value absorbed into EOF occurs when you perform a data type conversion
that makes a valid character value indistinguishable from EOF (End-of-File). Bug Finder
flags the defect in one of the following situations:

• End-of-File: You perform a data type conversion such as from int to char that
converts a non-EOF character value into EOF.

char ch = (char)getchar()

You then compare the result with EOF.

if((int)ch == EOF)

The conversion can be explicit or implicit.
• Wide End-of-File: You perform a data type conversion that can convert a non-WEOF

wide character value into WEOF, and then compare the result with WEOF.

Risk

The data type char cannot hold the value EOF that indicates the end of a file. Functions
such as getchar have return type int to accommodate EOF. If you convert from int to

 ISO/IEC TS 17961 [chreof]

10-37

char, the values UCHAR_MAX (a valid character value) and EOF get converted to the same
value -1 and become indistinguishable from each other. When you compare the result of
this conversion with EOF, the comparison can lead to false detection of EOF. This rationale
also applies to wide character values and WEOF.

Fix

Perform the comparison with EOF or WEOF before conversion.

Example - Return Value of getchar Converted to char

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 char ch;
 ch = getchar();
 if (EOF == (int)ch) {
 fatal_error();
 }
 return ch;
}

In this example, the return value of getchar is implicitly converted to char. If getchar
returns UCHAR_MAX, it is converted to -1, which is indistinguishable from EOF. When you
compare with EOF later, it can lead to a false positive.

Correction — Perform Comparison with EOF Before Conversion

One possible correction is to first perform the comparison with EOF, and then convert
from int to char.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 int i;
 i = getchar();
 if (EOF == i) {
 fatal_error();

10 ISO/IEC TS 17961

10-38

 }
 else {
 return (char)i;
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [chreof]

10-39

ISO/IEC TS 17961 [chrsgnext]
Passing arguments to character handling functions that are not representable as
unsigned char

Description

Rule Definition
Passing arguments to character handling functions that are not representable as
unsigned char.

Examples

Invalid use of standard library integer routine
Description

Invalid use of standard library integer routine occurs when you use invalid
arguments with an integer function from the standard library. This defect picks up:

• Character Conversion

toupper, tolower
• Character Checks

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit

• Integer Division

div, ldiv
• Absolute Values

abs, labs

10 ISO/IEC TS 17961

10-40

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Absolute Value of Large Negative

#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN;
 return abs(neg);
}

The input value to abs is INT_MIN. The absolute value of INT_MIN is INT_MAX+1. This
number cannot be represented by the type int.

Correction — Change Input Argument

One possible correction is to change the input value to fit returned data type. In this
example, change the input value to INT_MIN+1.

#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN+1;
 return abs(neg);
}

 ISO/IEC TS 17961 [chrsgnext]

10-41

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-42

ISO/IEC TS 17961 [dblfree]
Freeing memory multiple times

Description

Rule Definition
Freeing memory multiple times.

Examples

Deallocation of previously deallocated pointer
Description

Deallocation of previously deallocated pointer occurs when a block of memory is
freed more than once using the free function without an intermediate allocation.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points
to a memory location on the heap. When you use the free function on this pointer, the
associated block of memory is freed for reallocation. Trying to free this block of memory
can result in a segmentation fault.

Fix

The fix depends on the root cause of the defect. See if you intended to allocate a memory
block to the pointer between the first deallocation and the second. Otherwise, remove the
second free statement.

As a good practice, after you free a memory block, assign the corresponding pointer to
NULL. Before freeing pointers, check them for NULL values and handle the error. In this
way, you are protected against freeing an already freed block.

 ISO/IEC TS 17961 [dblfree]

10-43

Example - Deallocation of Previously Deallocated Pointer Error
#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 free (pi);
 /* Defect: pi has already been freed */
}

The first free statement releases the block of memory that pi refers to. The second free
statement on pi releases a block of memory that has been freed already.

Correction — Remove Duplicate Deallocation

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 /* Fix: remove second deallocation */
 }

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

10 ISO/IEC TS 17961

10-44

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [dblfree]

10-45

ISO/IEC TS 17961 [diverr]
Integer division errors

Description

Rule Definition
Integer division errors.

Examples

Integer division by zero
Description

Integer division by zero occurs when the denominator of a division or modulo operation
can be a zero-valued integer.

Risk

A division by zero can result in a program crash.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the denominator
variable acquires a zero value. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

It is a good practice to check for zero values of a denominator before division and handle
the error. Instead of performing the division directly:

res = num/den;

10 ISO/IEC TS 17961

10-46

use a library function that handles zero values of the denominator before performing the
division:

res = div(num, den);

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Dividing an Integer by Zero

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 if (denom != 0)
 result = num/denom;

 return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

 ISO/IEC TS 17961 [diverr]

10-47

int fraction(int num)
{
 int denom = 2;
 int result = 0;

 result = num/denom;

 return result;
}

Example - Modulo Operation with Zero

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % i;
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

In this example, Polyspace flags the modulo operation as a division by zero. Because
modulo is inherently a division operation, the divisor (right hand argument) cannot be
zero. The modulo operation uses the for loop index as the divisor. However, the for loop
starts at zero, which cannot be an iterator.

Correction — Check Divisor Before Operation

One possible correction is checking the divisor before the modulo operation. In this
example, see if the index i is zero before the modulo operation.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 if(i != 0)
 {
 arr[i] = input % i;
 }
 else
 {

10 ISO/IEC TS 17961

10-48

 arr[i] = input;
 }
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Correction — Change Divisor

Another possible correction is changing the divisor to a nonzero integer. In this example,
add one to the index before the % operation to avoid dividing by zero.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % (i+1);
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [diverr]

10-49

ISO/IEC TS 17961 [fileclose]
Failing to close files or free dynamic memory when they are no longer needed

Description

Rule Definition
Failing to close files or free dynamic memory when they are no longer needed.

Examples

Memory leak
Description

Memory leak occurs when you do not free a block of memory allocated through malloc,
calloc, realloc, or new. If the memory is allocated in a function, the defect does not
occur if:

• Within the function, you free the memory using free or delete.
• The function returns the pointer assigned by malloc, calloc, realloc, or new.
• The function stores the pointer in a global variable or in a parameter.

Risk

Dynamic memory allocation functions such as malloc allocate memory on the heap. If
you do not release the memory after use, you reduce the amount of memory available for
another allocation. On embedded systems with limited memory, you might end up
exhausting available heap memory even during program execution.

Fix

Determine the scope where the dynamically allocated memory is accessed. Free the
memory block at the end of this scope.

10 ISO/IEC TS 17961

10-50

To free a block of memory, use the free function on the pointer that was used during
memory allocation. For instance:

ptr = (int*)malloc(sizeof(int));
...
free(ptr);

It is a good practice to allocate and free memory in the same module at the same level of
abstraction. For instance, in this example, func allocates and frees memory at the same
level but func2 does not.

void func() {
 ptr = (int*)malloc(sizeof(int));
 {
 ...
 }
 free(ptr);
}

void func2() {
 {
 ptr = (int*)malloc(sizeof(int));
 ...
 }
 free(ptr);
}

See CERT-C Rule MEM00-C.

Example - Dynamic Memory Not Released Before End of Function
#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }

 *pi = 42;

 ISO/IEC TS 17961 [fileclose]

10-51

https://wiki.sei.cmu.edu/confluence/x/FtYxBQ

 /* Defect: pi is not freed */
}

In this example, pi is dynamically allocated by malloc. The function assign_memory
does not free the memory, nor does it return pi.

Correction — Free Memory

One possible correction is to free the memory referenced by pi using the free function.
The free function must be called before the function assign_memory terminates

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }
 *pi = 42;

 /* Fix: Free the pointer pi*/
 free(pi);
}

Correction — Return Pointer from Dynamic Allocation

Another possible correction is to return the pointer pi. Returning pi allows the function
calling assign_memory to free the memory block using pi.

#include<stdlib.h>
#include<stdio.h>

int* assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return(pi);
 }

10 ISO/IEC TS 17961

10-52

 *pi = 42;

 /* Fix: Return the pointer pi*/
 return(pi);
}

Example - Memory Leak with New/Delete

#define NULL '\0'

void initialize_arr1(void)
{
 int *p_scalar = new int(5);
}

void initialize_arr2(void)
{
 int *p_array = new int[5];
}

In this example, the functions create two variables, p_scalar and p_array, using the
new keyword. However, the functions end without cleaning up the memory for these
pointers. Because the functions used new to create these variables, you must clean up
their memory by calling delete at the end of each function.

Correction — Add Delete

To correct this error, add a delete statement for every new initialization. If you used
brackets [] to instantiate a variable, you must call delete with brackets as well.

#define NULL '\0'

void initialize_arrs(void)
{
 int *p_scalar = new int(5);
 int *p_array = new int[5];

 delete p_scalar;
 p_scalar = NULL;

 delete[] p_array;
 p_scalar = NULL;
}

 ISO/IEC TS 17961 [fileclose]

10-53

Resource leak
Description

Resource leak occurs when you open a file stream by using a FILE pointer but do not
close it before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk

If you do not release file handles explicitly as soon as possible, a failure can occur due to
exhaustion of resources.

Fix

Close a FILE pointer before the end of its scope, or before you assign the pointer to
another stream.

Example - FILE Pointer Not Released Before End of Scope
#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is
explicitly dissociated from the file stream of data1.txt, it is used to access another file
data2.txt.

Correction — Release FILE Pointer

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

#include <stdio.h>

10 ISO/IEC TS 17961

10-54

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");
 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

Thread-specific memory leak
Description

Thread-specific memory leak occurs when you do not free thread-specific dynamically
allocated memory before the end of a thread.

To create thread-specific storage, you generally do these steps:

1 You create a key for thread-specific storage.
2 You create the threads.
3 In each thread, you allocate storage dynamically and then associate the key with this

storage.

After the association, you can read the stored data later using the key.
4 Before the end of the thread, you free the thread-specific memory using the key.

The checker flags execution paths in the thread where the last step is missing.

The checker works on these families of functions:

• tss_get and tss_set (C11)
• pthread_getspecific and pthread_setspecific (POSIX)

Risk

The data stored in the memory is available to other processes even after the threads end
(memory leak). Besides security vulnerabilities, memory leaks can shrink the amount of
available memory and reduce performance.

 ISO/IEC TS 17961 [fileclose]

10-55

Fix

Free dynamically allocated memory before the end of a thread.

You can explicitly free dynamically allocated memory with functions such as free.

Alternatively, when you create a key, you can associate a destructor function with the key.
The destructor function is called with the key value as argument at the end of a thread. In
the body of the destructor function, you can free any memory associated with the key. If
you use this method, Bug Finder still flags a defect. Ignore this defect with appropriate
comments. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Memory Not Freed at End of Thread

#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int add_data(void) {
 int *data = (int *)malloc(2 * sizeof(int));
 if (data == NULL) {
 return -1; /* Report error */
 }
 data[0] = 0;
 data[1] = 1;

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

void print_data(void) {
 /* Get this thread's global data from key */
 int *data = tss_get(key);

 if (data != NULL) {
 /* Print data */
 }
}

10 ISO/IEC TS 17961

10-56

int func(void *dummy) {
 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 return 0;
}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], func, NULL)) {
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

In this example, the start function of each thread func calls two functions:

• add_data: This function allocates storage dynamically and associates the storage
with a key using the tss_set function.

• print_data: This function reads the stored data using the tss_get function.

At the points where func returns, the dynamically allocated storage has not been freed.

 ISO/IEC TS 17961 [fileclose]

10-57

Correction — Free Dynamically Allocated Memory Explicitly

One possible correction is to free dynamically allocated memory explicitly before leaving
the start function of a thread. See the highlighted change in the corrected version.

In this corrected version, a defect still appears on the return statement in the error
handling section of func. The defect cannot occur in practice because the error handling
section is entered only if dynamic memory allocation fails. Ignore this remaining defect
with appropriate comments. See “Address Polyspace Results Through Bug Fixes or
Justifications”.

#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int add_data(void) {
 int *data = (int *)malloc(2 * sizeof(int));
 if (data == NULL) {
 return -1; /* Report error */
 }
 data[0] = 0;
 data[1] = 1;

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

void print_data(void) {
 /* Get this thread's global data from key */
 int *data = tss_get(key);

 if (data != NULL) {
 /* Print data */
 }
}

int func(void *dummy) {
 if (add_data() != 0) {

10 ISO/IEC TS 17961

10-58

 return -1; /* Report error */
 }
 print_data();
 free(tss_get(key));
 return 0;
}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], func, NULL)) {
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

 ISO/IEC TS 17961 [fileclose]

10-59

Introduced in R2019a

10 ISO/IEC TS 17961

10-60

ISO/IEC TS 17961 [filecpy]
Copying a FILE object

Description

Rule Definition
Copying a FILE object.

Examples

Dereferencing a FILE* pointer
Description

The issue occurs when a pointer to a FILE object is dereferenced.

Risk

The Standard states that the address of a FILE object used to control a stream can be
significant. Copying that object might not give the same behavior. This rule ensures that
you cannot perform such a copy.

Directly manipulating a FILE object might be incompatible with its use as a stream
designator.

Example - FILE* Pointer Dereferenced

#include <stdio.h>

void func(void) {
 FILE *pf1;
 FILE *pf2;
 FILE f3;

 pf2 = pf1; /* Compliant */

 ISO/IEC TS 17961 [filecpy]

10-61

 f3 = *pf2; /* Non-compliant */
 pf2->_flags=0; /* Non-compliant */
 }

In this example, the rule is violated when the FILE* pointer pf2 is dereferenced.

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-62

ISO/IEC TS 17961 [funcdecl]
Declaring the same function or object in incompatible ways

Description
Rule Definition
Declaring the same function or object in incompatible ways.

Examples
Indistinguishable external identifier names
Description

The issue occurs when external identifiers are not distinct.

Risk

External identifiers are ones declared with global scope or storage class extern.

Polyspace considers two names as distinct if there is a difference between their first 31
characters. If the difference between two names occurs only beyond the first 31
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 6 characters. To use the
C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Example - C90: First Six Characters of Identifiers Not Unique
int engine_temperature_raw;
int engine_temperature_scaled; /* Non-compliant */
int engin2_temperature; /* Compliant */

In this example, the identifier engine_temperature_scaled has the same first six
characters as a previous identifier, engine_temperature_raw.

 ISO/IEC TS 17961 [funcdecl]

10-63

Example - C99: First 31 Characters of Identifiers Not Unique

int engine_exhaust_gas_temperature_raw;
int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

int eng_exhaust_gas_temp_raw;
int eng_exhaust_gas_temp_scaled; /* Compliant */

In this example, the identifier engine_exhaust_gas_temperature_scaled has the
same first 31 characters as a previous identifier,
engine_exhaust_gas_temperature_raw.

Example - C90: First Six Characters Identifiers in Different Translation Units
Differ in Case Alone

/* file1.c */
int abc = 0;

/* file2.c */
int ABC = 0; /* Non-compliant */

In this example, the implementation supports 6 significant case-insensitive characters in
external identifiers. The identifiers in the two translation are different but are not distinct
in their significant characters.

Declaration mismatch
Description

Declaration mismatch occurs when a function or variable declaration does not match
other instances of the function or variable.

Risk

When a mismatch occurs between two variable declarations in different compilation units,
a typical linker follows an algorithm to pick one declaration for the variable. If you expect
a variable declaration that is different from the one chosen by the linker, you can see
unexpected results when the variable is used.

A similar issue can occur with mismatch in function declarations.

10 ISO/IEC TS 17961

10-64

Fix

The fix depends on the type of declaration mismatch. If both declarations indeed refer to
the same object, use the same declaration. If the declarations refer to different objects,
change the names of the one of the variables. If you change a variable name, remember to
make the change in all places that use the variable.

Sometimes, declaration mismatches can occur because the declarations are affected by
previous preprocessing directives. For instance, a declaration occurs in a macro, and the
macro is defined on one inclusion path but undefined in another. These declaration
mismatches can be tricky to debug. Identify the divergence between the two inclusion
paths and fix the conflicting macro definitions.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Inconsistent Declarations in Two Files

file1.c

int foo(void) {
 return 1;
}

file2.c

double foo(void);

int bar(void) {
 return (int)foo();
}

In this example, file1.c declares foo() as returning an integer. In file2.c, foo() is
declared as returning a double. This difference raises a defect on the second instance of
foo in file2.

Correction — Align the Function Return Values

One possible correction is to change the function declarations so that they match. In this
example, by changing the declaration of foo in file2.c to match file1.c, the defect is fixed.

file1.c

 ISO/IEC TS 17961 [funcdecl]

10-65

int foo(void) {
 return 1;
}

file2.c

int foo(void);

int bar(void) {
 return foo();
}

Example - Inconsistent Structure Alignment

test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

In this example, a declaration mismatch defect is raised on square in square.h because
Polyspace infers that square in square.h does not have the same alignment as square in
test2.c. This error occurs because the #pragma pack(1) statement in circle.h declares
specific alignment. In test2.c, circle.h is included before square.h. Therefore, the
#pragma pack(1) statement from circle.h is not reset to the default alignment after the
aCircle structure. Because of this omission, test2.c infers that the aSquare square
structure also has an alignment of 1 byte.

10 ISO/IEC TS 17961

10-66

Correction — Close Packing Statements

One possible correction is to reset the structure alignment after the aCircle struct
declaration. For the GNU or Microsoft Visual compilers, fix the defect by adding a
#pragma pack() statement at the end of circle.h.

test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

#pragma pack()

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

Other compilers require different #pragma pack syntax. For your syntax, see the
documentation for your compiler.

Correction — Use the Ignore pragma pack directives Option

One possible correction is to add the Ignore pragma pack directives option to your
Bug Finder analysis. If you want the structure alignment to change for each structure,
and you do not want to see this Declaration mismatch defect, use this correction.

1 On the Configuration pane, select the Advanced Settings pane.
2 In the Other box, enter -ignore-pragma-pack.
3 Rerun your analysis.

The Declaration mismatch defect is resolved.

 ISO/IEC TS 17961 [funcdecl]

10-67

Check Information
Decidability: Decidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-68

ISO/IEC TS 17961 [insufmem]
Allocating insufficient memory

Description

Rule Definition
Allocating insufficient memory.

Examples

Wrong allocated object size for cast
Description

Wrong allocated object size for cast occurs during pointer conversion when the
pointer’s address is misaligned. If a pointer is converted to a different pointer type, the
size of the allocated memory must be a multiple of the size of the destination pointer.

Risk

Dereferencing a misaligned pointer has undefined behavior and can cause your program
to crash.

Fix

Suppose you convert a pointer ptr1 to ptr2. If ptr1 points to a buffer of N bytes and
ptr2 is a type * pointer where sizeof(type) is n bytes, make sure that N is an
integer multiple of n.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

 ISO/IEC TS 17961 [insufmem]

10-69

Example - Dynamic Allocation of Pointers

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(13);
 long *dest;

 dest = (long*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to a long*. The
dynamically allocated memory of ptr, 13 bytes, is not a multiple of the size of dest, 4
bytes. This misalignment causes the Wrong allocated object size for cast defect.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the allocated memory to 12 instead of 13.

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(12);
 long *dest;

 dest = (long*)ptr;
}

Example - Static Allocation of Pointers

void static_non_align(void){
 char arr[13], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to an int* in line
6. ptr has a memory size of 13 bytes because the array arr has a size of 13 bytes. The
size of dest is 4 bytes, which is not a multiple of 13. This misalignment causes the
Wrong allocated object size for cast defect.

10 ISO/IEC TS 17961

10-70

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the size of the array arr to a multiple of 4.

void static_non_align(void){
 char arr[12], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr;
}

Example - Allocation with a Function

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(13); //defect
 dest2 = (char*)my_alloc(13); //not a defect
}

In this example, the software raises a defect on the conversion of the pointer returned by
my_alloc(13) to an int* in line 11. my_alloc(13) returns a pointer with a
dynamically allocated size of 13 bytes. The size of dest1 is 4 bytes, which is not a divisor
of 13. This misalignment causes the Wrong allocated object size for cast defect. In line
12, the same function call, my_alloc(13), does not call a defect for the conversion to
dest2 because the size of char*, 1 byte, a divisor of 13.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the argument for my_alloc to a multiple of
4.

 ISO/IEC TS 17961 [insufmem]

10-71

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(12);
 dest2 = (char*)my_alloc(13);
}

Pointer access out of bounds
Description

Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer.
You cannot access memory beyond that block using the pointer.

Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an
unpredictable value or try to access a location that is not allowed and encounter a
segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer
inside a loop and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the

pointer increment.

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event

10 ISO/IEC TS 17961

10-72

history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int).
In the for-loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points
outside the memory block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 ISO/IEC TS 17961 [insufmem]

10-73

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it,
it is not dereferenced more.

Wrong type used in sizeof
Description

Wrong type used in sizeof occurs when both of the following conditions hold:

• You assign the address of a block of memory to a pointer, or transfer data between two
blocks of memory. The assignment or copy uses the sizeof operator.

For instance, you initialize a pointer using malloc(sizeof(type)) or copy data
between two addresses using memcpy(destination_ptr, source_ptr,
sizeof(type)).

• You use an incorrect type as argument of the sizeof operator. You use the pointer
type instead of the type that the pointer points to.

For instance, to initialize a type* pointer, you use malloc(sizeof(type*)) instead
of malloc(sizeof(type)).

Risk

Irrespective of what type stands for, the expression sizeof(type*) always returns a
fixed size. The size returned is the pointer size on your platform in bytes. The appearance
of sizeof(type*) often indicates an unintended usage. The error can cause allocation
of a memory block that is much smaller than what you need and lead to weaknesses such
as buffer overflows.

For instance, assume that structType is a structure with ten int variables. If you
initialize a structType* pointer using malloc(sizeof(structType*)) on a 32-bit
platform, the pointer is assigned a memory block of four bytes. However, to be allocated
completely for one structType variable, the structType* pointer must point to a
memory block of sizeof(structType) = 10 * sizeof(int) bytes. The required
size is much greater than the actual allocated size of four bytes.

10 ISO/IEC TS 17961

10-74

Fix

To initialize a type* pointer, replace sizeof(type*) in your pointer initialization
expression with sizeof(type).

Example - Allocate a Char Array With sizeof

#include <stdlib.h>

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char*) * 5);
 free(str);

}

In this example, memory is allocated for the character pointer str using a malloc of five
char pointers. However, str is a pointer to a character, not a pointer to a character
pointer. Therefore the sizeof argument, char*, is incorrect.

Correction — Match Pointer Type to sizeof Argument

One possible correction is to match the argument to the pointer type. In this example,
str is a character pointer, therefore the argument must also be a character.

#include <stdlib.h>

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char) * 5);
 free(str);

}

Possible misuse of sizeof
Description

Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly
unintended results from the use of sizeof operator. For instance:

 ISO/IEC TS 17961 [insufmem]

10-75

• You use the sizeof operator on an array parameter name, expecting the array size.
However, the array parameter name by itself is a pointer. The sizeof operator
returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However,
the operator returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect
because you used the sizeof operator earlier with possibly incorrect expectations.
For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an
incorrect use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the not the
number of wide characters but a size in bytes obtained by using the sizeof
operator. For instance, you use wcsncpy(destination, source,
sizeof(destination) - 1) instead of wcsncpy(destination, source,
(sizeof(desintation)/sizeof(wchar_t)) - 1).

Risk

Incorrect use of the sizeof operator can cause the following issues:

• If you expect the sizeof operator to return array size and use the return value to
constrain a loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is
smaller than what you require. Insufficient buffer can lead to resultant weaknesses
such as buffer overflows.

• If you use the return value of sizeof operator incorrectly in a function call, the
function does not behave as you expect.

Fix

Possible fixes are:

• Do not use the sizeof operator on an array parameter name or array element to
determine array size.

The best practice is to pass the array size as a separate function parameter and use
that parameter in the function body.

• Use the sizeof operator carefully to determine the number argument of functions
such as strncmp or wcsncpy. For instance, for wide string functions such as

10 ISO/IEC TS 17961

10-76

wcsncpy, use the number of wide characters as argument instead of the number of
bytes.

Example - sizeof Used Incorrectly to Determine Array Size

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {
 a[i] = i + 1;
 }
}

In this example, sizeof(a) returns the size of the pointer a and not the array size.

Correction — Determine Array Size in Another Way

One possible correction is to use another means to determine the array size.

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < MAX_SIZE; i++) {
 a[i] = i + 1;
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

 ISO/IEC TS 17961 [insufmem]

10-77

Introduced in R2019a

10 ISO/IEC TS 17961

10-78

ISO/IEC TS 17961 [intoflow]
Overflowing signed integers

Description

Rule Definition
Overflowing signed integers.

Examples

Integer overflow
Description

Integer overflow occurs when an operation on integer variables can result in values that
cannot be represented by the result data type. The data type of a variable determines the
number of bytes allocated for the variable storage and constrains the range of allowed
values.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Risk

Integer overflows on signed integers result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. Use this event list to determine how the variables in the
overflowing computation acquire their current values. You can implement the fix on any
event in the sequence. If the result details do not show the event history, you can trace
back using right-click options in the source code and see previous related events. See also
“Interpret Polyspace Bug Finder Results”.

 ISO/IEC TS 17961 [intoflow]

10-79

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error
handling.

To avoid overflows in general, try one of these techniques:

• Keep integer variable values restricted to within half the range of signed integers.
• In operations that might overflow, check for conditions that can lead to the overflow

and implement wrap around or saturation behavior depending on how the result of the
operation is used. The result then becomes predictable and can be safely used in
subsequent computations.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Addition of Maximum Integer
#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value
of var is the maximum integer value, so an int cannot represent one plus the maximum
integer value.

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a
larger data type (Note that on a 32-bit machine, int and long has the same size). In this
example, on a 32-bit machine, by returning a long long instead of an int, the overflow
error is fixed.

#include <limits.h>

10 ISO/IEC TS 17961

10-80

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;
 return lvar;
}

Integer constant overflow
Description

Integer constant overflow occurs when you assign a compile-time constant to a signed
integer variable whose data type cannot accommodate the value. An n-bit signed integer
holds values in the range [-2n-1, 2n-1-1].

For instance, c is an 8-bit signed char variable that cannot hold the value 255.

signed char c = 255;

To determine the sizes of fundamental types, Bug Finder uses your specification for
Target processor type (-target).

Risk

The default behavior for constant overflows can vary between compilers and platforms.
Retaining constant overflows can reduce the portability of your code.

Even if your compilers wraps around overflowing constants with a warning, the wrap-
around behavior can be unintended and cause unexpected results.

Fix

Check if the constant value is what you intended. If the value is correct, use a different,
possibly wider, data type for the variable.

Example - Overflowing Constant from Macro Expansion
#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {
 char c1 = MAX_UNSIGNED_CHAR;
 char c2 = MAX_SIGNED_CHAR+1;
}

 ISO/IEC TS 17961 [intoflow]

10-81

In this example, the defect appears on the macros because at least one use of the macro
causes an overflow. To reproduce these defects, use analysis option Target processor
type (-target) where char is signed by default.

Correction — Use Different Data Type

One possible correction is to use a different data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {
 unsigned char c1 = MAX_UNSIGNED_CHAR;
 unsigned char c2 = MAX_SIGNED_CHAR+1;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-82

ISO/IEC TS 17961 [intptrconv]
Converting a pointer to integer or integer to pointer

Description

Rule Definition
Converting a pointer to integer or integer to pointer.

Examples

Conversion between pointers and integers
Description

The issue occurs when a conversion is performed between a pointer to object and an
integer type.

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Risk

Conversion between integers and pointers can cause errors or undefined behavior.

• If an integer is cast to a pointer, the resulting pointer can be incorrectly aligned. The
incorrect alignment causes undefined behavior.

• If a pointer is cast to an integer, the resulting value can be outside the allowed range
for the integer type.

Example - Casts between pointer and integer

#include <stdbool.h>

typedef unsigned char uint8_t;
typedef char char_t;

 ISO/IEC TS 17961 [intptrconv]

10-83

typedef unsigned short uint16_t;
typedef signed int int32_t;

typedef _Bool bool_t;
uint8_t *PORTA = (uint8_t *) 0x0002; /* Non-compliant */

void foo(void) {

 char_t c = 1;
 char_t *pc = &c; /* Compliant */

 uint16_t ui16 = 7U;
 uint16_t *pui16 = &ui16; /* Compliant */
 pui16 = (uint16_t *) ui16; /* Non-compliant */

 uint16_t *p;
 int32_t addr = (int32_t) p; /* Non-compliant */
 bool_t b = (bool_t) p; /* Non-compliant */
 enum etag { A, B } e = (enum etag) p; /* Non-compliant */
}

In this example, the rule is violated when:

• The integer 0x0002 is cast to a pointer.

If the integer defines an absolute address, it is more common to assign the address to
a pointer in a header file. To avoid the assignment being flagged, you can then exclude
headers files from coding rules checking. For more information, see Do not
generate results for (-do-not-generate-results-for).

• The pointer p is cast to integer types such as int32_t, bool_t or enum etag.

The rule is not violated when the address &ui16 is assigned to a pointer.

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

10 ISO/IEC TS 17961

10-84

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [intptrconv]

10-85

ISO/IEC TS 17961 [inverrno]
Incorrectly setting and using errno

Description

Rule Definition
Incorrectly setting and using errno.

Examples

Misuse of errno
Description

Misuse of errno occurs when you check errno for error conditions in situations where
checking errno does not guarantee the absence of errors. In some cases, checking
errno can lead to false positives.

For instance, you check errno following calls to the functions:

• fopen: If you follow the ISO Standard, the function might not set errno on errors.
• atof: If you follow the ISO Standard, the function does not set errno.
• signal: The errno value indicates an error only if the function returns the SIG_ERR

error indicator.

Risk

The ISO C Standard does not enforce that these functions set errno on errors. Whether
the functions set errno or not is implementation-dependent.

To detect errors, if you check errno alone, the validity of this check also becomes
implementation-dependent.

10 ISO/IEC TS 17961

10-86

In some cases, the errno value indicates an error only if the function returns a specific
error indicator. If you check errno before checking the function return value, you can see
false positives.

Fix

For information on how to detect errors, see the documentation for that specific function.

Typically, the functions return an out-of-band error indicator to indicate errors. For
instance:

• fopen returns a null pointer if an error occurs.
• signal returns the SIG_ERR error indicator and sets errno to a positive value.

Check errno only after you have checked the function return value.

Example - Incorrectly Checking for errno After fopen Call

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 errno = 0;
 fileptr = fopen(temp_filename, "w+b");
 if (errno != 0) {
 if (fileptr != NULL) {
 (void)fclose(fileptr);
 }
 /* Handle error */
 fatal_error();
 }
 return fileptr;
}

In this example, errno is the first variable that is checked after a call to fopen. You
might expect that fopen changes errno to a nonzero value if an error occurs. If you run
this code with an implementation of fopen that does not set errno on errors, you might

 ISO/IEC TS 17961 [inverrno]

10-87

miss an error condition. In this situation, fopen can return a null pointer that escapes
detection.

Correction — Check Return Value of fopen After Call

One possible correction is to only check the return value of fopen for a null pointer.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 fileptr = fopen(temp_filename, "w+b");
 if (fileptr == NULL) {
 fatal_error();
 }
 return fileptr;
}

Errno not checked
Description

Errno not checked occurs when you call a function that sets errno to indicate error
conditions, but do not check errno after the call. For these functions, checking errno is
the only reliable way to determine if an error occurred.

Functions that set errno on errors include:

• fgetwc, strtol, and wcstol.

For a comprehensive list of functions, see documentation about errno.
• POSIX errno-setting functions such as encrypt and setkey.

Risk

To see if the function call completed without errors, check errno for error values.

10 ISO/IEC TS 17961

10-88

https://www.securecoding.cert.org/confluence/x/KwBl

The return values of these errno-setting functions do not indicate errors. The return
value can be one of the following:

• void
• Even if an error occurs, the return value can be the same as the value from a

successful call. Such return values are called in-band error indicators.

You can determine if an error occurred only by checking errno.

For instance, strtol converts a string to a long integer and returns the integer. If the
result of conversion overflows, the function returns LONG_MAX and sets errno to ERANGE.
However, the function can also return LONG_MAX from a successful conversion. Only by
checking errno can you distinguish between an error and a successful conversion.

Fix

Before calling the function, set errno to zero.

After the function call, to see if an error occurred, compare errno to zero. Alternatively,
compare errno to known error indicator values. For instance, strtol sets errno to
ERANGE to indicate errors.

The error message in the Polyspace result shows the error indicator value that you can
compare to.

Example - errno Not Checked After Call to strtol

#include<stdio.h>
#include<stdlib.h>
#include<errno.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 long val = strtol(str, &endptr, base);
 printf("Return value of strtol() = %ld\n", val);
}

You are using the return value of strtol without checking errno.

 ISO/IEC TS 17961 [inverrno]

10-89

Correction — Check errno After Call

Before calling strtol, set errno to zero . After a call to strtol, check the return value
for LONG_MIN or LONG_MAX and errno for ERANGE.

#include<stdlib.h>
#include<stdio.h>
#include<errno.h>
#include<limits.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 errno = 0;
 long val = strtol(str, &endptr, base);
 if((val == LONG_MIN || val == LONG_MAX) && errno == ERANGE) {
 printf("strtol error");
 exit(EXIT_FAILURE);
 }
 printf("Return value of strtol() = %ld\n", val);
}

Errno not reset
Description

Errno not reset occurs when you do not reset errno before calling a function that sets
errno to indicate error conditions. However, you check errno for those error conditions
after the function call.

Risk

The errno is not clean and can contain values from a previous call. Checking errno for
errors can give the false impression that an error occurred.

errno is set to zero at program startup but subsequently, errno is not reset by a C
standard library function. You must explicitly set errno to zero when required.

10 ISO/IEC TS 17961

10-90

Fix

Before calling a function that sets errno to indicate error conditions, reset errno to zero
explicitly.

Example - errno Not Reset Before Call to strtod

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

In this example, errno is not reset to 0 before the first call to strtod. Checking errno
for 0 later can lead to a false positive.

Correction — Reset errno Before Call

One possible correction is to reset errno to 0 before calling strtod.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

 ISO/IEC TS 17961 [inverrno]

10-91

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 errno = 0;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-92

ISO/IEC TS 17961 [invfmtstr]
Using invalid format strings

Description

Rule Definition
Using invalid format strings.

Examples

Format string specifiers and arguments mismatch
Description

Format string specifiers and arguments mismatch occurs when the format specifiers
in the formatted output functions such as printf do not match their corresponding
arguments. For example, an argument of type unsigned long must have a format
specification of %lu.

Risk

Mismatch between format specifiers and the corresponding arguments result in
undefined behavior.

Fix

Make sure that the format specifiers match the corresponding arguments. For instance, in
this example, the %d specifier does not match the string argument message and the %s
specifier does not match the integer argument err_number.

 const char *message = "License not available";
 int err_number = ;-4
 printf("Error: %d (error type %s)\n", message, err_number);

 ISO/IEC TS 17961 [invfmtstr]

10-93

Switching the two format specifiers fixes the issue. See the specifications for the printf
function for more information about format specifiers.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Printing a Float

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the
unsigned integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert
fst to an integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

10 ISO/IEC TS 17961

10-94

https://en.cppreference.com/w/cpp/io/c/fprintf
https://en.cppreference.com/w/cpp/io/c/fprintf

 printf("%d\n", (int)fst);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [invfmtstr]

10-95

ISO/IEC TS 17961 [invptr]
Forming or using out-ofbounds pointers or array subscripts

Description

Rule Definition
Forming or using out-ofbounds pointers or array subscripts.

Examples

Array access out of bounds
Description

Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.

Risk

Accessing an array outside its bounds is undefined behavior. You can read an
unpredictable value or try to access a location that is not allowed and encounter a
segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you accessed an array
inside a loop and one of these situations happened:

• The upper bound of the loop is too large.
• You used an array index that is the same as the loop index instead of being one less

than the loop index.

To fix the issue, you have to modify the loop bound or the array index.

10 ISO/IEC TS 17961

10-96

Another reason why an array index can exceed array bounds is a prior conversion from
signed to unsigned integers. The conversion can result in a wrap around of the index
value, eventually causing the array index to exceed the array bounds.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Array Access Out of Bounds Error
#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of
[0,1,2,...,9]. The variable i has a value 10 when it comes out of the for-loop.
Therefore, the printf statement attempts to access fib[10] through i.

Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

 ISO/IEC TS 17961 [invptr]

10-97

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

Pointer access out of bounds
Description

Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer.
You cannot access memory beyond that block using the pointer.

Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an
unpredictable value or try to access a location that is not allowed and encounter a
segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer
inside a loop and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the

pointer increment.

10 ISO/IEC TS 17961

10-98

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int).
In the for-loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points
outside the memory block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {

 ISO/IEC TS 17961 [invptr]

10-99

 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it,
it is not dereferenced more.

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-100

ISO/IEC TS 17961 [ioileave]
Interleaving stream inputs and outputs without a flush or positioning call

Description
Rule Definition
Interleaving stream inputs and outputs without a flush or positioning call.

Examples
Alternating input and output from a stream without flush or
positioning call
Description

Alternating input and output from a stream without flush or positioning call
occurs when:

• You do not perform a flush or function positioning call between an output operation
and a following input operation on a file stream in update mode.

• You do not perform a function positioning call between an input operation and a
following output operation on a file stream in update mode.

Risk

Alternating input and output operations on a stream without an intervening flush or
positioning call is undefined behavior.

Fix

Call fflush() or a file positioning function such as fseek() or fsetpos() between
output and input operations on an update stream.

Call a file positioning function between input and output operations on an update stream.

 ISO/IEC TS 17961 [ioileave]

10-101

Example - Read After Write Without Intervening Flush

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Read operation after write without
 intervening flush. */
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

10 ISO/IEC TS 17961

10-102

In this example, the file demo.txt is opened for reading and appending. After the call to
fwrite(), a call to fread() without an intervening flush operation is undefined
behavior.

Correction — Call fflush() Before the Read Operation

After writing data to the file, before calling fread(), perform a flush call.

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Buffer flush after write and before read */
 if (fflush(file) != 0)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;

 ISO/IEC TS 17961 [ioileave]

10-103

 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-104

ISO/IEC TS 17961 [liberr]
Failing to detect and handle standard library errors

Description

Rule Definition
Failing to detect and handle standard library errors.

Examples

Returned value of a sensitive function not checked
Description

Returned value of a sensitive function not checked occurs when you call sensitive
standard functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or
vulnerable tasks:

 ISO/IEC TS 17961 [liberr]

10-105

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive or critical
sensitive tasks, your program can behave unexpectedly. Errors from these functions can
propagate throughout the program causing incorrect output, security vulnerabilities, and
possibly system failures.

Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to
void. Polyspace does not raise this defect for sensitive functions cast to void. This
resolution is not accepted for critical sensitive functions because they perform more
vulnerable tasks.

Example - Sensitive Function Return Ignored

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 pthread_attr_init(&attr);
}

This example shows a call to the sensitive function pthread_attr_init. The return
value of pthread_attr_init is ignored, causing a defect.

Correction — Cast Function to (void)

One possible correction is to cast the function to void. This fix informs Polyspace and any
reviewers that you are explicitly ignoring the return value of the sensitive function.

10 ISO/IEC TS 17961

10-106

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 (void)pthread_attr_init(&attr);
}

Correction — Test Return Value

One possible correction is to test the return value of pthread_attr_init to check for
errors.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

void initialize() {
 pthread_attr_t attr;
 int result;

 result = pthread_attr_init(&attr);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Example - Critical Function Return Ignored
#include <pthread.h>
extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0));
 pthread_join(thread_id, &res);
}

In this example, two critical functions are called: pthread_create and pthread_join.
The return value of the pthread_create is ignored by casting to void, but because

 ISO/IEC TS 17961 [liberr]

10-107

pthread_create is a critical function (not just a sensitive function), Polyspace does not
ignore this Return value of a sensitive function not checked defect. The other critical
function, pthread_join, returns value that is ignored implicitly. pthread_join uses
the return value of pthread_create, which was not checked.

Correction — Test the Return Value of Critical Functions

The correction for this defect is to check the return value of these critical functions to
verify the function performed as expected.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Unprotected dynamic memory allocation
Description

Unprotected dynamic memory allocation occurs when you do not check after dynamic
memory allocation whether the memory allocation succeeded.

10 ISO/IEC TS 17961

10-108

Risk

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a
value NULL if the requested memory is not available. If the code following the allocation
accesses the memory block without checking for this NULL value, this access is not
protected from failures.

Fix

Check the return value of malloc, calloc, or realloc for NULL before accessing the
allocated memory location.

int *ptr = malloc(size * sizeof(int));

if(ptr) /* Check for NULL */
{
 /* Memory access through ptr */
}

Example - Unprotected dynamic memory allocation error

#include <stdlib.h>

void Assign_Value(void)
{
 int* p = (int*)calloc(5, sizeof(int));

 *p = 2;
 /* Defect: p is not checked for NULL value */

 free(p);
}

If the memory allocation fails, the function calloc returns NULL to p. Before accessing
the memory through p, the code does not check whether p is NULL

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

void Assign_Value(void)
 {

 ISO/IEC TS 17961 [liberr]

10-109

 int* p = (int*)calloc(5, sizeof(int));

 /* Fix: Check if p is NULL */
 if(p!=NULL) *p = 2;

 free(p);
 }

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-110

ISO/IEC TS 17961 [libmod]
Modifying the string returned by getenv, localeconv, setlocale, and strerror

Description
Rule Definition
Modifying the string returned by getenv, localeconv, setlocale, and strerror.

Examples
Modification of internal buffer returned from nonreentrant
standard function
Description

Modification of internal buffer returned from nonreentrant standard function
occurs when the following happens:

• A nonreentrant standard function returns a pointer.
• You attempt to write to the memory location that the pointer points to.

Nonreentrant standard functions that return a non const-qualified pointer to an internal
buffer include getenv, getlogin, crypt, setlocale, localeconv, strerror and
others.

Risk

Modifying the internal buffer that a nonreentrant standard function returns can cause the
following issues:

• It is possible that the modification does not succeed or alters other internal data.

For instance, getenv returns a pointer to an environment variable value. If you modify
this value, you alter the environment of the process and corrupt other internal data.

 ISO/IEC TS 17961 [libmod]

10-111

• Even if the modification succeeds, it is possible that a subsequent call to the same
standard function does not return your modified value.

For instance, you modify the environment variable value that getenv returns. If
another process, thread, or signal handler calls setenv, the modified value is
overwritten. Therefore, a subsequent call to getenv does not return your modified
value.

Fix

Avoid modifying the internal buffer using the pointer returned from the function.

Example - Modification of getenv Return Value

#include <stdlib.h>
#include <string.h>

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 strncpy(env, "C", 1);
 printstr(env);
 }
}

In this example, the first argument of strncpy is the return value from a nonreentrant
standard function getenv. The behavior can be undefined because strncpy modifies this
argument.

Correction - Copy Return Value of getenv and Modify Copy

One possible solution is to copy the return value of getenv and pass the copy to the
strncpy function.

#include <stdlib.h>
#include <string.h>
enum {
 SIZE20 = 20
};

void printstr(const char*);

10 ISO/IEC TS 17961

10-112

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 char env_cp[SIZE20];
 strncpy(env_cp, env, SIZE20);
 strncpy(env_cp, "C", 1);
 printstr(env_cp);
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [libmod]

10-113

ISO/IEC TS 17961 [libptr]
Forming invalid pointers by library function

Description

Rule Definition
Forming invalid pointers by library function.

Examples

Use of path manipulation function without maximum sized
buffer checking
Description

Use of path manipulation function without maximum-sized buffer checking occurs
when the destination argument of a path manipulation function such as realpath or
getwd has a buffer size less than PATH_MAX bytes.

Risk

A buffer smaller than PATH_MAX bytes can overflow but you cannot test the function
return value to determine if an overflow occurred. If an overflow occurs, following the
function call, the content of the buffer is undefined.

For instance, char *getwd(char *buf) copies an absolute path name of the current
folder to its argument. If the length of the absolute path name is greater than PATH_MAX
bytes, getwd returns NULL and the content of *buf is undefined. You can test the return
value of getwd for NULL to see if the function call succeeded.

However, if the allowed buffer for buf is less than PATH_MAX bytes, a failure can occur
for a smaller absolute path name. In this case, getwd does not return NULL even though a
failure occurred. Therefore, the allowed buffer for buf must be PATH_MAX bytes long.

10 ISO/IEC TS 17961

10-114

Fix

Possible fixes are:

• Use a buffer size of PATH_MAX bytes. If you obtain the buffer from an unknown source,
before using the buffer as argument of getwd or realpath function, make sure that
the size is less than PATH_MAX bytes.

• Use a path manipulation function that allows you to specify a buffer size.

For instance, if you are using getwd to get the absolute path name of the current
folder, use char *getcwd(char *buf, size_t size); instead. The additional
argument size allows you to specify a size greater than or equal to PATH_MAX.

• Allow the function to allocate additional memory dynamically, if possible.

For instance, char *realpath(const char *path, char *resolved_path);
dynamically allocates memory if resolved_path is NULL. However, you have to
deallocate this memory later using the free function.

Example - Possible Buffer Overflow in Use of getwd Function

#include <unistd.h>
#include <linux/limits.h>
#include <stdio.h>

void func(void) {
 char buf[PATH_MAX];
 if (getwd(buf+1)!= NULL) {
 printf("cwd is %s\n", buf);
 }
}

In this example, although the array buf has PATH_MAX bytes, the argument of getwd is
buf + 1, whose allowed buffer is less than PATH_MAX bytes.

Correction — Use Array of Size PATH_MAX Bytes

One possible correction is to use an array argument with size equal to PATH_MAX bytes.

#include <unistd.h>
#include <linux/limits.h>
#include <stdio.h>

void func(void) {

 ISO/IEC TS 17961 [libptr]

10-115

 char buf[PATH_MAX];
 if (getwd(buf)!= NULL) {
 printf("cwd is %s\n", buf);
 }
}

Invalid use of standard library memory routine
Description

Invalid use of standard library memory routine occurs when a memory library
function is called with invalid arguments. For instance, the memcpy function copies to an
array that cannot accommodate the number of bytes copied.

Risk

Use of a memory library function with invalid arguments can result in issues such as
buffer overflow.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Use of Standard Library Memory Routine Error

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 char str1[10],str2[5];

 printf("Enter string:\n");
 scanf("%s",str1);

10 ISO/IEC TS 17961

10-116

 memcpy(str2,str1,6);
 /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

 return str2;
 }

The size of string str2 is 5, but six characters of string str1 are copied into str2 using
the memcpy function.

Correction — Call Function with Valid Arguments

One possible correction is to adjust the size of str2 so that it accommodates the
characters copied with the memcpy function.

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 /* Fix: Declare str2 with size 6 */
 char str1[10],str2[6];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 return str2;
 }

Invalid use of standard library string routine
Description

Invalid use of standard library string routine occurs when a string library function is
called with invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy
function with a source argument larger than the destination argument can result in buffer
overflows.

 ISO/IEC TS 17961 [libptr]

10-117

Fix

The fix depends on the standard library function involved in the defect. In some cases,
you can constrain the function arguments before the function call. For instance, if the
strcpy function:

char * strcpy(char * destination, const char* source)

tries to copy too many bytes into the destination argument compared to the available
buffer, constrain the source argument before the call to strcpy. In some cases, you can
use an alternative function to avoid the error. For instance, instead of strcpy, you can
use strncpy to control the number of bytes copied. See also “Interpret Polyspace Bug
Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Use of Standard Library String Routine Error
 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>
 #include <stdio.h>

10 ISO/IEC TS 17961

10-118

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Destination buffer overflow in string manipulation
Description

Destination buffer overflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at an offset greater
than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char*
format), you use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of characters
written. For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or
sprintf_s instead to enforce length control. Alternatively, use asprintf to
automatically allocate the memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string,
use vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s
instead to enforce length control.

Another possible solution is to increase the buffer size.

 ISO/IEC TS 17961 [libptr]

10-119

Example - Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater
size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-120

ISO/IEC TS 17961 [libuse]
Using an object overwritten by getenv, localeconv, setlocale, and strerror

Description

Rule Definition
Using an object overwritten by getenv, localeconv, setlocale, and strerror.

Examples

Misuse of return value from nonreentrant standard function
Description

Misuse of return value from nonreentrant standard function occurs when these
events happen in this sequence:

1 You point to the buffer returned from a nonreentrant standard function such as
getenv or setlocale.

user = getenv("USER");
2 You call that nonreentrant standard function again.

user2 = getenv("USER2");
3 You use or dereference the pointer from the first step expecting the buffer to remain

unmodified since that step. In the meantime, the call in the second step has modified
the buffer.

For instance:

var=*user;

In some cases, the defect might appear even if you do not call the getenv function a
second time but simply return the pointer. For instance:

 ISO/IEC TS 17961 [libuse]

10-121

char* func() {
 user=getenv("USER");
 .
 .
 return user;
}

For information on which functions are covered by this defect, see documentation on
nonreentrant standard functions.

Risk

The C Standard allows nonreentrant functions such as getenv to return a pointer to a
static buffer. Because the buffer is static, a second call to getenv modifies the buffer. If
you continue to use the pointer returned from the first call past the second call, you can
see unexpected results. The buffer that it points to no longer has values from the first call.

The defect appears even if you do not call getenv a second time but simply return the
pointer. The reason is that someone calling your function might use the returned pointer
after a second call to getenv. By returning the pointer from your call to getenv, you
make your function unsafe to use.

The same rationale is true for other nonreentrant functions covered by this defect.

Fix

After the first call to getenv, make a copy of the buffer that the returned pointer points
to. After the second call to getenv, use this copy. Even if the second call modifies the
buffer, your copy is untouched.

Example - Return from getenv Used After Second Call to getenv
#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME"); /* First call */
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');

10 ISO/IEC TS 17961

10-122

https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions
https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions

 if (user_name_from_home != NULL) {
 user = getenv("USER"); /* Second call */
 if ((user != NULL) &&
 (strcmp(user, user_name_from_home) == 0))
 {
 result = 1;
 }
 }
 }
 return result;
}

In this example, the pointer user_name_from_home is derived from the pointer home.
home points to the buffer returned from the first call to getenv. Therefore,
user_name_from_home points to a location in the same buffer.

After the second call to getenv, the buffer is modified. If you continue to use
user_name_from_home, you can get unexpected results.

Correction — Make Copy of Buffer Before Second Call

If you want to access the buffer from the first call to getenv past the second call, make a
copy of the buffer after the first call. One possible correction is to use the strdup
function to make the copy.

#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME");
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');
 if (user_name_from_home != NULL) {
 /* Make copy before second call */
 char *saved_user_name_from_home = strdup(user_name_from_home);
 if (saved_user_name_from_home != NULL) {
 user = getenv("USER");
 if ((user != NULL) &&
 (strcmp(user, saved_user_name_from_home) == 0))
 {

 ISO/IEC TS 17961 [libuse]

10-123

 result = 1;
 }
 free(saved_user_name_from_home);
 }
 }
 }
 return result;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-124

ISO/IEC TS 17961 [nonnullcs]
Passing a non-null-terminated character sequence to a library function

Description

Rule Definition
Passing a non-null-terminated character sequence to a library function.

Examples

Invalid use of standard library string routine
Description

Invalid use of standard library string routine occurs when a string library function is
called with invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy
function with a source argument larger than the destination argument can result in buffer
overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases,
you can constrain the function arguments before the function call. For instance, if the
strcpy function:

char * strcpy(char * destination, const char* source)

tries to copy too many bytes into the destination argument compared to the available
buffer, constrain the source argument before the call to strcpy. In some cases, you can
use an alternative function to avoid the error. For instance, instead of strcpy, you can

 ISO/IEC TS 17961 [nonnullcs]

10-125

use strncpy to control the number of bytes copied. See also “Interpret Polyspace Bug
Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Use of Standard Library String Routine Error
 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

10 ISO/IEC TS 17961

10-126

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [nonnullcs]

10-127

ISO/IEC TS 17961 [nullref]
Dereferencing an out-of-domain pointer

Description

Rule Definition
Dereferencing an out-of-domain pointer.

Examples

Unsafe pointer arithmetic
Description

The issue occurs when a pointer resulting from arithmetic on a pointer operand does not
address an element of the same array as that pointer operand.

Polyspace flags this rule during the analysis as:

• Bug Finder — Array access out-of-bounds and Pointer access out-of-
bounds

• Code Prover — and

Bug Finder and Code Prover check this rule differently and can show different results for
this rule. In Code Prover, you can also see a difference in results based on your choice for
the option Verification level (-to). See “Check for Coding Standard Violations”.

Risk

Using an invalid array subscript can lead to erroneous behavior of the program. Run-time
derived array subscripts are especially troublesome because they cannot be easily
checked by manual review or static analysis.

10 ISO/IEC TS 17961

10-128

The C Standard defines the creation of a pointer to one beyond the end of the array. The
rule permits the C Standard. Dereferencing a pointer to one beyond the end of an array
causes undefined behavior and is noncompliant.

Invalid use of standard library memory routine
Description

Invalid use of standard library memory routine occurs when a memory library
function is called with invalid arguments. For instance, the memcpy function copies to an
array that cannot accommodate the number of bytes copied.

Risk

Use of a memory library function with invalid arguments can result in issues such as
buffer overflow.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence
of events that led to the defect. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Polyspace
Bug Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Use of Standard Library Memory Routine Error

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 char str1[10],str2[5];

 printf("Enter string:\n");
 scanf("%s",str1);

 ISO/IEC TS 17961 [nullref]

10-129

 memcpy(str2,str1,6);
 /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

 return str2;
 }

The size of string str2 is 5, but six characters of string str1 are copied into str2 using
the memcpy function.

Correction — Call Function with Valid Arguments

One possible correction is to adjust the size of str2 so that it accommodates the
characters copied with the memcpy function.

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 /* Fix: Declare str2 with size 6 */
 char str1[10],str2[6];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 return str2;
 }

Null pointer
Description

Null pointer occurs when you use a pointer with a value of NULL as if it points to a valid
memory location.

Risk

Dereferencing a null pointer is undefined behavior. In most implementations, the
dereference can cause your program to crash.

Fix

Check a pointer for NULL before dereference.

10 ISO/IEC TS 17961

10-130

If the issue occurs despite an earlier check for NULL, look for intermediate events
between the check and the subsequent dereference. Often the result details show a
sequence of events that led to the defect. You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using
right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

See examples of fixes below.

Example - Null pointer error

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 int* p=NULL;

 *p=arr[0];
 /* Defect: Null pointer dereference */

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

The pointer p is initialized with value of NULL. However, when the value arr[0] is
written to *p, p is assumed to point to a valid memory location.

Correction — Assign Address to Null Pointer Before Dereference

One possible correction is to initialize p with a valid memory address before dereference.

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 /* Fix: Assign address to null pointer */
 int* p=&arr[0];

 for(int i=0;i<Size;i++)

 ISO/IEC TS 17961 [nullref]

10-131

 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

Arithmetic operation with NULL pointer
Description

Arithmetic operation with NULL pointer occurs when an arithmetic operation
involves a pointer whose value is NULL.

Risk

Performing pointer arithmetic on a null pointer and dereferencing the resulting pointer is
undefined behavior. In most implementations, the dereference can cause your program to
crash.

Fix

Check a pointer for NULL before arithmetic operations on the pointer.

If the issue occurs despite an earlier check for NULL, look for intermediate events
between the check and the subsequent dereference. Often the result details show a
sequence of events that led to the defect. You can implement the fix on any event in the
sequence. If the result details do not show the event history, you can trace back using
right-click options in the source code and see previous related events. See also “Interpret
Polyspace Bug Finder Results”.

See examples of fixes below.

Example - Arithmetic Operation with NULL Pointer Error

#include<stdlib.h>

int Check_Next_Value(int *loc, int val)
 {
 int *ptr = loc, found = 0;

 if (ptr==NULL)

10 ISO/IEC TS 17961

10-132

 {
 ptr++;
 /* Defect: NULL pointer shifted */

 if (*ptr==val) found=1;
 }

 return(found);
 }

When ptr is a NULL pointer, the code enters the if statement body. Therefore, a NULL
pointer is shifted in the statement ptr++.

Correction — Avoid NULL Pointer Arithmetic

One possible correction is to perform the arithmetic operation when ptr is not NULL.

#include<stdlib.h>

int Check_Next_Value(int *loc, int val)
 {
 int *ptr = loc, found = 0;

 /* Fix: Perform operation when ptr is not NULL */
 if (ptr!=NULL)
 {
 ptr++;

 if (*ptr==val) found=1;
 }

 return(found);
 }

Invalid use of standard library string routine
Description

Invalid use of standard library string routine occurs when a string library function is
called with invalid arguments.

 ISO/IEC TS 17961 [nullref]

10-133

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy
function with a source argument larger than the destination argument can result in buffer
overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases,
you can constrain the function arguments before the function call. For instance, if the
strcpy function:

char * strcpy(char * destination, const char* source)

tries to copy too many bytes into the destination argument compared to the available
buffer, constrain the source argument before the call to strcpy. In some cases, you can
use an alternative function to avoid the error. For instance, instead of strcpy, you can
use strncpy to control the number of bytes copied.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

10 ISO/IEC TS 17961

10-134

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Use of tainted pointer
Description

Use of tainted pointer defect is raised when:

• Tainted NULL pointer — the pointer is not validated against NULL.
• Tainted size pointer — the size of the memory zone that a pointer points to is not

validated.

Note On a single pointer, your code can have instances of Use of tainted pointer,
Pointer dereference with tainted offset, and Tainted NULL or non-null-terminated
string. Bug Finder raises only the first tainted pointer defect that it finds.

Risk

An attacker can give your program a pointer that points to unexpected memory locations.
If the pointer is dereferenced to write, the attacker can:

• Modify the state variables of a critical program.
• Cause your program to crash.

 ISO/IEC TS 17961 [nullref]

10-135

• Execute unwanted code.

If the pointer is dereferenced to read, the attacker can:

• Read sensitive data.
• Cause your program to crash.
• Modify a program variable to an unexpected value.

Fix

Avoid use of pointers from external sources.

Alternatively, if you trust the external source, sanitize the pointer before dereference. In a
separate sanitization function:

• Check that the pointer is not NULL.
• Check the size of the memory location (if possible). This second check validates

whether the size of the data the pointer points to matches the size your program
expects.

The defect still appears in the body of the sanitization function. However, if you use a
sanitization function, instead of several occurrences, the defect appears only once. You
can justify the defect and hide it in later reviews by using code annotations. See “Address
Polyspace Results Through Bug Fixes or Justifications”.

Example - Function That Dereferences an External Pointer

void taintedptr(int* p, int i) {
 *p = i;
}

In this example, the pointer *p is passed as an argument, and the value is changed. The
pointer can be null or point to unknown memory, which can be vulnerable.

Correction — Avoid Use of External Pointers

One possible correction is to avoid pointers from external sources.

int *taintedptr(int i) {
 /* Use heap memory allocated in the application */
 int *p = (int *)malloc(sizeof (int));
 if (p != NULL) { /* Check for success */

10 ISO/IEC TS 17961

10-136

 *p = i;
 }
return p;
}

Correction — Check Pointer

Another possible correction is to sanitize the pointer before using it. This example uses a
second function to check if the pointer is null and can be dereferenced.

#include <stdlib.h>

int* sanitize_ptr(int* p) {
 int* res = NULL;
 if (p && *p) { /* Tainted pointer detected here, used as "firewall" */
 /* Pointer is not null and dereference ok */
 res = p;
 }
 return res;
}
void taintedptr(int* p, int i) {
 p = sanitize_ptr(p);
 if (p) {
 *p = i;
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [nullref]

10-137

ISO/IEC TS 17961 [padcomp]
Comparison of padding data

Description

Rule Definition
Comparison of padding data.

Examples

Memory comparison of padding data
Description

Memory comparison of padding data occurs when you use the memcmp function to
compare two structures as a whole. In the process, you compare meaningless data stored
in the structure padding.

For instance:

struct structType {
 char member1;
 int member2;
 .
 .
};

structType var1;
structType var2;
.
.
if(memcmp(&var1,&var2,sizeof(var1)))
{...}

10 ISO/IEC TS 17961

10-138

Risk

If members of a structure have different data types, your compiler introduces additional
padding for data alignment in memory. For an example of padding, see Higher
Estimate of Local Variable Size.

The content of these extra padding bytes is meaningless. The C Standard allows the
content of these bytes to be indeterminate, giving different compilers latitude to
implement their own padding. If you perform a byte-by-byte comparison of structures
with memcmp, you compare even the meaningless data stored in the padding. You might
reach the false conclusion that two data structures are not equal, even if their
corresponding members have the same value.

Fix

Instead of comparing two structures in one attempt, compare the structures member by
member.

For efficient code, write a function that does the comparison member by member. Use this
function for comparing two structures.

You can use memcmp for byte-by-byte comparison of structures only if you know that the
structures do not contain padding. Typically, to prevent padding, you use specific
attributes or pragmas such as #pragma pack. However, these attributes or pragmas are
not supported by all compilers and make your code implementation-dependent. If your
structures contain bit-fields, using these attributes or pragmas cannot prevent padding.

Example - Structures Compared with memcmp

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

 ISO/IEC TS 17961 [padcomp]

10-139

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{

 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 if (0 == memcmp(left, right, sizeof(S_Padding)))
 {
 return 1;
 }
 else
 return 0;
}

In this example, memcmp compares byte-by-byte the two structures that left and right
point to. Even if the values stored in the structure members are the same, the comparison
can show an inequality if the meaningless values in the padding bytes are not the same.

Correction — Compare Structures Member by Member

One possible correction is to compare individual structure members.

Note You can compare entire arrays by using memcmp. All members of an array have the
same data type. Padding bytes are not required to store arrays.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;

10 ISO/IEC TS 17961

10-140

 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{
 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 return ((left->c == right->c) &&
 (left->i == right->i) &&
 (left->bf1 == right->bf1) &&
 (left->bf2 == right->bf2) &&
 (memcmp(left->buffer, right->buffer, 20) == 0));
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [padcomp]

10-141

ISO/IEC TS 17961 [ptrcomp]
Accessing an object through a pointer to an incompatible type

Description

Rule Definition
Accessing an object through a pointer to an incompatible type.

Examples

Conversion between pointers to different objects
Description

The issue occurs when a cast is performed between a pointer to object type and a pointer
to a different object type.

Risk

If a pointer to an object is cast into a pointer to a different object, the resulting pointer
can be incorrectly aligned. The incorrect alignment causes undefined behavior.

Even if the conversion produces a pointer that is correctly aligned, the behavior can be
undefined if the pointer is used to access an object.

Exception: You can convert a pointer to object type into a pointer to one of the following
types:

• char
• signed char
• unsigned char

10 ISO/IEC TS 17961

10-142

Example - Noncompliant: Cast to Pointer Pointing to Object of Wider Type

signed char *p1;
unsigned int *p2;

void foo(void){
 p2 = (unsigned int *) p1; /* Non-compliant */
}

In this example, p1 can point to a signed char object. However, p1 is cast to a pointer
that points to an object of wider type, unsigned int.

Example - Noncompliant: Cast to Pointer Pointing to Object of Narrower Type

extern unsigned int read_value (void);
extern void display (unsigned int n);

void foo (void){
 unsigned int u = read_value ();
 unsigned short *hi_p = (unsigned short *) &u; /* Non-compliant */
 *hi_p = 0;
 display (u);
}

In this example, u is an unsigned int variable. &u is cast to a pointer that points to an
object of narrower type, unsigned short.

On a big-endian machine, the statement *hi_p = 0 attempts to clear the high bits of the
memory location that &u points to. But, from the result of display(u), you might find
that the high bits have not been cleared.

Example - Compliant: Cast Adding a Type Qualifier

const short *p;
const volatile short *q;
void foo (void){
 q = (const volatile short *) p; /* Compliant */
}

In this example, both p and q can point to short objects. The cast between them adds a
volatile qualifier only and is therefore compliant.

 ISO/IEC TS 17961 [ptrcomp]

10-143

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-144

ISO/IEC TS 17961 [ptrobj]
Subtracting or comparing two pointers that do not refer to the same array

Description

Rule Definition
Subtracting or comparing two pointers that do not refer to the same array.

Examples

Subtraction or comparison between pointers to different
arrays
Description

Subtraction or comparison between pointers to different arrays occurs when you
subtract or compare pointers that are null or that point to elements in different arrays.
The relational operators for the comparison are >, <, >=, and <=.

Risk

When you subtract two pointers to elements in the same array, the result is the difference
between the subscripts of the two array elements. Similarly, when you compare two
pointers to array elements, the result is the positions of the pointers relative to each
other. If the pointers are null or point to different arrays, a subtraction or comparison
operation is undefined. If you use the subtraction result as a buffer index, it can cause a
buffer overflow.

Fix

Before you subtract or use relational operators to compare pointers to array elements,
check that they are non-null and that they point to the same array.

 ISO/IEC TS 17961 [ptrobj]

10-145

Example - Subtraction Between Pointers to Elements in Different Arrays

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

size_t func(void)
{
 int nums[SIZE20];
 int end;
 int *next_num_ptr = nums;
 size_t free_elements;
 /* Increment next_num_ptr as array fills */

 /* Subtraction operation is undefined unless array nums
 is adjacent to variable end in memory. */
 free_elements = &end - next_num_ptr;
 return free_elements;
}

In this example, the array nums is incrementally filled. Pointer subtraction is then used to
determine how many free elements remain. Unless end points to a memory location one
past the last element of nums, the subtraction operation is undefined.

Correction — Subtract Pointers to the Same Array

Subtract the pointer to the last element that was filled from the pointer to the last
element in the array.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

size_t func(void)
{
 int nums[SIZE20];
 int *next_num_ptr = nums;
 size_t free_elements;

10 ISO/IEC TS 17961

10-146

 /* Increment next_num_ptr as array fills */

 /* Subtraction operation involves pointers to the same array. */
 free_elements = &(nums[SIZE20 - 1]) - next_num_ptr;

 return free_elements + 1;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [ptrobj]

10-147

ISO/IEC TS 17961 [resident]
Using identifiers that are reserved for the implementation

Description

Rule Definition
Using identifiers that are reserved for the implementation.

Examples

Declaration of reserved identifiers or macro names
Description

The issue occurs when a reserved identifier or macro name is declared.

If you define a macro name that corresponds to a standard library macro, object, or
function, rule 21.1 is violated.

The rule considers tentative definitions as definitions.

Risk

The Standard allows implementations to treat reserved identifiers specially. If you reuse
reserved identifiers, you can cause undefined behavior.

Check Information
Decidability: Decidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

10 ISO/IEC TS 17961

10-148

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [resident]

10-149

ISO/IEC TS 17961 [restrict]
Passing pointers into the same object as arguments to different restrict-qualified
parameters

Description

Rule Definition
Passing pointers into the same object as arguments to different restrict-qualified
parameters.

Examples

Copy of overlapping memory
Description

Copy of overlapping memory occurs when there is a memory overlap between the
source and destination argument of a copy function such as memcpy or strcpy. For
instance, the source and destination arguments of strcpy are pointers to different
elements in the same string.

Risk

If there is memory overlap between the source and destination arguments of copy
functions, according to C standards, the behavior is undefined.

Fix

Determine if the memory overlap is what you want. If so, find an alternative function. For
instance:

• If you are using memcpy to copy values from one memory location to another, use
memmove instead of memcpy.

10 ISO/IEC TS 17961

10-150

• If you are using strcpy to copy one string to another, use memmove instead of
strcpy, as follows:

s = strlen(source);
memmove(destination, source, s + 1);

strlen determines the string length without the null terminator. Therefore, you must
move s+1 bytes instead of s bytes.

Example - Overlapping Copy

#include <string.h>

char str[] = {"ABCDEFGH"};

void my_copy() {
 strcpy(&str[0],(const char*)&str[2]);
}

In this example, because the source and destination argument are pointers to the same
string str, there is memory overlap between their allowed buffers.

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [restrict]

10-151

ISO/IEC TS 17961 [sigcall]
Calling signal from interruptible signal handlers

Description

Rule Definition
Calling signal from interruptible signal handlers.

Examples

Signal call from within signal handler
Description

Signal call from within signal handler occurs when you call signal() from a
nonpersistent signal handler on a Windows platform.

Risk

A nonpersistent signal handler is reset after catching a signal. The handler does not catch
subsequent signals unless the handler is reestablished by calling signal(). A
nonpersistent signal handler on a Windows platform is reset to SIG_DFL. If another signal
interrupts the execution of the handler, that signal can cause a race condition between
SIG_DFL and the existing signal handler. A call to signal() can also result in an infinite
loop inside the handler.

Fix

Do not call signal() from a signal handler on Windows platforms.

Example - signal() Called from Signal Handler

#include <stdio.h>
#include <stdlib.h>

10 ISO/IEC TS 17961

10-152

#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{
 int s0 = signum;
 e_flag = 1;

 /* Call signal() to reestablish sig_handler
 upon receiving SIG_ERR. */

 if (signal(s0, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
}

void func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
 /* more code */
}

In this example, the definition of sig_handler() includes a call to signal() when the
handler catches SIG_ERR. On Windows platforms, signal handlers are nonpersistent. This
code can result in a race condition.

Correction — Do Not Call signal() from Signal Handler

If your code requires the use of a persistent signal handler on a Windows platform, use a
persistent signal handler after performing a thorough risk analysis.

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

 ISO/IEC TS 17961 [sigcall]

10-153

#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{
 int s0 = signum;
 e_flag = 1;
 /* No call to signal() */
}

int main(void)
{

 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-154

ISO/IEC TS 17961 [signconv]
Conversion of signed characters to wider integer types before a check for EOF

Description
Rule Definition
Conversion of signed characters to wider integer types before a check for EOF.

Examples
Misuse of sign-extended character value
Description

Misuse of sign-extended character value occurs when you convert a signed or plain
char data type to a wider integer data type with sign extension. You then use the
resulting sign-extended value as array index, for comparison with EOF or as argument to
a character-handling function.

Risk

Comparison with EOF: Suppose, your compiler implements the plain char type as signed.
In this implementation, the character with the decimal form of 255 (–1 in two’s
complement form) is stored as a signed value. When you convert a char variable to the
wider data type int for instance, the sign bit is preserved (sign extension). This sign
extension results in the character with the decimal form 255 being converted to the
integer –1, which cannot be distinguished from EOF.

Use as array index: By similar reasoning, you cannot use sign-extended plain char
variables as array index. If the sign bit is preserved, the conversion from char to int can
result in negative integers. You must use positive integer values for array index.

Argument to character-handling function: By similar reasoning, you cannot use sign-
extended plain char variables as arguments to character-handling functions declared in

 ISO/IEC TS 17961 [signconv]

10-155

ctype.h, for instance, isalpha() or isdigit(). According to the C11 standard
(Section 7.4), if you supply an integer argument that cannot be represented as unsigned
char or EOF, the resulting behavior is undefined.

Fix

Before conversion to a wider integer data type, cast the signed or plain char value
explicitly to unsigned char.

Example - Sign-Extended Character Value Compared with EOF

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = *buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

In this example, the function parser can traverse a string input buf. If a character in the
string has the decimal form 255, when converted to the int variable c, its value becomes
–1, which is indistinguishable from EOF. The later comparison with EOF can lead to a false
positive.

Correction — Cast to unsigned char Before Conversion

One possible correction is to cast the plain char value to unsigned char before
conversion to the wider int type.

10 ISO/IEC TS 17961

10-156

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = (unsigned char)*buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [signconv]

10-157

ISO/IEC TS 17961 [sizeofptr]
Taking the size of a pointer to determine the size of the pointed-to type

Description
Rule Definition
Taking the size of a pointer to determine the size of the pointed-to type.

Examples
Possible misuse of sizeof
Description

Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly
unintended results from the use of sizeof operator. For instance:

• You use the sizeof operator on an array parameter name, expecting the array size.
However, the array parameter name by itself is a pointer. The sizeof operator
returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However,
the operator returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect
because you used the sizeof operator earlier with possibly incorrect expectations.
For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an
incorrect use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the not the
number of wide characters but a size in bytes obtained by using the sizeof
operator. For instance, you use wcsncpy(destination, source,
sizeof(destination) - 1) instead of wcsncpy(destination, source,
(sizeof(desintation)/sizeof(wchar_t)) - 1).

10 ISO/IEC TS 17961

10-158

Risk

Incorrect use of the sizeof operator can cause the following issues:

• If you expect the sizeof operator to return array size and use the return value to
constrain a loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is
smaller than what you require. Insufficient buffer can lead to resultant weaknesses
such as buffer overflows.

• If you use the return value of sizeof operator incorrectly in a function call, the
function does not behave as you expect.

Fix

Possible fixes are:

• Do not use the sizeof operator on an array parameter name or array element to
determine array size.

The best practice is to pass the array size as a separate function parameter and use
that parameter in the function body.

• Use the sizeof operator carefully to determine the number argument of functions
such as strncmp or wcsncpy. For instance, for wide string functions such as
wcsncpy, use the number of wide characters as argument instead of the number of
bytes.

Example - sizeof Used Incorrectly to Determine Array Size
#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {
 a[i] = i + 1;
 }
}

In this example, sizeof(a) returns the size of the pointer a and not the array size.

Correction — Determine Array Size in Another Way

One possible correction is to use another means to determine the array size.

 ISO/IEC TS 17961 [sizeofptr]

10-159

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < MAX_SIZE; i++) {
 a[i] = i + 1;
 }
}

Check Information
Decidability: Decidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-160

ISO/IEC TS 17961 [strmod]
Modifying string literals

Description

Rule Definition
Modifying string literals.

Examples

Writing to const qualified object
Description

Writing to const qualified object occurs when you do one of the following:

• Use a const-qualified object as the destination of an assignment.
• Pass a const-qualified object to a function that modifies the argument.

For instance, the defect can occur in the following situations:

• You pass a const-qualified object as first argument of one of the following functions:

• mkstemp
• mkostemp
• mkostemps
• mkdtemp

• You pass a const-qualified object as the destination argument of one of the following
functions:

• strcpy
• strncpy

 ISO/IEC TS 17961 [strmod]

10-161

• strcat
• memset

• You perform a write operation on a const-qualified object.

Risk

The risk depends upon the modifications made to the const-qualified object.

Situation Risk
Passing to mkstemp, mkostemp,
mkostemps, mkdtemp, and so on.

These functions replace the last six
characters of their first argument with a
string. Therefore, they expect a modifiable
char array as their first argument.

Passing to strcpy, strncpy, strcat,
memset and so on.

These functions modify their destination
argument. Therefore, they expect a
modifiable char array as their destination
argument.

Writing to the object The const qualifier implies an agreement
that the value of the object will not be
modified. By writing to a const-qualified
object, you break the agreement. The result
of the operation is undefined.

Fix

The fix depends on the modification made to the const-qualified object.

Situation Fix
Passing to mkstemp, mkostemp,
mkostemps, mkdtemp, and so on.

Pass a non-const object as first argument
of the function.

Passing to strcpy, strncpy, strcat,
memset and so on.

Pass a non-const object as destination
argument of the function.

Writing to the object Perform the write operation on a non-
const object.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

10 ISO/IEC TS 17961

10-162

Example - Writing to const-Qualified Object

#include <string.h>

const char* buffer = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

In this example, because buffer is const-qualified, strchr(buffer,'X') returns a
const-qualified char* pointer. When this char* pointer is used as the destination
argument of strcpy, a Writing to const qualified object error appears.

Correction — Copy const-Qualified Object to Non-const Object

One possible correction is to assign the constant string to a non-const object and use the
non-const object as destination argument of strchr.

#include <string.h>

char buffer[] = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

 ISO/IEC TS 17961 [strmod]

10-163

Introduced in R2019a

10 ISO/IEC TS 17961

10-164

ISO/IEC TS 17961 [swtchdflt]
Use of an implied default in a switch statement

Description
Rule Definition
Use of an implied default in a switch statement.

Examples
Missing case for switch condition
Description

Missing case for switch condition occurs when the switch variable can take values
that are not covered by a case statement.

Note Bug Finder only raises a defect if the switch variable is not full range.

Risk

If the switch variable takes a value that is not covered by a case statement, your
program can have unintended behavior.

A switch-statement that makes a security decision is particularly vulnerable when all
possible values are not explicitly handled. An attacker can use this situation to deviate the
normal execution flow.

Fix

It is good practice to use a default statement as a catch-all for values that are not
covered by a case statement. Even if the switch variable takes an unintended value, the
resulting behavior can be anticipated.

 ISO/IEC TS 17961 [swtchdflt]

10-165

Example - Missing Default Condition

#include <stdio.h>
#include <string.h>

typedef enum E
{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {
 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 }

 printf("Welcome!\n");
 return r;
}

In this example, the enum parameter User can take a value UNKNOWN that is not covered
by a case statement.

10 ISO/IEC TS 17961

10-166

Correction — Add a Default Condition

One possible correction is to add a default condition for possible values that are not
covered by a case statement.

#include <stdio.h>
#include <string.h>

typedef enum E
{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {
 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 break;
 default:
 printf("Invalid login credentials!\n");
 }

 printf("Welcome!\n");

 ISO/IEC TS 17961 [swtchdflt]

10-167

 return r;
}

Check Information
Decidability: Decidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-168

ISO/IEC TS 17961 [syscall]
Calling system

Description

Rule Definition
Calling system.

Examples

Unsafe call to a system function
Description

Unsafe call to a system function occurs when you use a function that invokes an
implementation-defined command processor. These functions include:

• The C standard system() function.
• The POSIX popen() function.
• The Windows _popen() and _wpopen() functions.

Risk

If the argument of a function that invokes a command processor is not sanitized, it can
cause exploitable vulnerabilities. An attacker can execute arbitrary commands or read
and modify data anywhere on the system.

Fix

Do not use a system-family function to invoke a command processor. Instead, use safer
functions such as POSIX execve() and WinAPI CreateProcess().

 ISO/IEC TS 17961 [syscall]

10-169

Example - system() Called

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char buf[SIZE512];
 int retval=sprintf(buf, "/usr/bin/any_cmd %s", arg);

 if (retval<=0 || retval>SIZE512){
 /* Handle error */
 abort();
 }
 /* Use of system() to pass any_cmd with
 unsanitized argument to command processor */

 if (system(buf) == -1) {
 /* Handle error */
 }
}

In this example, system() passes its argument to the host environment for the command
processor to execute. This code is vulnerable to an attack by command-injection.

Correction — Sanitize Argument and Use execve()

In the following code, the argument of any_cmd is sanitized, and then passed to
execve() for execution. exec-family functions are not vulnerable to command-injection
attacks.

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,

10 ISO/IEC TS 17961

10-170

SIZE3=3};

void func(char *arg)
{
 char *const args[SIZE3] = {"any_cmd", arg, NULL};
 char *const env[] = {NULL};

 /* Sanitize argument */

 /* Use execve() to execute any_cmd. */

 if (execve("/usr/bin/time", args, env) == -1) {
 /* Handle error */
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [syscall]

10-171

ISO/IEC TS 17961 [taintformatio]
Using a tainted value to write to an object using a formatted input or output function

Description

Rule Definition
Using a tainted value to write to an object using a formatted input or output function.

Examples

Use of Standard Library input/output functions
Description

The issue occurs when Standard Library input/output functions are used.

If the Standard Library function is a macro and the macro is expanded in the code, this
rule is violated. It is assumed that rule 21.2 is not violated.

Risk

This rule applies to the functions that are provided by <stdio.h> and in C99, their
character-wide equivalents provided by <wchar.h>. Using these functions can cause
unspecified, undefined and implementation-defined behavior.

Invalid use of standard library string routine
Description

Invalid use of standard library string routine occurs when a string library function is
called with invalid arguments.

10 ISO/IEC TS 17961

10-172

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy
function with a source argument larger than the destination argument can result in buffer
overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases,
you can constrain the function arguments before the function call. For instance, if the
strcpy function:

char * strcpy(char * destination, const char* source)

tries to copy too many bytes into the destination argument compared to the available
buffer, constrain the source argument before the call to strcpy. In some cases, you can
use an alternative function to avoid the error. For instance, instead of strcpy, you can
use strncpy to control the number of bytes copied. See also “Interpret Polyspace Bug
Finder Results”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

 ISO/IEC TS 17961 [taintformatio]

10-173

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Buffer overflow from incorrect string format specifier
Description

Buffer overflow from incorrect string format specifier occurs when the format
specifier argument for functions such as sscanf leads to an overflow or underflow in the
memory buffer argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size, an
overflow occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

Example - Memory Buffer Overflow
#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

10 ISO/IEC TS 17961

10-174

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c
causes a buffer overflow.

Correction — Use Smaller Precision in Format Specifier

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

Destination buffer overflow in string manipulation
Description

Destination buffer overflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at an offset greater
than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char*
format), you use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of characters
written. For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or
sprintf_s instead to enforce length control. Alternatively, use asprintf to
automatically allocate the memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string,
use vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s
instead to enforce length control.

 ISO/IEC TS 17961 [taintformatio]

10-175

Another possible solution is to increase the buffer size.

Example - Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater
size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-176

ISO/IEC TS 17961 [taintnoproto]
Using a tainted value as an argument to an unprototyped function pointer

Description

Rule Definition
Using a tainted value as an argument to an unprototyped function pointer.

Examples

Call through non-prototyped function pointer
Description

Call through non-prototyped function pointer detects a call to a function through a
pointer without a prototype. A function prototype specifies the type and number of
parameters.

Risk

Arguments passed to a function without a prototype might not match the number and
type of parameters of the function definition, which can cause undefined behavior. If the
parameters are restricted to a subset of their type domain, arguments from untrusted
sources can trigger vulnerabilities in the called function.

Fix

Before calling the function through a pointer, provide a function prototype.

Example - Argument Does Not Match Parameter Restriction

#include <stdio.h>
#include <limits.h>
#define SIZE2 2

 ISO/IEC TS 17961 [taintnoproto]

10-177

typedef void (*func_ptr)();
extern int getchar_wrapper(void);
extern void restricted_int_sink(int i);
/* Integer value restricted to
range [-1, 255] */
extern void restricted_float_sink(double i);
/* Double value restricted to > 0.0 */

func_ptr generic_callback[SIZE2] =
{
 (func_ptr)restricted_int_sink,
 (func_ptr)restricted_float_sink
};

void func(void)
{
 int ic;
 ic = getchar_wrapper();
 /* Wrong index used for generic_callback.
 Negative 'int' passed to restricted_float_sink. */
 (*generic_callback[1])(ic);
}

In this example, a call through func_ptr passes ic as an argument to function
generic_callback[1]. The type of ic can have negative values, while the parameter of
generic_callback[1] is restricted to float values greater than 0.0. Typically,
compilers and static analysis tools cannot perform type checking when you do not provide
a pointer prototype.

Correction — Provide Prototype of Pointer to Function

Pass the argument ic to a function with a parameter of type int, by using a properly
prototyped pointer.

#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func_ptr_proto)(int);

10 ISO/IEC TS 17961

10-178

extern int getchar_wrapper(void);
extern void restricted_int_sink(int i);
/* Integer value restricted to
range [-1, 255] */
extern void restricted_float_sink(double i);
/* Double value restricted to > 0.0 */

func_ptr_proto generic_callback[SIZE2] =
{
 (func_ptr_proto)restricted_int_sink,
 (func_ptr_proto)restricted_float_sink
};

void func(void)
{
 int ic;
 ic = getchar_wrapper();
 /* ic passed to function through
properly prototyped pointer. */
 (*generic_callback[0])(ic);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [taintnoproto]

10-179

ISO/IEC TS 17961 [taintsink]
Tainted, potentially mutilated, or out-of-domain integer values are used in a restricted
sink

Description

Rule Definition
Tainted, potentially mutilated, or out-of-domain integer values are used in a restricted
sink.

Examples

Tainted size of variable length array
Description

Tainted size of variable length array detects variable length arrays (VLA) whose size is
from an unsecure source.

Risk

If an attacker changed the size of your VLA to an unexpected value, it can cause your
program to crash or behave unexpectedly.

If the size is non-positive, the behavior of the VLA is undefined. Your program does not
perform as expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.

Fix

Validate your VLA size to make sure that it is positive and less than a maximum value.

10 ISO/IEC TS 17961

10-180

Example - Input Argument Used as Size of VLA
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {

 int tabvla[size];
 int res = 0;
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 return res;
}

In this example, a variable length array size is based on an input argument. Because this
input argument value is not checked, the size may be negative or too large.

Correction — Check VLA Size

One possible correction is to check the size variable before creating the variable length
array. This example checks if the size is larger than 10 and less than 100, before creating
the VLA

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {
 int res = 0;
 if (size>SIZE10 && size<SIZE100) {
 int tabvla[size];
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 }
 return res;
}

 ISO/IEC TS 17961 [taintsink]

10-181

Pointer dereference with tainted offset
Description

Pointer dereference with tainted offset detects pointer dereferencing, either reading
or writing, using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array
access with tainted index.

Risk

The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write to compromise your program.

Fix

Validate the index before you use the variable to access the pointer. Check to make sure
that the variable is inside the valid range and does not overflow.

Example - Dereference Pointer Array

#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;

10 ISO/IEC TS 17961

10-182

 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[i];
 free(pint);
 }
 return c;
}

In this example, the function initializes an integer pointer pint. The pointer is
dereferenced using the input index i. The value of i could be outside the pointer range,
causing an out-of-range error.

Correction — Check Index Before Dereference

One possible correction is to validate the value of the index. If the index is inside the valid
range, continue with the pointer dereferencing.

#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (i>0 && i<SIZE10) {
 c = pint[i];
 }
 free(pint);
 }
 return c;
}

 ISO/IEC TS 17961 [taintsink]

10-183

Array access with tainted index
Description

Array access with tainted index detects reading or writing to an array by using a
tainted index that has not been validated.

Risk

The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write operation create to problems in your
program.

Fix

Before using the index to access the array, validate the index value to make sure that it is
inside the array range.

Example - Use Index to Return Buffer Value

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex(int num) {
 return tab[num];
}

In this example, the index num accesses the array tab. The function does not check to see
if num is inside the range of tab.

Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

10 ISO/IEC TS 17961

10-184

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex(int num) {
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -9999;
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [taintsink]

10-185

ISO/IEC TS 17961 [taintstrcpy]
Tainted strings are passed to a string copying function

Description
Rule Definition
Tainted strings are passed to a string copying function.

Examples
Tainted NULL or non-null-terminated string
Description

Tainted NULL or non-null-terminated string looks for strings from unsecure sources
that are being used in string manipulation routines that implicitly dereference the string
buffer. For example, strcpy or sprintf.

Tainted NULL or non-null-terminated string raises no defect for a string returned
from a call to scanf-family variadic functions. Similarly, no defect is raised when you
pass the string with a %s specifier to printf-family variadic functions.

Note If you reference a string using the form ptr[i], *ptr, or pointer arithmetic, Bug
Finder raises a Use of tainted pointer defect instead. The Tainted NULL or non-null-
terminated string defect is raised only when the pointer is used as a string.

Risk

If a string is from an unsecure source, it is possible that an attacker manipulated the
string or pointed the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the
program to crash. If the string is not null-terminated, the string routine might not know

10 ISO/IEC TS 17961

10-186

when the string ends. This error can cause you to write out of bounds, causing a buffer
overflow.

Fix

Validate the string before you use it. Check that:

• The string is not NULL.
• The string is null-terminated
• The size of the string matches the expected size.

Example - Getting String from Input Argument
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

In this example, the string str is concatenated with the argument userstr. The value of
userstr is unknown. If the size of userstr is greater than the space available, the
concatenation overflows.

Correction — Validate the Data

One possible correction is to check the size of userstr and make sure that the string is
null-terminated before using it in strncat. This example uses a helper function,
sansitize_str, to validate the string. The defects are concentrated in this function.

 ISO/IEC TS 17961 [taintstrcpy]

10-187

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

int sanitize_str(char* s) {
 int res = 0;
 if (s && (strlen(s) > 0)) { // TAINTED_STRING only flagged here
 // - string is not null
 // - string has a positive and limited size
 // - TAINTED_STRING on strlen used as a firewall
 res = 1;
 }
 return res;
}

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

Correction — Validate the Data

Another possible correction is to call function errorMsg and warningMsg with specific
strings.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

10 ISO/IEC TS 17961

10-188

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

int manageSensorValue(int sensorValue) {
 int ret = sensorValue;
 if (sensorValue < 0) {
 errorMsg("sensor value should be positive");
 exit(1);
 } else if (sensorValue > 50) {
 warningMsg("sensor value greater than 50 (applying threshold)...");
 sensorValue = 50;
 }

 return sensorValue;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

 ISO/IEC TS 17961 [taintstrcpy]

10-189

Introduced in R2019a

10 ISO/IEC TS 17961

10-190

ISO/IEC TS 17961 [uninitref]
Referencing uninitialized memory

Description

Rule Definition
Referencing uninitialized memory.

Examples

Non-initialized pointer
Description

Non-initialized pointer occurs when a pointer is not assigned an address before
dereference.

Risk

Unless a pointer is explicitly assigned an address, it points to an unpredictable location.

Fix

The fix depends on the root cause of the defect. For instance, you assigned an address to
the pointer but the assignment is unreachable.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below. It is a good practice to initialize a pointer to NULL when
declaring the pointer.

 ISO/IEC TS 17961 [uninitref]

10-191

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Non-initialized pointer error
#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }

 *pi = j;
 /* Defect: Writing to uninitialized pointer */

 return pi;
}

If prev is not NULL, the pointer pi is not assigned an address. However, pi is
dereferenced on every execution paths, irrespective of whether prev is NULL or not.

Correction — Initialize Pointer on Every Execution Path

One possible correction is to assign an address to pi when prev is not NULL.

#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }
 /* Fix: Initialize pi in branches of if statement */
 else

10 ISO/IEC TS 17961

10-192

 pi = prev;

 *pi = j;

 return pi;
}

Pointer to non-initialized value converted to const pointer
Description

Pointer to non initialized value converted to const pointer occurs when a pointer to
a constant (const int*, const char*, etc.) is assigned an address that does not yet
contain a value.

Risk

A pointer to a constant stores a value that must not be changed later in the program. If
you assign the address of a non-initialized variable to the pointer, it now points to an
address with garbage values for the remainder of the program.

Fix

Initialize a variable before assigning its address to a pointer to a constant.

Example - Pointer to non initialized value converted to const pointer error

#include<stdio.h>

void Display_Parity()
 {
 int num,parity;
 const int* num_ptr = #
 /* Defect: Address &num does not store a value */

 printf("Enter a number\n:");
 scanf("%d",&num);

 parity=((*num_ptr)%2);
 if(parity==0)
 printf("The number is even.");
 else

 ISO/IEC TS 17961 [uninitref]

10-193

 printf("The number is odd.");

 }

num_ptr is declared as a pointer to a constant. However the variable num does not
contain a value when num_ptr is assigned the address &num.

Correction — Store Value in Address Before Assignment to Pointer

One possible correction is to obtain the value of num from the user before &num is
assigned to num_ptr.

#include<stdio.h>

void Display_Parity()
 {
 int num,parity;
 const int* num_ptr;

 printf("Enter a number\n:");
 scanf("%d",&num);

 /* Fix: Assign &num to pointer after it receives a value */
 num_ptr=#
 parity=((*num_ptr)%2);
 if(parity==0)
 printf("The number is even.");
 else
 printf("The number is odd.");
 }

The scanf statement stores a value in &num. Once the value is stored, it is legitimate to
assign &num to num_ptr.

Non-initialized variable
Description

Non-initialized variable occurs when a variable is not initialized before its value is read.

10 ISO/IEC TS 17961

10-194

Risk

Unless a variable is explicitly initialized, the variable value is unpredictable. You cannot
rely on the variable having a specific value.

Fix

The fix depends on the root cause of the defect. For instance, you assigned a value to the
variable but the assignment is unreachable or you assigned a value to the variable in one
of two branches of a conditional statement. Fix the unreachable code or missing
assignment.

Often the result details show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show the event
history, you can trace back using right-click options in the source code and see previous
related events. See also “Interpret Polyspace Bug Finder Results”.

See examples of fixes below. It is a good practice to initialize a variable at declaration.

If you do not want to fix the issue, add comments to your result or code to avoid another
review. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Example - Non-initialized variable error

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 int val;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 /* Defect: val does not have a value if command is not 2 */
}

If command is not 2, the variable val is unassigned. In this case, the return value of
function get_sensor_value is undetermined.

 ISO/IEC TS 17961 [uninitref]

10-195

Correction — Initialize During Declaration

One possible correction is to initialize val during declaration so that the initialization is
not bypassed on some execution paths.

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 /* Fix: Initialize val */
 int val=0;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 }

val is assigned an initial value of 0. When command is not equal to 2, the function
get_sensor_value returns this value.

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-196

ISO/IEC TS 17961 [usrfmt]
Including tainted or out-of-domain input in a format string

Description
Rule Definition
Including tainted or out-of-domain input in a format string.

Examples
Undefined or unspecified critical behavior
Description

The issue occurs when a statement has possible undefined or implementation-defined
behavior, for instance, use of a function-like macro with too many or too few arguments.

Tainted string format
Description

Tainted string format detects string formatting with printf-style functions that
contain elements from unsecure sources.

Risk

If you use externally controlled elements to format a string, you can cause buffer overflow
or data-representation problems. An attacker can use these string formatting elements to
view the contents of a stack using %x or write to a stack using %n.

Fix

Pass a static string to format string functions. This fix ensures that an external actor
cannot control the string.

 ISO/IEC TS 17961 [usrfmt]

10-197

Another possible fix is to allow only the expected number of arguments. If possible, use
functions that do not support the vulnerable %n operator in format strings.

Example - Get Elements from User Input

#include "stdio.h"

void taintedstringformat(char* userstr) {
 printf(userstr);
}

This example prints the input argument userstr. The string is unknown. If it contains
elements such as %, printf can interpret userstr as a string format instead of a string,
causing your program to crash.

Correction — Print as String

One possible correction is to print userstr explicitly as a string so that there is no
ambiguity.

#include "stdio.h"

void taintedstringformat(char* userstr) {
 printf("%.20s", userstr);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-198

ISO/IEC TS 17961 [xfilepos]
Using a value for fsetpos other than a value returned from fgetpos

Description

Rule Definition
Using a value for fsetpos other than a value returned from fgetpos.

Examples

Invalid file position
Description

Invalid file position occurs when the file position argument of fsetpos() uses a value
that is not obtained from fgetpos().

Risk

The function fgetpos(FILE *stream, fpos_t *pos) gets the current file position of
the stream. When you use any other value as the file position argument of fsetpos(FILE
*stream, const fpos_t *pos), you might access an unintended location in the
stream.

Fix

Use the value returned from a successful call to fgetpos() as the file position argument
of fsetpos().

Example - memset() Sets File Position Argument

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

 ISO/IEC TS 17961 [xfilepos]

10-199

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */
 }
 /* Store initial position in variable 'offset' */
 (void)memset(&offset, 0, sizeof(offset));

 /* Read data from file */

 /* Return to the initial position. offset was not
 returned from a call to fgetpos() */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

In this example, fsetpos() uses offset as its file position argument. However, the
value of offset is set by memset(). The preceding code might access the wrong location
in the stream.

Correction — Use a File Position Returned From fgetpos()

Call fgetpos(), and if it returns successfully, use the position argument in your call to
fsetpos().

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */

10 ISO/IEC TS 17961

10-200

 }
 /* Store initial position in variable 'offset'
 using fgetpos() */
 if (fgetpos(file, &offset) != 0)
 {
 /* Handle error */
 }

 /* Read data from file */

 /* Back to the initial position */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [xfilepos]

10-201

ISO/IEC TS 17961 [xfree]
Reallocating or freeing memory that was not dynamically allocated

Description

Rule Definition
Reallocating or freeing memory that was not dynamically allocated.

Examples

Invalid free of pointer
Description

Invalid free of pointer occurs when a block of memory released using the free function
was not previously allocated using malloc, calloc, or realloc.

Risk

The free function releases a block of memory allocated on the heap. If you try to access
a location on the heap that you did not allocate previously, a segmentation fault can occur.

The issue can highlight coding errors. For instance, you perhaps wanted to use the free
function or a previous malloc function on a different pointer.

Fix

In most cases, you can fix the issue by removing the free statement. If the pointer is not
allocated memory from the heap with malloc or calloc, you do not need to free the
pointer. You can simply reuse the pointer as required.

If the issue highlights a coding error such as use of free or malloc on the wrong
pointer, correct the error.

10 ISO/IEC TS 17961

10-202

If the issue occurs because you use the free function to free memory allocated with the
new operator, replace the free function with the delete operator.

Example - Invalid Free of Pointer Error

#include <stdlib.h>

void Assign_Ones(void)
{
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;

 free(p);
 /* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points to a memory
location that was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction
is to remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)
 {
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;
 /* Fix: Remove deallocation of p */
 }

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time, one possible
correction is to dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)
{

 ISO/IEC TS 17961 [xfree]

10-203

 int *p;
 /* Fix: Allocate memory dynamically to p */
 p=(int*) calloc(10,sizeof(int));
 for(int i=0;i<10;i++)
 *(p+i)=1;
 free(p);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

10 ISO/IEC TS 17961

10-204

Custom Coding Rules

11

Group 1: Files
The custom rules 1.x in Polyspace enforce naming conventions for files and folders. For
information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
1.1 All source file names must follow

the specified pattern.
Only the base name is checked. A
source file is a file that is not
included.

1.2 All source folder names must follow
the specified pattern.

Only the folder name is checked. A
source file is a file that is not
included.

1.3 All include file names must follow
the specified pattern.

Only the base name is checked. An
include file is a file that is included.

1.4 All include folder names must
follow the specified pattern.

Only the folder name is checked.
An include file is a file that is
included.

11 Custom Coding Rules

11-2

Group 2: Preprocessing
The custom rules 2.x in Polyspace enforce naming conventions for macros. For
information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
2.1 All macros must follow the

specified pattern.
Macro names are checked before
preprocessing.

2.2 All macro parameters must follow
the specified pattern.

Macro parameters are checked
before preprocessing.

 Group 2: Preprocessing

11-3

Group 3: Type definitions
The custom rules 3.x in Polyspace enforce naming conventions for fundamental data
types. For information on how to enable these rules, see Check custom rules (-
custom-rules).

Number Rule Applied Other details
3.1 All integer types must follow the

specified pattern.
Applies to integer types specified
by typedef statements. Does not
apply to enumeration types. For
example: typedef signed int
int32_t;

3.2 All float types must follow the
specified pattern.

Applies to float types specified by
typedef statements. For example:
typedef float f32_t;

3.3 All pointer types must follow the
specified pattern.

Applies to pointer types specified
by typedef statements. For
example: typedef int* p_int;

3.4 All array types must follow the
specified pattern.

Applies to array types specified by
typedef statements. For example:
typedef int[3] a_int_3;

3.5 All function pointer types must
follow the specified pattern.

Applies to function pointer types
specified by typedef statements.
For example: typedef void
(*pf_callback) (int);

11 Custom Coding Rules

11-4

Group 4: Structures
The custom rules 4.x in Polyspace enforce naming conventions for structured data types.
For information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
4.1 All struct tags must follow the

specified pattern.

4.2 All struct types must follow the
specified pattern.

struct types are aliases for
previously defined structures
(defined with the typedef or
using keyword).

4.3 All struct fields must follow the
specified pattern.

4.4 All struct bit fields must follow
the specified pattern.

 Group 4: Structures

11-5

Group 5: Classes (C++)
The custom rules 5.x in Polyspace enforce naming conventions for classes and class
members. For information on how to enable these rules, see Check custom rules (-
custom-rules).

Number Rule Applied Other details
5.1 All class names must follow the

specified pattern.

5.2 All class types must follow the
specified pattern.

Class types are aliases for
previously defined classes (defined
with the typedef or using
keyword).

5.3 All data members must follow the
specified pattern.

5.4 All function members must follow
the specified pattern.

5.5 All static data members must follow
the specified pattern.

5.6 All static function members must
follow the specified pattern.

5.7 All bitfield members must follow
the specified pattern.

11 Custom Coding Rules

11-6

Group 6: Enumerations
The custom rules 6.x in Polyspace enforce naming conventions for enumerations. For
information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
6.1 All enumeration tags must follow

the specified pattern.

6.2 All enumeration types must follow
the specified pattern.

Enumeration types are aliases for
previously defined enumerations
(defined with the typedef or
using keyword).

6.3 All enumeration constants must
follow the specified pattern.

 Group 6: Enumerations

11-7

Group 7: Functions
The custom rules 7.x in Polyspace enforce naming conventions for functions and function
parameters. For information on how to enable these rules, see Check custom rules
(-custom-rules).

Number Rule Applied Other details
7.1 All global functions must follow the

specified pattern.
A global function is a function with
external linkage.

7.2 All static functions must follow the
specified pattern.

A static function is a function with
internal linkage.

7.3 All function parameters must follow
the specified pattern.

In C++, applies to non-member
functions.

11 Custom Coding Rules

11-8

Group 8: Constants
The custom rules 8.x in Polyspace enforce naming conventions for constants. For
information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
8.1 All global constants must follow the

specified pattern.
A global constant is a constant with
external linkage.

8.2 All static constants must follow the
specified pattern.

A static constant is a constant with
internal linkage.

8.3 All local constants must follow the
specified pattern.

A local constant is a constant
without linkage.

8.4 All static local constants must
follow the specified pattern.

A static local constant is a constant
declared static in a function.

 Group 8: Constants

11-9

Group 9: Variables
The custom rules 9.x in Polyspace enforce naming conventions for variables. For
information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
9.1 All global variables must follow the

specified pattern.
A global variable is a variable with
external linkage.

9.2 All static variables must follow the
specified pattern.

A static variable is a variable with
internal linkage.

9.3 All local variables must follow the
specified pattern.

A local variable is a variable
without linkage.

9.4 All static local variables must follow
the specified pattern.

A static local variable is a variable
declared static in a function.

11 Custom Coding Rules

11-10

Group 10: Name spaces (C++)
The custom rules 10.x in Polyspace enforce naming conventions for namespaces. For
information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied
10.1 All names spaces must follow the specified pattern.

 Group 10: Name spaces (C++)

11-11

Group 11: Class templates (C++)
The custom rules 11.x in Polyspace enforce naming conventions for class templates. For
information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
11.1 All class templates must follow the

specified pattern.

11.2 All class template parameters must
follow the specified pattern.

11 Custom Coding Rules

11-12

Group 12: Function templates (C++)
The custom rules 12.x in Polyspace enforce naming conventions for function templates.
For information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
12.1 All function templates must follow

the specified pattern.
Applies to non-member functions.

12.2 All function template parameters
must follow the specified pattern.

Applies to non-member functions.

12.3 All function template members
must follow the specified pattern.

 Group 12: Function templates (C++)

11-13

Group 20: Style
The custom rules 20.x in Polyspace enforce coding style conventions such as number of
characters per line. For information on how to enable these rules, see Check custom
rules (-custom-rules).

Number Rule Applied Other details
20.1 Source line

length must
not exceed
specified
number of
characters.

When configuring the checker, specify:

• A number for the character limit. Use the Pattern
column on the configuration or the pattern= line in the
custom rules text file.

• A violation message such as:

Line exceeds n characters.

Use the Convention column on the configuration or the
convention= line in the custom rules text file.

11 Custom Coding Rules

11-14

Code Metrics

12

Comment Density
Ratio of number of comments to number of statements

Description
The metric specifies the ratio of comments to statements expressed as a percentage.

Based on HIS specifications:

• Multi-line comments count as one comment.

For instance, the following constitutes one comment:

// This function implements
// regular maintenance on an internal database

• Comments that start with the source code line do not count as comments.

For instance, this comment does not count as a comment for the metric but counts as a
statement instead:

 remove(i); // Remove employee record

• A statement typically ends with a semi-colon with some exceptions. Exceptions include
semi-colons in for loops or structure field declarations.

For instance, the initialization, condition and increment within parentheses in a for
loop is counted as one statement. The following counts as one statement:

for(i=0; i <100; i++)

If you also declare the loop counter at initialization, it counts as two statements.

The recommended lower limit for this metric is 20. For better readability of your code, try
to place at least one comment for every five statements.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

12 Code Metrics

12-2

Examples

Comment Density Calculation
struct record {
 char name[40];
 long double salary;
 int isEmployed;
};

struct record dataBase[100];

struct record fetch(void);
void remove(int);

void maintenanceRoutines() {
// This function implements
// regular maintenance on an internal database
 int i;
 struct record tempRecord;

 for(i=0; i <100; i++) {
 tempRecord = fetch(); // This function fetches a record
 // from the database
 if(tempRecord.isEmployed == 0)
 remove(i); // Remove employee record
 //from the database
 }
}

In this example, the comment density is 38. The calculation is done as follows:

Code Running
Total of
Comments

Running
Total of
Statements

struct record {
 char name[40];
 long double salary;
 int isEmployed;
};

0 1

 Comment Density

12-3

Code Running
Total of
Comments

Running
Total of
Statements

struct record dataBase[100];
struct record fetch(void);
void remove(int);

0 4

void maintenanceRoutines() { 0 4
// This function implements
// regular maintenance on an internal database

1 4

int i;
struct record tempRecord;

1 6

for(i=0; i <100; i++) { 1 6
 tempRecord = fetch(); // This
 function fetches a record
 // from the database

2 7

if(tempRecord.isEmployed == 0)
 remove(i);
 // Remove employee record
 //from the database
 }
}

3 8

There are 3 comments and 8 statements. The comment density is 3/8*100 = 38.

Metric Information
Group: File
Acronym: COMF
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

12 Code Metrics

12-4

Cyclomatic Complexity
Number of linearly independent paths in function body

Description
This metric calculates the number of decision points in a function and adds one to the
total. A decision point is a statement that causes your program to branch into two paths.

The recommended upper limit for this metric is 10. If the cyclomatic complexity is high,
the code is both difficult to read and can cause more orange checks. Therefore, try to
limit the value of this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Computation Details
The metric calculation uses the following rules to identify decision points:

• An if statement is one decision point.
• The statements for and while count as one decision point, even when no condition is

evaluated, for example, in infinite loops.
• Boolean combinations (&&, ||) do not count as decision points.
• case statements do not count as decision points unless they are followed by a break

statement. For instance, this code has a cyclomatic complexity of two:

switch(num) {
 case 0:
 case 1:
 case 2:
 break;
 case 3:
 case 4:
 }

• The calculation is done after preprocessing:

 Cyclomatic Complexity

12-5

• Macros are expanded.
• Conditional compilation is applied. The blocks hidden by preprocessing directives

are ignored.

Examples

Function with Nested if Statements
int foo(int x,int y)
{
 int flag;
 if (x <= 0)
 /* Decision point 1*/
 flag = 1;
 else
 {
 if (x < y)
 /* Decision point 2*/
 flag = 1;
 else if (x==y)
 /* Decision point 3*/
 flag = 0;
 else
 flag = -1;
 }
 return flag;
}

In this example, the cyclomatic complexity of foo is 4.

Function with ? Operator
int foo (int x, int y) {
 if((x <0) ||(y < 0))
 /* Decision point 1*/
 return 0;
 else
 return (x > y ? x: y);
 /* Decision point 2*/
}

12 Code Metrics

12-6

In this example, the cyclomatic complexity of foo is 3. The ? operator is the second
decision point.

Function with switch Statement
#include <stdio.h>

int foo(int x,int y, int ch)
{
 int val = 0;
 switch(ch) {
 case 1:
 /* Decision point 1*/
 val = x + y;
 break;
 case 2:
 /* Decision point 2*/
 val = x - y;
 break;
 default:
 printf("Invalid choice.");
 }
 return val;
}

In this example, the cyclomatic complexity of foo is 3.

Function with Nesting of Different Control-Flow Statements
int foo(int x,int y, int bound)
{
 int count = 0;
 if (x <= y)
 /* Decision point 1*/
 count = 1;
 else
 while(x>y) {
 /* Decision point 2*/
 x--;
 if(count< bound) {
 /* Decision point 3*/
 count++;
 }

 Cyclomatic Complexity

12-7

 }
 return count;
}

In this example, the cyclomatic complexity of foo is 4.

Metric Information
Group: Function
Acronym: VG
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

12 Code Metrics

12-8

Estimated Function Coupling
Measure of complexity between levels of call tree

Description
This metric provides an approximate measure of complexity between different levels of
the call tree. The metric is defined as:

number of call occurrences – number of function definitions + 1

If there are more function definitions than function calls, the estimated function coupling
result is negative.

This metric:

• Counts function calls and function definitions in the current file only.

It does not count function definitions in a header file included in the current file.
• Treats static and inline functions like any other function.

Examples

Same Function Called Multiple Times
void checkBounds(int *);
int getUnboundedValue();

int getBoundedValue(void) {
 int num = getUnboundedValue();
 checkBounds(&num);
 return num;
}

void main() {
 int input1=getBoundedValue(), input2= getBoundedValue(), prod;
 prod = input1 * input2;

 Estimated Function Coupling

12-9

 checkBounds(&prod);
}

In this example, there are:

• 5 call occurrences. Both getBoundedValue and checkBounds are called twice and
getUnboundedValue is called once.

• 2 function definitions. main and getBoundedValue are defined.

Therefore, the Estimated function coupling is 5 - 2 + 1 = 4.

Negative Estimated Function Coupling
int foobar(int a, int b){
 return a+b;
}

int bar(int b){
 return b+2;
}

int foo(int a){
 return a<<2;
}

int main(int x){
 foobar(x,x+2);
 return 0;
}

This example shows how you can get a negative estimated function coupling result. In this
example, you see:

• 1 function call in main.
• 4 defined functions: foobar, bar, foo, and main.

Therefore, the estimated function coupling is 1 - 4 + 1 = -2.

Metric Information
Group: File

12 Code Metrics

12-10

Acronym: FCO
HIS Metric: No

See Also
Number of Call Occurrences | Calculate code metrics (-code-metrics)

 Estimated Function Coupling

12-11

Higher Estimate of Local Variable Size
Total size of all local variables in function

Description
This metric provides a conservative estimate of the total size of local variables in a
function. The metric is the sum of the following sizes in bytes:

• Size of function return value
• Sizes of function parameters
• Sizes of local variables
• Additional padding introduced for memory alignment

Your actual stack usage due to local variables can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory

optimizations. For instance, compilers store the address to which the execution
returns following the function call. When computing this metric, Polyspace does not
consider these optimizations.

• Your compiler uses additional memory during a function call. When computing this
metric, Polyspace does not consider this hidden memory usage.

However, the metric provides a reasonable estimate of the stack usage due to local
variables.

To determine the sizes of basic types, the software uses your specifications for Target
processor type (-target). The metric also takes into account #pragma pack
directives in your code.

12 Code Metrics

12-12

Examples

All Variables of Same Type
int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, assuming 4 bytes for int, the higher estimate of local variable size is 28.
The breakup of the size is shown in this table.

Variable Size (in Bytes) Running Total
Return value 4 4
Parameter param 4 8
Local variables var_1 and
var_2

4+4=8 16

Local variables defined in
the if condition

(4+4)+4=12

The size of variables in the
first branch is eight bytes.
The size in the second
branch is four bytes. The
sum of the two branches is
12 bytes.

28

No padding is introduced for memory alignment because all the variables involved have
the same type.

 Higher Estimate of Local Variable Size

12-13

Variables of Different Types
char func(char param) {
 int var_1;
 char var_2;
 double var_3;
}

In this example, assuming one byte for char, four bytes for int and eight bytes for
double and four bytes for alignment, the higher estimate of local variable size is 20. The
alignment is usually the word size on your platform. In your Polyspace project, you specify
the alignment through your target processor. For more information, see the Alignment
column in Target processor type (-target).

The breakup of the size is shown in this table.

Variable Size (in Bytes) Running Total
Return value 1 1
Additional padding
introduced before param is
stored

0

No memory alignment is
required because the next
variable param has the
same size.

1

Parameter param 1 2
Additional padding
introduced before var_1 is
stored

2

Memory must be aligned
using padding because the
next variable var_1
requires four bytes. The
storage must start from a
memory address at a
multiple of four.

4

var_1 4 8

12 Code Metrics

12-14

Variable Size (in Bytes) Running Total
Additional padding
introduced before var_2 is
stored

0

No memory alignment is
required because the next
variable var_2 has smaller
size.

8

var_2 1 9
Additional padding
introduced before var_3 is
stored

3

Memory must be aligned
using padding because the
next variable var_3 has
eight bytes. The storage
must start from a memory
address at a multiple of the
alignment, four bytes.

12

var_3 8 20

The rules for the amount of padding are:

• If the next variable stored has the same or smaller size, no padding is required.
• If the next variable has a greater size:

• If the variable size is the same as or less than the alignment on the platform, the
amount of padding must be sufficient so that the storage address is a multiple of its
size.

• If the variable size is greater than the alignment on the platform, the amount of
padding must be sufficient so that the storage address is a multiple of the
alignment.

C++ Methods and Objects
class MySimpleClass {
 public:
 MySimpleClass() {};
 MySimpleClass(int) {};
 ~MySimpleClass() {};
};

 Higher Estimate of Local Variable Size

12-15

int main() {
 MySimpleClass c;
 return 0;
}

In this example, the estimated local variable sizes are:

• Constructor MySimpleClass::MySimpleClass(): Four bytes.

The size comes from the this pointer, which is an implicit argument to the
constructor. You specify the pointer size using the option Target processor type
(-target).

• Constructor MySimpleClass::MySimpleClass(int): Eight bytes.

The size comes from the this pointer and the int argument.
• Destructor MySimpleClass::~MySimpleClass(): Four bytes.

The size comes from the this pointer.
• main(): Five bytes.

The size comes from the int return value and the size of object c. The minimum size
of an object is the alignment that you specify using the option Target processor
type (-target).

C++ Functions with Object Arguments
class MyClass {
 public:
 MyClass() {};
 MyClass(int) {};
 ~MyClass() {};
 private:
 int i[10];
};
void func1(const MyClass& c) {
}

void func2() {
 func1(4);
}

12 Code Metrics

12-16

In this example, the estimated local variable size for func2() is 40 bytes. When func2()
calls func1(), a temporary object of the class MyClass is created. The object has ten
int variables, each with a size of four bytes.

Metric Information
Group: Function
Acronym: LOCAL_VARS_MAX
HIS Metric: No

See Also
Lower Estimate of Local Variable Size | Calculate code metrics (-code-
metrics)

Introduced in R2016b

 Higher Estimate of Local Variable Size

12-17

Language Scope
Language scope

Description
This metric measures the cost of maintaining or changing a function. It is calculated as:

(N1 + N2)/(n1 + n2)

Here:

• N1 is the number of occurrences of operators.

Other than identifiers (variable or function names) and literal constants, everything
else counts as operators.

• N2 is the number of occurrences of operands.
• n1 is the number of distinct operators.
• n2 is the number of distinct operands.

The metric considers a literal constant with a suffix as different from the constant
without the suffix. For instance, 0 and 0U are considered different.

Tip To find N1 + N2, count the total number of tokens. To find n1 + n2, count the
number of unique tokens.

The recommended upper limit for this metric is 4. For lower maintenance cost for a
function, try to enforce an upper limit on this metric. For instance, if the same operand
occurs many times, to change the operand name, you have to make many substitutions.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

12 Code Metrics

12-18

Examples

Language Scope Calculation
int f(int i)
{
 if (i == 1)
 return i;
 else
 return i * g(i-1);
}

In this example:

• N1 = 19.
• N2 = 9.
• n1 = 12.

The distinct operators are int, (,), {, if, ==, return, else, *, -, ;, }.
• n2 = 4.

The distinct operands are f, i, 1 and g.

The language scope of f is (17 + 9) / (12 + 4) = 1.8.

C++ Namespaces in Language Scope Calculation
namespace std {
 int func2() {
 return 123;
 }
};

namespace my_namespace {
 using namespace std;
 int func1(int a, int b) {
 return func2();
 }
};

 Language Scope

12-19

In this example, the namespace std is implicitly associated with func2. The language
scope computation treats func2() as std::func2(). Likewise, the computation treats
func1() as my_namespace::func1().

For instance, the language scope value for func1 is 1.3. To break down this calculation:

• N1 + N2 = 20.
• n1 + n2 = 15.

The distinct operators are int, ::, (, comma,), {, return, ;, and }.

The distinct operands are my_namespace, func1, a, b, std, and func2.

Metric Information
Group: Function
Acronym: VOCF
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

12 Code Metrics

12-20

Lower Estimate of Local Variable Size
Total size of local variables in function taking nested scopes into account

Description
This metric provides an optimistic estimate of the total size of local variables in a
function. The metric is the sum of the following sizes in bytes:

• Size of function return value
• Sizes of function parameters
• Sizes of local variables

Suppose that the function has variable definitions in nested scopes as follows:

type func (type param_1, ...) {

 {
 /* Scope 1 */
 type var_1, ...;
 }
 {
 /* Scope 2 */
 type var_2, ...;
 }
}

The software computes the total variable size in each scope and uses whichever total
is greatest. For instance, if a conditional statement has variable definitions, the
software computes the total variable size in each branch, and then uses whichever
total is greatest. If a nested scope itself has further nested scopes, the same process is
repeated for the inner scopes.

A variable defined in a nested scope is not visible outside the scope. Therefore, some
compilers reuse stack space for variables defined in separate scopes. This metric
provides a more accurate estimate of stack usage for such compilers. Otherwise, use
the metric Higher Estimate of Local Variable Size. This metric adds the size
of all local variables, whether or not they are defined in nested scopes.

 Lower Estimate of Local Variable Size

12-21

• Additional padding introduced for memory alignment

Your actual stack usage due to local variables can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory

optimizations. When computing this metric, Polyspace does not consider these
optimizations.

• Your compiler uses additional memory during a function call. For instance, compilers
store the address to which the execution returns following the function call. When
computing this metric, Polyspace does not consider this hidden memory usage.

However, the metric provides a reasonable estimate of the stack usage due to local
variables.

To determine the sizes of basic types, the software uses your specifications for Target
processor type (-target). The metric also takes into account #pragma pack
directives in your code.

Examples

All Variables of Same Type
int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, assuming four bytes for int, the lower estimate of local variable size is
24. The breakup of the metric is shown in this table.

12 Code Metrics

12-22

Variable Size (in Bytes) Running Total
Return value 4 4
Parameter param 4 8
Local variables var_1 and
var_2

4+4=8 16

Local variables defined in
the if condition

max(4+4,4)= 8

The size of variables in the
first branch is eight bytes.
The size in the second
branch is four bytes. The
maximum of the two
branches is eight bytes.

24

No padding is introduced for memory alignment because all the variables involved have
the same type.

Variables of Different Types
char func(char param) {
 int var_1;
 char var_2;
 double var_3;
}

In this example, assuming one byte for char, four bytes for int, eight bytes for double
and four bytes for alignment, the lower estimate of local variable size is 20. The
alignment is usually the word size on your platform. In your Polyspace project, you specify
the alignment through your target processor. For more information, see the Alignment
column in Target processor type (-target).

The breakup of the size is shown in this table.

Variable Size (in Bytes) Running Total
Return value 1 1

 Lower Estimate of Local Variable Size

12-23

Variable Size (in Bytes) Running Total
Additional padding
introduced before param is
stored

0

No memory alignment is
required because the next
variable param has the
same size.

1

Parameter param 1 2
Additional padding
introduced before var_1 is
stored

2

Memory must be aligned
using padding because the
next variable var_1
requires four bytes. The
storage must start from a
memory address at a
multiple of four.

4

var_1 4 8
Additional padding
introduced before var_2 is
stored

0

No memory alignment is
required because the next
variable var_2 has smaller
size.

8

var_2 1 9
Additional padding
introduced before var_3 is
stored

3

Memory must be aligned
using padding because the
next variable var_3
requires eight bytes. The
storage must start from a
memory address at a
multiple of the alignment,
four bytes.

12

var_3 8 20

12 Code Metrics

12-24

The rules for the amount of padding are:

• If the next variable stored has the same or smaller size, no padding is required.
• If the next variable has a greater size:

• If the variable size is the same as or less than the alignment on the platform, the
amount of padding must be sufficient so that the storage address is a multiple of its
size.

• If the variable size is greater than the alignment on the platform, the amount of
padding must be sufficient so that the storage address is a multiple of the
alignment.

C++ Methods and Objects
class MySimpleClass {
 public:
 MySimpleClass() {};
 MySimpleClass(int) {};
 ~MySimpleClass() {};
};

int main() {
 MySimpleClass c;
 return 0;
}

In this example, the estimated local variable sizes are:

• Constructor MySimpleClass::MySimpleClass(): Four bytes.

The size comes from the this pointer, which is an implicit argument to the
constructor. You specify the pointer size using the option Target processor type
(-target).

• Constructor MySimpleClass::MySimpleClass(int): Eight bytes.

The size comes from the this pointer and the int argument.
• Destructor MySimpleClass::~MySimpleClass(): Four bytes.

The size comes from the this pointer.
• main(): Five bytes.

 Lower Estimate of Local Variable Size

12-25

The size comes from the int return value and the size of object c. The minimum size
of an object is the alignment that you specify using the option Target processor
type (-target).

C++ Functions with Object Arguments
class MyClass {
 public:
 MyClass() {};
 MyClass(int) {};
 ~MyClass() {};
 private:
 int i[10];
};
void func1(const MyClass& c) {
}

void func2() {
 func1(4);
}

In this example, the estimated local variable size for func2() is 40 bytes. When func2()
calls func1(), a temporary object of the class MyClass is created. The object has ten
int variables, each with a size of four bytes.

Metric Information
Group: Function
Acronym: LOCAL_VARS_MIN
HIS Metric: No

See Also
Higher Estimate of Local Variable Size | Calculate code metrics (-
code-metrics)

Introduced in R2016b

12 Code Metrics

12-26

Maximum Stack Usage
Total size of local variables in function plus maximum stack usage from callees

Description
This metric provides a conservative estimate of the stack usage by a function. The metric
is the sum of these sizes in bytes:

•
• Maximum value from the stack usages of the function callees. The computation uses

the maximum stack usage of each callee.

For instance, in this example, the maximum stack usage of func is the same as the
maximum stack usage of func1 or func2, whichever is greater.

void func(void) {
 func1();
 func2();
}

If the function calls are in different branches of a conditional statement, this metric
considers the branch with the greatest stack usage.

The analysis does the stack size estimation later on when it has resolved which
function calls actually occur. For instance, if a function call occurs in unreachable
code, the stack size does not take the call into account. The analysis can also take into
account calls through function pointers.

Your actual stack usage can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory

optimizations. When estimating this metric, Polyspace does not consider these
optimizations.

• Your compiler uses additional memory during a function call. For instance, compilers
store the address to which the execution returns following the function call. When
estimating this metric, Polyspace does not consider this hidden memory usage.

 Maximum Stack Usage

12-27

However, the metric provides a reasonable estimate of the stack usage.

To determine the sizes of basic types, the software uses your specifications for Target
processor type (-target). The metric takes into account #pragma pack directives
in your code.

Examples

Function with One Callee
double func(int);
double func2(int);

double func(int status) {
 double res = func2(status);
 return res;
}

double func2(int status) {
 double res;
 if(status == 0) {
 int temp;
 res = 0.0;
 }
 else {
 double temp;
 res = 1.0;
 }
 return res;
}

In this example, assuming four bytes for int and eight bytes for double, the maximum
stack usages are:

• func2: 32 bytes

This value includes the sizes of its parameter (4 bytes), local variable res (8 bytes),
local variable temp counted twice (4+8=12 bytes), and return value (8 bytes).

The metric does not take into account that the first temp is no longer live when the
second temp is defined.

12 Code Metrics

12-28

• func: 52 bytes

This value includes the sizes of its parameter, local variable res, and return value, a
total of 20 bytes. This value includes the 32 bytes of maximum stack usage by its
callee, func2.

Function with Multiple Callees
void func1(int);
void func2(void);

void func(int status) {
 func1(status);
 func2();
}

void func1(int status) {
 if(status == 0) {
 int val;
 }
 else {
 double val2;
 }
}

void func2(void) {
 double val;
}

In this example, assuming four bytes for int and eight bytes for double, the maximum
stack usages are:

• func1: 16 bytes

This value includes the sizes of its parameter (4 bytes) and local variable temp
counted twice (4+8=12 bytes).

• func2: 8 bytes
• func: 20 bytes

This value includes the sizes of its parameter (4 bytes) and the maximum of stack
usages of func1 and func2 (16 bytes).

 Maximum Stack Usage

12-29

Function with Multiple Callees in Different Branches
void func1(void);
void func2(void);

void func(int status) {
 if(status==0)
 func1();
 else
 func2();
}

void func1(void) {
 double val;
}

void func2(void) {
 int val;
}

In this example, assuming four bytes for int and eight bytes for double, the maximum
stack usages are:

• func1: 8 bytes
• func2: 4 bytes
• func: 12 bytes

This value includes the sizes of its parameter (4 bytes) and the maximum stack usage
from the two branches (8 bytes).

Functions with Variable Number of Parameters (Variadic
Functions)
#include <stdarg.h>

void fun_vararg(int x, ...) {
 va_list ap;
 va_start(ap, x);
 int i;
 for (i=0; i<x; i++) {
 int j = va_arg(ap, int);

12 Code Metrics

12-30

 }
 va_end(ap);
}

void call_fun_vararg1(void) {
 long long int l = 0;
 fun_vararg(3, 4, 5, 6, l);
}

void call_fun_vararg2(void) {
 fun_vararg(1,0);
}

In this function, fun_vararg is a function with variable number of parameters. The
maximum stack usage of fun_vararg takes into account the call to fun_vararg with
the maximum number of arguments. The call with the maximum number of arguments is
the call in call_fun_vararg1 with five arguments (one for the fixed parameter and four
for the variable parameters). The maximum stack usages are:

• fun_vararg: 36 bytes.

This value takes into account:

• The size of the fixed parameter x (4 bytes).
• The sizes of the variable parameters from the call with the maximum number of

parameters. In that call, there are four variable arguments: three int and one
long long int variable (3 times 4 + 1 times 8 = 20 bytes).

• The sizes of the local variables i, j and ap (12 bytes). The size of the va_list
variable uses the pointer size defined in the target (in this case, 4 bytes).

• call_fun_vararg1: 44 bytes.

This value takes into account:

• The stack size usage of fun_vararg with five arguments (36 bytes).
• The size of local variable l (8 bytes).

• call_fun_vararg2: 20 bytes.

Since call_fun_vararg2 has no local variables, this value is the same as the stack
size usage of fun_vararg with two arguments (20 bytes, of which 12 bytes are for the
local variables and 8 bytes are for the two parameters of fun_vararg).

 Maximum Stack Usage

12-31

Metric Information
Group: Function
Acronym: MAX_STACK
HIS Metric: No

See Also
Calculate code metrics (-code-metrics)

Introduced in R2017b

12 Code Metrics

12-32

Minimum Stack Usage
Total size of local variables in function taking nested scopes into account plus maximum
stack usage from callees

Description
This metric provides an optimistic estimate of the stack usage by a function. Unlike the
metric , this metric takes nested scopes into account. For instance, if variables are
defined in two mutually exclusive branches of a conditional statement, the metric
considers that the stack space allocated to the variables in one branch can be reused in
the other branch.

The metric is the sum of these sizes in bytes:

• .
• Maximum value from the stack usages of the function callees. The computation uses

the minimum stack usage of each callee.

For instance, in this example, the minimum stack usage of func is the same as the
minimum stack usage of func1 or func2, whichever is greater.

void func(void) {
 func1();
 func2();
}

If the function calls are in different branches of a conditional statement, this metric
considers the branch with the least stack usage.

The analysis does the stack size estimation later on when it has resolved which
function calls actually occur. For instance, if a function call occurs in unreachable
code, the stack size does not take the call into account. The analysis can also take into
account calls through function pointers.

Your actual stack usage can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.

 Minimum Stack Usage

12-33

• Your compiler performs variable liveness analysis to enable certain memory
optimizations. When estimating this metric, Polyspace does not consider these
optimizations.

• Your compiler uses additional memory during a function call. For instance, compilers
store the address to which the execution returns following the function call. When
estimating this metric, Polyspace does not consider this hidden memory usage.

However, the metric provides a reasonable estimate of the stack usage.

To determine the sizes of basic types, the software uses your specifications for Target
processor type (-target). The metric takes into account #pragma pack directives
in your code.

Examples

Function with One Callee
double func2(int);

double func(int status) {
 double res = func2(status);
 return res;
}

double func2(int status) {
 double res;
 if(status == 0) {
 int temp;
 res = 0.0;
 }
 else {
 double temp;
 res = 1.0;
 }
 return res;
}

In this example, assuming four bytes for int and eight bytes for double, the maximum
stack usages are:

12 Code Metrics

12-34

• func2: 28 bytes

This value includes the sizes of its parameter (4 bytes), local variable res (8 bytes),
one of the two local variables temp (8 bytes), and return value (8 bytes).

The metric takes into account that the first temp is no longer live when the second
temp is defined. It uses the variable temp with data type double because its size is
greater.

• func: 48 bytes

This value includes the sizes of its parameter, local variable res, and return value, a
total of 20 bytes. This value includes the 28 bytes of minimum stack usage by its
callee, func2.

Function with Multiple Callees
void func1(int);
void func2(void);

void func(int status) {
 func1(status);
 func2();
}

void func1(int status) {
 if(status == 0) {
 int val;
 }
 else {
 double val2;
 }
}

void func2(void) {
 double val;
}

In this example, assuming four bytes for int and eight bytes for double, the maximum
stack usages are:

• func1: 12 bytes

 Minimum Stack Usage

12-35

This value includes the sizes of its parameter (4 bytes) and one of the two local
variables temp (8 bytes). The metric takes into account that the first temp is no longer
live when the second temp is defined.

• func2: 8 bytes
• func: 16 bytes

This value includes the sizes of its parameter (4 bytes) and the maximum of stack
usages of func1 and func2 (12 bytes).

Function with Multiple Callees in Different Branches
void func1(void);
void func2(void);

void func(int status) {
 if(status==0)
 func1();
 else
 func2();
}

void func1(void) {
 double val;
}

void func2(void) {
 int val;
}

In this example, assuming four bytes for int and eight bytes for double, the maximum
stack usages are:

• func1: 8 bytes
• func2: 4 bytes
• func: 8 bytes

This value includes the sizes of its parameter (4 bytes) and the minimum stack usage
from the two branches (4 bytes).

12 Code Metrics

12-36

Functions with Variable Number of Parameters (Variadic
Functions)
#include <stdarg.h>

void fun_vararg(int x, ...) {
 va_list ap;
 va_start(ap, x);
 int i;
 for (i=0; i<x; i++) {
 int j = va_arg(ap, int);
 }
 va_end(ap);
}

void call_fun_vararg1(void) {
 long long int l = 0;
 fun_vararg(3, 4, 5, 6, l);
}

void call_fun_vararg2(void) {
 fun_vararg(1,0);
}

In this function, fun_vararg is a function with variable number of parameters. The
minimum stack usage of fun_vararg takes into account the call to fun_vararg with the
minimum number of arguments. The call with the minimum number of arguments is the
call in call_fun_vararg2 with two arguments (one for the fixed parameter and one for
the variable parameter). The minimum stack usages are:

• fun_vararg: 20 bytes.

This value takes into account:

• The size of the fixed parameter x (4 bytes).
• The sizes of the variable parameters from the call with the minimum number of

parameters. In that call, there is only one variable argument of type int (4 bytes).
• The sizes of the local variables i, j and ap (12 bytes). The size of the va_list

variable uses the pointer size defined in the target (in this case, 4 bytes).

 Minimum Stack Usage

12-37

• call_fun_vararg1: 44 bytes.

This value takes into account:

• The stack size usage of fun_vararg with five arguments (36 bytes, of which 12
bytes are for the local variable sizes and 20 bytes are for the fixed and variable
parameters of fun_vararg).

• The size of local variable l (8 bytes).
• call_fun_vararg2: 20 bytes.

Since call_fun_vararg2 has no local variables, this value is the same as the stack
size usage of fun_vararg with two arguments (20 bytes).

Metric Information
Group: Function
Acronym: MIN_STACK
HIS Metric: No

See Also
Calculate code metrics (-code-metrics)

Introduced in R2017b

12 Code Metrics

12-38

Number of Call Levels
Maximum depth of nesting of control flow structures

Description
This metric specifies the maximum nesting depth of control flow statements such as if,
switch, for, or while in a function. A function without control-flow statements has a
call level 1.

The recommended upper limit for this metric is 4. For better readability of your code, try
to enforce an upper limit for this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples

Function with Nested if Statements
int foo(int x,int y)
{
 int flag = 0;
 if (x <= 0)
 /* Call level 1*/
 flag = 1;
 else
 {
 if (x <= y)
 /* Call level 2*/
 flag = 1;
 else
 flag = -1;
 }
 return flag;
}

In this example, the number of call levels of foo is 2.

 Number of Call Levels

12-39

Function with Nesting of Different Control-Flow Statements
int foo(int x,int y, int bound)
{
 int count = 0;
 if (x <= y)
 /* Call level 1*/
 count = 1;
 else
 while(x>y) {
 /* Call level 2*/
 x--;
 if(count< bound) {
 /* Call level 3*/
 count++;
 }
 }
 return count;
}

In this example, the number of call levels of foo is 3.

Metric Information
Group: Function
Acronym: LEVEL
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

12 Code Metrics

12-40

Number of Call Occurrences
Number of calls in function body

Description
This metric specifies the number of function calls in the body of a function.

Calls through a function pointer are not counted. Calls in unreachable code and calls to
standard library functions are counted. assert is considered as a macro and not a
function, so it is not counted.

Examples

Same Function Called Multiple Times
int func1(void);
int func2(void);

int foo() {
 return (func1() + func1()*func1() + 2*func2());
}

In this example, the number of call occurrences in foo is 4.

Function Called in a Loop
#include<stdio.h>

void fillArraySize10(int *arr) {
 for(int i=0; i<10; i++)
 arr[i]=getVal();
}

int getVal(void) {
 int val;
 printf("Enter a value:");

 Number of Call Occurrences

12-41

 scanf("%d", &val);
 return val;
}

In this example, the number of call occurrences in fillArraySize10 is 1.

Recursive Function
#include <stdio.h>

void main() {
 int count;
 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

int fibonacci(int num)
{
 if (num == 0)
 return 0;
 else if (num == 1)
 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

In this example, the number of call occurrences in fibonacci is 2.

Metric Information
Group: Function
Acronym: NCALLS
HIS Metric: No

See Also
Number of Called Functions | Calculate code metrics (-code-metrics)

12 Code Metrics

12-42

Number of Called Functions
Number of callees of a function

Description
This metric specifies the number of callees of a function.

Calls through a function pointer are not counted. Calls in unreachable code and calls to
standard library functions are counted. assert is considered as a macro and not a
function, so it is not counted.

The recommended upper limit for this metric is 7. For more self-contained code, try to
enforce an upper limit on this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples

Same Function Called Multiple Times
int func1(void);
int func2(void);

int foo() {
 return (func1() + func1()*func1() + 2*func2());
}

In this example, the number of called functions in foo is 2. The called functions are
func1 and func2.

Recursive Function
#include <stdio.h>

void main() {
 int count;

 Number of Called Functions

12-43

 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

int fibonacci(int num)
{
 if (num == 0)
 return 0;
 else if (num == 1)
 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

In this example, the number of called functions in fibonacci is 1. The called function is
fibonacci itself.

Metric Information
Group: Function
Acronym: CALLS
HIS Metric: Yes

See Also
Number of Call Occurrences | Number of Calling Functions | Calculate
code metrics (-code-metrics)

12 Code Metrics

12-44

Number of Calling Functions
Number of distinct callers of a function

Description
This metric measures the number of distinct callers of a function.

Calls through a function pointer are not counted. Calls in unreachable code are counted.
Even if a caller calls a function more than once, it is counted only once when this metric
is calculated.

The recommended upper limit for this metric is 5. For more self-contained code, try to
enforce an upper limit on this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples
Same Function Calling a Function Multiple Times
#include <stdio.h>

int getVal() {
 int myVal;
 printf("Enter a value:");
 scanf("%d", &myVal);
 return myVal;
}

int func() {
 int val=getVal();
 if(val<0)
 return 0;
 else
 return val;
}

 Number of Calling Functions

12-45

int func2() {
 int val=getVal();
 while(val<0)
 val=getVal();
 return val;
}

In this example, the number of calling functions for getVal is 2. The calling functions are
func and func2.

Recursive Function
#include <stdio.h>

void main() {
 int count;
 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

int fibonacci(int num)
{
 if (num == 0)
 return 0;
 else if (num == 1)
 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

In this example, the number of calling functions for fibonacci is 2. The calling functions
are main and fibonacci itself.

Metric Information
Group: Function
Acronym: CALLING
HIS Metric: Yes

12 Code Metrics

12-46

See Also
Number of Called Functions | Calculate code metrics (-code-metrics)

 Number of Calling Functions

12-47

Number of Direct Recursions
Number of instances of a function calling itself directly

Description
This metric specifies the number of direct recursions in your project.

A direct recursion is a recursion where a function calls itself in its own body. If indirect
recursions do not occur, the number of direct recursions is equal to the number of
recursive functions.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding
available stack space, do not use recursions in your code. To detect use of recursions,
check for violations of MISRA C:2012 Rule 17.2.

Examples

Direct Recursion
int getVal(void);

void main() {
 int count = getVal(), total;
 assert(count > 0 && count <100);
 total = sum(count);
}

int sum(int val) {
 if(val<0)
 return 0;
 else
 return (val + sum(val-1));
}

In this example, the number of direct recursions is 1.

12 Code Metrics

12-48

Metric Information
Group: Project
Acronym: AP_CG_DIRECT_CYCLE
HIS Metric: Yes

See Also
MISRA C:2012 Rule 17.2 | Calculate code metrics (-code-metrics)

 Number of Direct Recursions

12-49

Number of Executable Lines
Number of executable lines in function body

Description
This metric measures the number of executable lines in a function body. When calculating
the value of this metric, Polyspace excludes declarations without static initializers,
comments, blank lines, braces or preprocessing directives.

If the function body contains a #include directive, the included file source code is also
calculated as part of this metric.

This metric is not calculated for C++ templates.

Examples

Function with Declarations, Braces and Comments
void func(int);

int getSign(int arg) {
 int sign;
 if(arg<0) {
 sign=-1;
 func(-arg);
 /* func takes positive arguments */
 }
 else if(arg==0)
 sign=0;
 else {
 sign=1;
 func(arg);
 }
 return sign;
}

12 Code Metrics

12-50

In this example, the number of executable lines of getSign is 9. The calculation
excludes:

• The declaration int sign;.
• The comment /* ... */.
• The two lines with braces only.

Metric Information
Group: Function
Acronym: FXLN
HIS Metric: No

See Also
Number of Lines Within Body | Number of Instructions | Calculate code
metrics (-code-metrics)

 Number of Executable Lines

12-51

Number of Files
Number of source files

Description
This metric calculates the number of source files in your project.

Metric Information
Group: Project
Acronym: FILES
HIS Metric: No

See Also
Number of Header Files | Calculate code metrics (-code-metrics)

12 Code Metrics

12-52

Number of Function Parameters
Number of function arguments

Description
This metric measures the number of function arguments.

If ellipsis is used to denote variable number of arguments, when calculating this metric,
the ellipsis is not counted.

The recommended upper limit for this metric is 5. For less dependency between functions
and fewer side effects, try to enforce an upper limit on this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples

Function with Fixed Arguments
int initializeArray(int* arr, int size) {
}

In this example, initializeArray has two parameters.

Function with Type Definition in Arguments
int getValueInLoc(struct {int* arr; int size;}myArray, int loc) {
}

In this example, getValueInLoc has two parameters.

Function with Variable Arguments
double average (int num, ...)
{

 Number of Function Parameters

12-53

 va_list arg;
 double sum = 0;

 va_start (arg, num);

 for (int x = 0; x < num; x++)
 {
 sum += va_arg (arg, double);
 }
 va_end (arg);

 return sum / num;
}

In this example, average has one parameter. The ellipsis denoting variable number of
arguments is not counted.

Metric Information
Group: Function
Acronym: PARAM
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

12 Code Metrics

12-54

Number of Goto Statements
Number of goto statements

Description
This metric measures the number of goto statements in a function.

break and continue statements are not counted.

The recommended upper limit on this metric is 0. For better readability of your code,
avoid goto statements in your code. To detect use of goto statements, check for
violations of MISRA C:2012 Rule 15.1.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples

Function with goto Statements
#define SIZE 10
int initialize(int **arr, int loc);
void printString(char *);
void printErrorMessage(void);
void printExecutionMessage(void);

int main()
{
 int *arrayOfStrings[SIZE],len[SIZE],i;
 for (i = 0; i < SIZE; i++)
 {
 len[i] = initialize(arrayOfStrings,i);
 }

 for (i = 0; i < SIZE; i++)
 {
 if(len[i] == 0)
 goto emptyString;

 Number of Goto Statements

12-55

 else
 goto nonEmptyString;
 loop: printExecutionMessage();
 }

emptyString:
 printErrorMessage();
 goto loop;
nonEmptyString:
 printString(arrayOfStrings[i]);
 goto loop;
}

In this example, the function main has 4 goto statements.

Metric Information
Group: Function
Acronym: GOTO
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

12 Code Metrics

12-56

Number of Header Files
Number of included header files

Description
This metric measures the number of header files in the project. Both directly and
indirectly included header files are counted.

The metric gives a slightly higher number than the actual number of header files that you
use because Polyspace® internal header files and header files included by those files are
also counted. For the same reason, the metric can vary slightly even if you do not
explicitly include new header files or remove inclusion of header files from your code. For
instance, the number of Polyspace® internal header files can vary if you change your
analysis options.

Metric Information
Group: Project
Acronym: INCLUDES
HIS Metric: No

See Also
Number of Files | Calculate code metrics (-code-metrics)

 Number of Header Files

12-57

Number of Instructions
Number of instructions per function

Description
This metric measures the number of instructions in a function body.

The recommended upper limit for this metric is 50. For more modular code, try to enforce
an upper limit for this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Computation Details
The metric is calculated using the following rules:

• A simple statement ending with a ; is one instruction.

If the statement is empty, it does not count as an instruction.
• A variable declaration counts as one instruction only if the variable is also initialized.
• Control flow statements such as if, for, break, goto, return, switch, while, do-

while count as one instruction.
• The following do not count as instructions by themselves:

• Beginning of a block of code

For instance, the following counts as one instruction:

{
 var = 1;
}

• Labels

For instance, the following counts as two instructions. The case labels do not
count as instructions.

switch (1) { // Instruction 1: switch
 case 0:

12 Code Metrics

12-58

 case 1:
 case 2:
 default:
 break; // Instruction 2: break
 }

Examples

Calculation of Number of Instructions
int func(int* arr, int size) {
 int i, countPos=0, countNeg=0, countZero = 0;
 for(i=0; i<size; i++) {
 if(arr[i] >0)
 countPos++;
 else if(arr[i] ==0)
 countZero++;
 else
 countNeg++;
 }
}

In this example, the number of instructions in func is 9. The instructions are:

1 countPos=0
2 countNeg=0
3 countZero=0
4 for(i=0;i<size;i++) { ... }
5 if(arr[i] >=0)
6 countPos++
7 else if(arr[i]==0)

The ending else is counted as part of the if-else instruction.
8 countZero++
9 countNeg++

Note This metric is different from the number of executable lines. For instance:

 Number of Instructions

12-59

• for(i=0;i<size;i++) has 1 instruction and 1 executable line.
• The following code has 1 instruction but 3 executable lines.

for(i=0;
 i<size;
 i++)

Metric Information
Group: Function
Acronym: STMT
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

12 Code Metrics

12-60

Number of Lines
Total number of lines in a file

Description
This metric calculates the number of lines in a file. When calculating the value of this
metric, Polyspace includes comments and blank lines.

This metric is calculated for source files and header files in the same folders as source
files. If you want:

• The metric reported for other header files, change the default value of the option
Generate results for sources and (-generate-results-for).

• The metric not reported for header files at all, change the value of the option Do not
generate results for (-do-not-generate-results-for) to all-headers.

Metric Information
Group: File
Acronym: TOTAL_LINES
HIS Metric: No

See Also
Number of Lines Without Comment | Calculate code metrics (-code-
metrics)

 Number of Lines

12-61

Number of Lines Within Body
Number of lines in function body

Description
This metric calculates the number of lines in function body. When calculating the value of
this metric, Polyspace includes declarations, comments, blank lines, braces and
preprocessing directives.

If the function body contains a #include directive, the included file source code is also
calculated as part of this metric.

This metric is not calculated for C++ templates.

Examples

Function with Declarations, Braces and Comments
void func(int);

int getSign(int arg) {
 int sign;
 if(arg<0) {
 sign=-1;
 func(-arg);
 /* func takes positive arguments */
 }
 else if(arg==0)
 sign=0;
 else {
 sign=1;
 func(arg);
 }
 return sign;
}

12 Code Metrics

12-62

In this example, the number of executable lines of getSign is 13. The calculation
includes:

• The declaration int sign;.
• The comment /* ... */.
• The two lines with braces only.

Metric Information
Group: Function
Acronym: FLIN
HIS Metric: No

See Also
Number of Executable Lines | Calculate code metrics (-code-metrics)

 Number of Lines Within Body

12-63

Number of Lines Without Comment
Number of lines of code excluding comments

Description
This metric calculates the number of lines in a file. When calculating the value of this
metric, Polyspace excludes comments and blank lines.

This metric is calculated for source files and header files in the same folders as source
files. If you want:

• The metric reported for other header files, change the default value of the option
Generate results for sources and (-generate-results-for).

• The metric not reported for header files at all, change the value of the option Do not
generate results for (-do-not-generate-results-for) to all-headers.

Metric Information
Group: File
Acronym: LINES_WITHOUT_CMT
HIS Metric: No

See Also
Number of Lines | Calculate code metrics (-code-metrics)

12 Code Metrics

12-64

Number of Local Non-Static Variables
Total number of local variables in function

Description
This metric provides the number of local variables in a function.

The metric excludes static variables. To find number of static variables, use the metric
Number of Local Static Variables.

Examples

Non-Structured Variables
int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, the number of local non-static variables in func is 5. The number does
not include the function arguments and return value.

Arrays and Structured Variables
typedef struct myStruct{
 char arr1[50];
 char arr2[50];
 int val;

 Number of Local Non-Static Variables

12-65

} myStruct;

void func(void) {
 myStruct var;
 char localArr[50];
}

In this example, the number of local non-static variables in func is 2: the structured
variable var and the array localArr.

Variables in Class Methods
class Rectangle {
 int width, height;
 public:
 void set (int,int);
 int area (void);
} rect;

int Rectangle::area (void) {
 int temp;
 temp = width * height;
 return(temp);
}

In this example, the number of local non-static variables in Rectangle::area is 1: the
variable temp.

Metric Information
Group: Function
Acronym: LOCAL_VARS
HIS Metric: No

See Also
Number of Local Static Variables | Higher Estimate of Local Variable
Size | Lower Estimate of Local Variable Size | Calculate code metrics
(-code-metrics)

12 Code Metrics

12-66

Introduced in R2017a

 Number of Local Non-Static Variables

12-67

Number of Local Static Variables
Total number of local static variables in function

Description
This metric provides the number of local static variables in a function.

Examples

Number of Static Variables
void func(void) {
 static int var_1 = 0;
 int var_2;
}

In this example, the number of static variables in func is 1. For examples of different
types of variables, see Number of Local Non-Static Variables.

Metric Information
Group: Function
Acronym: LOCAL_STATIC_VARS
HIS Metric: No

See Also
Higher Estimate of Local Variable Size | Number of Local Non-Static
Variables | Calculate code metrics (-code-metrics)

Introduced in R2017a

12 Code Metrics

12-68

Number of Paths
Estimated static path count

Description
This metric measures the number of paths in a function.

The recommended upper limit for this metric is 80. If the number of paths is high, the
code is difficult to read and can cause more orange checks. Try to limit the value of this
metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Computation Details
The number of paths is calculated according to these rules:

• If the statements in a function do not break the control flow, the number of paths is
one.

Even an empty statement such as ; or empty block such as {} counts as one path.
• The number of paths for a control flow statement is calculated as follows:

• if-else if-else: The number of paths is the sum of paths calculated in the if
block, each else if block, and the concluding else block. When the concluding
else block is omitted, the path count is increased by 1.

For instance, the statement if(..) {} else if(..) {} else {} counts as
three paths. The statement if() {} counts as two paths, one for the if block and
one for the omitted else block.

• switch-case: Every case with break statement adds one to the path count. The
default statement counts as one path, even if it is omitted.

For instance, the statement switch (var) { case 1: .. break; case
2: .. break; default: .. } counts as three paths.

• for, while, and do-while: The number of paths is equal to the number of paths
in the loop body + 1.

 Number of Paths

12-69

For instance, the statement while(0) {;} counts as two paths.
• Ternary operators: A statement with a ternary operator such as

result = a > b ? a : b;

is counted as one statement that does not break the control flow. The number of
paths is considered as one.

• If more than one control flow statement are present in a sequence, the number of
paths is the product of the path count for each control flow statement.

For instance, if a function has three for loops and two if-else statements, the
number of paths is 2 × 2 × 2 × 2 × 2 = 32.

If many control flow statements are present in a function, the number of paths can be
large. Nested control flow statements reduce the number of paths at the cost of
increasing the depth of nesting. For an example, see “Function with Nested Control
Flow Statements” on page 12-71.

• The software displays specific values in cases where the metric is not calculated:

• If goto statements are present in the body of the function, Polyspace cannot
calculate the number of paths. The software displays a metric value of -1.

• If the number of paths reaches an internal limit, the calculation stops. The software
displays this limit as the metric value. The limit is 9223372036854775807
(indicating the hexadecimal number 0x7fffffffffffffff).

Examples

Function with One Path
void func(int ch) {
 switch (ch)
 {
 case 1:
 case 2:
 case 3:
 case 4:
 default:
 }
}

12 Code Metrics

12-70

In this example, func has one path.

Function with Control Flow Statement Causing Multiple Paths
void func(int ch) {
 switch (ch)
 {
 case 1:
 break;
 case 2:
 break;
 case 3:
 break;
 case 4:
 break;
 default:
 }
}

In this example, func has five paths. Apart from the path that goes through the cases
and default, each break causes the creation of a new path.

Function with Nested Control Flow Statements
void func()
{
 int i = 0, j = 0, k = 0;
 for (i=0; i<10; i++)
 {
 for (j=0; j<10; j++)
 {
 for (k=0; k<10; k++)
 {
 if (i < 2)
 ;
 else
 {
 if (i > 5)
 ;
 else
 ;
 }
 }

 Number of Paths

12-71

 }
 }
}

In this example, func has six paths. The number is calculated as follows:

• The innermost if-else block counts as two paths.
• The outer if-else block counts as three paths, one path for the if block and the

previous two paths for the else block.
• The innermost for loop counts as four paths, one path for the loop and the previous

three paths for the if-else blocks.
• The next two outer loops add one path each.

Therefore, the number of paths in func is six.

Metric Information
Group: Function
Acronym: PATH
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

12 Code Metrics

12-72

Number of Potentially Unprotected Shared
Variables
Number of unprotected shared variables

Description
This metric measures the number of variables with the following properties:

• The variable is used in more than one task.
• At least one operation on the variable is not protected from interruption by operations

in other tasks.

Examples
Unprotected Shared Variables
#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 reset();
 inc();
 inc();
 }
}

 Number of Potentially Unprotected Shared Variables

12-73

void interrupt() {
 shared_var = INT_MAX;
}

void interrupt_handler() {
 volatile int randomValue = 0;
 while(randomValue) {
 interrupt();
 }
}

void main() {
}

In this example, shared_var is an unprotected shared variable if you specify task and
interrupt_handler as entry points and do not specify protection mechanisms.

The operation shared_var = INT_MAX can interrupt the other operations on
shared_var and cause unpredictable behavior.

Metric Information
Group: Project
Acronym: UNPSHV
HIS Metric: No

See Also
Calculate code metrics (-code-metrics)

Introduced in R2018b

12 Code Metrics

12-74

Number of Protected Shared Variables
Number of protected shared variables

Description
This metric measures the number of variables with the following properties:

• The variable is used in more than one task.
• All operations on the variable are protected from interruption through critical sections

or temporal exclusions.

Examples
Shared Variables Protected Through Temporal Exclusion
#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 reset();
 inc();
 inc();
 }
}

void interrupt() {
 shared_var = INT_MAX;

 Number of Protected Shared Variables

12-75

}

void interrupt_handler() {
 volatile int randomValue = 0;
 while(randomValue) {
 interrupt();
 }
}

void main() {
}

In this example, shared_var is a protected shared variable if you specify the following
options:

Option Value
Entry points task

interrupt_handler
Temporally exclusive
tasks

task interrupt_handler

The variable is shared between task and interrupt_handler. However, because task
and interrupt_handler are temporally exclusive, operations on the variable cannot
interrupt each other.

Shared Variables Protected Through Critical Sections
#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void take_semaphore(void);
void give_semaphore(void);

12 Code Metrics

12-76

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 take_semaphore();
 reset();
 inc();
 inc();
 give_semaphore();
 }
}

void interrupt() {
 shared_var = INT_MAX;
}

void interrupt_handler() {
 volatile int randomValue = 0;
 while(randomValue) {
 take_semaphore();
 interrupt();
 give_semaphore();
 }
}

void main() {
}

In this example, shared_var is a protected shared variable if you specify the following:

Option Value
Entry points task

interrupt_handler
Critical section details Starting routine Ending routine

take_semaphore give_semaphore

The variable is shared between task and interrupt_handler. However, because
operations on the variable are between calls to the starting and ending procedure of the
same critical section, they cannot interrupt each other.

 Number of Protected Shared Variables

12-77

Metric Information
Group: Project
Acronym: PSHV
HIS Metric: No

See Also
Calculate code metrics (-code-metrics) | Critical section details (-
critical-section-begin -critical-section-end) | Tasks (-entry-points) |
Temporally exclusive tasks (-temporal-exclusions-file)

Introduced in R2018b

12 Code Metrics

12-78

Number of Recursions
Number of call graph cycles over one or more functions

Description
The metric provides a quantitative estimate of the number of recursion cycles in your
project. The metric is the sum of:

• Number of direct recursions (self recursive functions or functions calling themselves).
• Number of strongly connected components formed by the indirect recursion cycles in

your project. If you consider the recursion cycles as a directed graph, the graph is
strongly connected if there is a path between all pairs of vertices.

To compute the number of strongly connected components:

1 Draw the recursion cycles in your code.

For instance, the recursion cycles in this example are shown below.

volatile int checkStatus;
void func1() {
 if(checkStatus) {
 func2();
 }
 else {
 func3();
 }
}

func2() {
 func1();
}

func3() {
 func1();
}

 Number of Recursions

12-79

2 Identify the number of strongly connected components formed by the recursion
cycles.

In the preceding example, there is one strongly connected component. You can
move from any vertex to another vertex by following the paths in the graph.

The event list below the metric shows one of the recursion cycles in the strongly
connected component.

Calls through a function pointer are not considered.

12 Code Metrics

12-80

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding
available stack space, do not use recursions in your code. Recursions can tend to exhaust
stack space easily. See examples of stack size growth with recursions described for this
CERT-C rule that forbids recursions.

To detect use of recursions, check for violations of one of MISRA C:2012 Rule
17.2,MISRA C: 2004 Rule 16.2, MISRA C++:2008 Rule 7-5-4 or JSF Rule 119. Note
that these rule checkers consider explicit function calls only. For instance, in C++ code,
the rule checkers ignore implicit calls to constructors during object creation. However,
the metrics computation considers both implicit and explicit calls.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples
Direct Recursion
int getVal(void);

void main() {
 int count = getVal(), total;
 assert(count > 0 && count <100);
 total = sum(count);
}

int sum(int val) {
 if(val<0)
 return 0;
 else
 return (val + sum(val-1));
}

In this example, the number of recursions is 1.

A direct recursion is a recursion where a function calls itself in its own body. For direct
recursions, the number of recursions is equal to the number of recursive functions.

Indirect Recursion with One Call Graph Cycle
volatile int signal;

 Number of Recursions

12-81

https://wiki.sei.cmu.edu/confluence/x/ztUxBQ
https://wiki.sei.cmu.edu/confluence/x/ztUxBQ

void operation1() {
 int stop = signal%2;
 if(!stop)
 operation2();
}

void operation2() {
 operation1();
}

void main() {
 operation1();
}

In this example, the number of recursions is one. The two functions operation1 and
operation2 are involved in the call graph cycle operation1 → operation2 →
operation1.

An indirect function is a recursion where a function calls itself through other functions.
For indirect recursions, the number of recursions can be different from the number of
recursive functions.

Multiple Call Graph Cycles Forming One Strongly Connected
Component
volatile int checkStatus;
void func1() {
 if(checkStatus) {
 func2();
 }

12 Code Metrics

12-82

 else {
 func3();
 }
}

func2() {
 func1();
}

func3() {
 func1();
}

In this example, there are two call graph cycles:

• func1 → func2 → func1
• func1 → func3 → func1

However, the cycles form one strongly connected component. You can move from any
vertex to another vertex by following the paths in the graph. Hence, the number of
recursions is one.

 Number of Recursions

12-83

Indirect Recursion with Two Call Graph Cycles
volatile int signal;

void operation1() {
 int stop = signal%2;
 if(!stop)
 operation1_1();
}

void operation1_1() {
 operation1();
}

void operation2() {
 int stop = signal%2;
 if(!stop)
 operation2_1();
}

void operation2_1() {
 operation2();
}

void main(){
 operation1();
 operation2();
}

In this example, the number of recursions is two.

There are two call graph cycles:

• operation1 → operation1_1 → operation1
• operation2 → operation2_1 → operation2

The call graph cycles form two strongly connected components.

12 Code Metrics

12-84

Same Function Called in Direct and Indirect Recursion
volatile int signal;

void operation1() {
 int stop = signal%3;
 if(stop==1)
 operation1();
 else if(stop==2)
 operation2();
}

void operation2() {
 operation1();
}

void main() {
 operation1();
}

In this example, the number of recursions is two:

• The strongly connected component formed by the cycle operation1 → operation2
→ operation1.

 Number of Recursions

12-85

• The self-recursive function operation1.

Metric Information
Group: Project
Acronym: AP_CG_CYCLE
HIS Metric: Yes

See Also
MISRA C:2012 Rule 17.2 | Calculate code metrics (-code-metrics)

12 Code Metrics

12-86

Number of Return Statements
Number of return statements in a function

Description
This metric measures the number of return statements in a function.

The recommended upper limit for this metric is 1. If one return statement is present,
when reading the code, you can easily identify what the function returns.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples

Function with Return Points
int getSign (int arg) {
 if(arg <0)
 return -1;
 else if(arg > 0)
 return 1;
 return 0;
}

In this example, getSign has 3 return statements.

Metric Information
Group: Function
Acronym: RETURN
HIS Metric: Yes

 Number of Return Statements

12-87

See Also
Calculate code metrics (-code-metrics)

12 Code Metrics

12-88

Program Maximum Stack Usage
Maximum stack usage in the analyzed program

Description
This metric shows the maximum stack usage from your program.

The metric shows the maximum stack usage for the function with the highest stack usage.
If you provide a complete application, the function with the highest stack usage is
typically the main function because the main function is at the top of the call hierarchy.
For a description of maximum stack usage for a function, see the metric .

Metric Information
Group: Project
Acronym: PROG_MAX_STACK
HIS Metric: No

See Also
Calculate code metrics (-code-metrics)

Introduced in R2017b

 Program Maximum Stack Usage

12-89

Program Minimum Stack Usage
Maximum stack usage in the analyzed program taking nested scopes into account

Description
This metric shows the maximum stack usage from your program, taking nested scopes
into account.

The metric shows the minimum stack usage for the function with the highest stack usage.
If you provide a complete application, the function with the highest stack usage is
typically the main function because the main function is at the top of the call hierarchy.
For a description of minimum stack usage for a function, see the metric .

Considering nested scopes is useful for compilers that reuse stack space for variables
defined in nested scopes. For instance, in this code, the space for var_1 is reused for
var_2.

type func (type param_1, ...) {

 {
 /* Scope 1 */
 type var_1, ...;
 }
 {
 /* Scope 2 */
 type var_2, ...;
 }
}

Metric Information
Group: Project
Acronym: PROG_MIN_STACK
HIS Metric: No

See Also
Calculate code metrics (-code-metrics)

12 Code Metrics

12-90

Introduced in R2017b

 Program Minimum Stack Usage

12-91

Polyspace Report Components —
Alphabetical List

13

Acronym Definitions
Create table of Polyspace acronyms used in report and their full forms

Description
This component creates a table containing the acronyms used in the report and their full
forms. Acronyms are used for Polyspace checks and result status.

See Also

Topics
“Customize Existing Bug Finder Report Template”

13 Polyspace Report Components — Alphabetical List

13-2

Call Hierarchy
Create table showing call graph in source code

Description
This component creates a table showing the call hierarchy in your source code. For each
function call in your source code, the table displays the following information:

• Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the
hierarchy. Beginning from main or an entry point, there are three function calls
leading to the current call.

• File containing the function call.

In Code Prover, the line and column is also displayed.
• File containing the function definition.

In Code Prover, the line and column where the function definition begins is also
displayed.

In addition, the table also displays uncalled functions.

This table captures the information available on the Call Hierarchy pane in the
Polyspace user interface.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Call Hierarchy

13-3

Code and Verification Information
Create table of verification times and code characteristics

Description
This component creates tables containing verification times and code characteristics such
as number of lines.

Properties

Include Verification Time Information
If you select this option, the report contains verification times broken down by phase.

• For Polyspace Bug Finder, the phases are compilation, pass0, pass1, etc.
• For Polyspace Code Prover, the phases are compilation, global, function, etc.

Include Code Details
If you select this option, the report contains the following code characteristics:

• Number of files
• Number of lines
• Number of lines without comment

See Also

Topics
“Customize Existing Bug Finder Report Template”

13 Polyspace Report Components — Alphabetical List

13-4

Code Metrics Details
Create table of Polyspace metrics broken down by file and function

Description
This component creates a table containing metrics from a Polyspace project. The metrics
appear broken down by file and function.

Properties
Project Metrics
If you select this option, the report contains the following metrics about the project:

• Number of direct recursions
• Number of files
• Number of headers
• Number of protected and unprotected shared variables

File Metrics
If you select this option, the report contains the following metrics about each file in the
project:

• Estimated function coupling
• Lines without comment
• Comment density
• Total lines

Function Metrics
If you select this option, the report contains the following metrics about each function in
the project:

 Code Metrics Details

13-5

• Cyclomatic complexity
• Language scope
• Lower and higher estimates of local variable size
• Number of lines within body
• Number of executable lines
• Number of goto statements
• Number of call levels
• Number of called functions
• Number of call occurrences
• Number of function parameters
• Number of paths
• Number of return statements
• Number of instructions
• Number of calling functions

See Also

Topics
“Customize Existing Bug Finder Report Template”

13 Polyspace Report Components — Alphabetical List

13-6

Code Metrics Summary
Create table of Polyspace metrics

Description
This component creates a table containing metrics from a Polyspace project. The metrics
are the same as those displayed under Code Metrics Details. However, the file and
function metrics are not broken down by individual files and functions. Instead, the table
provides the minimum and maximum value of a file metric over all files and a function
metric over all functions.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Code Metrics Summary

13-7

Code Verification Summary
Create table of Polyspace analysis results

Description
This component creates tables containing the following results:

• Number of results
• Number of coding rule violations for each coding rule type such as MISRA C
• Number of defects, for Polyspace Bug Finder results
• Number of checks of each color, for Polyspace Code Prover results
• Whether the project passed or failed the software quality objective

Properties

Include Checks from Polyspace Standard Library Stub
Functions
Unless you deselect this option, the tables contain Polyspace Code Prover checks that
appear in Polyspace stubs for the standard library functions.

See Also

Topics
“Customize Existing Bug Finder Report Template”

13 Polyspace Report Components — Alphabetical List

13-8

Coding Rules Details
Create table of coding rule violations broken down by file

Description
This component creates tables containing coding rule violations broken down by each file
in the Polyspace project. For each rule violation, the table contains the following
information:

• Rule number
• Rule description
• Function containing the violation
• (Code Prover only) Line and column number
• Review information such as classification, status and comments

Properties

Select Coding Rules Type
Using this option, you can choose which coding rule violations to display. You can display
violations for the following set of coding rules:

• MISRA C rules
• MISRA AC AGC rules
• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

Display by
Using this option, you can break down the display of coding rule violations by file.

 Coding Rules Details

13-9

See Also

Topics
“Customize Existing Bug Finder Report Template”

13 Polyspace Report Components — Alphabetical List

13-10

Coding Rules Summary
Create table with number of coding rule violations

Description
This component creates a table containing the number of coding rule violations. You can
choose whether to break this information down by rule number or file.

Properties

Select Coding Rules Type
Using this option, you can choose which coding rule violations to display. You can display
violations for the following set of coding rules:

• MISRA C rules
• MISRA AC AGC rules
• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

Include Files/Rules with No Problems Detected
If you select this option, the table displays:

• Files that do not contain coding rule violations
• Rules that your code does not violate

Display by
Using this option, you can break down the display of coding rule violations by:

 Coding Rules Summary

13-11

• Rule number
• File

See Also

Topics
“Customize Existing Bug Finder Report Template”

13 Polyspace Report Components — Alphabetical List

13-12

Configuration Parameters
Create table of analysis options, assumptions and coding rules configuration

Description
This component creates the following tables:

• Polyspace settings: The analysis options that you used to obtain your results. The table
lists command-line version of the options along with their values.

• Analysis assumptions: The assumptions used to obtain your Code Prover results. The
table lists only the modifiable assumptions. For assumptions that you cannot change,
see the Polyspace documentation.

• Coding rules configuration: The coding rules whose violations you checked for. The
table lists the rule number, rule description and other information about the rules.

• Files with compilation errors: If your project has source files with compilation errors,
these files are listed.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Configuration Parameters

13-13

Defects Summary
Create table of defects (Bug Finder only)

Description
This component creates a table of Polyspace Bug Finder defects. From this table, you can
see the number of defects of each type.

Properties

Include Checkers with No Defects Detected
If you select this option, the table includes all defect types that Polyspace Bug Finder can
detect, including those that do not occur in your code.

See Also

Topics
“Customize Existing Bug Finder Report Template”

13 Polyspace Report Components — Alphabetical List

13-14

Global Variable Checks
Create table of global variables (Code Prover only)

Description
This component creates a table of Polyspace Code Prover global variables. From this
table, you can see the number of global variables of each type.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Global Variable Checks

13-15

Recursive Functions
Create table of recursive functions

Description
This component creates a table containing the recursive functions in your source code
(along with the files containing the functions).

• For each direct recursion (function calling itself directly), the table lists the recursive
function.

• For each indirect recursion cycle (function calling itself through other functions), the
table lists one function in the cycle.

For instance, the following code contains two indirect recursion cycles.

volatile int signal;

void operation1() {
 int stop = signal%2;
 if(!stop)
 operation1_1();
}

void operation1_1() {
 operation1();
}

void operation2() {
 int stop = signal%2;
 if(!stop)
 operation2_1();
}

void operation2_1() {
 operation2();
}

void main(){

13 Polyspace Report Components — Alphabetical List

13-16

 operation1();
 operation2();
}

The two call graph cycles are:

• operation1 → operation1_1 → operation1
• operation2 → operation2_1 → operation2

This report component shows one function from each of the two cycles: operation1 and
operation2. To see the full cycle, open the results in the Polyspace user interface.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Recursive Functions

13-17

Report Customization (Filtering)
Create filters that apply to your Polyspace reports

Description
This component allows you to filter unwanted information from existing Polyspace report
templates. To apply global filters, place this component immediately below the node
representing the report name.

Properties

Code Metrics Filters
The properties in table below apply to the inclusion of code metrics in your report.

Property Purpose User Action
Include Project Metrics Choose whether to include

metrics about your
Polyspace project.

Select the check box to
include project metrics.

Project metrics to include Specify project metrics to
include or exclude from
report.

Enter a MATLAB regular
expression.

Include File Metrics Choose whether to include
per file metrics in report.

Select the check box to
include per file metrics.

File Metrics > Files to
include

Specify files to include or
exclude when reporting file
metrics.

Enter a MATLAB regular
expression.

File metrics to include Specify file metrics to
include or exclude from
report.

Enter a MATLAB regular
expression.

13 Polyspace Report Components — Alphabetical List

13-18

Property Purpose User Action
Include Function Metrics Choose whether to include

per function metrics in
report.

Select the check box to
include per function
metrics.

Function Metrics > Files
to include

Specify files to include or
exclude when reporting
function metrics.

Enter a MATLAB regular
expression.

Functions to include Specify functions to include
or exclude when reporting
function metrics.

Enter a MATLAB regular
expression.

Function metrics to
include

Specify function metrics to
include or exclude from
report.

Enter a MATLAB regular
expression.

Coding Rules Filters
The properties in table below apply to the inclusion of coding rule violations in your
report.

Property Purpose User Action
Files to include Specify files to include or

exclude when reporting
coding rule violations.

Enter a MATLAB regular
expression.

Coding rule numbers to
include

Specify coding rules to
include or exclude when
reporting coding rule
violations.

Enter a MATLAB regular
expression.

Classifications to include Specify classifications to
include or exclude when
reporting coding rule
violations.

Enter a MATLAB regular
expression.

Status types to include Specify statuses to include
or exclude when reporting
coding rule violations.

Enter a MATLAB regular
expression.

 Report Customization (Filtering)

13-19

Run-time Check Filters
The properties in table below apply to the inclusion of Polyspace Code Prover checks in
your report.

Property Purpose
Red Checks Specify whether to include red checks in

your report. Red checks indicate proven
run-time errors.

Gray Checks Specify whether to include gray checks in
your report. Gray checks indicate
unreachable code.

Orange Checks Specify whether to include orange checks
in your report. Orange checks indicate
possible run-time errors.

Green Checks Specify whether to include green checks in
your report. Green checks indicate that an
operation does not contain a specific run-
time error.

Inspection Point Checks Specify whether to include inspection point
checks in your report. These checks allow
an user to find the values that a variable
can take at a certain point in the code.

Unreachable Functions Specify whether to include unreachable
functions in your report.

Advanced Filters
The properties in table below apply to the inclusion of metrics, coding rule violations and
Polyspace Code Prover checks in your report.

Property Purpose User Action
Justification status Choose whether to report

only justified checks, only
unjustified checks or all
checks.

Choose an option from the
dropdown list.

13 Polyspace Report Components — Alphabetical List

13-20

Property Purpose User Action
Files to include Specify files to include or

exclude from your report.
Enter a MATLAB regular
expression.

Check types to include Specify Polyspace Code
Prover checks to include in
your report.

Enter a MATLAB regular
expression.

Function names to
include

Specify functions to include
or exclude from your report.

Enter a MATLAB regular
expression.

Classification types to
include

Specify classifications to
include or exclude from your
report.

Enter a MATLAB regular
expression.

Status types to include Specify statuses to include
or exclude from your report.

Enter a MATLAB regular
expression.

Comments to include Specify comments to include
or exclude from your report.

Enter a MATLAB regular
expression.

See Also

Topics
“Customize Existing Bug Finder Report Template”
“Regular Expressions” (MATLAB)

 Report Customization (Filtering)

13-21

Run-time Checks Details Ordered by Color/
File
Create overrides for global filters in Polyspace reports (Code Prover only)

Description
This component adds detailed information about the run-time checks to your report. This
component can also be used to override global filters in specific chapters of your report.
Use the following workflow when using filters in your report:

1 To create filters that apply to all chapters of your report, use the Report
Customization (Filtering) component. For more information, see Report
Customization (Filtering).

2 To override some of the filters in individual chapters, use the Run-time Checks
Details Ordered by Color/File component. Select the Override Global Report
filter box.

Properties

Categories To Include
The properties in table below apply to the inclusion of Polyspace Code Prover checks in
your report.

Property Purpose
Red Checks Specify whether to include red checks in

your report. Red checks indicate proven
run-time errors.

Gray Checks Specify whether to include gray checks in
your report. Gray checks indicate
unreachable code.

13 Polyspace Report Components — Alphabetical List

13-22

Property Purpose
Orange Checks Specify whether to include orange checks

in your report. Orange checks indicate
possible run-time errors.

Green Checks Specify whether to include green checks in
your report. Green checks indicate that an
operation does not contain a specific run-
time error.

Inspection Point Checks Specify whether to include inspection point
checks in your report. These checks allow
an user to find the values that a variable
can take at a certain point in the code.

Unreachable Functions Specify whether to include unreachable
functions in your report.

Advanced Filters
The properties in table below apply to the inclusion of metrics, coding rule violations and
Polyspace Code Prover checks in your report.

Property Purpose User Action
Justification status Choose whether to report

only justified checks, only
unjustified checks or all
checks.

Choose an option from the
dropdown list.

Files to include Specify files to include or
exclude from your report.

Enter a regular MATLAB
expression.

Check types to include Specify Polyspace Code
Prover checks to include in
your report.

Enter a regular MATLAB
expression.

Function names to
include

Specify functions to include
or exclude from your report.

Enter a regular MATLAB
expression.

Classification types to
include

Specify classifications to
include or exclude from your
report.

Enter a regular MATLAB
expression.

 Run-time Checks Details Ordered by Color/File

13-23

Property Purpose User Action
Status types to include Specify statuses to include

or exclude from your report.
Enter a regular MATLAB
expression.

Comments to include Specify comments to include
or exclude from your report.

Enter a regular MATLAB
expression.

See Also

Topics
“Customize Existing Bug Finder Report Template”

13 Polyspace Report Components — Alphabetical List

13-24

Run-time Checks Details Ordered by Review
Information
Create table with run-time checks ordered by review information (Code Prover only)

Description
This component creates tables displaying the Polyspace Code Prover checks in your code.
All checks with same combination of Severity and Status appear in the same table.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Run-time Checks Details Ordered by Review Information

13-25

Run-time Checks Summary Ordered by File
Create table with run-time checks ordered by file (Code Prover only)

Description
This component creates a table displaying the number of Polyspace Code Prover checks
per file in your code.

Properties

Sort the data
Use this option to sort the rows in the table alphabetically by filename or by percentage of
unproven code.

Display as
Use this option to display the number of checks in a table or in bar charts.

Display ratio of checks in a file
Select this option to display the number of checks of a certain color as a ratio of total
number of checks in the file.

Include checks from Polyspace standard library stub functions
Select this option to include the checks from Polyspace standard library stub functions in
your display.

13 Polyspace Report Components — Alphabetical List

13-26

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Run-time Checks Summary Ordered by File

13-27

Software Quality Objectives - Coding Rules
Summary
Create table of coding rule violations in results downloaded from Polyspace Metrics

Description
This component creates a table containing coding rule violations in results downloaded
from Polyspace Metrics.

See Also

Topics
“Customize Existing Bug Finder Report Template”

13 Polyspace Report Components — Alphabetical List

13-28

Software Quality Objectives - Run-time
Checks Details
Create table of result details for results downloaded from Polyspace Metrics

Description
This component creates tables showing results downloaded from Polyspace Metrics.

The component Software Quality Objectives - Run-time Checks Summary
shows the distribution of results. This component shows individual instances of results.
Each file has a dedicated table showing the findings in the file.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Software Quality Objectives - Run-time Checks Details

13-29

Software Quality Objectives - Run-time
Checks Summary
Create table of results summary for results downloaded from Polyspace Metrics

Description
This component creates a table showing the distribution of run-time checks in results
downloaded from Polyspace Metrics.

This component shows the distribution of run-time checks. The component Software
Quality Objectives - Run-time Checks Details shows the individual instances
of run-time checks.

See Also

Topics
“Customize Existing Bug Finder Report Template”

13 Polyspace Report Components — Alphabetical List

13-30

Summary By File
Create table showing summary of Polyspace results by file

Description
This component creates a table showing a breakdown of Polyspace results by file.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Summary By File

13-31

Variable Access
Create table showing global variable access in source code (Code Prover only)

Description
This component creates a table showing the global variable access in your source code.
For each global variable, the table displays the following information:

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.
• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table

displays the following information:

• File and function containing the operation in the form
file_name.function_name.

The entry for each read or write operation is denoted by ||. Write operations are
denoted by < and read operations by >.

• Line and column number of the operation.

This table captures the information available on the Variable Access pane in the
Polyspace user interface.

See Also

Topics
“Customize Existing Bug Finder Report Template”

13 Polyspace Report Components — Alphabetical List

13-32

Variable Checks Details Ordered By Review
Information
Create table with global variable results ordered by review information (Code Prover
only)

Description
This component creates tables displaying the Polyspace Code Prover global variable
results in your code. All checks with same combination of Severity and Status appear in
the same table.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Variable Checks Details Ordered By Review Information

13-33

Configuration Parameters

• “Settings from (C)” on page 14-2
• “Settings from (C++)” on page 14-4
• “Use custom project file” on page 14-6
• “Project configuration” on page 14-8
• “Enable additional file list” on page 14-9
• “Stub lookup tables” on page 14-11
• “Input” on page 14-13
• “Tunable parameters” on page 14-14
• “Output” on page 14-15
• “Model reference verification depth” on page 14-16
• “Model by model verification” on page 14-18
• “Output folder” on page 14-19
• “Make output folder name unique by adding a suffix” on page 14-20
• “Add results to current Simulink project” on page 14-21
• “Open results automatically after verification” on page 14-22
• “Check configuration before verification” on page 14-23
• “Verify all S-function occurrences” on page 14-24

14

Settings from (C)
Select settings for the analysis configuration. You can quickly activate coding rules
checking for generated C code

Model Configuration Parameters Category: Polyspace

Settings
Default: Project configuration

Project configuration
Run Polyspace with the options specified in the “Project configuration” on page 14-
8 or “Use custom project file” on page 14-6.

You do not check coding rules unless you select a rule set in the configuration.
Project configuration and MISRA AC AGC checking

Run Polyspace with the options specified in the Project configuration plus MISRA
AC-AGC obligatory and recommended rules.

Project configuration and MISRA C 2004 checking
Run Polyspace with the options specified in the Project configuration plus all
MISRA C 2004 rules.

Project configuration and MISRA C 2012 checking
Run Polyspace with the options specified in the Project configuration plus all
MISRA C 2012 rules. This option automatically applies the rule categories for
generated code. See Use generated code requirements (-misra3-agc-
mode).

MISRA AC AGC checking
Check compliance with the MISRA AC-AGC obligatory and recommended rules. After
rules checking, Polyspace stops.

MISRA C 2004 checking
Check compliance with all MISRA C 2004 rules. After rules checking, Polyspace stops.

MISRA C 2012 checking
Check compliance with all MISRA C 2012 rules. This option automatically applies the
rule categories for generated code. See Use generated code requirements (-
misra3-agc-mode). After rules checking, Polyspace stops.

14 Configuration Parameters

14-2

Dependency
This setting overrides custom configuration settings in “Project configuration” on page
14-8 and “Use custom project file” on page 14-6. If you want to use your custom
coding rule settings, select the Project configuration option.

Command-Line Information
Use the pslinkoptions property VerificationSettings.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameter PSVerificationSettings with the same
value as for the pslinkoptions property VerificationSettings. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 See Also

14-3

Settings from (C++)
Select settings for the analysis configuration. This option allows you to quickly activate
coding rules checking for generated C++ code.

Model Configuration Parameters Category: Polyspace

Settings
Default: Project configuration

Project configuration
Run Polyspace with the options specified in the “Project configuration” on page 14-
8 or “Use custom project file” on page 14-6.

You do not check coding rules unless you select a rule set in the configuration.
Project configuration and MISRA C++ checking

Run Polyspace with the options specified in the Project configuration plus MISRA C
++ required rules.

Project configuration and JSF C++ checking
Run Polyspace with the options specified in the Project configuration plus JSF C++
shall rules.

MISRA C++ checking
Check compliance with the MISRA C++: 2008 required rules. After rules checking,
Polyspace stops.

JSF C++ checking
Check compliance with the JSF C++ shall rules. After rules checking, Polyspace
stops.

Dependency
This setting overrides custom configuration settings in “Project configuration” on page
14-8 and “Use custom project file” on page 14-6. If you want to use your custom
coding rule settings, select the Project configuration option.

14 Configuration Parameters

14-4

Command-Line Information
Use the pslinkoptions property CxxVerificationSettings.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameter PSCxxVerificationSettings with the
same value as for the pslinkoptions property CxxVerificationSettings. See
pslinkoptions.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 See Also

14-5

Use custom project file
Set Polyspace configuration options with a custom .psprj file

Model Configuration Parameters Category: Polyspace

Settings

Default: Off

Off
Analysis uses configuration options from Project configuration on page 14-8
parameters.

On
Analysis uses configuration options from the specified .psprj project file.

Dependency
The Settings from parameter overrides custom configuration settings for coding rules. If
you want to use your custom coding rule settings, set Settings from > Project
configuration.

Command-Line Information
Use the pslinkoptions properties EnablePrjConfigFile and PrjConfigFile.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameters PSEnablePrjConfigFile and
PSPrjConfigFile with the same values as for the pslinkoptions properties
EnablePrjConfigFile and PrjConfigFile. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

14 Configuration Parameters

14-6

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 See Also

14-7

Project configuration
Set advanced configuration options to customize the analysis.

Settings
Open the Polyspace Configuration window by using the Configure button. Customize
additional settings in this window and save your project configuration. If you added a
custom project file in the parameter “Use custom project file” on page 14-6, that project
file configuration is shown. Otherwise, the default project template is used.

For details about the advanced options, see “Analysis Options”.

Dependency
The Settings from parameter overrides custom configuration settings for coding rules. If
you want to use your custom coding rule settings, set Settings from > Project
configuration.

Command-Line Information
Use a Polyspaceproject (.psprj file) with the pslinkoptions properties
EnablePrjConfigFile and PrjConfigFile.

See Also
polyspace.ModelLinkOptions | pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

14 Configuration Parameters

14-8

Enable additional file list
Add additional supporting code files to the analysis.

For instance, suppose you use C files for testing results from the generated code or
providing inputs to the generated code. The analysis of generated code only considers
files generated from the Simulink model. If you want the analysis to consider the C files
that you use for testing or inputs, provide them as additional files.

Model Configuration Parameters Category: Polyspace

Settings

Default: Off

Off
The analysis includes no additional files.

On
Polyspace analyzes the specified C/C++ files with the generated code. Use the Select
files button to specify these additional files.

Command-Line Information
Use the pslinkoptions properties EnableAdditionalFileList and
AdditionalFileList.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameters PSEnableAdditionalFileList and
PSAdditionalFileList with the same values as for the pslinkoptions properties
EnableAdditionalFileList and AdditionalFileList. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

 Enable additional file list

14-9

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

14 Configuration Parameters

14-10

Stub lookup tables
Specify that the verification must stub auto-generated functions that use certain kinds of
lookup tables in their body. The lookup tables in these functions use linear interpolation
and do not allow extrapolation. That is, the result of using the lookup table always lies
between the lower and upper bounds of the table.

If you use this option, the verification is more precise and has fewer orange checks. The
verification of lookup table functions is usually imprecise. The software has to make
certain assumptions about these functions. To avoid missing a run-time error, the
verification assumes that the result of using the lookup table is within the full range
allowed by the result data type. This assumption can cause many unproven results
(orange checks) when a lookup table function is called. By using this option, you narrow
down the assumption. For functions using lookup tables with linear interpolation and no
extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model uses Lookup Table blocks.

Model Configuration Parameters Category: Polyspace

Settings

Default: On

On
For autogenerated functions that use lookup tables with linear interpolation and no
extrapolation, the verification:

• Does not check for run-time errors in the function body.
• Calls a function stub instead of the actual function at the function call sites. The

stub ensures that the result of using the lookup table is within the bounds of the
table.

To identify if the lookup table in the function uses linear interpolation and no
extrapolation, the verification uses information provided by the code generation
product. For instance, if you use Embedded Coder to generate code, the lookup table
functions with linear interpolation and no extrapolation follow specific naming
conventions.

 Stub lookup tables

14-11

Off
The verification does not stub autogenerated functions that use lookup tables.

Tips
• The option applies only to autogenerated functions. If you integrate your own C/C++

S-Function using lookup tables with the model, the option does not cause them to be
stubbed.

• The option is on by default. For certification purposes, if you want your verification
tool to be independent of the code generation tool, turn off the option.

Command-Line Information
Use the pslinkoptions property AutoStubLUT.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameter PSAutoStubLUT with the same value as for
the pslinkoptions property AutoStubLUT. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

14 Configuration Parameters

14-12

Input
Choose whether to constrain Inport block variables.

Model Configuration Parameters Category: Polyspace

Settings
Default: Use specified minimum and maximum values

Use specified minimum and maximum values
Analysis assumes minimum and maximum values for input variables. These values are
specified in the Inport block dialog box. Use this value to reduce the number of false
positive results.

Unbounded inputs
Analysis assumes full range for input variables. Use this value to run a robust analysis
that includes values outside the expected range.

Command-Line Information
Use the pslinkoptions property InputRangeMode.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameter PSInputRangeMode with the same value as
for the pslinkoptions property InputRangeMode. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”
• “External Constraints on Polyspace Analysis of Generated Code”

 Input

14-13

Tunable parameters
Choose how to treat tunable parameter values during the analysis. Treat values as either
constants or a range of values.

Model Configuration Parameters Category: Polyspace

Settings
Default: Use calibration data

Use calibration data
Analysis assumes constant values for tunable parameters. Use this value to run a
contextual analysis. This option can reduce the number of false positive results.

Use specified minimum and maximum values
Analysis assumes a range of values for the tunable parameter variables. Specify
maximum and minimum values in the model. Use this option to run a robust analysis
that includes values outside the expected parameter value.

Command-Line Information
Use the pslinkoptions property ParamRangeMode.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameter PSParamRangeMode with the same value as
for the pslinkoptions property ParamRangeMode. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”
• “External Constraints on Polyspace Analysis of Generated Code”

14 Configuration Parameters

14-14

Output
Choose whether to verify output values.

Code Prover option only. Bug Finder cannot check output values.

Model Configuration Parameters Category: Polyspace

Settings
Default: No verification

No verification
Polyspace does not verify output values.

Verify outputs are within minimum and maximum values
Polyspace checks to see if the output variable values are within the expected
minimum and maximum values. Specify the minimum and maximum values in the
output block dialog boxes.

Command-Line Information
Use the pslinkoptions property OutputRangeMode.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameter PSOutputRangeMode with the same value
as for the pslinkoptions property OutputRangeMode. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”
• “External Constraints on Polyspace Analysis of Generated Code”

 Output

14-15

Model reference verification depth
Only for models that use Embedded Coder generated code. Indicate how deep into the
model hierarchy to analyze.

Model Configuration Parameters Category: Polyspace

Settings
Default: Current model only

Current model only
Polyspace analyzes only the current model

1
Polyspace analyzes the current model and the referenced models that are one level
below the current model.

2
Polyspace analyzes the current model and the referenced models that are up to two
levels below the current model.

3
Polyspace analyzes the current model and the referenced models that are up to three
levels below the current model.

All
Polyspace analyzes the current model and all referenced models.

Command-Line Information
Use the pslinkoptions property ModelRefVerifDepth.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameter PSModelRefVerifDepth with the same
value as for the pslinkoptions property ModelRefVerifDepth. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

14 Configuration Parameters

14-16

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 See Also

14-17

Model by model verification
Only for models that use Embedded Coder generated code. Analyze each model or
referenced model individually. If you have a large project, this option can help modularize
your analysis .

Model Configuration Parameters Category: Polyspace

Settings

Default: Off

Off
Polyspace analyzes your models together. Model interactions are analyzed.

On
Polyspace analyzes your model and each of its referenced models in isolation. This
option does not analyze model interactions.

Command-Line Information
Use the pslinkoptions property ModelRefByModelRefVerif.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameter PSModelRefByModelRefVerif with the
same value as for the pslinkoptions property ModelRefByModelRefVerif. See
pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

14 Configuration Parameters

14-18

Output folder
Specify the location and folder name for your analysis results.

Model Configuration Parameters Category: Polyspace

Settings
Default: results_$ModelName$

Enter a path for your results folder. If you do not use a full path, the results folder is
relative to your current MATLAB folder.

If you select “Add results to current Simulink project” on page 14-21, the results folder is
relative to the Simulink project folder.

By default, the software stores your results in Current Folder\results_model_name.

Command-Line Information
Use the pslinkoptions property ResultDir.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameter PSResultDir with the same value as for the
pslinkoptions property ResultDir. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Output folder

14-19

Make output folder name unique by adding a suffix
Add a unique suffix to the results folder for every run to avoid overwriting previous
results.

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Every time you rerun your analysis, your results are overwritten.

On
For each run of the analysis, Polyspace specifies a new location for the results folder
by appending a unique number to the folder name.

Command-Line Information
Use the pslinkoptions property AddSuffixToResultDir.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameter PSAddSuffixToResultDir with the same
value as for the pslinkoptions property AddSuffixToResultDir. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

14 Configuration Parameters

14-20

Add results to current Simulink project
Add your Polyspace results to the current Simulink project. To use this option, you must
have a Simulink project open.

Model Configuration Parameters Category: Polyspace

Settings

Default: Off

Off
Results are saved to the current folder.

On
Results are saved to the currently open Simulink project.

Dependencies
You must have a Simulink project open to use this option.

Command-Line Information
Use the pslinkoptions property AddToSimulinkProject.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameter PSAddToSimulinkProject with the same
value as for the pslinkoptions property AddToSimulinkProject. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Add results to current Simulink project

14-21

Open results automatically after verification
Decide whether to open your results in the Polyspace interface after running analysis
from Simulink.

Model Configuration Parameters Category: Polyspace

Settings
Default: On

On
After you run an analysis, your results open automatically in the Polyspace interface.

Off
You must manually open your results after running an analysis.

Command-Line Information
Use the pslinkoptions property OpenProjectManager.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameter PSOpenProjectManager with the same
value as for the pslinkoptions property OpenProjectManager. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

14 Configuration Parameters

14-22

Check configuration before verification
Check whether model and code configurations are optimal for code analysis.

Model Configuration Parameters Category: Polyspace

Settings
Default: On (proceed with warnings)

On (proceed with warnings)
The process stops for errors, but continues the code analysis if the configuration has
only warnings.

On (stop for warnings)
If the configuration has errors or warnings, the process stops.

Off
The software does not check the configuration.

Command-Line Information
Use the pslinkoptions property CheckConfigBeforeAnalysis. For details, see
pslinkoptions.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameter PSVerifALLSFcnInstances with the same
value as for the pslinkoptions property VerifALLSFcnInstances. See pslinkoptions.

See Also
pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Check configuration before verification

14-23

Verify all S-function occurrences
For S-Function analyses only. Run an analysis on all instances of the selected S-Function.

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Analyze only the selected S-Function block. The analysis includes only information
from the selected S-Function block.

On
Analyze all occurrences of the S-function in the model. If the S-Function is included in
the model multiple times, information from all occurrences is included in the analysis.

Command-Line Information
Use the pslinkoptions property VerifALLSFcnInstances.

The pslinkoptions function allows you to create a Polyspace options object that you
can reuse for multiple models. You can also use the set_param function to associate this
property with the model. Use the parameter PSVerifALLSFcnInstances with the same
value as for the pslinkoptions property VerifALLSFcnInstances. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

14 Configuration Parameters

14-24

Approximations Used During Bug
Finder Analysis

15

Inputs in Polyspace Bug Finder
A Bug Finder analysis does not return a defect caused by a special value of an unknown
input, unless the input is bounded. Polyspace makes no assumption about the value of
unbounded inputs when your source code is incomplete. For example, in the following
code Bug Finder detects a division by zero in foo_1(), but not in foo_2():

int foo_1(int p)
{
 int x = 0;
 if (p > -10 && p < 10) /* p is bounded by if statement */
 x = 100/p; /* Division by zero detected */

 return x;
}

int foo_2(int p) /* p is unbounded */
{
 int x = 0;
 x = 100/p; /* Division by zero not detected */

 return x;
}

Note To set bounds on your input, add constraints in your code such as assert or if.

See Also
“Global Variables in Polyspace Bug Finder” on page 15-3 | “Bug Finder Analysis
Assumptions”

15 Approximations Used During Bug Finder Analysis

15-2

Global Variables in Polyspace Bug Finder
When you run a Bug Finder analysis, Polyspace makes certain assumptions about the
initialization of global variables. These assumptions depend on how you declare and
define global variables. For example, in this code

int foo(void) {
 return 1/gvar;
}

Bug Finder detects a division by zero defect with the variable gvar in these cases:

• You define int gvar; in the source code and provide a main function that calls foo.
Bug Finder follows ANSI standards that state the variable is initialized to zero.

• You define int gvar; or declare extern int gvar; in the source code. Another
function calls foo and sets gvar=0. Otherwise, when your source files are incomplete
and do not contain a main function, Bug Finder makes no assumption about the
initialization of gvar.

• You declare const int gvar;. Bug Finder assumes gvar is initialized to zero due to
the const keyword.

See Also
“Inputs in Polyspace Bug Finder” on page 15-2 | “Bug Finder Analysis Assumptions”

 Global Variables in Polyspace Bug Finder

15-3

